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Metabolic diseases, such as diabetes, pose significant risks to human health due
to their complex pathogenic mechanisms, complicating the use of combination
drug therapies. Natural medicines, which contain multiple bioactive components
and exhibit fewer side effects, offer promising therapeutic potential. Metabolite
imbalances are often closely associated with the pathogenesis of metabolic
diseases. Therefore, metabolite detection not only aids in disease diagnosis
but also provides insights into how natural medicines regulate metabolism,
thereby supporting the development of preventive and therapeutic strategies.
Deep learning has shown remarkable efficacy and precision across multiple
domains, particularly in drug discovery applications. Building on this, We
developed an innovative framework combining graph autoencoders (GAEs)
with non-negative matrix factorization (NMF) to investigate metabolic disease
pathogenesis viametabolite-disease association analysis. First, we appliedNMF to
extract discriminative features from established metabolite-disease associations.
These features were subsequently integrated with known relationships and
processed through a GAE to identify potential disease mechanisms.
Comprehensive evaluations demonstrate our method’s superior performance,
while case studies validate its capability to reveal pathological mechanisms in
metabolic disorders including diabetes. This approach may facilitate the
development of natural medicine-based interventions. Our data and code are
available at: https://github.com/Lqingquan/natural-medicine-discovery.
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Introduction

In recent years, the incidence and mortality rates of metabolic diseases, such as diabetes,
have risen sharply (Neel and Sargis, 2011). These diseases affect a broad population, and
their complex pathogenic mechanisms present significant treatment challenges. Synthetic
small-molecule drugs typically target only one or a few pathways, whereas the treatment of
metabolic diseases often requires combination therapies, increasing the risk of side effects
and complications (Makhoba et al., 2020). Natural medicines, an integral part of traditional
medical knowledge, have accumulated extensive experience in disease prevention,
diagnosis, and treatment. They generally contain multiple bioactive compounds that act
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on diverse molecular targets while exhibiting relatively fewer side
effects. Therefore, leveraging natural medicines for the treatment of
metabolic diseases, including diabetes, represents a promising
research direction (Ansari et al., 2023). With the rapid
advancement of artificial intelligence (AI), significant
breakthroughs have been achieved in information processing and
medical applications (Xu et al., 2021). AI has demonstrated
substantial potential in analyzing complex biomedical data,
particularly in drug discovery and disease diagnosis, creating new
opportunities for developing natural medicine-based therapies for
metabolic diseases. In medical research, understanding the
relationship between metabolite levels and disease pathogenesis is
essential. For example, blood glucose and glycosylated hemoglobin
measurements effectively assess diabetes progression (Welsh et al.,
2016). Additionally, natural compounds such as piperine and their
metabolites exhibit potential therapeutic effects on cardiovascular
and hepatic diseases (Azam et al., 2022). Therefore, precise
metabolite detection not only facilitates disease diagnosis but also
advances research on how natural medicines regulate
metabolic processes.

Conventional methods for assessing metabolite levels and
investigating metabolic disease pathogenesis rely heavily on
clinical observations and biochemical assays. While these
methods yield robust data, their high resource and labor
requirements present significant constraints. To address these
limitations, computational approaches have emerged as powerful
tools for elucidating disease mechanisms. For instance, Hu et al.
utilized known metabolite-disease interactions from the HMDB
database (Wishart et al., 2022) to construct a metabolite
interaction network, applying a random walk algorithm to
identify novel associations (Hu et al., 2018). Lei et al. introduced
a computational model integrating disease semantic information
and Gaussian interaction profile (GIP) similarity, leveraging the
KATZ algorithm to predict unknown metabolite-disease
connections (Lei and Zhang, 2019). Expanding on this work, Lei
et al. further incorporated disease functional similarity, along with
GIP and metabolite functional similarities, employing a bipartite
graph recommendation algorithm for improved prediction accuracy
(Lei and Zhang, 2020). Zhao et al. fused multiple metabolite and
disease similarity measures to construct a similarity network,
extracting features using graph convolutional networks and
employing deep neural networks to predict novel metabolite-
disease relationships (Zhao et al., 2021). Zhang et al. applied
three distinct feature extraction techniques combined with
principal component analysis (PCA) to refine metabolite-disease
pair representations, classifying them using the LightGBM
algorithm (Zhang et al., 2021). Unlike other approaches, Tie
et al. integrated information entropy similarity of diseases and
metabolites during feature extraction, utilizing a random forest
algorithm to infer potential associations (Tie et al., 2021). Sun
et al. constructed a heterogeneous network, extracting features
through graph neural networks and decoding them to
reconstruct a metabolite-disease interaction network (Sun et al.,
2022). Gao et al. employed multiple feature extraction techniques to
separately process metabolite and disease features, concatenating
them to form metabolite-disease pair representations, which were
subsequently classified using a multilayer perceptron (MLP) (Gao
et al., 2023). These computational approaches have significantly

advanced research on the pathogenesis of metabolic diseases,
facilitating the identification of novel disease mechanisms and
potential therapeutic targets.

