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Introduction: Multiple cytokines detection represents a more robust way to
predict the disease progression than a single cytokine, and flow cytometry (FCM)-
based assays are increasingly used worldwide for multiple cytokines profile.

Methods: Inspired by One-step concept of ELISA technology, here we reported the
development of one-step FCM-based 12-plex cytokine assay to reduce operation
and reaction times, in which all the reagents (including capture-antibody-modified
beads and phycoerythrin-labeled detection antibodies) had mixed in the same
reaction system and achieved similar performance to the conventional approach.
Moreover, we used the lyophilization technique to remove the need for cold storage
of reagents to further simplify the assay procedure.

Results: We leveraged our technology to test clinical serum samples from
patients with COVID-19 or HBV infectious diseases, and established
supervised or unsupervised machine learning models to predict the severity or
viral load and get deeper insights into the diseases.

Discussion: Together, our results demonstrate a general and framework for
convenient analysis of cytokine panel and have the potential to influence
medical research and application in this field.
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Introduction

Analyzing a single cytokine is insufficient to determine the outcome of a complex disease
such as COVID-19, and strategies incorporating multiple cytokine profile represent a more
robust alternative to predict the patients’ outcome and generate deeper insight (Castro-Castro
et al., 2022). A growing number of studies are using multiple cytokine combinations to study
diseases, including COVID-19 (Patterson et al., 2021), coronary artery disease (Liu et al.,
2022), cancer (Shaw et al., 2014), and Alzheimer’s Disease (Aksnes et al., 2021). These studies
proceeded smoothly thanks to advances in technologies to detect and quantify multiple
cytokines simultaneously in a single assay, especially Luminex-based or flow cytometry
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(FCM)-based assays. The Luminex system uses hundreds of
microsphere or bead sets labeled with two fluorophores in
different ratios to encode different cytokines and allows accurate
and fast detection, however, the dedicated requirement for analysis
instruments and the upfront costs may restrict the utility and
availability of Luminex (Liu et al., 2021). In contrast, FCM is
pervasive in clinical and research institutions, and increasing
cytokine detection kits based on the principle of FCM are available
on the market worldwide (Tang et al., 2024).

Here, we lyophilized the assay reagents and achieved a single-step
FCM-based detection, therefore effecitvely simplify the reagent
transport, storage, and detection procedure (Figure 1). With it, we
explored 12-plex cytokine profile in COVID-19 and HBV patients,
used supervised and unsupervised machine learning approaches to
predict the severity and get deeper insight into the diseases.

Materials and methods

Patients

Whole blood was collected in a 5mL EDTA tube and a 5mL serum
collection tube. A total of 364 individuals were enrolled in the study,
including 132 COVID-19 infected patients, 149 chronic HBV infected
patients, and 83 healthy individuals. COVID-19 infected patients were

defined by a positive result of RT-PCR assay (i.e., Ct value <35 for both
ORF and N genes) of a specimen collected on a nasal or throat swab
specimens. The patients were categorized according to the following
criteria: Moderate, 1) radiological findings of pneumonia fever and
respiratory symptoms, 2) saturation of oxygen (SpO2) ≥ 94% on room
air at sea level; Severe, 1) saturation of oxygen (SpO2) < 94% on room
air at sea level, 2) arterial partial pressure of oxygen (PaO2)/fraction of
inspired oxygen (FiO2) < 300mmHG, 3) lung infiltrate >50% within
24–48 h, 4) heart rate ≥125 bpm, 5) respiratory rate ≥30 breaths per
minute. HBV infected patients were positive for both HBV RNA and
HBV IgM/IgG serology. Healthy control individuals were recruited
from surrounding communities during the same period according to
the following inclusion and exclusion criteria:1) age 18–55 years old; 2)
not genetically related to the patient; 3) no history of serious physical
illness; 4) No history of psychiatric disorders or family history thereof;
5) non-pregnant or lactating women.

