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Background: Depression represents a major global public health challenge,
inflicting profound suffering on patients while imposing substantial
socioeconomic burdens on families and healthcare systems. Although
monoamine-based antidepressants remain first-line pharmacotherapy,
accumulating clinical evidence reveals several limitations of these
medications, including delayed pharmacodynamics and low remission rates.
Therefore, it is necessary to search for new drugs and develop effective
strategies for depression treatment. Bezafibrate (BEZ), which can activate
proliferator-activated receptor a (PPARα), exhibit various biological functions,
such as improving mitochondrial function, reducing neuroinflammation, and
improving cognitive function. This study is to explore whether BEZ has
antidepressant-like effects and its potential mechanisms.

Methods: The antidepressant effects and potential mechanisms of BEZ were
assessed by using forced swim test, tail suspension test, sucrose preference test,
Western blot, gene interference, and immunofluorescence in the chronic
unpredictable mild stress (CUMS) models of depression.

Results: Results showed that BEZ treatment significantly reversed depressive
behavior in CUMS mice. The administration of BEZ obviously promoted the
expression of PPAR, enhanced the BDNF signaling pathway, promoted
hippocampal neurogenesis in CUMS mice. In addition, the pharmacologcial
inhibitors GW6471 and K252a were obviously prevented the antidepressant
effect of BEZ. Furthermore, gene knockdown of hippocampal PPARα or BDNF
by using AAV-PPARα-shRNA-EGFP and AAV-BDNF-shRNA-EGFP, can
remarkably inhibit the antidepressant effect of BEZ.

Conclusion:Collectively, the behavioral and neurobiological results demonstrate
that BEZ exhibits antidepressant-like activity through PPARα/BDNF signaling
pathway and may use as a potential antidepressant.
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1 Introduction

Currently, depression has become a prevalent psychiatric
disorder, affecting over 300 million individuals worldwide and
significantly compromising quality of life and functional capacity
(Meller et al., 2021; Pano et al., 2021; Miola et al., 2023). This
debilitating condition, characterized by notably high recurrence
rates (60%–80%) and elevated suicide risk (Xu et al., 2017;
Monroe and Harkness et al., 2022), manifests core symptoms
including persistent low mood and social withdrawal (Wu et al.,
2022; Zhang et al., 2024c). Beyond emotional disturbances,
depression profoundly impacts cognitive processes, behavioral
patterns, and physical health status (Khazanov et al., 2022;
Prizeman et al., 2023). Although monoamine-based
antidepressants remain the primary pharmacological intervention
in clinical practice, their therapeutic utility is substantially limited by
delayed onset of action, suboptimal response rates, and
unsatisfactory remission rates (Blier and Mansari, 2013; Dale
et al., 2015). Therefore, searching for new therapeutic targets and
developing new antidepressant drugs are very meaningful.

Research shows that neurotrophic factors are very important for
the central nervous system (Popova et al., 2017). Brain derived
neurotrophic factor (BDNF), an important neurotrophic factor
expressed in the cerebral cortex and hippocampus, has been
proven to be an antidepressant target (Duman, 2004; Björkholm
and Monteggia, 2016; Zhang et al., 2016a). Studies have shown that
BDNF and its downstream molecules transmembrane protein
receptor tyrosine kinase B (TrkB) and cAMP-response element
binding protein (CREB) play a key role in the pathophysiology of
depression (Wang et al., 2022b; Ye et al., 2024). BDNF binds to its
receptor TrkB, activating the BDNF/TrkB signaling pathway and
further leading to phosphorylation of the transcription factor CREB
(Du et al., 2020). Research has found that the phosphorylated CREB
in the hippocampus is downregulated in patients with severe
depression (Guan et al., 2021). The downregulation of BDNF-
CREB signaling in the hippocampus is considered a major factor
in triggering depression (Wu et al., 2022). Therefore, developing
new antidepressant drugs targeting BDNF in the hippocampus as a
therapeutic target is a highly effective strategy.

