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Branched-chain amino acids (BCAAs), including leucine, isoleucine, and valine,
play a crucial role in cellular metabolism and signaling. Recent studies have
demonstrated that BCAA metabolic reprogramming is a key driver of tumor
progression and treatment resistance in various cancers. BCAA metabolism
supports cancer cell growth, survival, and proliferation by modulating
pathways such as mTOR signaling and oxidative stress responses. By
promoting immunosuppressive conditions and increasing the survival rate of
cancer stem cells (CSCs), BCAAs contribute to immune evasion and resistance to
therapies such as chemotherapy and immune checkpoint inhibitors. This article
explores the different metabolic reprogramming patterns of BCAAs in various
tumors and introduces BCAA-related metabolic targets for overcoming tumor
resistance, offering new directions for precision cancer treatment, reducing
resistance, and improving patient outcomes.
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1 Introduction

Cell metabolism is a fundamental characteristic for maintaining life activities. The
growth, differentiation, death, and stress responses of cells require regulation centered
around metabolites and metabolic enzymes (Pavlova et al., 2022; Martínez-Reyes and
Chandel, 2021; Stine et al., 2022). Recent studies have shown that metabolites can act as
signaling molecules to regulate cellular signal transduction and participate in various
biological processes such as intercellular communication and epigenetic regulation (Bergers
and Fendt, 2021; Wu et al., 2023; Zanotelli et al., 2021). Compared to normal physiological
activities, tumor metabolism is a highly complex process that involves an imbalance of
multiple metabolites and the reshaping of metabolic pathways during tumor development.
Tumor cell metabolism requires the support of various nutrients, including glucose, amino
acids, and fatty acids. For example, under normal oxygen conditions, tumor cells, unlike
normal cells, still rely heavily on glycolysis to consume large amounts of glucose and
produce lactic acid—a phenomenon known as the “Warburg effect” (Zhong et al., 2022).
Tumors are widely recognized as metabolic diseases, and metabolic reprogramming is one
of the key characteristics of tumors (Xia et al., 2021). Metabolic reprogramming enables
tumor cells to adjust their metabolic patterns in response to various stimuli and stressors in
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the microenvironment, thereby enhancing their survival and
proliferation (Martínez-Reyes and Chandel, 2021). The
occurrence of tumor metabolic reprogramming may result from
the activation or mutation of oncogenes and tumor suppressor
genes, which alters the expression and activity of key metabolic
enzymes in metabolic signaling pathways, leading to metabolic
reprogramming and tumor progression (Xu D. et al., 2021).

Branched-chain amino acids (BCAAs) are essential amino acids
for human nutrition and include three amino acids with branched
side chains: leucine, isoleucine, and valine. These three amino acids
not only form the basic building blocks of proteins but also play
critical roles in cellular signaling pathways, energy metabolism, and
immune regulation, influencing tumor development and
progression (Sivanand and Vander Heiden, 2020; Qian et al.,
2023; Ma et al., 2024).

The tumor microenvironment (TME) is a complex cellular
environment in which tumor cells reside, composed of various
cell types and extracellular components surrounding the tumor
cells (de Visser and Joyce, 2023). Cells and extracellular
components in the TME interact with tumor cells, promoting
their proliferation and invasion while reducing drug permeability.
Immune cells are a key component of the TME, and amino acids are
essential for protein synthesis and play a role in various
physiological activities and immune system regulation (Kao et al.,
2022; Leone and Powell, 2020). The reshaping of amino acid
metabolism provides energy and raw materials for tumor growth
and acts as signaling molecules regulating tumor development
(Muthusamy et al., 2020). They also function in maintaining
cellular redox balance, driving nucleotide synthesis, and
generating energy (Raffel et al., 2017). Particularly, in different
types of tumors, selectively inhibiting tumor progression can be
achieved by limiting specific amino acid metabolism (Ericksen et al.,
2019). Tumor resistance remains a major challenge in cancer
treatment, leading to treatment failure and disease progression
(O’Donnell et al., 2019). Metabolic reprogramming-induced
tumor resistance mediated by the tumor microenvironment can
also serve as a new therapeutic target. This review explores the
mechanisms by which BCAAs metabolic reprogramming promotes
cancer immune evasion and immune suppression. Additionally, it
discusses the potential of targeting BCAA metabolism as a
therapeutic strategy to inhibit tumor growth, enhance anti-tumor
immune responses, and overcome drug resistance.

2 Metabolism of BCAAs in the body and
metabolic reprogramming of BCAAs
in tumors

Branched-chain amino acids (BCAAs), including leucine, valine,
and isoleucine, can only be supplemented through diet and account
for approximately 35% of essential amino acids in proteins and 18%
of all amino acids. Under normal conditions, there is a dynamic
balance between the intake and consumption of BCAAs (Blair et al.,
2021). The most common dietary sources of BCAAs are high-fat
dairy products, meat, and synthetic fitness supplements, making
them important nutrients. Generally, supplementing BCAAs or a
diet rich in BCAAs is beneficial for maintaining metabolic balance in
the body. However, long-term elevated circulating BCAA levels

(20%–50% higher than normal physiological concentrations)
(Wang et al., 2011) have been associated with obesity, type
2 diabetes mellitus (T2DM), cardiovascular diseases, and certain
tumors (White and Newgard, 2019; Siddik and Shin, 2019; Zheng
et al., 2024).

BCAAs are ingested through food (mainly from proteins) and
are broken down by proteolytic enzymes in the gastrointestinal tract
into individual amino acids, which are then absorbed into the
bloodstream via the small intestine. Notably, gut microbiota,
contribute approximately 12% of circulating BCAAs through
proteolytic activity (Zhang et al., 2017; Pedersen et al., 2016).
The gut microbiome, particularly Prevotella copri and Bacteroides
vulgatus, promotes insulin resistance by increasing circulating
branched-chain amino acids through enhanced microbial
biosynthesis and reduced bacterial uptake (Pedersen et al., 2016).
Once absorbed, BCAAs enter the bloodstream and are
predominantly taken up by muscle tissue, which is rich in
enzymes necessary for BCAA metabolism. Extracellular BCAAs
utilize L-type amino acid transporters (LATs) to shuttle the
cytoplasmic membrane into the cytoplasm (Peng et al., 2020)
and the transport protein SLC25A44 assists BCAAs in entering
mitochondria (Yoneshiro et al., 2019). These processes can all
influence the levels of branched-chain amino acids (BCAAs) in
plasma. The metabolism of BCAAs involves several steps (Figure 1):
Step 1: In muscle and other tissues, BCAAs first undergo
transamination catalyzed by branched-chain amino acid
aminotransferase (BCAT), generating the corresponding
branched-chain keto acids (BCKAs) (Dimou et al., 2022). This
step converts BCAAs into α-keto acids, releasing amino groups
that are used for amino acid synthesis or the urea cycle. Step 2:
Oxidative decarboxylation occurs, where the generated branched-
chain keto acids undergo further oxidative decarboxylation by the
branched-chain keto acid dehydrogenase complex (BCKDH),
producing their respective acyl-CoA derivatives (e.g., isovaleryl-
CoA) (Peng et al., 2020). This process is the rate-limiting step of
BCAA metabolism and mainly occurs in the liver and muscle (Du
et al., 2022). Step 3: These acyl-CoA intermediates are further
metabolized in the tricarboxylic acid (TCA) cycle, producing
carbon dioxide, water, and energy. Leucine metabolism generates
acetyl-CoA and acetoacetate, while isoleucine produces succinyl-
CoA, and valine yields propionyl-CoA (Mann et al., 2021).

The metabolism of BCAAs is governed by multilayered
regulatory networks involving enzymatic, hormonal, and
microbial components. For instance, the activity of the BCKDH
complex is regulated by phosphorylation and dephosphorylation
(White et al., 2018). Changes in insulin and amino acid levels can
also affect BCAAmetabolism by modulating the activity of these key
enzymes (Neinast et al., 2019). Tumor cells enhance BCAA synthesis
through multiple pathways, including upregulating biosynthetic
enzymes, metabolic reprogramming, nutrient scavenging,
reductive carboxylation in hypoxia, and crosstalk with
microenvironment. Studies have shown that elevated plasma
BCAAs levels are associated with lung cancer and pancreatic
cancer (Xu H. et al., 2023; Zhu et al., 2020; Katagiri et al., 2018).
In these tumors, BCAA metabolism may be reprogrammed to fulfill
the specific metabolic needs of tumor cells.