Immune cell flow analysis

1) Add 100 µLwhole blood sample in tube incubatedwith 5 µL each
fluorescent antibody (T/B/NK: CD45-PerCP/CD3-FITC/CD4-
PE-Cy7/CD8-APC-Cy7/CD16-PE/CD56-PE/CD19-APC; Treg:
CD45-PerCP/CD3-FITC/CD4-PE-Cy7/CD25-PE/CD127-APC)
for 30 min 2) Add 2 mL of hemolysin, mix in a gentle swirl, and

FIGURE 1
Development of one-step FCM-basedmultiple cytokine assay. (A)Workflowof the conventional FCM-basedmultiple cytokine assay. The figure was
created with BioRender.com. (B) Workflow of the One-step FCM-based multiple cytokine assay. The figure was created with BioRender.com. (C) The
comparison of the detection of twelve cytokines between conventional and One-step approaches.
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incubate for 10 min with light closed. 3) Centrifuge 300 g for
5 min, discard supernatant. 4) Add 2 mL PBS to vortex mix,
centrifuge 300 g for 5 min, discard supernatant. 5) Add 500 µL
PBS vortex again and mix well. 6) The CD4 T cells, CD8 T cells,
NK cells, Tregs cell number were tested by the Beckman
Coulter DxFlex.

Measurement of ALT and AST

Serum levels of alanine aminotransferase (ALT) and aspartate
aminotransferase (AST) were measured using detection kits from
Beijing Strong Biotechnologies, Inc. on a Beckman Coulter
AU5800 fully automated biochemical analyzer.

Quantification of HBV DNA

Serum Hepatitis B virus DNA levels were quantified using the
Real-Time PCR Nucleic Acid Detection Kit (Fluorescent Probe
Method) manufactured by Sansure Biotech Inc. Extraction of
DNA from serum samples was performed following the
manufacturer’s protocol, and the viral DNA was amplified and
detected on an Applied Biosystems 7,300 Real-Time PCR System.

Multiplex cytokine quantification with
conventional or one-step assay

The recombinant protein standards used in this study were
procured from BioLegend. Capture antibodies and detection
antibodies were procured from BioLegend, BD, or Thermo Fisher
Scientific. Carboxylated fluorescently encoded microspheres were
obtained from Spherotech. Capture antibodies were conjugated to
the fluorescently encoded microspheres using the EDC (1-ethyl-3-
(3-dimethylaminopropyl)carbodiimide) and sulfo-NHS
(N-hydroxysulfosuccinimide) coupling method. Phycoerythrin
(PE) was conjugated to detection antibodies via succinimidyl-4-
(N-maleimidomethyl)cyclohexane-1-carboxylate (SMCC) and
dithiothreitol (DTT)-mediated crosslinking.

The conventional FCM-based multiple cytokine assay was
performed as follows: 1) 50 μL of sample or standard was
combined with 50 μL of capture microspheres in a 96-well plate
and incubated with shaking at room temperature for 2 h; 2)
unbound material was removed by washing buffer (0.15 M PBS,
0.05% tween-20, PH 7.4), followed by the addition of a biotinylated
secondary antibody and incubation for 30 min; 3) after further
washing to remove unconjugated secondary antibody, streptavidin-
PE conjugate was added and incubated with shaking at room
temperature for 30 min; 4) following a final wash step, reading
buffer (0.15 M PBS, PH 7.4) was added, and the plate was detected
using a Beckman Coulter DxFlex flow cytometer.

The one-step assay was performed as follows: 1) 100 μL of
sample or standard was added to a 96-well plate containing
lyophilized reagent beads and incubated with shaking at room
temperature for 1.5 h; 2) following washing to remove unbound
components, reading buffer was added, and the plate was analyzed
using the Beckman Coulter DxFlex flow cytometer.