Previous studies have shown that hippocampal peroxisome
proliferator-activated receptor a (PPARα) is a potential target of
new antidepressants (Zhang et al., 2023b; Alzarea and Rahman,
2025). Some studies researches have shown that venlafaxine and
vortioxetine exert antidepressant effects through hippocampal
PPARα (Chen et al., 2019; Wang et al., 2017c). Reports suggest that
the PPARα pathway may be involved in the therapeutic potential of
N-palmitoylethanolamide for depressive mood disorders (Zhang et al.,
2023b). Bezafibrate (BEZ), which can activate PPARα with ability to
decrease triglyceride and increase high density lipoprotein- cholesterol,
is used as a lipid-lowering agent in clinical practice (Tenenbaum and
Fisman, 2012). It can reduce triglyceride, cholesterol levels, blood
viscosity, and improve endothelial function (Ohno et al., 2014).
Recent studies have shown that BEZ has neuroprotective effects,
such as reducing neuroinflammation and improving cognitive/
memory function (Dumont et al., 2012; Lu et al., 2023). In
addition, studies have shown that BEZ has a certain preventive
effect on emotional disorders (Wang et al., 2017c). Based on this,
we speculate that BEZ has antidepressant function. To prove our

hypothesis, we investigated the possible antidepressant effects of BEZ
using the chronic unpredictable mild stress (CUMS) models of
depression in this study. The results demonstrate that BEZ exhibits
antidepressant-like activity through PPARα/BDNF signaling pathway.
This study would extend the understanding of BEZ’s pharmacological
activities and may provide a novel antidepressant candidate.

2 Materials and methods

2.1 Animals

Male C57BL/6 J mice (8 weeks old) were sourced from the
Experimental Animal Center of Nantong University. All animals
were randomized into different experimental groups based on their
weight. Mice were maintained under controlled environmental
conditions: 12:12 h light-dark cycle (07:00–19:00 illumination
phase), ambient temperature regulated at 22°C–24°C, and relative
humidity stabilized at 55% ± 10%. Standard rodent chow and
autoclaved water were provided ad libitum throughout the
acclimatization and experimental periods. All protocols were
conducted in strict compliance with the Institutional Animal
Care and Use Committee guidelines of Nantong University,
under ethical approval certificate no. S20240709-002 (Jiangsu
Province Animal Care Ethics Committee).

2.2 Materials

BEZ and fluoxetine hydrochloride were sourced from Sigma-
Aldrich (St. Louis, MO, United States). Both compounds were
dissolved in 0.5% carboxymethylcellulose sodium (CMC-Na)
vehicle solution, with control groups receiving equivalent
volumes of CMC-Na alone. Dose selection for BEZ (25, 50,
100 mg/kg, i.p.) was based on established previous reports
(Dumont et al., 2012), while the fluoxetine dosage (20 mg/kg,
i.p.) followed previously validated antidepressant protocols (Xu
et al., 2017). During the final 14 days of chronic unpredictable
mild stress (CUMS) exposure, mice received daily intraperitoneal
injections of either vehicle, fluoxetine, or BEZ at designated
concentrations prior to behavioral assessments. GW6471 was
purchased from Tocris (Bristol, UK). K252a was purchased from
Sigma-Aldrich (St. Louis, MO, United States). The primary
antibodies for PPARα, BDNF, pAKT, pTrkB, total AKT, total
TrkB, and β-actin, were obtained from Abcam (Cambridge, UK).

2.3 Chronic unpredictable mild stress

The mice were exposed to a variable sequence of unpredictable
mild stressors (CUMS) for 8 weeks, which was performed as
described in previous work (Xu et al., 2017; Wu et al., 2022). A
total of eight different stressors were randomly adopted including
shaking (30 min), restraint (1 h), 4°C exposure (1 h), cage tilting
(12 h), day/night inversion, water deprivation (23 h), food
deprivation (23 h) and damp bedding (24 h). Administration of
BEZ/fluoxetine/vehicle was performed daily in the final 2 weeks
during the whole CUMS period. Then forced swim test, tail
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suspension test and sucrose preference test with a randomized
double-blind were perform together to assay the CUMS-induced
depressive-like behaviors in mice.

2.4 Forced swim test

Forced swim test (FST) were conducted as previously described
(Wu et al., 2022), which was used to evaluate despair-like behavior in
mice. In briefly, each mouse was individually placed in a transparent
cylinder (25 cm height, 20 cm diameter) containing water (25°C ±
1°C, 15 cm height) and forced to swim for a 6 min. The water in the
cylinders was changed after each test. The immobility duration of
each mouse was recorded and hand-scored for the last 4 min and
considered to be the status when the mouse was floating in the water
with the absence of struggle, or making only those movements
necessary to keep breath.