Natural medicines are derived from natural sources, such as
plants, and have contributed to the development of numerous
modern drugs, including aspirin, artemisinin, and paclitaxel
(Gurib-Fakim, 2006). Their discovery typically involves
extracting active ingredients from natural resources and
identifying potential drug candidates through bioactivity
screening (Lahlou, 2007). The advancement of computational
methods in drug discovery has further facilitated the
development of natural medicines (Zhou et al., 2024a). For
example, Zhou et al. employed a subgraph-based approach to
extract local topological features of drugs and proteins,
integrating an energy-constrained diffusion mechanism to
capture global interactions, thereby identifying novel drug-
protein interactions (Zhou et al., 2024b). Additionally, Zhou
et al. incorporated autoencoder technology based on a similar
framework to accurately predict microbial responses to drugs
(Zhou et al., 2024c). Wei et al. developed a drug-target interaction
prediction method combining ensemble learning and deep
learning techniques, optimizing performance through
clustering and fine-tuning base learner parameters (Wei et al.,
2024a). They also explored potential food-drug relationships
using self-supervised learning (Wei et al., 2024b).
Furthermore, Wei et al. introduced a novel framework for
drug repositioning that integrates multi-source prompting and
large language model technology, highlighting the critical role of
large language models in this field (Wei et al., 2024c). Since drug
discovery encompasses both synthetic and natural drugs, these
advanced computational techniques can also accelerate the
identification and development of novel natural medicines.

Despite significant advancements in metabolite-disease
association (MDA) prediction, several challenges remain. First,
existing methods primarily construct complex similarity networks
to extract features, which may limit model generalization. Second,
due to inherent limitations in data collection, datasets inevitably
contain noise. To address these issues, we propose a novel method
which integrates NMF with GAE technology to improve the
accuracy of MDA predictions. Initially, we employ NMF to
extract the initial representations of metabolites and diseases
from known MDAs, eliminating the need for complex similarity
networks. Next, we apply a Bernoulli sampling strategy to randomly
mask a subset of knownMDAs, reducing the influence of noisy data.
Finally, we utilize a GAE, leveraging an encoder-decoder framework
to reconstruct the metabolite-disease network. Our contributions
can be summarized as follows:

(1) We successfully identified potential MDAs by integrating
NMF with GAE technology, achieving superior predictive
performance.

(2) We employed NMF to extract initial representations from
known MDAs, reducing dependence on complex similarity
networks and enhancing model generalization.

(3) We implemented a Bernoulli-based masking strategy to
mitigate the impact of noise in the dataset, further refining
metabolite and disease representations through an in-depth
analysis of metabolite and disease neighbor densities.
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(4) We conducted comprehensive case studies on diabetes, liver
diseases, and gastrointestinal diseases, analyzing their
associated metabolites. Additionally, we performed
multiple experiments to thoroughly assess the effectiveness
of the models.

Materials and methods

This study proposes a novel MDA prediction model based on
NMF and GAE technology. Compared to traditional prediction
models, the proposed model introduces several key innovations.
First, it utilizes NMF to extract initial representations of metabolites
and diseases from known MDAs, eliminating the need for multiple
similarity networks. Second, it employs a Bernoulli sampling
strategy to randomly mask a subset of known associations,

mitigating the impact of noisy data. Third, it leverages GAE
technology within an encoder-decoder framework to achieve
precise reconstruction of the metabolite-disease network.

Data preparation

Metabolite and disease data were extracted from the Human
Metabolome Database (HMDB), with missing values removed
during preprocessing (Hu et al., 2018). The final curated dataset
comprises 4,536 MDAs involving 2,262 metabolites and
216 diseases. These associations include common metabolic
diseases such as uremia, leukemia, and hepatitis. During the
experiment, we represented MDAs as an adjacency matrix A of
dimensionsU ×V, whereU is the number of metabolites andV is the
number of diseases.

FIGURE 1
The proposed model architecture comprises four main components: (A) Data preprocessing: cleaning raw data by removing noise and handling
missing values; (B) Feature extraction: employing NMF to obtain initial metabolite and disease representations; (C) GAE: reconstructing the metabolite-
disease network via an encoder-decoder architecture while learning node representations; (D) MDA prediction: identifying potential associations using
the learned metabolite-disease representations.
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Model framework

Figure 1 illustrates the architecture of the proposed model,
which comprises four main components: (A) Data preparation,
(B) Initial feature extraction for metabolites and diseases, (C)
GAE, and (D) MDA prediction. In module (A), observed MDA
data were collected from the HMDB database. Based on this data,
module (B) applies an alternating iterative method using Tucker
decomposition and least squares to derive initial feature matrices for
metabolites and diseases. Next, module (C) employs Bernoulli-based
sampling to mask parts of the metabolite-disease graph before
inputting it into the graph neural network (GNN) encoder.
Decoder1 performs vector inner product operations on
metabolite-disease pairs to obtain their final representations.
Simultaneously, Decoder2 supervises the reconstruction process
by constraining the neighborhood density of metabolite and
disease nodes to enhance biological realism. Finally, module (D)
predicts MDA scores and assigns labels accordingly.