Lyophilization optimization for one-
step assay

Three lyophilization buffer formulations were composed as
follows: (1) 0.15 M PBS buffer (pH 7.4) containing 0.1% BSA; (2)
0.15 M PBS buffer (pH 7.4) supplemented with 0.1% BSA and 5%
trehalose; (3) 0.15 M PBS buffer (pH 7.4) containing 0.1% BSA, 5%
mannitol, and 3% trehalose. The capture-antibody containing
microspheres of the twelve cytokines and corresponding
detection antibodies were mixed in one of the three
lyophilization buffer systems. The number of the microspheres
was 100,000 particles/mL, and the concentration of the detection
antibodies was 2 μg/mL. Using an automated dispensing system,
250 μL aliquots were rapidly dispensed into liquid nitrogen, where
they crystallized into lyophilization reagent beads within
approximately 10 s and settled to the bottom. The frozen beads
were immediately transferred to a pre-cooled vacuum freeze-dryer
and subjected to lyophilization for 12 h to obtain freeze-dried
reagent spheres.

Construction of machine learning models

Three supervised machine learning algorithms, i.e., logistic
regression (Logi), random forest (RF), and support vector
machine (SVM), were performed using the mlr3verse package
(version 0.2.8) in R (version 4.0.1) to predict the HBV viral load.
The twelve cytokines, along with the ALT and AST features, were
included in the model construction. All algorithms were
conducted via random search, coupled with 5-fold cross-
validation, to identify the hyperparameter combination with
the highest Area Under the Curve (AUC). The performance of
these models was compared according to accuracy and AUC. The
unsupervised machine learning model (i.e., t-SNE) for clustering
COVID-19 patients was conducted with R package Rtsne
(version 0.17).

Statistics

All analyses were performed using R statistical software,
and results were visualized with ggplot2 (version 3.4.3)
(Ginestet, 2011). Student’s t-tests (two-tailed) were employed
to evaluate differences between groups. Statistical significance
thresholds were defined as following: p-values <0.05 were
considered statistically significant and marked with a single
asterisk (*), p-values <0.01 were denoted with two asterisks
(**), and p-values <0.001 were labeled with three asterisks (***)
t-SNE analysis was conducted with R package Rtsne
(version 0.17).

Ethics statement

The study was approved by the First Affiliated Hospital of
Chengdu Medical College (#2021CYFYIRB-SQ-30). All methods
were performed in accordance with the relevant guidelines and
regulations.
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Results

Development of one-step FCM-based
multiple cytokine assay with
lyophilized reagent

Traditionally, indirect labeling through biotin-avidin has been
used in FCM-based multiple cytokine assay, and multiple round
washing steps and adding operations are required, which
complicates the operation and increases the reaction time (3–4 h)
(Figure 1A) (Qiu et al., 2014). Inspired by the one-step ELISA
technology in which capture and detection antibodies are co-
incubated in the same reaction step (Pan et al., 2023), we
designed One-step FCM-based multiple cytokine assay in which
phycoerythrin (PE) was directly labeled to the detection antibodies
and all the reagents (including capture and detection antibodies) are
mixed in the same reaction system (Figure 1B). Our results showed
that One-step assay achieved a similar level of the twelve cytokine
standards compared to the conventional method (Figure 1C).

To facilitate the storage and transportation of the reagents and
further simplify the assay procedures, we explored the lyophilization
technique (Figure 2A). Lyophilizing the initial reaction system (0.1%
BSA) substantially reduced the signal for most of the twelve cytokines,

compared to the pre-lyophilization reagent (Figure 2B). To remedy this
deficiency and obtain freeze-dried reagent spheres, trehalose (5%) or
trehalose (3%) + mannitol (5%) were added to One-step reagent as
cryoprotectant additives. With combination of the two additives, the
One-step assay retained its performance post-lyophilization (Figure 2B).
Adding 5% trehalose helped maintain the spherical shape of the
lyophilized reagent (Figures 2C–II) while the BSA-only group failed
(Figures 2C–I). However, the volume of the reagent sphere decreased
significantly after 3 days (Figures 2C–IV), because of absorption of water
in the air and subsequent structural collapse (Hammerling et al., 2021;
Carpenter et al., 1993; Tonnis et al., 2015). The combination of 3%
trehalose and 5%mannitol was conducive for long-term storage (Figures
2C–III), and the shape did not change significantly for 3months at room
temperature (Figures 2C–V).