The occurrence of different tumors is associated with distinct
genetic backgrounds, and cellular studies have shown that specific
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gene mutations can promote diverse metabolic phenotypes
(Garraway, 2013) (Table 1). However, it remains unclear whether
the genetic background of the entire tumor tissue determines the
metabolic pathways of different cancers. The metabolic differences
between tumor types may also be attributed to cell-autonomous
effects, with tumor metabolic gene expression being more similar to
that of their tissue of origin compared to other tumors (Martínez-
Jiménez et al., 2020). The same oncogenic drivers may also result in
distinct metabolic phenotypes in lung and liver tumors (Yuneva
et al., 2012). For example, in mouse and human tumor tissues, Kras
activation and Trp53mutation deletion in the pancreas or lungs lead
to pancreatic ductal adenocarcinoma (PDAC) or non-small-cell
lung cancer (NSCLC). Although these tumors are caused by the
same genetic mutations, they utilize BCAAs differently. NSCLC
tumors incorporate free BCAAs into tissue proteins and use BCAAs
as a nitrogen source, thereby increasing BCAAs uptake. In contrast,
PDAC tumors show decreased BCAAs uptake. This suggests that the
tissue of origin is a key determinant in how cancer meets its
metabolic demands (Martínez-Jiménez et al., 2020). A striking
paradox exists in pancreatic cancer: while obesity and diabetes
(conditions with elevated blood BCAAs) increase PDAC risk, the
tumors themselves show reduced BCAAs uptake. This likely occurs
because PDAC cells downregulate BCAAs transporters and
preferentially utilize other nutrients, leading to a disconnect

between systemic BCAAs levels and tumor metabolic demands.
The patterns of metabolic reprogramming of BCAAs are
inconsistent across different tumors, with varying enzyme
activities and pathway activations or inhibitions, resulting in
significant metabolic alterations in various cancers (Figure 2).

2.1 Lung cancer

In lung cancer, BCAAs metabolic reprogramming is significant.
Tumor cells increase the uptake and metabolism of BCAAs to meet
their rapid growth demands for energy and amino acids. The loss of
enzymes responsible for BCAAs utilization, Bcat1 and Bcat2,
impairs NSCLC tumor formation, although these enzymes are
not essential for PDAC tumor formation (Li et al., 2020). BCAAs
support the growth and proliferation of tumor cells by promoting
the mTOR signaling pathway. Notably, studies have found that the
plasma levels of BCAAs are typically elevated in lung cancer
patients, indicating a close association between altered BCAA
metabolism and tumor progression. BCAT1 can enhance BCAA
metabolism, thereby increasing mitochondrial respiration and
biosynthesis, reducing reactive oxygen species (ROS) levels, and
ultimately enhancing NF-κB pathway signaling (Yu et al., 2022),
promoting lung cancer development. High levels of BCAT1 promote

FIGURE 1
BCAAs metabolic cycle and related signaling pathways. BCAAs enter the cell via transporters and are metabolized by BCAT1 or BCAT2, generating
branched-chain keto acids (BCKAs). These BCKAs are then processed by the BCKDH complex, which consists of three subunits: E1, E2, and E3. The
catalytic efficiency of BCKDHdepends on its phosphorylation status, regulated by BCKDK and PPM1K. BCKDK phosphorylates E1α to inhibit BCKDH,while
PPM1K dephosphorylates the same site to activate BCKDH. Ultimately, acetyl-CoA is produced, entering the TCA cycle. Metabolites generated
during this process may be associated with tumor development, immune evasion, therapeutic resistance, and the tumor microenvironment.
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the expression of SRY-box 2 (SOX2) by reducing alpha-
ketoglutarate (α-KG), leading to the migration and metastasis of
lung cancer cells (Mao et al., 2021). At the same time, BCAAs
catabolism plays a crucial role in the metastasis of NSCLC cells,
where the depletion of α-KG reduces the expression and activity of
the m6A demethylase ALKBH5. As a result, the inhibition of
ALKBH5 promotes the occurrence of epithelial-mesenchymal
transition (EMT) in NSCLC cells and enhances their metastasis

to the brain (Mao et al., 2024). Simultaneously, the upregulation of
BCKDK affects the metabolism of BCAAs and citrate in NSCLC
cells. Knockdown of BCKDK reduces NSCLC cell proliferation
in vitro and induces apoptosis by inhibiting glycolysis while
increasing oxidative phosphorylation and ROS levels, suggesting
that BCKDK may promote NSCLC proliferation and could have
clinical significance in treating NSCLC patients (Wang Y. et al.,
2021). Rab1A, a small GTPase and an activator of mTORC1 as well

FIGURE 2
Metabolic reprogramming patterns in different tumors. Themetabolism of BCAAs varies across different types of tumors. This article illustrates eight
distinct BCAAs metabolic patterns, each with unique activated pathways, metabolic enzymes, and metabolic products. For example, in lung cancer,
changes are seen primarily in BCAT1, while pancreatic cancer involves alterations in BCAT2. In colorectal cancer, metabolic changes focus on BCKDH-
related enzymes. Additionally, BCAA metabolism in breast cancer is associated with reactive oxygen species (ROS) metabolism. BCAA metabolism
interacts with other metabolic processes in a complex, interdependent manner.

TABLE 1 Patterns of BCAAS metabolic reprogramming in human cancers.

Cancer type BCAAS
intake

BCAT1 BCAT2 BCKDH BCKDH Other metabolic
targets

Regulatory mechanism

lung cancer ↑ ↑ ↑ — ↑ — mitochondrial respiration and biosynthesis↑,
ROS levels↓, EMT↑, glycolysis↓

Hepatocellular
carcinoma

↓ ↑ ↑ ↑ ↑ PPM1K↑, CPT1A↓,
LAT1↑

mTORC1↑, acetyl-CoA synthesis↓, epigenetic
modifications

pancreatic cancer ↓ ↑ ↑ — ↑ PPM1K↓, LAT1↑ mTORC1↑, acetyl-CoA

Colorectal Cancer ↑ — ↓ — ↑ C.symbiosum↑ MAPK↑, EMT↑, MEK-ERK↑

Leukemia ↑ ↑ ↑ ↑ — PPM1K↑, SLC7A5↑ αKG↑, mTORC1↑

Breast Cancer ↑ ↑ — ↑ ↑ LARS↓, LAT1↑ mitochondrial biogenesis↑, ATP production↑,
mitochondrial ROS ↓
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as an oncogene, enhances Rab1A-mTORC1 signaling and promotes
tumor proliferation by inhibiting BCAA catabolism in NSCLC,
making it a potential biomarker for early diagnosis and
identifying metabolism-based therapeutic targets in NSCLC
patients (Xue et al., 2023). Additionally, studies suggest that
SAR1B, a leucine sensor, influences cell growth through amino
acid levels and controls mTOR complex 1 (mTORC1) by
modulating mTORC1 signaling based on intracellular leucine
levels. Selectively targeting SAR1B-dependent mTORC1 signaling
could have potential for lung cancer treatment (Chen J. et al., 2021).
Similarly, high doses of isoleucine can also inhibit the proliferation
of lung cancer cells by stabilizing nuclear PTEN (Wang et al., 2023).

2.2 Hepatocellular carcinoma

In hepatocellular carcinoma (HCC), abnormal BCAA
metabolism is also very common. Liver cancer cells often break
down BCAAs to generate energy, enhance their antioxidant
capacity, and promote tumor growth. BCAAs levels in liver
cancer patients are often reduced (Marchesini et al., 2003),
especially in the late stages of liver failure, suggesting that
BCAAs could serve as potential therapeutic targets or
biomarkers. In human hepatocellular carcinoma and liver cancer
animal models, inhibition of BCAAs catabolic enzyme expression
leads to BCAAs accumulation in tumors, and the degree of enzyme
inhibition is closely associated with tumor aggressiveness (Ericksen
et al., 2019), making it an independent predictor of clinical
outcomes. Approximately 40 enzymes are involved in BCAA
catabolism, and their transcripts are widely suppressed in
liver tumors.