2.5 Tail suspension test

The tail suspension test (TST) was conducted to evaluate
antidepressant-like activity following established methodologies
(Wang et al., 2020a). Mice were securely affixed to the
suspension a tabletop using adhesive tape applied 1 cm from the
distal tail tip. Subjects were individually suspended 60 cm above the
testing surface for a 6-minute observation period. Immobility time,
defined as the duration of passive hanging without voluntary body
movement, was recorded and subsequent behavioral analysis.

2.6 Sucrose preference test

Sucrose preference test (SPT) was used for evaluating anhedonia
in mice. It was performed as previous described (Wu et al., 2022;
Wang et al., 2020a). Firstly, the mice received sucrose preference
training for 2 days before the experiment. Then, after being deprived
of water for 18 h, each mouse was given with two pre-weighed
bottles complemented with water or 1% sucrose solution (w/v) for
6 h. The liquid consumption of each mouse was weighed and
recorded. The sucrose preference ratio (SP%) was calculated as
(sucrose water consumption (g)/(sucrose consumption + water
consumption (g)) × 100%.

2.7 Western blot analysis

TheWestern blotting procedures have been frequently described
in our previous reports (Xu et al., 2017). The mice were anesthetized
with carbon dioxide, then euthanized by cervical dislocation, and the
brain was directly separated and collected using surgical forceps
using anatomical methods. With carbon dioxideThe hippocampi
tissues of each mouse were rapidly dissected and lysed in ice with
NP-40 lysis buffer (150 mM NaCl, 1% IGEPAL, 50 mM Trizma
base (Sigma-T4661, pH 8.0) containing 1 mM phenyl-methyl-
sulfonyl fluoride (PMSF). After centrifugation, the protein
supernatant was collected and determined the protein
concentrations by BCA method. The protein supernatant was

mixed with 4×loading buffer and deactivated in 95°C for 5 min.
After that, SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel
electrophoresis) was used to separate proteins with different
molecular components, and then transferred to a polyvinylidene
difluoride (PVDF) membrane. Primary antibodies used to
recognize specific protein, including: PPARα (1:500), BDNF (1:
500), TrkB (1:1000), phospho-TrkB-Tyr515 (pTrkB; 1:500), ERK
(1:1000), phospho-ERK-Thr202/Tyr204 (pERK1/2; 1:500), AKT
(1:1000), phospho-AKT-Ser473 (pAKT; 1:500), CREB (1:1000),
phospho-CREB-Ser133 (pCREB; 1:500) and β-actin (1:2000) were
used. After washing with Tris Buffered Saline with Tween three
times, the membranes were incubated with IR-Dye 680-labeled
secondary antibodies (1:5000; Licor, Lincoln, United States) for 1 h
at room temperature. An Odyssey CLx detection system was
adopted for scanning.

2.8 Hippocampal injection of PPARα-
shRNA-EGFP and BDNF-shRNA-EGFPRNA
sequencing and data analysis

The production of AAV-PPARα-shRNA-EGFP, AAV-BDNF-
shRNA-EGFP, and AAV-Control-shRNA-EGFP has been described
in a previous reports (Wu et al., 2022; Wang et al., 2021d). Briefly,
each animal was anesthetized with 0.5% pentobarbital sodium and
fixed in a stereotactic frame. After cutting open the scalp, drill a
small hole in the skull of each mouse, a 10 μL Hamilton syringe was
positioned at the hippocampus coordinates: AP = −2.3 mm, ML = ±
1.6 mm, DV = + 1.8 mm. AAV-PPARα-shRNA, AAV-BDNF-
shRNA, or AAV-Control-shRNA (5 × 1012 TU/mL) was
bilaterally infused into the hippocampus region of each mouse
using the syringe at a rate of 0.5 μL/min (1.5 μL/each side). After
the infusion, the syringe was left in place for 5 min before being
retracted slowly. The wound of eachmouse was cleaned and sutured.
Two weeks was required for the expression of AAV to be stable in
the hippocampus. The nucleotide sequences for PPARα-shRNA,
BDNF-shRNA and Control-shRNA were 5′-AGAAATTCTTAC
CTGTGAA-3′, 5′-TGAGCGTGTGTGA CAGTATTA-3′ and 5′-
TTCTCCGAACGTGTC ACGT-3′, respectively (Wu et al., 2022;
Wang et al., 2021d).