Feature extraction

In the past decade, NMF methods have achieved significant
success across various fields, including recommendation systems
(Marcuzzo et al., 2022). The core concept involves approximating
the original user-item matrix by deriving low-dimensional vectors
for users and items, which allows for the accurate prediction of
unknown associations. These methods typically utilize parallel
computing techniques to capture low-dimensional feature vectors,
enabling high-speed and precise predictions. This advantage extends
to feature extraction in biological networks. For example, Ding et al.
applied NMF to the miRNA-disease matrix to extract features of
miRNAs and diseases (Ding et al., 2021). Building on this approach,
our study plans to apply NMF to the metabolite-disease network to
efficiently and accurately extract preliminary features of metabolites
and diseases. Compared to traditional biological network feature
extraction methods, the primary advantage of NMF is that it
eliminates the need for constructing various similarity networks,
thereby enhancing the model’s generalization ability.

Given the MDA matrix AU×V , our goal is to derive low-
dimensional vector matrices MU×K and DK×V for metabolites and
diseases, respectively, such that their product closely approximates
AU×V . In this decomposition, each column vector in A is expressed
as a weighted sum of the corresponding column vectors in MU×K ,
with the weights determined by the respective column vectors in
DK×V . Additionally, the K must satisfy the constraint K <U ,V and
K <UV/(U + V). Based on this formulation, A is decomposed into
M and D. This study employs Tikhonov regularization as the
optimization objective, as shown in Equation 1:

minM ≥ 0,D≥ 0 A ⊙ A −MD( )‖ ‖2F + μ1 M‖ ‖2F + μ2 D‖ ‖2F (1)
where ‖ · ‖F denotes the Frobenius norm of a matrix, μ1 and μ2
represent the regularization coefficients for the low-dimensional
representations of metabolites and diseases, respectively. In this
study, both μ1 and μ2 are set to 0.01 by default, and the K is fixed at
90. Directly solving for matrices M and D is computationally
challenging. A widely used approach to simplify this problem is

the alternating least squares (ALS) method, which iteratively
updates M and D. Based on this, the Lagrangian optimization
objective is formulated as Equation 2:

L M,D( ) � W ⊙ A −MD( )‖ ‖2F + μ1Tr MMT( ) + μ2Tr DDT( )
+ Tr γMT( ) + Tr πDT( ) (2)

where γ � (γik) and π � (πkj) are Lagrange multipliers, Tr(·)
represents the trace of a matrix, and ⊙ represents the Hadamard
product operation. We take the partial derivative as Equation 3:

∂L
∂M

� −2 W ⊙ A −MD( ) DT( )( ) + 2μ1M + γ

� −2 W ⊙ A( )DT( ) + 2 W ⊙ MD( )DT( ) + 2μ1M + γ (3)
∂L
∂D

� −2 MT W ⊙ A −MD( )( )( ) + 2μ2D+
� −2 MT W ⊙ A( )( ) + 2 MT W ⊙ MD( )( )( ) + 2μ2D + π (4)

Let γikMik � 0, γikMik � 0. According to the Tucker
decomposition rule (Kim and Choi, 2007), the update formula
for the low-dimensional vector matrices of metabolites and
diseases is given by Equations 5, 6, respectively:

Mt
ik ← Mt−1

ik

W ⊙ A( )DT( )ik
W ⊙ MD( )DT + μ1M( )ik (5)

Dt
kj ← Dt−1

kj

MT W ⊙ A( )( )kj
MT W ⊙ MD( )( ) + μ2D( )kj (6)

whereMt
ik represents the value of the element in the i-th row and k-

th column of the metabolite low-dimensional matrix at the t-th
iteration. By specifying the number of iterations, the low-
dimensional vector matrices MU×K and DK×V for metabolites and
diseases, as well as the MDA matrix AU×V , are obtained and
subsequently used as input for the GAE.

Graph autoencoder

Graph autoencoders stem from the graph encoder-decoder
architecture, which effectively maps complex node and edge
relationships into a low-dimensional space. Due to this capability,
they have been widely applied in recommendation systems and
biological networks (Malla and Banka, 2023). In this study, we
employ GAE technology to reconstruct potential metabolite-disease
networks. First, based on previous research, we utilize Bernoulli
sampling to randomlymask a portion of observedMDAs, mitigating
the impact of noisy data. Next, the GNN encoder extracts
representations of metabolites and diseases within the masked
metabolite-disease network. Subsequently, a MLP decodes MDAs,
while a degree decoder analyzes the neighbor density of metabolites
and diseases.

Masking based on Bernoulli distribution
Due to limitations in experimental observation, environmental

factors, and measurement technology, the collected metabolite-
disease network data may contain errors. Noise data comprises
inaccurate, incomplete, or irrelevant observations introduced during
data collection. Such data deviate from ground truth and may
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represent errors or redundancies. In metabolite-disease association
datasets, noise manifests as misclassification between MDA and
non-MDA pairs. Furthermore, data collection errors for metabolites
or diseases constitute another significant noise source. To address
this, Hou et al. mitigated the impact of noise by masking portions of
the graph’s topological structure (Hou et al., 2022). Inspired by their
approach, our study employs a Bernoulli distribution-based
sampling strategy to suppress noise interference in the
metabolite-disease network. Specifically, in each iteration of
training, a subset of MDAs is sampled according to the Bernoulli
distribution as shown in Equation 7:

Emask ~ Bernoulli τ( ) (7)
where τ denotes the masking rate of the metabolite-disease network,
ranging from [0,1], while Emask represents the masked MDAs. Based
on this, the masked MDAs can be derived as Equation 8:

Ereserved � Eall − Emask (8)
where Ereserved denotes the reserved MDAs, while Eall represents all
observedMDAs. Subsequently, the decoder reconstructs the masked
MDAs, thereby completing the training process. By applying this
masking strategy, we aim to mitigate the adverse effects of noise in
the metabolite-disease network and improve model performance.
Masked MDAs remain positive samples during training, though
excluded from GNN encoder message passing. Each training epoch
reapplies Bernoulli distribution-based random masking to MDAs.