Studies have shown that in the absence of glutamine, BCAA
catabolism is activated in cancer cells, enhancing BCAAs breakdown
to stimulate cell proliferation and survival. PPM1K (Protein
Phosphatase, Mg2+/Mn2+ Dependent 1K) is a mitochondrial
serine/threonine phosphatase that plays a key role in regulating
BCAA metabolism (Yang et al., 2022). It dephosphorylates and
activates the branched-chain α-keto acid dehydrogenase complex
(BCKD), promoting BCAA catabolism. Stabilizing PPM1K protein
leads to enhanced BCAAs and BCKDHA degradation due to
increased dephosphorylation. High expression of
dephosphorylated BCKDHA and PPM1K promotes
tumorigenesis, making BCKDHA and PPM1K potential
therapeutic targets and predictive biomarkers for liver cancer.
Additionally, BCAA metabolism is linked to lipid metabolism via
carnitine palmitoyl transferase 1 (CPT1A), the rate-limiting enzyme
of fatty acid oxidation (FAO). CPT1A is widely downregulated in
liver tumor tissues and is associated with poor prognosis in HCC,
promoting HCC progression in both new liver tumors and xenograft
tumor models. This could be due to the disruption of acetyl-CoA
synthesis, reducing histone acetylation and impairing BCAAS
catabolism, leading to BCAAs accumulation and excessive mTOR
signaling activation (Liu et al., 2024).

PROX1 expression is reduced by glucose starvation or AMPK
activation and elevated in tumors with liver kinase B1 (LKB1)
deficiency. Inhibiting PROX1 activation decreases BCAAs
degradation by regulating epigenetic modifications and
suppressing mTOR signaling (Paput et al., 2011). The LKB1-

AMPK axis in cancer cells depends on PROX1 to maintain
intracellular BCAAs pools. Cancer cells lacking the LKB1-AMPK
axis rely on PROX1 tomaintain intracellular BCAA levels, leading to
enhanced mTOR signaling, tumorigenesis, and invasiveness.

LAT1 is a transmembrane amino acid transporter responsible
for transporting large neutral amino acids such as leucine,
isoleucine, valine, phenylalanine, and tyrosine from outside the
cell to the inside. In liver cancer, it has been found that
inhibiting LAT1 can reduce BCAAs transport activity and
significantly lower cell proliferation (Kim et al., 2023).
LAT1 ablation results in a significant reduction in
phosphorylated p70S6K, with downstream mTORC1 signaling
being suppressed. Therefore, inhibiting LAT1 activity may be an
effective therapeutic strategy for liver cancer.

The role of BCAAs supplementation in liver cancer treatment
has been explored in numerous studies, particularly in patients with
liver cirrhosis and hepatocellular carcinoma (HCC) (van Dijk et al.,
2023). BCAAs have a unique role in the nutritional intervention of
liver diseases. Perioperative BCAA intake has been shown to
decrease postoperative infections and ascites in liver cancer
patients (Yap et al., 2023) and enhance survival in cirrhotic
individuals (Hanai et al., 2020). BCAAs, particularly leucine, can
activate the mTOR pathway, improving the function of immune
cells such as T cells and natural killer cells, thereby boosting the anti-
tumor immune response (Peng et al., 2020). While BCAAs
supplementation has many potential benefits, there are also some
controversies (Sideris et al., 2023). Some studies suggest that
excessive BCAAs supplementation may promote the growth of
certain tumor cells by activating the mTOR signaling pathway
(Ericksen et al., 2019), thus requiring cautious use in liver cancer
patients, especially with individualized adjustments based on the
patient’s condition and nutritional needs. Although BCAAs
supplementation is primarily used to support the nutrition and
immune function of liver cancer patients, some research suggests
that BCAAs may also affect tumor progression by inhibiting cancer
cell proliferation and invasion. Certain BCAAmetabolites may have
inhibitory effects on cancer cells, particularly by modulating the
mTOR signaling pathway and other metabolic pathways. However,
the specific mechanisms involved still require further investigation.
Additionally, studies have found that ferroptosis can regulate tumor
metabolism and iron-dependent lipid peroxidation, thereby
inhibiting tumor proliferation. Elevated BCAT2 expression in
liver and pancreatic cancers is associated with reduced
ferroptosis-related cell death. It has also been demonstrated that
sorafenib and sulfasalazine have synergistic effects in inhibiting
BCAT2 expression and inducing ferroptosis. Targeting
BCAT2 may provide insights into overcoming resistance to
sorafenib treatment (Wang K. et al., 2021).

2.3 Pancreatic cancer

Pancreatic hormone secretion is associated with obesity and
insulin resistance. The development of pancreatic cancer can lead to
insulin resistance and diabetes (Rossmeislová et al., 2021). However,
the exact relationship between BCAA metabolism, PDAC
progression, and tissue type remains unclear. Pancreatic cancer
cells typically undergo metabolic reprogramming to meet the
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demands of rapid growth and proliferation. Studies have also found
elevated levels of BCAAs in the blood of pancreatic cancer patients,
strongly correlated to tumor progression. High levels of BCAA
metabolism are linked to increased aggressiveness and poor
prognosis in pancreatic cancer.

BCATs, including BCAT1 and BCAT2, transfer amino groups
from BCAAs to α-KG. BCAT2 levels are higher in pancreatic cancer
cell lines compared to normal cell lines (Li et al., 2020), making it a
potential clinical target for pancreatic cancer therapy. BCAT2 is
acetylated at lysine 44 (K44), an evolutionarily conserved residue.
Acetylation of BCAT2 leads to its degradation through the
ubiquitin-proteasome pathway and is stimulated during BCAAS
deprivation. CREB-binding protein (CBP) and Sirtuin 4(SIRT4) are
BCAT2’s acetyltransferase and deacetylase, respectively, controlling
K44 acetylation in response to BCAAs availability (Lei et al., 2020).
The K44R mutant enhances BCAAS catabolism, cell proliferation,
and pancreatic tumor growth. This reveals a previously unknown
regulatory mechanism of BCAT2 in PDAC and provides a potential
therapeutic target for PDAC treatment.

Additionally, studies suggest that co-targeting stromal
BCAT1 and the cancerous BCKDH complex impairs tumor cell
proliferation and survival (Zhu et al., 2020). Cancer-associated
fibroblasts (CAFs) take up extracellular matrix (ECM)
components under nutrient-restricted conditions, with fibroblasts
upregulating the Urokinase-type plasminogen activator receptor-
associated protein (uPARAP) receptor for ECM uptake. CAFs can
secrete ECM and induce a fibrotic environment within tumors.
Enzymes or transporters related to BCAA metabolism, such as
LAT1, may serve as potential therapeutic targets. Inhibiting
BCAA metabolism can reduce tumor cells’ access to BCAAs,
decreasing mTOR pathway activity, thereby inhibiting tumor
growth and metastasis. A BCAAS-rich diet promotes pancreatic
cancer development through USP1-mediated BCAT2 stabilization,
and BCAAS intake is positively correlated with pancreatic cancer
risk (Li J. T. et al., 2022; Rossi et al., 2022).

2.4 Colorectal cancer

In colorectal cancer (CRC), BCAA metabolic reprogramming
enables tumor cells to adapt to nutritional stress in the
microenvironment, enhancing their survival capacity. The
accumulation of BCAAs caused by BCAT2 deficiency promotes
chronic activation of mTORC1, mediating the carcinogenic effect of
BCAAs (Kang Z. R. et al., 2024). BCKDK can also promote CRC
development by upregulating the MEK-ERK signaling pathway.
BCKDK is upregulated in CRC tissues, and increased BCKDK
expression is associated with metastasis and poor clinical
prognosis in CRC patients. Knockdown of BCKDK reduces CRC
cell migration and invasion in vitro and lung metastasis in vivo.
BCKDK promotes EMT by decreasing the expression of the
epithelial marker E-cadherin and increasing the expression of
mesenchymal markers N-cadherin and vimentin (Tian et al.,
2020). Src phosphorylates BCKDK, enhancing its activity and
stability, thereby promoting CRC cell migration, invasion, and
EMT. Additionally, studies have shown that BCKDK enhances
the MAPK signaling pathway by directly phosphorylating MEK,
rather than through branched-chain amino acid catabolism, thereby

promoting colorectal cancer progression (Xue et al., 2017). BCKDK
may serve as a novel therapeutic target for colorectal cancer. BCAAs
are also involved in maintaining redox balance, which plays an
important role in the growth of colorectal cancer cells.