2.9 Immunofluorescence

As we have frequently described (Wu et al., 2022). After
anaesthesia with carbon dioxide, the mice were transcardially
perfused with normal saline (4% NaCl) followed by 4%
paraformaldehyde (PFA) in 0.1 M phosphate buffer (PBS), and
then hippocampal slices were postfixed for 24 h in 4% PFA at 4°C.
Next, the hippocampal slices were dehydrated in 30% sucrose
solution (48 h, 4°C) until sinking to the bottom of the 50 mL
tube and cut (25 µm) using a freezing microtome (Leica, Wetzlar,
Germany). Sections of selected areas were blocked by incubation in
PBS plus 0.3% Triton X-100 for 30 min at room temperature (RT)
and subsequently incubated with 3% bovine serum albumin for
30 min at RT. Then, the slices were incubated in primary antibody
against doublecortin (DCX, 1:100; Cell signaling) overnight at 4°C
and then washed in PBS. Incubated slices were then incubated in
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FITC-labeled secondary antibody (1:50; Pierce, Rockford, IL,
United States) for 2 h at RT and then washed in PBS. Last, the
slices were incubated with DAPI for 10 min at RT and washed again.
The sections were mounted on slides and coverslipped. All images
were obtained using FLUOVIEW FV1200 confocal microscopes
(Olympus) and Olympus VS200. Digitalized images were analyzed
using Fuji (NIMH, Bethesda MD, United States). The quantification
method has also been described in our previous report (Lu et al.,
2023). Examination of the DCX-positive (DCX+) cells were confined
to the dentate gyrus (DG), in particular the granule cell layer (GCL),
including the subgranular zone (SGZ) of hippocampus that defined
as a two-cell body-wide zone along the border between the GCL and
the hilus. Quantifications of the DCX+ cells were respectively
conducted from 1-in-6 series of hippocampal sections spaced at
150 μm and spanning the rostrocaudal region of the DG bilaterally.
Every DCX+ cell within the GCL and SGZ was counted.

2.10 Statistical analysis

Statistical analyses were performed using GraphPad Prism 7.0
(GraphPad Software, Inc., La Jolla, CA, United States). The
differences between mean values were evaluated using One-way
ANOVA (post hoc Tukey’s test). Data are expressed as the mean ±
S.E.M. P < 0.05 is considered as statistical significant.

3 Results

3.1 BEZ treatment has antidepressant like
effects in the CUMS model of depression in
FST, TST and SPT

In order to evaluate the potential antidepressant effect of BEZ,
we conducted TST, FST, and SPT experiments in the CUSM of
model depression. Fluoxetine, a classical antidepressant which
enhances serotoninergic neurotransmission through potent and
selective inhibition of neuronal reuptake of serotonin (Benfield
et al., 1986), was used as a positive control in our study. As
shown in Figure 1B, the FST results show that the mice
immobility was significantly increased in the CUMS compared
the control group (P = 0.003). The results also reveal that
administration of (20 mg/kg) fluoxetine obviously reduced the
mice immobility time, and (25, 50, and 100 mg/kg) BEZ reduced
the mice immobility time in a concentration dependent manner in
the CUMS. The administration of 50 and 100 mg/kg BEZ notably
shortened the mice immobility time compared with the CUMS
group (P = 0.02, 0.001, respectively, Figure 1B). The TST experiment
showed similar results, compared with the control group, the
immobility time in the TST was obviously increased in the
CUMS mice, and decreased by fluoxetine and BEZ treatment,
respectively. The administration of 50 and 100 mg/kg BEZ

FIGURE 1
BEZ treatment significantly improves depressive behaviors in CUMS-induced mice. (A) Schematic timeline of the experimental procedures. (B) The
immobility duration of FST was obviously decreased in the CUMS-induced mice after BEZ treatment. (C) The immobility duration of TST was notably
reduced in the CUMS-induced mice after BEZ treatment. (D) The sucrose preference was significantly increased in the CUMS-induced mice after BEZ
treatment. *P < 0.05, **P < 0.01, ***P < 0.001, n = 10 biological replicates.
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notably shortened the mice immobility time in the TST compared
with the CUMS group (P = 0.008, <0.001, respectively, Figure 1C).
As shown in Figure 1D, the SPT displayed that CUMS obviously
decreased the sucrose preference compared with the control group,
and 50 and 100 mg/kg BEZ significantly improve the mice sucrose
preference in the CUMS model of depression (P = 0.034, = 0.007,
respectively, Figure 1D). These results indicate that BEZ has
potential antidepressant like effects.