A machine learning approach was used to
test the new technology on COVID-19
disease and analyze cytokine profile
clustering

We tested our one-step FCM-based multiple cytokine assay
with clinical serum samples, and selected COVID-19 and HBV

FIGURE 2
Development of lyophilization technologyof theOne-step assay. (A) Schematic of the advantages of lyophilizing theOne-step assay. The figurewas created
with BioRender.com. (B) The performance on the twelve cytokine standards before and after lyophilization using different buffers. (C) Representative photo of
freeze-dried microspheres: I, lyophilization with 0.1% BSA; II, lyophilization with 0.1 %BSA+5%trehalose; III, lyophilization with 0.1 %BSA+3%trehalose+5%
mannitol; IV, 3 days after lyophilization with 0.1 %BSA+5%trehalose; V, 3 months after lyophilization with 0.1 %BSA+3%trehalose+5%mannitol. Bars, 5 mm.
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infectious diseases. The level of the twelve cytokines in sera

samples from healthy controls (N = 83) and COVID-19 patients

(N = 132) were assayed (Table 1). All the twelve cytokines were

significantly upregulated in the COVID-19 patients compared

with that of healthy controls, indicating an antiviral immune

response (Figure 3). Consistently, the proportion of the immune

cells, such as CD4 cells, CD8 cells, and B cells, were significantly

changed upon COVID-19 infection (Supplementary Figure S1).

Correlation analysis of patients’ data showed broad relevance

TABLE 1 Clinical demographic profile. A collection of plasma samples from
patients with diagnosed COVID-19 and healthy controls.

Context COVID-19 Control p-value

N 132 83

Sex [n (%)] female 71 (53.8) 38 (45.8) 0.316

Sex [n (%)] male 61 (46.2) 45 (54.2)

Age (mean (SD)) 61.2 (21.9) 55.0 (13.8) 0.022

FIGURE 3
A twelve cytokine panel detection of sera from healthy controls and COVID-19 patients Sera from healthy controls and COVID-19 patients were
tested for a twelve cytokine panel. Healthy controls (N = 83) and COVID-19 patients (N = 132). Cytokine concentration was taken the logarithmwith base
10 and statistical analysis was performed using unpaired Student’s t-test. ***, P < 0.001.

FIGURE 4
t-Distributed Stochastic Neighbor Embedding (t-SNE) using the twelve cytokine signatures in COVID-19 patients. (A) t-SNEmap of cytokine analysis
of patients. (B) Number of available hospitalized patients classified as the two different Clusters.
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within cytokines or immune cell proportions, while a few of

negative correlation was observed between certain cytokines and

cell proportions, including IL-2, IL-12p70, and IL-6

(Supplementary Figure S2).
To probe the potential utility of the twelve-cytokine detection in

the disease, we performed t-Distributed Stochastic Neighbor
Embedding (t-SNE) with the cytokine data of COVID-19
patients. Intriguingly, the cytokines clustered the patients into

two subsets, i.e., Cluster I and Cluster II (Figure 4A) (Table 2).
All the cytokines, except IL-8, showed significantly higher level in
the Cluster II group than that of Cluster I group (Supplementary
Figure S3), implying more severe inflammation. The clinical data of
21 hospitalized patients were available, including 6 with moderate
symptoms and 15 with severe symptoms (Supplementary Figure S4).
Interestingly, all of the six moderate patients were annotated as
Cluster I, and Cluster II group only included severe patients
(Figure 4B). While the p-value of 0.06 from Fisher’s exact test
did not reach statistical significance (Table 2), and future studies
with expanded cohorts are necessary to validate predictive utility,
our results nonetheless indicate the potential viability of
this method.