Recent studies have demonstrated that *C. symbiosum* selectively
enriches in tumor tissues of colorectal cancer (CRC) patients and is
associated with higher recurrence of colorectal adenomas after
endoscopic polypectomy. The tumorigenic effect of *Clostridium
symbiosum* has been observed in various mouse models (Ren
et al., 2024). The mechanism involves *C. symbiosum* enhancing
cellular cholesterol synthesis through BCAAs production, which in
turn activates the Sonic Hedgehog signaling pathway. *C. symbiosum*
has been identified as a bacterial driver of colorectal tumorigenesis,
providing a potential target for CRC prediction, prevention, and
treatment. Dietary supplementation with BCAAs may improve
insulin resistance and inhibit the activation of the IGF/IGF-IR axis,
thereby preventing the development of obesity-related colorectal
cancer precursors. BCAAs may be an effective strategy for
preventing colorectal cancer in obese individuals (Rossi et al.,
2021). However, whether BCAAs intake affects the prognosis of
colorectal cancer patients remains controversial (Shimizu et al.,
2009; Long et al., 2021), and further research is needed to explore
its role and mechanism in colorectal cancer.

2.5 Metabolic reprogramming of BCAAs
in leukemia

Similar to many other tumor cells, leukemia cells reprogram the
metabolism of BCAAs to meet the demands of rapid proliferation.
Studies have shown that BCAAs are highly absorbed and quickly
broken down in leukemia cells, providing energy and generating key
metabolites such as nucleotides and lipids, which are essential for
tumor cell proliferation (Neinast et al., 2019). In primary leukemia
cells, BCAT1 actively breaks down BCAAs into branched-chain α-
keto acids using α-KG, supplying key substrates for the tricarboxylic
acid cycle and the synthesis of non-essential amino acids. Both
processes help maintain α-KG levels, which are crucial for
sustaining leukemia stem cell function (Kikushige et al., 2023).
Research has found that BCAT1 is abnormally activated in chronic
myeloid leukemia (CML) in both humans and mice, promoting
BCAAs production via the MSI2-BCAT1 axis, thereby driving the
development of myeloid leukemia (Hattori et al., 2017). Moreover,
studies have shown that BCAT1 knockout leads to an accumulation of
α-KG, which is a vital cofactor for α-KG-dependent dioxygenases,
such as the Egl-9 family hypoxia-inducible factor 1 (EGLN1) and the
ten-eleven translocation (TET) family of DNA demethylases. This
results in EGLN1-mediated degradation of HIF1α, suppressing tumor
cell proliferation (Raffel et al., 2017). In AML cells with high levels of
BCAT1, a DNA hypermethylation phenotype similar to cases with
mutant isocitrate dehydrogenase (IDHmut) has been observed, and
this is associated with poor disease prognosis.

Several genes associated with poor leukemia prognosis are also
linked to BCAA metabolic pathways. EZH1, a homolog of EZH2, is
essential for the initiation of leukemia in EZH2-deficient cells and
contributes to epigenetic vulnerability. EZH2 inactivation leads to
BCAT1 overactivation, enhancing BCAA metabolism and mTOR
signaling, which together drive the transformation of
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myeloproliferative neoplasms into leukemia (Gu et al., 2019).
METTL16, an m6A methyltransferase and one of the most
common internal modifiers of mammalian mRNAs, is
abnormally overexpressed in human AML cells. Through an
m6A-dependent mechanism, METTL16 promotes the expression
of BCAT1 and BCAT2, reprogramming BCAA metabolism in AML
and contributing to leukemogenesis (Han et al., 2023). GPRC5C, a
member of the G protein-coupled receptor family group C, is a
regulator of hematopoietic stem cell dormancy and is associated
with poor leukemia prognosis. Elevated intracellular BCAAs levels, a
tumor metabolic characteristic, are reversed after Gprc5c depletion.
Targeting the BCAAs transporter SLC7A5 with JPH203 inhibited
oxidative phosphorylation and exerted anti-leukemic effects,
suggesting that the GPRC5C-SLC7A5-BCAAs axis may serve as a
therapeutic target (Zhang Y. W. et al., 2023).

2.6 Breast cancer

In breast cancer, BCAA metabolism is also related to tumor
occurrence and progression. Breast cancer cells maintain their rapid
proliferation rate by increasing the uptake and utilization of BCAAs.
Elevated expression of BCAT1 has been observed in breast cancer, and
knocking down BCAT1 can inhibit the growth and proliferative
capacity of breast cancer cells (Zhang and Han, 2017).
BCAT1 promotes mitochondrial biogenesis, ATP production, and
inhibits mitochondrial ROS in breast cancer cells by regulating the
expression of related genes. High concentrations of BCAAs affect the
migration and invasion capabilities of breast cancer cells. Elevated
BCAAs inhibit tumor metastasis and cell invasion abilities and reduce
the expression of N-cadherin, indicating that high BCAAs levels may
suppress breast cancer tumor growth and metastasis (Tobias et al.,
2021). This suggests that a high-BCAAs diet could have potential
therapeutic significance in breast cancer treatment (Chi et al., 2022).
Leucyl-tRNA synthetase (LARS) is inhibited in breast cell
transformation and human breast cancer (Stine et al., 2022). In
vitro experiments demonstrated that inhibition of BCKDK
expression reduced the migration of human breast cancer cells,
while in vivo it decreased lung metastasis. BCKDK inhibited the
interaction between talin1 and the E3 ubiquitin ligase TRIM21,
leading to reduced ubiquitination and degradation of talin1,
thereby suppressing tumor cell migration (Xu C. et al., 2023). This
study found that LAT1, a key amino acid transporter, plays a role in
AI-resistant breast cancer by promoting leucine uptake and
mTORC1 signaling. LAT1 expression increased in resistant tumors
and was linked to advanced stages. The LAT1 inhibitor
JPH203 reduced cell proliferation in resistant cells, suggesting
LAT1 as a potential therapeutic target in AI-resistant breast cancer
(Shindo et al., 2021). Additionally, studies have shown that elevated
circulating BCAAs levels are associated with a reduced risk of breast
cancer in premenopausal NHSII women but an increased risk in
postmenopausal NHS women (Zeleznik et al., 2021).

2.7 Other tumor types

Most malignant tumors exhibit elevated levels of BCAT1, which
is associated with malignant phenotypes in various cancers, such as

nasopharyngeal carcinoma (NPC) (Zhou et al., 2013), gastric cancer
(Qian et al., 2023), melanoma (Mao et al., 2021), and astrocytoma
(Tönjes et al., 2013), as well as poor prognosis in cancer. The
promoter encoding BCAT1 can interact with RNA-binding motif
proteins, promoting tumorigenesis in nasopharyngeal carcinoma
(Xu X. C. et al., 2021). The long non-coding RNA GAS6-AS2 has
been identified as a key tumor growth driver in osteosarcoma (Wei
et al., 2020) by inhibiting miR-934. Solid evidence from various
cancers has demonstrated BCAT1’s direct regulation in the mTOR
pathway. BCAT1-mediated mTOR activation is involved in the
lethal biological behaviors of gastric cancer (Shu et al., 2021)and
cervical cancer (Luo et al., 2021). Similarly, the regulation of
BCAT2 expression in cancer has been reported in the literature.
Recent studies have shown that compared to normal tissues,
BCAT2 expression is elevated in cancers such as bladder cancer
(Cai et al., 2023), pancreatic cancer (Li et al., 2020; Lee et al., 2019),
breast cancer (Zhang and Han, 2017), and non-small cell lung
cancer (NSCLC) (Lee et al., 2019). The study found that
BCAT1 is phosphorylated by BCKDK in glioblastoma, which
enhances its activity and stability while inhibiting its degradation
mediated by STUB1 ubiquitination, thereby promoting tumor
growth. Inhibiting the BCKDK-BCAT1 axis can increase
sensitivity to temozolomide (TMZ), suggesting this pathway as a
potential therapeutic target (Wang W. et al., 2024).