3.2 BEZ treatment promotes the expression
levels of the hippocampal PPARα and BDNF
signaling pathway in the CUMS mice

To investigate the underlying antidepressant mechanism of
action of BEZ, the BDNF signaling pathway in the hippocampus
of mice was tested by Western blotting. The high concentrations of
BEZ (100 mg/kg) was selected for further research. As shown in
Figure 3, the expression of hippocampal PPARα in the CUMS group
was significant decreased compared with the control group (P <
0.001). And the protein level of PPARα/β-actin was obviously
increased after BEZ treatment compared with the CUMS group
(P < 0.001). The results of Western blotting also revealed significant
decease protein levels of BDNF/β-actin (P < 0.001), pTrkB/TrkB

(P < 0.001), pAKT/AKT (P < 0.001), pERK/ERK(P < 0.001), and
pCREB/CREB (P < 0.001) in the CUMS group compared that in the
control group. And the protein levels of BDNF/β-actin (P < 0.001),
pTrkB/TrkB (P < 0.001), pAKT/AKT (P = 0.006), pERK/ERK (P <
0.001), and pCREB/CREB (P < 0.001) were significantly increased in
the CUMS mice after BEZ treatment. Meanwhile, our study found
no significant changes in the total levels of TrkB, AKT, ERK, and
CREB proteins in hippocampus. These results suggest that BEZ may
exert antidepressant effects through the BDNF signaling pathway.

3.3 BEZ treatment promotes hippocampal
neurogenesis in the CUMS mice

Depression not only leads to dysfunction of the BDNF system,
but also accompanies a decrease in hippocampal neurogenesis,
which can be reversed through antidepressant treatment. We
further studied the effect of BEZ on hippocampal neurogenesis
through immunofluorescence staining. As shown in Figure 3, the
DCX fluorescence staining results showed a significant decrease in
the number of DCX positive cells in the DG region of CUMSmodel
mice compared to the control group (p < 0.001). After BEZ
administration, the number of DCX positive cells significantly
increased (p < 0.001). Meanwhile, BEZ administration

FIGURE 2
BEZ administration promotes the expression levels of the hippocampal PPARα and BDNF signaling pathway in CUMS-induced mice. (A) The
expression levels of PPARα, BDNF, pTrkB, TrkB, pAKT, AKT, pERK, ERK, pCREB, and CREB were quantified by Western blot analysis. (B) The statistical
analysis of protein levels. **P < 0.01, ***P < 0.001, n = 5 biological replicates.
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significantly promoted the number of DCX positive cells.
Collectively, BEZ treatment significantly improved hippocampal
neurogenesis in CUMS mice.

3.4 Blocking hippocampal PPARα or BDNF
signaling pathway fully blocks the
antidepressant effect of BEZ in the
CUMS mice

BEZ may produce antidepressant like effects by activating the
PPARα and BDNF system based on above results. To further
confirm this hypothesis, GW6471, a pharmacological inhibitor of
PPARα, and K252a, a pharmacological inhibitor of TrkB, were used
(Dumont et al., 2012; Pereira and Hiroaki-Sato, 2018). The CUMS-
treated mice were co-injected with BEZ (100 mg/kg) + GW6471
(1 mg/kg), or BEZ (100 mg/kg) + K252a (25 μg/kg) during the last
2 weeks. As shown in Figure 4, GW6471 or K252a alone did not
affect the immobility time in the FST and TST in the CUMS mice,
while they significantly inhibited the antidepressant effect of BEZ in

FST (CUMS + BEZ +GW6471 vs. CUMS + BEZ, P = 0.012, CUMS +
BEZ + K252a vs. CUMS + BEZ, P = 0.025) and TST (CUMS + BEZ +
GW6471 vs. CUMS + BEZ, P = 0.031, CUMS + BEZ + K252a vs.
CUMS + BEZ, P = 0.032), respectively. In addition, both
GW6471 and K252a obviously prevented the antidepressant
effect of BEZ on the sucrose preference by SPT (CUMS + BEZ +
GW6471 vs. CUMS + BEZ, P = 0.002, CUMS + BEZ + K252a vs.
CUMS + BEZ, P = 0.001) in the CUMS mice.