GNN encoder
This study employs the Graph Isomorphism Network (GIN) as the

encoder, which primarily functions to compute node representations by
aggregating neighborhood information. Other common GNNs, such as
Graph Convolutional Networks (GCN) (Kipf and Welling, 2016) and
Graph Attention Networks (GAT) (Veličković et al., 2017), could also
serve as alternatives. For the MDA prediction task, each metabolite or
disease node in the metabolite-disease graph aggregates its own
information along with that from its neighboring nodes.
Subsequently, a MLP is used to map the aggregated information into
the latent space. The process of deriving metabolite or disease
representations can be defined as Equations 9, 10, respectively:

Ht
m,a � MLPt 1 + t( ) ·Ht−1

m,a + ∑
b∈N a( )

Ht−1
d,b

⎛⎝ ⎞⎠ (9)

Ht
d,b � MLPt 1 + t( ) ·Ht−1

d,b + ∑
a∈N b( )

Ht−1
m,a

⎛⎝ ⎞⎠ (10)

where Ht
m,a and Ht

d,b represent the features of metabolite a and
disease b at the t-th layer of GIN, respectively. MLPt denotes the
parameters of the t-th layer of GIN, while ϵt represents the trainable
parameters at this layer, facilitating the integration of node
information with its neighborhood. N(a) and N(b) indicate the
neighborhoods of metabolite a and disease b, respectively. Given a
specific layer t, the final representations of metabolites and diseases
are obtained and randomly fed into the decoder.

Decoder
This study employed two decoders: one for reconstructing

MDAs and the other for imposing constraints based on the

neighborhood density of metabolite or disease nodes. Both
decoders utilized an MLP architecture.

In the first decoder, the representation of a metabolite-disease
pair is inputted and processed through an MLP. Generally, this
representation can be defined using the Hadamard product, vector
inner product, vector addition, or vector concatenation. For
example, when using vector concatenation, the pair 〈a, b〉,
representing metabolite a and disease b, is expressed as
MLP(Ht

m,a|Ht
d,b). The decoder then predicts a score for the pair

〈a, b〉. Consequently, the loss for reconstructing the metabolite-
disease network is computed using the BCE function, as shown in
Equation 11:

Ledge � ∑L
l

yl − 1( )log 1 − ygtl( ) − yl log ygtl( ) (11)

where L represents the total number of metabolite-disease pairs, yl
represents the predicted score for the first metabolite-disease pair,
ranging from [0,1]. ygtl represents the true label for the first
metabolite-disease pair, where values of {0,1} indicate the
presence or absence of an association.

The second decoder models the neighborhood of metabolite or
disease nodes to constrain the reconstruction of the metabolite-
disease network during training. This study employs the mean
squared error (MSE) method to compute the regression loss
between the predicted and true degrees of metabolite or disease
nodes, as shown in Equation 12.

Ldegree � 1
U + V

∑U+V

s�1
ys − ps( )2 (12)

where U + V represents the total number of metabolites and
diseases, ys represents the true degree of the s-th metabolite or
disease, and ps represents the degree predicted by the model. Based
on this, the model iteratively refines the training process using the
degree loss Ldegree, ensuring that the predicted values align more
closely with the actual data.

Training and inference
As outlined in the previous process, the MDA reconstruction

loss, denoted as Ledge, is computed using a graph encoder-decoder
architecture. Additionally, the MSEmethod is employed to compute
the regression loss between the predicted and actual degrees of
metabolite and disease nodes. During training, a linear additive
strategy integrates the losses from both decoders, as shown in
Equation 13:

L � Ledge + Ldegree (13)

where  is a weight parameter, which balances the contributions of
the two decoders.

After training for a predefined number of iterations, the
reconstructed metabolite-disease network is obtained. At this
stage, metabolite and disease features are extracted, and the
representation of a metabolite-disease pair is derived using the
vector dot product. The final score for each pair is predicted
using a MLP, as shown in Equation 14:

ya,b � MLP HT
m,a ·Hd,b( ) (14)
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where Hm,a and Hd,b represent the final representations of
metabolite a and disease b, respectively. The predicted score ya,b
quantifies the model’s confidence in the association between a and b.

Results

This study evaluated the performance of the proposed model
against several advanced models. These models incorporate various
cutting-edge algorithms, including Random Walk with Restart
(RWR) (Wishart et al., 2022) (random walk-based), PageRank
(Yates and Dixon, 2015) (ranking-based), KATZ (Lei and Zhang,
2019) (information metric-based), the Ensemble Kernel Ridge
Regression (EKRR) algorithm (Peng et al., 2020) (ensemble
learning-based), Graph Convolutional Network Attention
(GCNAT) (Sun et al., 2022) and Deep-DRM (Zhao et al., 2021)
(GNN-based), as well as the MDA-AENMF algorithm (Gao et al.,
2023) (GAE-based). Additionally, multiple ablation experiments
were conducted to assess the contributions of key modules in the
proposed model to overall performance. Model stability was further

analyzed through parameter sensitivity experiments, and
recommendations for parameter selection were provided. Finally,
in-depth case studies on diabetes, liver diseases, and gastrointestinal
diseases were performed, examining the metabolite components
associated with these conditions.