Test of the new technology on HBV disease
and development of supervised machine
learning model

We also detected the cytokine level in sera of patients infected
with hepatitis B virus that showed a chronic inflammation (N = 149)
(Table 3). All the twelve cytokine levels were significantly
upregulated in HBV patients compared with that of healthy
control (Figure 5). Monitoring the viral level is crucial for
managing the disease, and we divided the patients into low and
high viral-load groups based on the value detected by detection kit,
in which the value lower than 200 IU/mL was assigned “Low” (N =
51), otherwise “High” (N = 98) (Table 4). Statistical result showed
that the content of IFN-α, IL-12 p70, IL-17A, IL-4 and IL-8 in High
group were significantly higher than that of Low group (Figure 6),
suggesting these cytokines were involved in the more severe
inflammation elicited by higher amount of the virus. Levels of

TABLE 2 Baseline conditions for COVID-19 patient clusters.

Context Cluster I Cluster II p-value

n 86 46

Sex [n (%)] female 48 (55.8) 23 (50.0) 0.649

Sex [n (%)] male 38 (44.2) 23 (50.0)

Age (mean (SD)) 61.83 (22.07) 60.07 (21.89) 0.662

Severity [n (%)] moderate 6 (42.9) 0 (0.0) 0.061

Severity [n (%)] severe 8 (57.1) 7 (100.0)

TABLE 3 Clinical demographic profile. A collection of plasma samples from
patients with diagnosed HBV and healthy controls.

Context HBV Control p-value

n 149 83

Sex [n (%)] female 74 (49.7) 38 (45.8) 0.667

Sex [n (%)] male 75 (50.3) 45 (54.2)

Age (mean (SD)) 41.8 (12.9) 55.08 (13.8) <0.001

FIGURE 5
Comparison of the serum level of twelve cytokines in HBV patients and healthy controls Sera from healthy controls and HBV patients were tested for
a twelve-cytokine panel. Healthy controls (N = 83) and HBV patients (N = 149). Cytokine concentration was taken the logarithm with base 10 and
statistical analysis was performed using unpaired Student’s t-test. NS, Not significant. **, P < 0.01.***, P < 0.001.
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serum alanine aminotransferase (ALT) and aspartate
aminotransferase (AST) are correlated with the viral load and the
disease progression (Supplementary Figure S5) (Shao et al., 2007).

Correlation analysis showed that the levels of certain cytokine
including IL-6, Il-10, and IL-12p70, were associated with the
ALT and AST levels (Supplementary Figure S6).

Then we investigated whether these twelve cytokine levels in
serum could be used to predict the low or high viral load using
machine learning (ML). We performed ML modeling with 5-cross
fold validation and tested different ML methods, i.e., logistic
regression (Logi), random forest (RF), and support vector
machine (SVM). Efficient classification of patients based on
binary viral levels was demonstrated by the 3 ML models
(Figure 7A; Table 5). Respectively, the mean accuracies for Logi,
RF, and SVM models were 0.68, 0.76, and 0.72. Moreover, we
integrated the ALT and AST features into the ML models and

TABLE 4 Baseline conditions for patients with low and high HBV viral load.

Context Low load High load p-value

n 51 98

Sex [n (%)] female 25 (49.0) 49 (50.0) 1.000

Sex [n (%)] male 26 (51.0) 49 (50.0)

Age (mean (SD)) 45.3 (11.2) 39.9 (13.3) 0.015

FIGURE 6
Comparison of the serum level of twelve cytokines in Low andHigh viral-load HBV patients Sera fromHBV patients with low and high viral-load were
tested for a twelve-cytokine panel. Low viral load (N = 51), high viral load (N = 98). Cytokine concentration was taken the logarithm with base 10 and
statistical analysis was performed using unpaired Student’s t-test. NS, Not significant. *, P < 0.05. **, P < 0.01.***, P < 0.001.

