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The endoplasmic reticulum (ER) is themostmetabolically active organelle in cells,
and recent research has shown that abnormal ER function is involved in the
occurrence and development of acute kidney injury (AKI), but the underlying
molecular mechanism needs to be further elucidated. Here, we review the
biological functions of the ER in cellular metabolism, explore the current
research progress on the role of the ER in different triggers of AKI, and
summarize the ER stress inhibitors discovered thus far. Finally, we explore the
possibility of targeting ER homeostasis as a therapeutic target for AKI.
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1 Introduction

As an important excretory and regulatory organ in the human body, the normal
maintenance of kidney function is crucial for the stability of the internal environment of the
body. Acute kidney injury (AKI) is induced when the kidney is severely affected by the
external environment and is a common critical illness in clinical practice (Sun et al., 2025).
Its main clinical symptom is a sharp decline in renal function in a short period of time, and
patients often need urgent medical intervention (Velluto et al., 2025). Previous studies have
suggested that inflammation (Ren et al., 2020), mitochondrial dysfunction (Zhao et al.,
2021) and oxidative stress (Zhang et al., 2022) are involved in the occurrence and
development of AKI. However, these pathogenesis mechanisms cannot fully explain the
occurrence of AKI, and drugs developed on the basis of these mechanisms have little effect
on clinical treatment. Therefore, it is necessary to explore the mechanism of AKI from other
perspectives. Research has shown that abnormalities in endoplasmic reticulum (ER)
homeostasis are involved in the occurrence and development of AKI.

The ER is an important organelle in cells and is responsible for key functions such as
protein synthesis, folding, modification, and lipid synthesis (Wu et al., 2025). The
maintenance of ER homeostasis is highly important for the normal physiological
activities of cells. As a highly active metabolic organ, abnormalities in ER homeostasis
in the kidney can induce the occurrence and development of AKI (Gallazzini and Pallet,
2018). In AKI, various pathogenic factors such as ischemia, toxicity, infection, and
inflammation, can lead to ER stress in intrinsic renal cells (Yan et al., 2018; Ricciardi
and Gnudi, 2020). The occurrence of ER stress activates a series of downstream signaling
pathways within cells, such as the unfolded protein response (UPR) (Qian et al., 2024), ER-
associated degradation (ERAD) (Christianson et al., 2023), and ER-phagy (Hoyer et al.,
2024), in an attempt to restore ER homeostasis. When these protective mechanisms are
insufficient to cope with sustained stress, ER stress leads to pathological processes such as
cell apoptosis, the inflammatory response, and oxidative stress, further exacerbating kidney
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damage (Chen and Cubillos-Ruiz, 2021; Chen X. et al., 2023; Oakes
and Papa, 2015). Studies have shown that drugs or genes that inhibit
ER stress can alleviate the occurrence and development of AKI (Liu
et al., 2019; Cao et al., 2024; Deng et al., 2023). These findings suggest
that targeting ER homeostasis may be a therapeutic target for AKI.

In-depth research on the relationship between ER homeostasis
and AKI not only helps us better understand the pathogenesis of
AKI but also may provide a theoretical basis for the development of
new treatment strategies. This review systematically elucidates the
function of the ER and mechanism of ER homeostasis imbalance in
AKI, as well as potential therapeutic targets and intervention
measures for ER homeostasis regulation, to provide new ideas
and directions for the clinical prevention and treatment of AKI.

2 The functions of the ER

2.1 Ca2+ homeostasis

2.1.1 SERCA pumps: uptake and storage
In the cell, the concentrations of calcium ions in different parts

of the cell are significantly different; for example, the concentrations
of calcium ions in the cytoplasm and the ER can be up to tens of
thousands of times different (de Ridder et al., 2023; Dickson et al.,
2016). A stable calcium ion concentration is conducive to a variety of
cellular processes, such as cell proliferation, differentiation,
metabolism, gene transcription and apoptosis (Terrell et al., 2023;
Kito and Ohya, 2021; Nicotera et al., 1994). The ER is the main
reservoir of calcium ions in the cell, and homeostasis of the ER is
critical for maintaining the balance of the intracellular Ca2+

concentration. Calcium ions in the ER are mediated by the
following proteins: Ca2+ pumps, which transport Ca2+ from the
cytoplasm upward into the ER lumen; Ca2+-binding proteins, which
bind and store Ca2+; and Ca2+ channels, which mediate the release of
Ca2+ from the ER into the cytoplasm (Mekahli et al., 2011). The
uptake of calcium ions by the ER is mediated mainly by sarco/ER
Ca2+ ATPase (SERCA), which belongs to the family of P-type
ATPases (Dhureja et al., 2023; Nemirovskaya and Sharlo, 2022).
Members of this family also include the plasma membrane Ca2+