Overexpression of BCKDH protein levels has been observed
during carcinogenesis in most ovarian cancer cell lines (Ibrahim
et al., 2023), oral squamous cell carcinoma (Grimm et al., 2016),
osteosarcoma (Zhang and Han, 2017), and melanoma (Tian et al.,
2023). Active BCKDH is tightly regulated by its phosphorylation
status, which is determined by BCKDK and PPM1K levels. High
expression of BCKDK and certain malignant proliferation behaviors
have been confirmed in colorectal cancer (Lei et al., 2020), breast
cancer (Xu C. et al., 2023), and NSCLC (Xue et al., 2023).

3 Research on mechanisms of BCAAs-
induced tumor resistance

Tumor resistance refers to the phenomenon where tumor cells
develop resistance to cancer therapies, rendering previously effective
treatments ineffective or significantly less effective. This resistance
can either be intrinsic (i.e., primary resistance) or acquired over the
course of treatment (i.e., acquired resistance) (Bagchi et al.,
2021).Tumor resistance typically involves a variety of complex
biological mechanisms, including genetic mutations, activation of
signaling pathways, drug efflux, enhanced DNA repair, and evasion
of apoptosis (Vesely et al., 2022). The development of resistance
makes tumors harder to control and treat, presenting a major
challenge in cancer therapy.

BCAAs induce tumor resistance through multiple mechanisms.
These include activation of the mTOR signaling pathway to promote
tumor cell growth, regulation of oxidative stress responses to resist
oxidative damage induced by treatment, modulation of glucose and
lipid metabolism to support tumor cells’ adaptation to changing
energy demands, and shaping the immune microenvironment to
suppress anti-tumor immune responses (Figure 3). Additionally,
BCAAs regulate autophagy and apoptotic pathways, preventing
therapy-induced cell death, thereby enhancing tumor cell
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survival. Collectively, these mechanisms contribute to the
development of treatment resistance in tumor cells.

3.1 Activation of the mTOR
signaling pathway

BCAAs, particularly leucine, activate the mTORC1 (mammalian
target of rapamycin complex 1) pathway by directly binding to it.
Persistent activation of mTOR signaling is closely linked to tumor
growth, proliferation, and survival in many types of cancer (Zhan
et al., 2023). By enhancing the activity of this pathway, BCAAs help
tumor cells maintain survival under the stress of anticancer drugs. For
instance, mTOR signaling activation can counteract the growth-
inhibiting effects of chemotherapy by promoting protein synthesis
and cellular metabolism. In many cancers, mTOR inhibitors have
been considered as potential therapeutic drugs, but the activation of
mTOR signaling by BCAAs may lead to drug resistance (Liu et al.,
2022). In some cancer types, inhibiting the mTOR signaling pathway
is thought to enhance drug sensitivity, suggesting that abnormal
BCAAmetabolismmay promote resistance (Bansal and Simon, 2018).

For example, BCKDK inhibitors can disrupt the mTORC1-
Aurora axis, thereby enhancing the sensitivity of breast and
ovarian cancer cells to chemotherapeutic drugs. The use of
BCKDK inhibitors can reverse the cell cycle arrest induced by
paclitaxel. BCKDK might play an important role in increasing
the sensitivity of tumor cells to paclitaxel. Certain breast cancer
cells reduce sensitivity to PI3K/mTOR inhibitors by enhancing
mTOR pathway activity through leucine metabolism (Ibrahim
et al., 2023). Proline, Glutamate, Leucine-Rich Protein 1 (PELP1),
a proto-oncogene that regulates estrogen receptor (ER) signaling,
interacts with serine/threonine protein kinase mTOR andmodulates
mTOR signaling (Gonugunta et al., 2014). mTOR inhibitors can
sensitize PELP1-expressing cells to hormone therapy.

3.2 Oxidative stress and
antioxidant response

Alterations in BCAA metabolism can affect tumor cells’
responses to oxidative stress. Oxidative stress is often a key
cytotoxic mechanism in chemotherapy and radiotherapy,

FIGURE 3
Mechanisms of BCAA-Related tumor drug resistance. Abnormal BCAA metabolism can lead to resistance in tumor-related therapies. This article
covers four major aspects of this resistance: activation of the mTOR signaling pathway, oxidative stress response, alterations in glucose and lipid
metabolism, and changes in the tumor microenvironment. These factors can further interact through mechanisms such as autophagy, apoptosis, and
metabolic changes to enhance tumor resistance. These insights provide valuable reference points for targeting resistance in treatment.
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inducing oxidative damage that leads to tumor cell death. However,
products of BCAA metabolism, such as α-ketoisocaproate
(produced from leucine breakdown), can enhance the antioxidant
capacity of tumor cells, helping them resist the oxidative damage
caused by chemotherapy and radiotherapy (Cai et al., 2022). This
mechanism allows tumor cells to alleviate oxidative stress by
regulating antioxidants such as glutathione, further promoting
drug resistance (Zhang B. et al., 2022). These data suggest that
high BCAAs concentrations may have deleterious effects on
circulating blood cells, contributing to the pro-inflammatory and
oxidative states observed under several pathophysiological
conditions (Zhenyukh et al., 2017). Hypoxia-inducible factors
(HIFs) regulate metabolic reprogramming in response to hypoxia.
LAT1 is a transporter of BCAAs, and studies have found that
hypoxia upregulates the mRNA and protein levels of LAT1 and
BCAT1 in human glioblastoma (GBM) cell lines through the
binding of HIF-1α and HIF-2α to the intron of the BCAT1 gene.
However, hypoxia does not upregulate their homologs LAT2-4 and
BCAT2. This allows tumor cells to continue proliferating under
hypoxic conditions (Zhang et al., 2021). Moreover, studies indicate
that enhanced BCAA metabolism boosts the activity of antioxidant
enzymes, such as glutathione, helping tumor cells resist treatment-
related accumulation of reactive oxygen species (ROS) (Pavlova
et al., 2022). Studies have found that BCAT1 may possess stronger
antioxidant properties compared to BCAT2. The BCAT1-CXC
motif has a novel antioxidant function, with this CXXC motif
proven to act as a “redox switch” in the enzymatic regulation of
BCAT proteins. The BCAT1-CXC motif may help buffer ROS
levels within AML cells, influencing cell proliferation, which could
impact the ROS-mediated development of myeloid leukemia
(Hillier et al., 2022). Low-grade gliomas and secondary
glioblastomas lead to excessive production of (R)-2HG, which
can effectively inhibit 2OG-dependent transaminases BCAT1 and
BCAT2. By reducing glutamate levels, this inhibition sensitizes
IDH-mutant glioma cells specifically to glutaminase, making them
more susceptible to oxidative stress in vitro and to radiation both
in vivo and in vitro (McBrayer et al., 2018). Chemotherapeutic
agents kill tumor cells by inducing oxidative stress, and the
regulation of BCAA metabolism may enhance drug resistance
by mitigating this stress (Pavlova and Thompson, 2016). The
C-terminal of Hsc70-interacting protein (CHIP) is an
E3 ubiquitin ligase, and its coiled-coil (CC) domain interacts
with BCAT1. Through the CHIP/BCAT1 axis, it enhances
glioma sensitivity to temozolomide by reducing glutathione
(GSH) synthesis and increasing oxidative stress (Lu et al., 2024a).