Experimental setup

To ensure a fair comparison, all models were evaluated using
five-fold cross-validation. The default parameter configuration
included: masking rate (0.4), weight  (0.6), encoder dimensions
[64, 128], and decoder dimensions [128, 64]. We employed the
Adam optimizer with a fixed learning rate of 0.001. The model was
trained on the complete masked metabolite-disease graph without
batch partitioning. Following previous studies (Chen et al., 2024), we
primarily used Area Under the Curve (AUC), Area Under the
Precision-Recall curve (AUPR), Accuracy (ACC), Precision
(PRE), Sensitivity (SEN), F1-Score (F1), and Matthews
Correlation Coefficient (MCC) as evaluation metrics. The AUC

FIGURE 2
AUC and AUPR scores of the proposed model and all comparative models.

TABLE 1 Results of 5-fold cross validation of proposed model.

Rounds/Metrics AUC AUPR ACC SEN PRE SPE F1 MCC

1 0.9957 0.9937 0.9664 0.9471 0.9851 0.9857 0.9657 0.9334

2 0.9983 0.9966 0.9978 1.0000 0.9956 0.9956 0.9978 0.9956

3 0.9997 0.9996 0.9978 1.0000 0.9956 0.9956 0.9978 0.9956

4 0.9984 0.9979 0.9972 1.0000 0.9945 0.9945 0.9973 0.9945

5 0.9986 0.9970 0.9967 1.0000 0.9934 0.9934 0.9967 0.9934

Avg 0.9981 0.9970 0.9912 0.9894 0.9928 0.9930 0.9911 0.9825
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measures the entire two-dimensional area underneath the Receiver
Operating Characteristic (ROC) curve, with its calculation defined
as Equation 15:

AUC � ∫1

0
TPR FPR( )dFPR,TPR � TP

TP + FN
, FPR � FP

FP + TN
(15)

The ROC curve graphically represents the trade-off between the
true positive rate (TPR) and false positive rate (FPR) across different
classification thresholds, where TP (true positives) and TN (true
negatives) denote correctly classified MDA and non-MDA
instances, while FP (false positives) and FN (false negatives)
indicate misclassified cases. The F1-score represents the harmonic
mean of precision and recall, providing a balanced metric that
accounts for both measures, with its calculation defined as
Equation 16:

F1 − score � 2 · Precision · Recall
Precision + Recall

(16)

where Precision � TP
TP+FP measures the ratio of correctly predicted

MDAs to all predicted MDAs, and Recall � TP
TP+FP indicates the ratio

of correctly predicted MDAs to all actual MDAs. The AUPR
quantifies the area beneath the precision-recall curve, particularly
valuable for evaluating models on imbalanced datasets, with its
calculation defined as Equation 17:

AUPR � ∫1

0
Precision Recall( )dRecall (17)

Performance evaluation

Figure 2 presents the AUC and AUPR scores of the proposed
model and all comparative models. The results indicate that all
models achieve higher AUC scores than AUPR scores, particularly
the GCNAT, KATZ, PageRank, EKRR, and RWR algorithms. This
discrepancy may be due to their negative sampling strategy, where
all unobserved metabolite-disease pairs are considered negative

FIGURE 3
Visualization of the model-learned metabolite-disease embeddings using t-SNE dimensionality reduction.

TABLE 2 Results of ablation experiments for proposed model.

Methods/metrics AUC AUPR ACC SEN PRE SPE F1 MCC

w/o d 0.9883 0.9883 0.9438 0.9184 0.9675 0.9691 0.9423 0.8887

w/o m 0.9553 0.9625 0.8881 0.8037 0.9668 0.9724 0.8778 0.7875

w/o n 0.9860 0.9835 0.9399 0.9702 0.9147 0.9096 0.9417 0.8814

Ours 0.9986 0.9970 0.9967 1.0000 0.9934 0.9934 0.9967 0.9934
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samples. In contrast, the proposed model, MDA-AENMF, and
Deep-DRM models adopt a 1:1 positive-to-negative sample ratio,
leading to higher AUPR scores. In terms of AUPR performance,
traditional machine learning models such as KATZ, PageRank,
and RWR perform the worst. The EKRR algorithm, which
incorporates ensemble learning, shows slight improvements,
underscoring the advantages of ensemble learning over
traditional methods. Additionally, models based on GNN,
including GCNAT and Deep-DRM, as well as those using
GAEs, such as MDA-AENMF and the proposed model,
demonstrate superior performance. This highlights the
importance of extracting topological information from the
metabolite-disease network for accurate association prediction.
Notably, the GAE-based MDA-AENMF and proposed models
outperform the GNN-based GCNAT and Deep-DRM models,
suggesting that GAEs can capture deeper structural information
and enhance node representations. Among all models, the
proposed model achieves the highest AUC and AUPR scores,
demonstrating its effectiveness in MDA prediction.