Furthermore, we selectively knockdown the hippocampal
expression of PPARα and BDNF by using AAV-PPARα-shRNA-
EGFP and AAV-BDNF-shRNA-EGFP, respectively. Briefly, mice
brain-stereotactic injection with PPARα-shRNA or BDNF-shRNA,
then subjected to CUMS and BEZ (100 mg/kg) treatment. As shown
in Figure 5, stable expression of AAV in the hippocampus, which
confirmed the silencing efficacy of PPARα-shRNA and BDNF-
shRNA (Figures 5A,B). The behavioral tests were performed by
FST, TST and SPT (Figures 6, 7). The results indicated that PPARα-
shRNA can remarkably inhibit the decreasing effect of BEZ on FST
immobility time (CUMS + BEZ + PPARα-shRNA vs. CUMS + BEZ,
P = 0.009) and TST immobility time (CUMS + BEZ + PPARα-

FIGURE 3
BEZ treatment promotes hippocampal neurogenesis in the CUMS-induced mice. (A) Immunofluorescent staining of DCX in the DG region, Scale
bar = 150 μm. (B) Representative images of confocal microscopy and corresponding analyses of the number of DCX positive cells in the DG region. ***P <
0.001, n = 5 biological replicates.
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shRNA vs. CUMS + BEZ, P = 0.02), and PPARα-shRNA also
obviously prevented the enhancing effects of BEZ on the sucrose
preference of CUMS mice (CUMS + BEZ + PPARα-shRNA vs.
CUMS + BEZ, P = 0.023) (Figure 6). Similarly, the results showed
that the usage of BDNF-shRNA evidently blocked the decreasing
effects of BEZ treatment on the FST immobility time (CUMS + BEZ
+ BDNF-shRNA vs. CUMS + BEZ, P = 0.05) and TST immobility
time (CUMS + BEZ + BDNF-shRNA vs. CUMS + BEZ, P = 0.037),
and BDNF-shRNA also significantly prevented the enhancing effects
of BEZ on the sucrose preference of CUMS mice (CUMS + BEZ +
BDNF-shRNA vs. CUMS + BEZ, P = 0.011) (Figure 7).

4 Discussion

At present, depression seriously limits the psychosocial function
of patients and reduces the quality of life, while bringing huge
economic burden to families and society (Malhi and Mann, 2018;
Pereira and Hiroaki-Sato, 2018). Antidepressants are one of the
main treatment methods for depression, and in clinical practice,
they often produce therapeutic responses by increasing the synaptic
concentration of monoamine neurotransmitters, but the response
and remission rates of these drugs are relatively low (Wu et al.,
2022). Therefore, it is necessary to explore new antidepressant
targets and drugs at present. Currently, exploring potential new
uses of known drug provides a new solution for the high investment
and low output dilemma encountered in new drug research and
development. BEZ is a lipid-lowering drug used in clinical practice
(Monk and Todd, 1987). Recently, studies have shown that BEZ also
has neuroprotective effects and a certain preventive effect on
emotional disorders (Dumont et al., 2012; Lu et al., 2023; Wang
et al., 2017c). We speculate that BEZ may have antidepressant-like
function. To our knowledge, this is the first study on the
antidepressant effect of BEZ, and we found that BEZ treatment

induced notable antidepressant efficacy in the CUMS depression
model. In addition, the promotion of hippocampal BDNF signaling
cascade and neurogenesis is associated with the antidepressant like
efficacy of BEZ, and both the pharmacological blockade and genetics
blockade of the BDNF system significantly inhibits the
antidepressant effect of BEZ. Overall, our findings expand our
knowledge of the pharmacological effects of BEZ and provide a
new potential antidepressant.