3.3 Interaction with glucose and lipid
metabolism

The cross-regulation between BCAA metabolism and glucose
and lipid metabolism plays a crucial role in metabolic
reprogramming within tumor cells. Tumor cells often adapt to
nutrient limitations and anticancer drug pressure by readjusting
metabolic pathways. BCAA metabolism promotes glucose uptake
and utilization, increasing ATP production, thereby helping tumor
cells maintain energy supply and cope with drug pressure (Fang
et al., 2022). Moreover, the interaction between BCAAs and lipid

metabolism can support the rapid growth and repair of cell
membranes by providing precursors for lipid synthesis, which is
essential for tumor cell survival. Studies have shown that BCAAs
enhance glucose uptake, increase glycolytic products, and promote
tumor cell survival in harsh environments by activating the PI3K/
AKT pathway (Zoncu et al., 2011). Alterations in lipid metabolism,
such as increased lipid storage promoted by BCAAs, help tumor cells
maintain membrane integrity and enhance resistance to
chemotherapy (Bacci et al., 2021). Osimertinib, a third-generation
EGFR tyrosine kinase inhibitor (TKI), has shown significant clinical
efficacy in treating non-small cell lung cancer (NSCLC). Studies
have found that in TKI-resistant cells, upregulated
BCAT1 reprograms BCAA metabolism and promotes α-
ketoglutarate (α-KG)-dependent demethylation of histone H3 at
lysine 27 (H3K27), leading to the de-repression of glycolysis-related
genes, thereby enhancing glycolysis and promoting tumor
progression. WQQ-345, a novel BCAT1 inhibitor, has
demonstrated antitumor activity in both in vitro and in vivo
models of TKI-resistant lung cancer with high
BCAT1 expression. BCAT1 is a promising target for treating
TKI-resistant NSCLC (Zhang T. et al., 2024). PPM1K regulates
glycolysis to generate hematopoietic stem cells and leukocytes
through the ubiquitination of MEIS1 and p21 mediated by
CDC20. Inhibition of PPM1K extended the survival time of mice
in leukemia models, suggesting that PPM1K could be used in
combination with chemotherapy drugs for leukemia to improve
treatment efficacy (Liu et al., 2018).

3.4 Impact on the immune
microenvironment

The immunosuppressive nature of the tumormicroenvironment
plays a crucial role in tumor drug resistance. BCAA metabolism
regulates immune responses by affecting the metabolic activity of
immune cells. Research shows that T cells and natural killer (NK)
cells require an adequate supply of BCAAs to maintain their
antitumor functions. When BCAA metabolism is disrupted, the
activity of these immune cells may be suppressed, leading to
enhanced immunosuppression within the tumor
microenvironment. Immunotherapy relies on the host immune
system’s ability to recognize and eliminate cancer cells, but
changes in BCAA metabolism may weaken this effect, promoting
immune evasion by tumor cells.

3.4.1 Regulation of immune cell function
BCAA metabolism influences the activity and function of key

immune cells, including T cells, macrophages, myeloid-derived
suppressor cells (MDSCs), and NK cells. Pan-cancer biological
analyses show that the infiltration levels of CD4+ T cells, CD8+

T cells, B cells, neutrophils, and macrophages in lung cancer,
colorectal cancer, and head and neck squamous cell carcinoma
are correlated with the expression of BCAT1 (Li G. S. et al.,
2022). These immune cells jointly regulate the immune tumor
microenvironment and play critical roles in immunotherapy.
BCAA metabolism exhibits dual immunomodulatory roles in the
tumor microenvironment (TME), with both pro-tumoral and anti-
tumoral effects on key immune cells.
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3.4.1.1 T cells
BCAAs exhibit dual roles in T cell activation, proliferation, and

differentiation. In promoting tumor progression, BCAAs depletion
in the tumor microenvironment can inhibit T cell function, reducing
their ability to mount an effective antitumor immune response (Xia
et al., 2021). While enhanced BCAA metabolism may promote the
survival and function of regulatory T cells (Tregs), which suppress
immune responses and help tumors evade immune detection (Ikeda
et al., 2017). In suppressing tumor progression, BCAAs, particularly
leucine, are indispensable amino acids for immune regulation
through metabolic reprogramming. However, the molecular
mechanisms underlying this phenomenon remain unclear. Many
studies have shown that solute carrier (SLC) transporters play new
roles in the tumor microenvironment by altering immune cell
metabolism (Chen and Chen, 2022; Nachef et al., 2021; Kocher
et al., 2021). SLC1A5, SLC7A5, and SLC3A2 are the most highly
expressed genes encoding amino acid transport proteins in the
tumor microenvironment (O’Sullivan et al., 2019). The most
abundant amino acid transporter in activated T cells is SLC7A5
(Kanai, 2022; Meng et al., 2024). Studies have found that T cell
receptor (TCR) activation increases the expression of BCAT1 and
SLC7A5 in human CD4+ T cells, promoting leucine influx and
catabolism, which is particularly important for the T helper cell
(Th17) response. Inhibiting SLC transporters reduces the ability of
immune cells to eliminate tumor cells. SLC7A5 is involved in T cell
differentiation, activation of the mTORC1 signaling pathway, and
c-Myc expression, while knocking out SLC3A2 prevents T cell
expansion (Ikeda et al., 2017; Najumudeen et al., 2021; Zhang C.
et al., 2024). Chimeric antigen receptor (CAR)-T cells are an
innovative immunotherapy where T cells are genetically
engineered. Research has shown that traditional T cells or CAR-
T cells can compete with tumor cells for amino acids. Artificially
increasing the expression of SLC7A5 or SLC7A11 transmembrane
amino acid transporters has been shown to enhance CAR-T cell
proliferation and antitumor activity by upregulating intracellular
arginase (Panetti et al., 2023). Additionally, BCKDK-engineered
CAR T cells were designed to reprogram BCAA metabolism in the
tumor microenvironment based on genotype and phenotype
modifications, enhancing the ability of T cells to eliminate cancer
cells (Yang et al., 2024). In an experimental autoimmune
encephalomyelitis (EAE) model, blocking BCAT1-mediated
leucine catabolism using BCAT1 inhibitors or LβhL treatment
alleviated the severity of EAE by reducing HIF1α expression and
IL-17 production in spinal cord mononuclear cells. Activated CD4+

T cells induce an alternative pathway of cytosolic leucine catabolism
through BCAT1 and hydroxyphenylpyruvate dioxygenase (HPD)/
HPDL, producing the key metabolite β-hydroxy-β-methylbutyrate
(HMB). HMB helps regulate the mTORC1-HIF1α pathway by
increasing HIF1α mRNA expression, a major signaling pathway
for IL-17 production. Treatment with L-β-hydroxyisoleucine
(LβhL), a leucine analog and competitive inhibitor of BCAT1,
can reduce IL-17 production in TCR-activated CD4+ T cells, thus
weakening the immune response in the tumor microenvironment
(Kang Y. J. et al., 2024).

Immune checkpoint inhibitors (ICIs) have improved survival
rates in patients with advanced cancer (such as bladder cancer,
BLCA). However, their overall efficacy remains limited, as many
patients still develop resistance to immunotherapy. Recent studies

have found that LRFN2 forms a non-inflammatory tumor
microenvironment (TME) in BLCA. Tumor-intrinsic leucine-rich
repeat and fibronectin type III domain-containing protein
LRFN2 suppresses the recruitment and functional transformation
of CD8+ T cells by reducing the secretion of pro-inflammatory
cytokines and chemokines. LRFN2 inhibits antitumor immunity by
reducing CD8+ T cell infiltration, proliferation, and differentiation
in vitro. Furthermore, spatially exclusive relationships between
LRFN2+ tumor cells and CD8+ T cells, as well as markers such as
programmed cell death-1 (PD-1) and T cell factor 1 (TCF-1), have
been observed, thereby enhancing tumor resistance (Yu et al., 2023).
Additionally, BCAAs promote the effector function of CD8+ T cells
and antitumor immunity by reprogramming glucose metabolism,
which can enhance the clinical efficacy of anti-PD-
1 immunotherapy against tumors (Yao et al., 2023).