ATPase, Na+/K+ ATPase and H+/K+ ATPase (Sweadner and Donnet,
2001). A feature of these P-type ATPase enzymes is the ability to
hydrolyze ATP to ADP while transporting metal ions against the
gradient of the SR membrane (Xu and Van Remmen, 2021). The
SERCA pump is located on the ER and sarcoplasmic reticulum (SR)
and can use the energy generated by ATP hydrolysis to transport
Ca2+ across membranes. Each SERCA contains two high-affinity
Ca2+-binding sites, which can transport two Ca2+ ions for every ATP
molecule hydrolyzed (Wu et al., 2023). SERCA is encoded by three
different genes, SERCA1, SERCA2 and SERCA3, and a total of seven
different subtypes are expressed in different tissues and cells
(Periasamy and Kalyanasundaram, 2007). SERCA pump activity
is also regulated by a variety of proteins, such as phospholamban,
sarcolipin and myoregulin, which can inhibit SERCA pump activity
(Hamstra et al., 2020; Chambers et al., 2022; Rathod et al., 2024),
whereas the dwarf open reading frame can effectively activate the
SERCA pump (Nelson et al., 2016). The presence of the SERCA
pump ensures that the concentration of Ca2+ in the ER is much
greater than that in the cytoplasm and that high concentrations of

Ca2+ in the ER are essential for the regulation of posttranslational
modification, folding, and protein transport. In the lumen of the ER/
SR, Ca2+ mainly binds to Ca2+ proteins, such as calmodulin in
cardiac and skeletal muscle, and calcium-binding proteins such as
calnexin or 78-kDa glucose regulatory protein/immunoglobulin
heavy chain binding protein (GRP78/BiP), in other tissues
(Mekahli et al., 2011).

2.1.2 Ca2+ release channels: IP3Rs and RyRs
Inositol 1,4,5-trisphosphate receptors (IP3Rs) and ryanodine

receptor (RyR) channels mediate the release of calcium ions from
the ER (Ambudkar, 2014). Both have three mammalian isomers,
IP3R1, 2, and 3 and RYR1, 2 and 3, which are distributed in different
tissues (Luciani et al., 2009; Raturi et al., 2014). IP3R is expressed in
most cells, and when IP3 is present, it can bind to IP3R to promote
the release of calcium ions from the ER (Zhang et al., 2020).
Compared with IP3Rs, RYRs have greater calcium ion binding
activity, and the opening of RYRs depends on the concentration
of Ca2+ in the cytoplasm (Berridge, 2016; Gillespie, 2020).

In general, ER-mediated calcium homeostasis is finely regulated,
which ensures various metabolic activities within the cell. The high
Ca2+ concentration maintained by SERCA is essential for protein
folding and posttranslational modifications in the ER lumen.

2.2 Protein synthesis and processing

2.2.1 Chaperone-assisted folding and
modifications

In cells, the ER is involved in approximately one-third of protein
synthesis, folding, and maturation (Anelli and Sitia, 2008). In
particular, some proteins on the plasma membrane and
organelles are initially translated at ER-bound ribosomes and
subsequently transferred to the ER lumen for further processing
(Pehar and Puglielli, 2013). The common feature of these proteins is
that they have an ER-targeting sequence at the N-terminus, and this
signaling sequence is removed when the polypeptide chain is
translated. Polypeptide chains entering the ER lumen are folded
into unique three-dimensional shapes and undergo various
modifications, such as glycosylation, hydroxylation and acylation,
in the presence of high calcium ion concentrations and many
chaperone proteins (Pehar and Puglielli, 2013; Johnson et al.,
2001; Ogawa et al., 2015). These processes ensure that the
polypeptide chain is transformed into an active protein, which is
then transported to the next step. In the cell, the processes of the
folding, transport and degradation pathways of ER proteins are
strictly and finely regulated, a process known as ER quality control,
which ensures that the synthesized and processed proteins in the ER
are conformationally correct and active (Ferro-Novick et al., 2021).
ER quality control is achieved by accelerating protein folding,
activating the UPR, and eliminating faulty proteins through
ERAD (Wiseman et al., 2022).

2.2.2 UPR pathways
In secretory tissues, cells are often in a continuous high-intensity

process of protein secretion. For example, islet beta cells synthesize
and secrete up to a million insulin molecules per minute (Seino et al.,
2011). In the case of insulin resistance, the demand for insulin is
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greater, which requires islet beta cells to produce more insulin to
meet the body’s needs. High-intensity protein secretion is a great
challenge for the synthesis and folding of proteins in the ER. When
the number of proteins folded far exceeds the upper limit of the
capacity of the ER, ER stress often occurs to self-regulate (Di Conza
and Ho, 2020; Hetz, 2012). At this point, the UPR detects whether
misfolded proteins in the ER have exceeded a threshold. The UPR
can regulate the downstream signaling pathway through three
different signaling pathways, namely, inositol-requiring enzyme
1α (IRE1α), pancreatic endoplasmic reticulum kinase (PERK) and
activating transcription factor 6 (ATF6), thereby reducing the level
of ER stress by reducing protein translation and upregulating
chaperone expression (Ajoolabady et al., 2023). Unfolded
proteins can bind to the lumen domain of Ire1, thereby
triggering the self-binding of Ire1 and activating its cytoplasmic
effector domain (Credle et al., 2005; Pincus et al., 2010). Proper ER
stress effectively regulates the rate of intracellular protein synthesis
and maintains cell homeostasis. The persistence of ER stress leads to
the continuous activation of the UPR signaling pathway and
eventually induces cell death (Marciniak et al., 2022; Rahmati
et al., 2018).