The FST and TST are two commonly used detectionmethods for
screening antidepressant drugs. In these two tests, rodents are in an
inescapable stress environment and will become helpless and
immobile after the initial period of struggle, which is similar to
human depression and can be reversed by antidepressants
(Yankelevitch-Yahav et al., 2015). CUMS is an animal model
widely used in depression research, which can induce behavioral
and neurobiological changes in rodents, resemble clinical depression
in humans (Antoniuk et al., 2019). The results display that BEZ
significantly shortened the immobility time of mice in both FST and
TST, increased the sucrose preference in a concentration dependent
manner (25, 50, 100 mg/kg) in CUMS mice (Figure 1). And the
antidepressant effect of 100 mg/kg BEZ is similar to that of
fluoxetine, a clinical antidepressant. These results suggest that
BEZ may provide new drugs for the treatment of depression in
the future.

The BDNF protein in the hippocampus of the central nervous
system is considered to be one of the important targets for
antidepressant therapy (Vaidya and Duman, 2001; Malhi and
Mann, 2018). Members of the BDNF signaling pathway such as
TrkB, AKT, ERK, and CREB play critical roles in the
pathophysiology of depression (Gong et al., 2024; Qin et al.,
2024; Mohammadi et al., 2023; Matin and Dadkhah, 2024).
Researches show that PPARs have multiple physiological
functions, including regulating energy metabolism, anti-
inflammatory, and neuroprotective functions (Scheggi et al.,

FIGURE 4
Blockade of the PPARα and BDNF signaling pathway by GW6471 and K252a abolished the antidepressant efficacy of BEZ in mice. (A) Mice in the
(CUMS + BEZ + GW6471)-treated and (CUMS + BEZ + K252a)-treated group spent significantly more time being immobile than mice in the (CUMS +
BEZ)-treated groups in the FST. (B)Mice in the (CUMS + BEZ + GW6471)-treated and (CUMS + BEZ + K252a)-treated group spent significantly more time
being immobile thanmice in the (CUMS + BEZ)-treated groups in the TST. (C)Mice in the (CUMS + BEZ +GW6471)-treated group and (CUMS + BEZ
+ K252a)-treated group displayed notably lower sucrose preference thanmice in the (CUMS +BEZ)-treated group. *P < 0.05, **P < 0.01, n = 10 biological
replicates.
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2022; Titus et al., 2024). Currently, three PPAR isoforms have been
identified, including PPAR-β/δ, and -γ. Reports show that PPARs
have certain therapeutic prospects in psychiatric disorders (Rolland
et al., 2013). Some research show that the overexpression of PPARγ
in hippocampus protects mice against depression like behaviors
induced by chronic stress (Liu et al., 2017). Studies suggest that
PPARγ agonists may have antidepressant properties (Colle et al.,
2017). The augmentation of PPARγ can have a positive impact on
various important pathological processes of depression (Gold,
2021). Due to the structural similarity of PPAR isomers, PPARα
may have antidepressant targets similar as PPAR-β/δ, and -γ. In
addition, antidepressant effect was observed after administration
with several PPARα agonists in some clinical studies (Jiang et al.,
2015; Gao et al., 2022). In our study, the results show that BEZ
significantly increase the expression of hippocampal PPARα, and
enhance the expression of BDNF/TrkB/AKT/ERK/CREB signaling
pathway in the CUMS mice (Figure 2). Furthermore, the
immunofluorescence reveal that BEZ also significantly promoted
neurogenesis in the hippocampus (Figure 3). These results suggest
that BEZ may promote neurogenesis through PPARα/BDNF
signaling pathway. In addition, pharmacological inhibition of
GW6471 and K252a blocked the antidepressant effect of BEZ,

which proved that BEZ was antidepressant through PPARα/
BDNF signaling pathway (Figure 4). And the use of PPARα-
shRNA and BDNF-shRNA effectively blocked the antidepressant
effect of BEZ (Figures 5–7), which further confirms that the
antidepressant effect of BEZ is mediated through the
hippocampal PPARα/BDNF signaling pathway.