3.4.1.2 Macrophages
BCAA metabolism can regulate the polarization of

macrophages. A BCAAS-enriched environment may inhibit
M1 macrophages, which have antitumor functions, while
promoting M2 macrophages (TAM 2), which support tumor
growth and immune suppression. TAM 2 infiltration is
significantly elevated in the pancreatic tumor microenvironment
(CME). (Zhang et al., 2023b). Increased levels of TAM two drive the
tumor-promoting characteristics of cancer cells and are associated
with poor disease prognosis. BCAT1, along with bone marrow
stromal antigen 2 (BST 2) and the tyrosine kinase MERTK,
promotes cancer progression by regulating TAM 2 polarization,
offering a potential target for pancreatic cancer treatment. Another
FN1-induced transcriptome network mediates immune cell
infiltration in the CME of oral squamous cell carcinoma (Peng
et al., 2023). Additionally, TAMs can be reprogrammed through diet
or genetic modification to overcome MYC-overexpressing cancer
cells via non-canonical phagocytosis-mediated, Rag GTPase-
independent mTORC1 signaling (Zhang et al., 2023c).The
regulatory role of BCAT1 in macrophage function holds
therapeutic significance for inflammatory diseases. While
BCAT1’s role in regulating macrophage function helps reduce the
infiltration of inflammatory factors and has therapeutic potential for
various inflammatory diseases (Papathanassiu et al., 2017), it is still
unclear whether similar mechanisms exist in the TME.

3.4.1.3 NK cells
Low concentrations of arginine can inhibit T cell proliferation

and activity in the tumor microenvironment (TME), but increased
expression of SLC7A5 can help NK cells in acute myeloid leukemia
(AML) maintain their proliferative and activated phenotype under
low arginine conditions, leading to AML cell apoptosis (Stavrou
et al., 2023). In contrast, inhibiting SLC7A5 in cytokine-activated
NK cells reduces c-Myc protein levels and mTORC1 signaling,
thereby enhancing their antitumor effects (Loftus et al., 2018).

3.4.1.4 MDSCs
BCAAs support the immunosuppressive activity of myeloid-

derived suppressor cells (MDSCs), inhibiting antitumor immune
responses and promoting tumor progression. A high-fat diet (HFD)
is a high-risk factor that disrupts the gut microbiome, leading to the
malignant progression of cancer. Both obesity and obesity-
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associated gut microbiota are linked to poor prognosis and advanced
cachexia in female cancer patients. The HFD-related microbiota
promotes cancer progression by generating polymorphonuclear
myeloid-derived suppressor cells (PMN-MDSCs). The HFD
microbiota releases an abundance of leucine, activating the
mTORC1 signaling pathway in myeloid progenitor cells, thus
promoting PMN-MDSC differentiation (Chen et al., 2024).
Clinically, elevated leucine levels in the peripheral blood of
female cancer patients, induced by the HFD microbiota, are
associated with extensive tumor PMN-MDSC infiltration and
poor clinical outcomes. BCAAs also affect the immunoregulatory
properties of mesenchymal stem cells (MSCs). They regulate the S,
G2, andM phases of the cell cycle, promotingMSC proliferation and
metabolic activity (Zhang F. et al., 2022). In addition, in immune-
related diseases, BCAAs modulate the immunoregulatory capacity
of MSCs by increasing phosphorylated signal transducer and
activator of transcription 3 (p-STAT3)/STAT3 signaling, reducing
p-NF-κB/NF-κB signaling, and enhancing the production of anti-
inflammatory TGF-β and prostaglandin E (Sartori et al., 2020).

3.4.2 Influence on cytokine production
BCAA metabolism can affect the production of pro-

inflammatory and anti-inflammatory cytokines in the tumor
immune microenvironment. For example, BCAAs can activate
the NF-κB pathway (Sartori et al., 2020), leading to the
production of cytokines such as interleukin-6 (IL-6) and tumor
necrosis factor-alpha (TNF-α), which can support tumor
progression and alter immune responses. The expression of
chemokines critical for CD8+ T cell recruitment, such as CCL3,
CCL4, CCL5, CXCL9, and CXCL10, is hindered by BCAT2.
Chemotaxis experiments show that BCAT2 is negatively
correlated with CD8+ T cell cytotoxic INF-γ and TNF-α. More
importantly, the loss of BCAT2 enhances the effectiveness of anti-
PD-1 therapy (Cai et al., 2023).

3.5 Interaction with glutamine and arginine
metabolism

BCAAmetabolism intersects with glutamine metabolism, which
is crucial for the function of rapidly proliferating cells, including
tumor cells and certain immune cells. By influencing the availability
and utilization of glutamine, BCAAs can regulate the immune
microenvironment, affecting the balance between antitumor
immune responses and immune suppression (Bader et al., 2020).
Numerous studies have shown that the uptake of glutamine,
arginine, and BCAAs is upregulated across various cancers and
activates Th1 and CD8+ T cells (Chen C. L. et al., 2021). For example,
in ovarian cancer cells, CD4+ and CD8+ memory T cells and
M0 macrophages overexpress the arginine transporter CAT1.
Silencing CAT1 transporter results in decreased BCAAS levels.
Arginine acts as a crucial precursor for polyamine biosynthesis,
and targeting key metabolic enzymes like arginase-1 (Arg1) can
effectively regulate polyamine production in the tumor
microenvironment (TME) (Wetzel et al., 2023). These
polyamines possess well-documented immunosuppressive
properties that promote tumor growth by inhibiting cytotoxic
immune responses (Lian et al., 2022). Importantly, dendritic cells

frequently overexpress Arg1, establishing it as a novel metabolic
checkpoint within the TME (Martí and Reith, 2021). Through Arg1-
mediated arginine depletion, dendritic cells may contribute to T cell
exhaustion, a key factor in tumor immune evasion and
immunotherapy resistance (Lian et al., 2022). Moreover, all three
of these amino acids maintain cell growth and proliferation by
activating mTORC1 in tumor and immune cells (You et al., 2022).
mTOR signaling is dysregulated in cancer cells, whereas T cell
function requires mTOR upregulation (Kim and Guan, 2019;
Waickman and Powell, 2012). mTOR sensing may occur through
Rag GTPase-dependent mechanisms and can interact with various
protein targets (Bodineau et al., 2022). Glutamine, along with
asparagine, activates mTOR signaling via a Rag-GTPase-
independent mechanism (Meng et al., 2020). Leucine-driven
mTOR activation involves SAR1B, GATOR1-2, and Sestrin2
(Chen J. et al., 2021; Saxton et al., 2016). Under low glutamine
conditions, targeting ASCT2 renders breast cancer cells more
sensitive to leucine uptake inhibition, suggesting that cancer cells
with reduced transporter plasticity are more vulnerable to
disruptions in amino acid homeostasis (Bröer et al., 2019). In
conclusion, cancer and immune cells are influenced by arginine,
glutamine, and BCAAs, and these three exist in a mutually balanced
and regulated relationship. Understanding their interactions may
provide new therapeutic targets for the treatment of the tumor
immune microenvironment.