FIGURE 7
AUROC curves with 95% confidence interval for the machine learningmodels using a total set of 12 cytokines. (A) 12 cytokines only. (B) 12 cytokines
plus ALT and AST.
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found the performance could be further improved regarding to the
AUC score, i.e., reaching to 0.76, 0.85, and 0.82 for the three
algorithms (Figure 7B; Table 5). These results supported the
utility of the twelve-cytokine detection for the disease evaluation
and prediction alone or combination with the classical biomarkers.

Discussion

Conventional FCM-based multiple cytokine assay uses indirect
labeling technology through biotin-avidin system and involves
separate storage of individual reagent components, requiring
sequential addition during experimental procedures with

intermittent washing steps to remove unbound components.
While this approach ensures optimal binding at each reaction
stage, the complete protocol typically requires 3–4 h for
completion (Figure 1A) (Patterson et al., 2021; Djoba Siawaya
et al., 2008). In our study, we adopted direct conjugation of PE
fluorophore to each detection antibody and optimized formulation,
combining capture beads with multiple PE-conjugated detection
antibodies in a unified matrix (Figures 1B,C). Moreover, to facilitate
the storage and transportation of the reagents and further simplify
the assay procedures, we lyophilized the matrix to form a reagent
sphere (Figure 2). This integrated reagent sphere undergoes rapid
rehydration upon contact with test specimens, simultaneously
releasing functional capture beads and fluorescent detection
antibodies to form capture bead-antigen-PE antibody complexes.
Following a 1.5-h incubation period, a single wash step suffices for
removal of unbound sample matrix and excess PE-conjugated
detection antibodies prior to instrumental analysis. The complete
workflow is completed within 2 h, demonstrating comparable
detection efficacy while significantly reducing processing time
compared to conventional methodologies. With the developed
assay and machine learning technology, we demonstrated a
general and framework for simplified analysis of cytokine panel
and diagnosis of inflammatory diseases (Figure 8).

Here we chose the specific twelve cytokines, i.e., IFN-α, IFN-γ,
IL-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12p70, IL-17 and TNF-α.
IFNα, IFNγ, IL-12p70, IL1β, IL8, IL6, and TNFα are pro-
inflammatory cytokines that have been widely reported in the
past (Tang et al., 2024). They are crucial for the inflammatory
response and cytokine storm caused by viral infections. IL-2 is an
important cytokine for T cell proliferation, IL-17 is a marker of
Th17, and IL-4, IL-5, and IL-10 are markers of Th2. These cytokines

TABLE 5 Performance of the different machine learning models for HBV
level prediction.

Features: Twelve cytokines

Learner Accuracy Area Under Curve (AUC)

Logistic regression 0.68 ± 0.09 0.70 ± 0.10

Random forest 0.76 ± 0.10 0.76 ± 0.09

Support vector machine 0.72 ± 0.08 0.73 ± 0.08

Features: twelve cytokines + ALT + AST

Learner Accuracy Area Under Curve (AUC)

Logistic regression 0.71 ± 0.12 0.76 ± 0.12

Random forest 0.75 ± 0.08 0.85 ± 0.08

Support vector machine 0.76 ± 0.08 0.82 ± 0.08

FIGURE 8
A framework for simplified analysis of cytokine panel and diagnosis of inflammatory diseases. The figure was created with BioRender.com.
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represent the dynamic changes in Th1, Th2, and Th17 responses.
This detection panel can provide a comprehensive response to the
body’s innate immunity and T cell immune response. It should be
noted that our developed technology can also detect other type and
number of cytokines, offering a potential solution to the challenge of
high-throughput cytokine assay in clinical settings and therefore
providing a comprehensive understanding the immune status
of patients.