Our analysis reveals several performance-limiting constraints in
existing methods. RWR’s dependence on graph topology leads to
degraded performance on sparse networks. PageRank emphasizes
node centrality while neglecting metabolite-disease relationships.
KATZ exhibits high parameter sensitivity. EKRR’s multi-model
integration risks overfitting. GNN-based methods (GCNAT,
Deep-DRM) are vulnerable to structural incompleteness and
noise. MDA-AENMF processes similarity networks separately,
potentially missing heterogeneous metabolite-disease interactions.
While RWR, PageRank and KATZ capture network topology, their
inability to extract deep features limits prediction accuracy. In

contrast, GNN/GAE-based methods (GCNAT, Deep-DRM,
MDA-AENMF) excel at capturing both topological features and
deep dependencies, yielding superior performance.

To further evaluate the model’s performance and minimize the
influence of random factors, we conducted a five-fold cross-
validation experiment. Table 1 presents the results of the five-
fold cross-validation for the proposed model. On average, the
proposed model achieved an AUC of 0.9981, AUPR of 0.9970,
ACC of 0.9912, SEN of 0.9894, PRE of 0.9928, SPE of 0.9930, F1-
score of 0.9911, and MCC of 0.9825. These results further confirm
the strong adaptability and reliability of the proposed model.
Additionally, visualization of the model-learned metabolite-
disease embeddings using t-SNE dimensionality reduction
effectively demonstrates its feature extraction capability.
Accordingly, we combined the model-generated metabolite and
disease embeddings to construct the final metabolite-disease
representations. These representations were subsequently
visualized using t-SNE, as shown in Figure 3. In the visualization,
yellow and purple dots denote MDA and non-MDA instances,
respectively. The visualization reveals two distinct clusters: a
central cluster of MDA points (yellow) and a peripheral cluster
of non-MDA points (purple). This clear separation demonstrates
our model’s effectiveness in extracting discriminative metabolite-
disease representations, enabling accurate prediction of unknown
metabolite-disease pairs.

In summary, we hypothesize that, beyond the GAE’s ability to
effectively capture topological information from the metabolite-
disease network, the superior performance of the proposed model
may stem from several key factors. First, the proposed model utilizes
NMF to extract initial features of metabolites and diseases without

FIGURE 4
Model performance using different GNN encoders.
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relying on complex similarity networks, thereby enhancing
scalability. Second, it incorporates a masking strategy based on
the Bernoulli distribution, which reduces the impact of noisy
data and improves model robustness. Third, during training, a
decoder constrained by node neighborhoods regulates the
decoding process of metabolites and diseases, ensuring better
alignment with real-world scenarios.

Ablation experiments

To evaluate the contributions of key components in the
proposed model, we conducted ablation experiments. The results,
presented in Table 2, highlight the impact of removing individual
modules on overall model performance. In the ablation study, three
key components were selectively excluded: “w/o d” refers to the

FIGURE 5
Model performance with different layers of GNN encoders.

FIGURE 6
Model performance of at (A) different masking ratios and (B) weight parameter .
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model without the neighborhood-based decoder constraint, “w/om”

refers to the model without the Bernoulli distribution-based
masking strategy, “w/o n” refers to the model without the NMF
module for feature extraction. The removal of any module led to a
decline in performance metrics, particularly ACC, SEN, PRE, SPE,
F1, and MCC, confirming the positive contributions of these
components. Notably, the most significant performance drop was
observed when the masking module was removed, indicating its
critical role in mitigating the influence of noisy data and enhancing
model robustness. The exclusion of the NMF module or the
neighborhood-based decoder resulted in similar declines,
suggesting that both modules contribute equally to overall model
effectiveness. These findings reinforce the necessity of incorporating
all three key components to optimize the performance of the
proposed model.

Parameter experiments

The proposed model’s architecture integrates a Bernoulli
sampling-based masking module, a GAE, and a dual-decoder
module. Key parameters include the types and layers of GNN
encoders, the masking ratio, and the influence of the
neighborhood decoder. To assess model stability and optimize
parameter selection, we conducted a series of experiments
evaluating the impact of these parameter variations on performance.

The proposed model is based on a graph encoder-decoder
architecture, with multiple GNN models available for the graph
encoder. GCN employs Laplacian matrix-based graph convolution
to aggregate neighborhood information. GIN utilizes a weighted
aggregation mechanism to combine node features with
neighborhood information. This architecture excels in graph
isomorphism detection and demonstrates superior performance
in graph classification tasks. GAT leverages an attention
mechanism to dynamically weight and aggregate neighborhood

information, making it particularly effective for heterogeneous
graph processing. To assess the stability of the model under
different encoder configurations, we conducted a series of
comparative experiments. Figure 4 presents the performance of
the proposed model using various GNN encoders. The results
indicate that the model achieved satisfactory AUC, AUPR, PRE,
and SPE metrics with GCN, GIN, and GAT encoders. However,
when employing GIN or GAT, the ACC, SEN, F1, and MCCmetrics
declined, with the GAT encoder yielding the poorest performance.
This suggests that GIN and GAT may be less effective in identifying
MDAs, leading to higher false-negative rates. GAT dynamically
adjusts node weights based on neighborhood density, increasing the
influence of densely connected nodes while reducing that of sparse
nodes. Additionally, GAT’s sensitivity to noise further contributes to
its suboptimal performance. Meanwhile, GIN requires large volumes
of high-quality training data to mitigate overfitting. In contrast, the
proposed model performed optimally when using the basic GCN
encoder, likely due to its simple structure, which adapts more
effectively to different architectures. Thus, for similar datasets,
GCN is recommended as the preferred encoder.