In our study, BEZ exerts antidepressant effects by activating
PPARα/BDNF, but as pan PPAR agonists, it cannot be ruled out
whether PPAR-β/δ, and -γ are involved in the antidepressant effects
of BEZ. The limitations of this study include the fact that our
research on the antidepressant effects of BEZ has not yet been
investigated in other models of depression such as chronic restraint
stress (CRS) models of depression and chronic social defeat stress
(CSDS) models of depression. Moreover, the lipid-lowering effect of
BEZ may independently affect stress response or neurogenesis. In
addition, the CUMS protocol includes stressors such as food/water
deprivation, whichmay interact with the metabolic processes of BEZ
and potentially affect behavioral outcomes. This will be the focus of
our next work. In addition, PPARα is implicated in many other CNS
disorders, such as Alzheimer’s disease (Wójtowicz et al., 2020; Luo
et al., 2020), Parkinson’s disease (Titus et al., 2024). BEZ, a PPARα
agonist, has been used in clinical practice and may be used in the

FIGURE 5
Hippocampal PPARα-knockdown by PPARα-shRNA and BDNF-knockdown by BDNF-shRNA. (A) Fluorescence images of a fixed hippocampal slice
which expressed AAV-PPARα-shRNA-EGFP 2 weeks after its stereotactic infusion. The scale bars of representative and enlarged images are 400 and
50 μm, respectively. The following Western blotting results confirmed the silencing effects of PPARα-shRNA on the protein expression of hippocampal
PPARα. ***P < 0.001, n = 5 biological replicates. (B) Fluorescence images of a fixed hippocampal slice which expressed AAV-BDNF-shRNA-EGFP
2 weeks after its stereotactic infusion. The scale bars of representative and enlarged images are 400 and 50 μm, respectively. The following Western
blotting results confirmed the silencing effects of BDNF-shRNA on the protein expression of hippocampal BDNF. ***P < 0.001, n = 5 biological replicates.
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treatment of Alzheimer’s disease, Parkinson’s disease. Collectively,
the results demonstrate that BEZ exhibits antidepressant-like
activity through PPARα/BDNF signaling pathway in CUMS
mice. Our study has proved for the first time that BEZ has the
potential to be an antidepressant.

In this study, we demonstrated that a dose of 100 mg/kg of BEZ
was optimal to improve oligozoospermia in mice. Utilizing the body
surface area normalization method, we extrapolated a human

equivalent dose of approximately 8 mg/kg, equivalent to a
human daily oral dose of 560 mg for a 70 kg individual (Reagan-
Shaw et al., 2008). Clinical studies reported that the long-term
follow-up dose of BEZ in the treatment of myopathic carnitine
palmitoyltransferase 2 deficiency was 600 mg daily (Bonnefont et al.,
2010). This proves the safety of BEZ at the current dosage, further
supporting the prospect of BEZ for the treatment of clinical
depression.

FIGURE 6
Hippocampal PPARα-knockdown by PPARα-shRNA abolished the antidepressant activity of BEZ in mice. (A) Mice in the (CUMS + BEZ + BDNF-
shRNA)-treated group spent significantly more time being immobile thanmice in the (CUMS + BEZ)-treated and (CUMS + BEZ + control-shRNA)-treated
groups in the FST. (B)Mice in the (CUMS + BEZ + PPARα-shRNA)-treated group spent significantly more time being immobile than mice in the (CUMS +
BEZ)-treated and (CUMS + BEZ + control-shRNA)-treated groups in the TST. (C) Mice in the (CUMS + BEZ + PPARα-shRNA)-treated displayed
notably lower sucrose preference than mice in the (CUMS + BEZ)-treated and (CUMS + BEZ + control-shRNA)-treated groups. *P < 0.05, **P < 0.01, n =
10 biological replicates.

FIGURE 7
Hippocampal BDNF-knockdown by BDNF-shRNA abolished the antidepressant activity of BEZ in mice. (A) Mice in the (CUMS + BEZ + BDNF-
shRNA)-treated group spent significantly more time being immobile thanmice in the (CUMS + BEZ)-treated and (CUMS + BEZ + control-shRNA)-treated
groups in the FST. (B) Mice in the (CUMS + BEZ + BDNF-shRNA)-treated group spent significantly more time being immobile than mice in the (CUMS +
BEZ)-treated and (CUMS + BEZ + control-shRNA)-treated groups in the TST. (C) Mice in the (CUMS + BEZ + BDNF-shRNA)-treated displayed
notably lower sucrose preference than mice in the (CUMS + BEZ)-treated and (CUMS + BEZ + control-shRNA)-treated groups. *P < 0.05, **P < 0.01, n =
10 biological replicates.
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5 Conclusion

Collectively, this study indicate that BEZ possesses antidepressant
effects in mice which are mediated by activation of hippocampal
PPARα/BDNF signaling pathway, thus providing the first evidence
that BEZ can be a potential antidepressant candidate.
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