COVID-19 has created a huge social burden, infecting and
killing millions of people worldwide (Pickering et al., 2025). Its
progression is marked by dynamic immune responses, with
cytokine profiles offering critical insights into pathogenesis and
prognosis. While challenges remain in standardization and
causality, cytokine-based models hold promise for personalized
therapeutic strategies and resource allocation (Zhu and Yao, 2024;
Rashidi et al., 2024). For example, an unsupervised machine
learning algorithm (Hierarchical Clustering) was used to cluster
hospitalized COVID-19 patients in to three categories merely
based on 12-plex cytokine panel (IL-1 β, IL-6, IL-8, IL-10, IL-
17, TNF, IFN-α, IFN-γ, CXCL10, CCL2, CCL3, G-CSF), and
significant differences in mortality rates were found among the
clusters (Castro-Castro et al., 2022). Supervised machine learning
algorithm (RF) was used to predict the COVID-19 severity and
chronicity based on immune subset profiling and a 14-plex
cytokine panel (TNF-a, IL-4, IL-13, IL-2, GM-CSF, sCD40L,
CCL5, CCL3, IL-6, IL-10, IFN-g, VEGF, IL-8, and CCL4
(Patterson et al., 2021). Whether multiple cytokine panel only
can be used to predict the COVID-19 severity other than mortality
remains unknown. In this study, we used a 12-plex cytokine panel
(IFN-α, IFN-γ, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12p70,
IL-17 and TNF-α) different from the above, explored an
unsupervised machine learning algorithm (i.e., t-SNE), and
found patients could be clustered into two groups (Figure 4A).
Intriguingly, all of the four moderate patients were annotated as
Cluster I, and Cluster II group only included severe patients
(Figure 4B). These results suggested multiple cytokine panel
alone could predict outcome of COVID-19 patients, and
underscored the importance of developing an easy-to-use
method for multiple cytokine detection, which might bring new
insight about different combination of cytokines in disease
progression.

HBV infection causes liver-related morbidity and mortality
worldwide. Serum viral biomarkers are crucial for the prognostic
assessment and treatment strategy decision in the various clinical
guidelines, and serum HBV DNA is the most important
biomarker (Mak et al., 2023). Changes in the level of virus in
the peripheral blood are associated with the host’s intricate
immune response. The correlation between the level of
viremia and cytokines in HBV patients is controversial (Zhong
et al., 2021; Ribeiro et al., 2022). A recent large-scale meta-
correlation analysis of 1,199 HBV patients and several
cytokines showed a pooled correlation between the HBV load
and cytokines, especially IL-10 and IL-9 (Manea et al., 2024). In
this study, we explored the feasibility of establishing a machine
learning model using the twelve cytokines to classify the HBV
load (High vs. Low) (Figure 7) and compared three classical
algorithms (Logi, RF, SVM). The RF algorithm showed the
highest accuracy (0.76 ± 0.10) and AUC (0.76 ± 0.09).

Together with previous finding (Manea et al., 2024), these
results consolidate the correlation of serous level of cytokines
with the HBV load and reveal the utility of machine learning
model to fit their relationship. Moreover, when integrated with
ALT and AST biomarkers, the AUC score of the RF algorithm can
be further elevated to 0.85 ± 0.08 (Figure 7; Table 5). It implies
that the serous cytokines can be combined with various related
biomarkers of different diseases to develop accurate machine
learning models to help diagnosis as what has been done in
this study.

The twelve cytokine detection method we developed can
effectively reduce the clinical testing costs of cytokines. It must
be admitted that the selected cytokines do not fully represent the
immune status of patients, as there are many other cytokines
involved in the immune response against infections and
autoimmune diseases, among others (Liu et al., 2021; Schett
et al., 2021). Further analysis of the mechanisms of immune
dysregulation in different diseases is needed in the future, and a
detailed examination of the changes in cytokines should be
conducted in order to develop better testing kits to assist in
predicting disease progression and prognosis. In this sense, the
development of one-step FCM-based multiple cytokine assay
with lyophilized reagent will contribute to basic research and
clinical translation in this field.
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