We conducted additional comparative experiments to assess the
impact of varying GNN encoder layers, with results shown in
Figure 5. The findings indicate that when the number of GNN
layers is set between 2 and 4, the model maintains stable
performance without significant fluctuations. This demonstrates
the model’s robustness to layer variations, suggesting that its
performance remains largely unaffected by this parameter.

The proposed model applies random edge sampling and
masking in the metabolite-disease network based on the
Bernoulli distribution, following a predetermined ratio. To assess
the impact of different masking ratios on model performance, we
conducted multiple comparative experiments, with the results
presented in Figure 6A. The findings indicate that performance
improves as the masking ratio increases from 0.2 to 0.4. However,
beyond 0.4, performance begins to decline, with a sharper decrease
observed between 0.4 and 0.6, followed by a more gradual decline
from 0.6 to 0.8. This suggests that a masking ratio of 0.4 is optimal. A
lower masking ratio may fail to effectively mitigate noise
interference, whereas a higher ratio may result in critical
topological information loss. Therefore, selecting an appropriate
masking ratio is essential to balance noise reduction and
information retention.

Since the proposed model employs a dual-decoder architecture
during training, we conducted multiple comparative experiments to
assess its performance stability under different neighborhood
decoder weight settings. As shown in Figure 6B, the results
indicate that when the neighborhood decoder weights range from
0.2 to 0.8, the model maintains stable performance with no
significant fluctuations. This suggests that the model is robust to
variations in this parameter, making it relatively straightforward to
determine an appropriate weight for the neighborhood decoder.

Case analysis

In this study, we performed in-depth case analyses on Maple
Syrup Urine Disease (MSUD) and Cirrhosis, focusing on their
associated metabolite components. MSUD is a hereditary amino

TABLE 3 Top 20 predicted metabolites with potential associations with
MSUD.

Metabolites HMDB Metabolites HMDB

1-Methylhistidine Confirmed L-Valine Confirmed

Betaine Confirmed Hippuric acid Confirmed

Glycine Confirmed Ethanolamine Confirmed

Taurine Confirmed 3-Methyl-2-oxovaleric
acid

Confirmed

Ketoleucine Confirmed 2-Hydroxy-3-
methylbutyric acid

Confirmed

L-Phenylalanine Confirmed alpha-Ketoisovaleric acid Confirmed

L-Arginine Confirmed (S)-3-Hydroxyisobutyric
acid

Unconfirmed

L-Alloisoleucine Confirmed Acetic acid Confirmed

L-Leucine Confirmed Trimethylamine N-oxide Confirmed

L-Glutamine Confirmed Heparan sulfate Unconfirmed
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acid metabolic disorder caused by a deficiency in branched-chain α-
keto acid dehydrogenase (BCKD), leading to the accumulation of
branched-chain amino acids (BCAAs) and resulting in neurological
damage (Blackburn et al., 2017). Early and accurate diagnosis of
metabolites plays a crucial role in treatment and dietary
management, helping to control the disease effectively. To
explore this, we first excluded all metabolites related to MSUD
from the training set and trained the model. Subsequently, we

introduced MSUD-related metabolites into the test set and used
the trained model to predict them, sorting the metabolites by
prediction scores and selecting the top 20. As shown in Table 3,
18 of the predicted metabolites were validated in the database. For
example, Deng et al. achieved rapid and accurate MSUD diagnosis
by measuring L-phenylalanine, L-valine, and L-leucine in newborns,
using only small sample sizes (Deng and Deng, 2003). Although (S)-
3-hydroxyisobutyric acid and heparan sulfate were not validated in

TABLE 4 Top 20 predicted metabolites with potential associations with Cirrhosis.

Metabolites HMDB Metabolites HMDB

Deoxypyridinoline Confirmed L-Aspartic acid Confirmed

Sulfolithocholylglycine Confirmed Taurocholic acid Confirmed

Deoxycholic acid glycine conjugate Confirmed Glycochenodeoxycholate-3-sulfate Confirmed

Cholesterol sulfate Confirmed Argininic acid Confirmed

3,5-Diiodothyronine Confirmed Methanethiol Confirmed

Fructosamine Confirmed L-Urobilinogen Confirmed

2,3-Butanediol Confirmed 2-Oxoarginine Confirmed

L-Palmitoylcarnitine Confirmed D-Urobilin Confirmed

Acetic acid Unconfirmed Elaidic carnitine Confirmed

Cholic acid Confirmed Creatine Confirmed

FIGURE 7
(A) The similarity between predicted metabolites and known Cirrhosis-related metabolites. And panels (B–F) correspond to the chemical structures
of the following compounds: deoxypyridinoline, sulfolithocholylglycine, 3,5-diiodothyronine, cholesterol sulfate, and acetic acid.
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the database, studies suggest that (S)-3-hydroxyisobutyric acid plays
a key role in the metabolic pathway of L-valine (Gibson et al., 1993),
indicating its potential as an early marker for diseases like MSUD.