3.6 Regulation of autophagy and apoptosis

BCAA metabolism also helps tumor cells resist therapeutic
pressure by influencing autophagy and apoptosis pathways.
Autophagy is a survival mechanism that cells use during nutrient
deprivation or stress, maintaining energy balance by degrading
damaged organelles or proteins (Debnath et al., 2023). BCAA
metabolism inhibits autophagy through the mTOR signaling
pathway, thereby supporting the metabolic needs of tumor cells.
Additionally, BCAAs metabolic products can regulate apoptosis
signaling pathways, inhibiting chemotherapy-induced
programmed cell death, leading to treatment resistance in tumor
cells. BCKDK inhibitors suppress protein translation, impair
mitochondrial function, accelerate apoptosis, and enhance the
cytotoxicity of doxorubicin in triple-negative breast cancer
(Biswas et al., 2021). Inhibition of BCAA metabolism promotes
glioblastoma cell apoptosis by disrupting mitochondrial dynamics
mediated by mitofusin 2 (Mfn2) and inhibiting the PI3K/AKT/
mTOR pathway, making it a potential novel therapeutic target for
treating glioblastoma (Lu et al., 2024b). In AML, BCAT1 affects cell
proliferation and regulates the cell cycle, apoptosis, and DNA
damage/repair processes. BCAT1 modulates histone methylation
by reducing intracellular αKG levels in AML cells. High expression
of BCAT1 enhances the sensitivity of AML cells to poly (ADP-
ribose) polymerase (PARP) inhibitors both in vivo and in vitro. The
increased sensitivity of high-BCAT1 AML to PARP inhibitors could
serve as an effective therapeutic strategy for AML patients (Pan et al.,
2024). Furthermore, BCAT1 is overexpressed following NOTCH1-
induced leukemic progenitor transformation and controls
BCAT1 expression by binding to the BCAT1 promoter.
Depletion or inhibition of BCAT1 leads to the production of 3-
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hydroxybutyrate (3-HB), an endogenous histone deacetylase
inhibitor, and is associated with increased sensitivity to DNA-
damaging agents. The combined action of BCAT1 inhibition and
etoposide can selectively eliminate tumors in human xenograft
models, suggesting that BCAT1 inhibitors may play an important
role in the treatment of refractory T-ALL (Tosello et al., 2024). The
key transcription factor regulating autophagy, EB (TFEB), promotes
the proliferation and metastasis of pancreatic cancer cells.
Knockdown of TFEB inhibits PCC proliferation and metastasis
by regulating BCAAS catabolism through BCAT1LAI. BCAAS
deprivation, combined with the TFEB-targeting drug
elthrombopag, can exert a dual effect by blocking both exogenous
supply and endogenous utilization (Wang T. et al., 2024).
Additionally, BCAAs suppress insulin-induced cancer cell
proliferation by inducing autophagy (Wubetu et al., 2014).

3.7 Promotion of cancer stem
cell phenotype

BCAA metabolism is associated with the maintenance and
enhancement of cancer stem cells (CSCs). CSCs are a highly
drug-resistant subpopulation of tumor cells. They typically
exhibit significant metabolic plasticity, including enhanced
BCAAs catabolism, enabling them to survive under adverse
conditions such as chemotherapy or radiotherapy (Ma et al.,
2018). By supporting the survival of CSCs, BCAA metabolism
contributes to tumor recurrence and treatment resistance. In
breast cancer studies, interferon-γ (IFNγ) produced by activated
T cells has been shown to directly convert non-CSCs into CSCs.
BCAT1 was identified as a downstream mediator of IFNγ-induced
CSC plasticity, potentially contributing to immune checkpoint
blockade (ICB) failure. Targeting BCAT1 has been demonstrated
to improve cancer vaccination and immune checkpoint blockade by
preventing IFNγ-induced CSC modification (Ma et al., 2018). In

hepatocellular carcinoma (HCC) cells expressing the liver CSC
marker EpCAM, inhibition of mTOR complex 2 (mTORC2) or
activation of mTORC1 leads to reduced EpCAM expression, thereby
decreasing the tumorigenic potential of CSCs and increasing
sensitivity to the antiproliferative effects of 5-FU. BCAAs may
reduce the number of CSCs through the mTOR pathway, thereby
enhancing chemotherapy sensitivity (Nishitani et al., 2013).

BCAA metabolism plays a crucial role in cancer resistance to
chemotherapy, targeted therapy, and immunotherapy, as illustrated
in the figure. By upregulating BCAAs transaminases (such as
BCAT1 and BCAT2) (Günther et al., 2022; Hutson et al., 1998;
Ma et al., 2022),cancer cells enhance their metabolic activity,
promoting growth and reducing sensitivity to chemotherapy
drugs. BCKDH, as the rate-limiting step in BCAA metabolism,
has been the focus of ongoing development for inhibitors targeting
its activity (East et al., 2021; Roth Flach et al., 2023). Leucine, as an
activator of the mTOR pathway, strengthens mTOR signaling,
contributing to resistance against targeted therapies. Additionally,
some studies have reported that miRNAs can target BCATs to exert
antitumor effects (Ma et al., 2022). Furthermore, BCAAmetabolism
depletes resources needed by T cells, suppressing immune responses
and leading to immunotherapy resistance. Inhibiting BCAA
metabolism (such as using BCAT1 inhibitors) can reverse
resistance and enhance cancer cells’ sensitivity to chemotherapy,
targeted therapy, and immunotherapy (Table 2). Combining BCAA
metabolism inhibitors with existing therapies may be an effective
strategy to overcome resistance and improve the efficacy of cancer
treatments.

4 Summary

BCAAs play a crucial role in cellular metabolism, signaling, and
energy supply. In cancer development and progression, BCAA
metabolism exerts a complex regulatory function, and due to the

TABLE 2 BCAAs resistance-related targets.

Cancer type Inhibitor Mechanism of drug resistance Drug resistance
target

NSCLC (Non-small cell lung
cancer)

BCAT1 inhibitor WQQ-345 (Zhang et al., 2024a) Glycolysis Osimertinib

Liver cancer BCAT1 inhibitor (Nishitani et al., 2013) Inhibition of mTOR complex 2 5-FU

Glioblastoma BCAT1 inhibitor (Bagchi et al., 2021) BCKDK-BCAT1 Temozolomide (TMZ)

Breast cancer LAT1 inhibitor JPH203 (Stine et al., 2022) Leucine uptake and mTORC1 signaling Aromatase inhibitors (AI)

Breast cancer BCKDK inhibitor (Ibrahim et al., 2023) mTORC1-Aurora axis Paclitaxel

Breast cancer PELP1 (Proline, Glutamic acid, Leucine-rich Protein 1)
(Gonugunta et al., 2014)

Serine/Threonine protein kinase mTOR Estrogen receptor (ER)

Bladder cancer LRFN2 (Yu et al., 2023) Anti-tumor immunity PD-1 immunotherapy

Breast cancer BCKDK inhibitor (Biswas et al., 2021) Inhibition of protein translation, mitochondrial
dysfunction

Doxorubicin

AML (Acute Myeloid
Leukemia)

BCAT1 (Tosello et al., 2024) Regulation of histone methylation PARP inhibitor

Refractory T-ALL BCAT1 inhibitor (Wang et al., 2024b) Key transcription factor regulating autophagy Elthrombopag targeting
TFEB
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distinct genetic backgrounds of different tumors, BCAAs metabolic
reprogramming manifests in varying patterns across different
cancers. This presents a novel therapeutic approach for cancer
treatment in the future. For instance, non-small cell lung cancer
shows increased BCAAs uptake, while pancreatic cancer exhibits
decreased BCAAs consumption, and the metabolic enzymes
involved also behave differently. The dependency on the two
BCAT isoenzymes, BCAT1 and BCAT2, differs across cancers.
Targeting the specific metabolic reprogramming patterns of
BCAAs in tumors could enable the design of precision therapies.

In the tumor immune microenvironment, immune cells and
tumor cells compete for BCAAs uptake, which weakens the
cytotoxic activity of immune cells and diminishes the immune
microenvironment’s effectiveness. Enhancing the antitumor
activity of immune cells by increasing relevant BCAA
metabolism without promoting tumor-associated metabolic
reprogramming is a key challenge. Novel treatments like chimeric
antigen receptor (CAR)-T cell therapy offer a promising approach
by altering metabolic targets in T cells to improve immune cell
cytotoxicity in the tumor microenvironment.

While cancer treatment strategies have become increasingly
common, resistance to therapies often reduces the efficacy of these
treatments. Our study explored how cancer-related resistance could
be reversed by targeting BCAA metabolism, enhancing sensitivity to
radiotherapy, chemotherapy, targeted therapy, and immunotherapy.
Excitingly, some studies have shown that immune checkpoint
inhibitors, such as PD-1/PD-L1 inhibitors, can boost T cell activity
and overcome BCAA-induced immune suppression. Combining
these inhibitors with BCAAs metabolic inhibitors has
demonstrated stronger antitumor effects.

In advanced stages of cancer, patients often experience severe
nutrient depletion, leading to symptoms like cachexia, where muscle
metabolism also depends on certain BCAA-related enzymes.
However, the potential side effects of BCAA metabolic enzyme
inhibitors on normal tissues remain a concern. Thus, achieving
tumor-specific precision targeting of BCAA metabolism is crucial.
Looking ahead, the development of more precise treatments
targeting BCAA metabolism holds promise for offering new
directions and therapeutic models in cancer treatment.
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