Cirrhosis is a chronic liver disease often caused by viral hepatitis,
excessive alcohol consumption, and unhealthy dietary habits, such
as high-fat intake. Early symptoms are typically subtle, but as the
disease progresses to the decompensated stage, severe complications
like ascites, gastrointestinal bleeding, and liver cancer may arise.
Early metabolite-based diagnosis is crucial for guiding treatment
and dietary management to slow disease progression. This study
excluded all metabolites associated with Cirrhosis from the training
set before proceeding with model training. During testing, these
metabolites were reintroduced into the test set, and the trained
model was used to predict them. The predictions were ranked by
score, and the top 20 metabolites were selected. As shown in Table 4,
19 of the predicted metabolites were validated in the database. For
instance, Tamasawa et al. found that Cholesterol Sulfate (CS) levels
significantly differed between patients with high cholesterol and
those with Cirrhosis (Tamasawa et al., 1993), suggesting that CS
could serve as an early diagnostic biomarker.

Although Acetic acid has not been validated in the database, it is
a metabolite of ethanol and plays a role in various metabolic
pathways related to Cirrhosis. Thus, measuring acetic acid levels
may help infer Cirrhosis or other metabolic diseases. Furthermore,
Figure 7 illustrates the similarity between predicted metabolites and
known Cirrhosis-related metabolites. Notably, Deoxypyridinoline,
Sulfolithocholylglycine, 3,5-Diiodothyronine, and Cholesterol
sulfate exhibit high similarity, whereas Acetic acid shows lower
similarity.

We further investigated disease associations for selected
metabolites and focused on two key metabolites: deoxyguanosine
and dihydrobiopterin. Deoxyguanosine, a DNA nucleoside
composed of guanine and deoxyribose, serves as a biosynthetic
precursor for deoxyguanosine triphosphate (dGTP), an essential
DNA synthesis substrate (Greenberg, 2004). Dihydrobiopterin
(BH2), a crucial biopterin cycle intermediate, regulates
neurotransmitter synthesis and vascular function (Fismen et al.,
2012). The BH2/BH4 balance represents a promising therapeutic
target for neurological and cardiovascular disorders. We first
excluded all known MDAs for these metabolites from the

training set. The model then predicted potential disease
associations, with the top 10 predictions for each metabolite
shown in Table 5. Notably, 7 deoxyguanosine-related and
8 dihydrobiopterin-related disease predictions were
experimentally validated. These case studies further validate the
potential of the proposed model in uncovering MDAs, offering
valuable insights for natural medicine development.

Conclusion

Diabetes and other metabolic diseases pose significant threats to
human health, with their complex pathological mechanisms presenting
challenges for combination drug therapy. Natural medicines, which
often contain multiple active components and have fewer side effects,
offer a promising treatment approach. Since metabolic disorders are
closely linked to disease pathogenesis, analyzing metabolic product
levels not only aids in diagnosis but also enhances our
understanding of the metabolic regulation mechanisms underlying
natural medicines. This knowledge can inform targeted strategies for
preventing and treating metabolic diseases. In this study, we propose a
novel method based on GAE technology to elucidate the pathological
mechanisms of metabolic diseases through metabolite analysis. By
leveraging known MDAs, we apply NMF to extract initial features,
which are then integrated into a GAE model to systematically capture
potential disease mechanisms.

Our experimental results demonstrate effective identification of
disease-related patterns and complex metabolic interactions. Case
studies further validate the model’s capability to elucidate
pathological mechanisms in diabetes and other metabolic
disorders. Nevertheless, our model has several limitations: (1)
Limited generalizability of initial feature representations; (2)
Dependence solely on topological information without multi-
source data integration. To address these limitations, we propose
the following future work: (i) Employing large language models to
learn general metabolite/disease knowledge for robust feature
extraction; (ii) Developing multimodal fusion approaches
incorporating SMILES sequences, 2D/3D structures, and clinical
data for enhanced representations. These advancements will deepen
our understanding of disease mechanisms and facilitate natural

TABLE 5 Top 10 predicted diseases with potential associations with metabolites Deoxyguanosine and Dihydrobiopterin, respectively.

Diseases (deoxyguanosine) HMDB Diseases (dihydrobiopterin) HMDB

Lewy body disease Confirmed Irritable bowel syndrome Confirmed

Canavan disease Confirmed Crohn’s disease Confirmed

Alzheimer’s disease Confirmed Eosinophilic esophagitis Confirmed

Frontotemporal dementia Confirmed Rheumatoid arthritis Confirmed

Cystinosis Unconfirmed Autism Confirmed

Ulcerative colitis Confirmed Colorectal cancer Confirmed

Colorectal cancer Confirmed Degenerative disc disease Unconfirmed

Galactosemia Unconfirmed AIDS Confirmed

Crohn’s disease Confirmed Celiac disease Confirmed

Osteoporosis Unconfirmed Rhinitis Unconfirmed
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medicine discovery, potentially leading to improved therapeutic
strategies.
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