2.2.3 ERAD
ERAD is a complex multistep process that involves mainly the

recognition, extraction and ubiquitination of ER proteins and
ultimately their degradation in the cytoplasmic proteasome
(Dreher and Hoppe, 2018). In brief, when the polypeptide chain
in the ER cannot be folded, it can be recognized by proteins such as
BiP, EDEM, and OS9 in the ER (Sekiya et al., 2017; Seaayfan et al.,
2016). The identified substrate is subsequently transported back to
the cytoplasm via reverse transcriptional translocation. On the
cytoplasmic side of the ER, the substrate is ubiquitinated by
ubiquitin ligases and released into the cytoplasm in an ATP-
dependent manner, where it is eventually recognized and
degraded by the proteasome (Dreher and Hoppe, 2018;
Blackwood et al., 2023). ERAD ensures that the unfolded protein
is cleared in time, thus maintaining protein homeostasis in the cell.

In addition to protein processing, the ER is also the primary site
for lipid metabolism, where synthesized lipids are stored in droplets
or transported via membrane contact sites.

2.3 Lipid synthesis and droplet biogenesis

In the cell, the ER is also the key site of lipid metabolism and
synthesis and contains many lipid synthetases, such as DGAT1/
2 and phosphatidylserine synthase (PSS) (Farese andWalther, 2023;
Wang and Benning, 2012). Lipid droplets store neutral fat in the cell,
and they are also considered to constitute a single layer of
phospholipid membrane organelles (Zadoorian et al., 2023). A
previous review adequately described the role of the ER in lipid
droplet formation (Walther et al., 2017). In addition, the ER is
involved in lipid synthesis along with other organelles. For example,
there are mitochondria-associated membranes (MAMs) between the
ER and mitochondria, and MAMs are involved in the synthesis of
phospholipids and cholesterol (Vance, 2015; Vance, 2014). The part
of the ER connected to the Golgi apparatus is rich in tubules and
vesicles called the ER-Golgi intermediate compartment (ERGIC),

which is involved in the synthesis and redistribution of
phospholipids in cells (Schwarz and Blower, 2016).

2.4 ER-phagy: Selective autophagy of the ER

ER-phagy is a newly discovered type of selective autophagy in
which the ER can directly bind to LC3 through ER-phagy receptors,
thereby mediating ER degradation. ER-phagy maintains the
homeostasis of the ER and normal cellular function by clearing
damaged, redundant, or dysfunctional components of the ER
(Gonzalez et al., 2023). Currently, multiple ER proteins, such as
FAM134B, SEC62, reticulon-3 (RTN3), cell cycle progression 1
(CCPG1), atlastin-3 (ATL3), and TEX264, have been shown to
mediate the occurrence of ER-phagy, (Gubas and Dikic, 2022; Chino
and Mizushima, 2023). When ER homeostasis is abnormal, ER-
phagy receptors bind with LC3 to induce dysfunctional ER
degradation, thereby blocking secondary cellular dysfunction
(Stolz and Grumati, 2019; Chino and Mizushima, 2020).

In cells, the UPR, ERAD and ER-phagy precisely assist each
other in jointly maintaining ER homeostasis. When stimulated by
the outside world, unfolded and misfolded proteins accumulate in
cells. At this time, the early warning system (UPR) in the cell is
activated to reduce the number of misfolded proteins through
promoting the expression of chaperone proteins and protein-
folding enzymes, inhibiting the transcription and translation of
proteins, strengthening the degradation tool (ERAD), etc. When
the persistent UPR fails to restore the homeostasis of the ER in time,
cells activate ER-phagy to degrade the functionally impaired ER.
Therefore, the UPR, ERAD, and ER-phagy together form a refined
collaborative network that maintains ER homeostasis in cells. They
do not operate independently but form a hierarchical defense system
through dynamic interactions at the temporal, spatial, and
molecular levels, in which they respond to ER stress.

3 ER homeostasis and AKI

With increasing research revealing the importance of the ER in
maintaining kidney function, the relationships between abnormal
ER homeostasis and the occurrence and development of AKI have
also been explored (Figure 1). In the following section, we
summarize the current research progress on ER homeostasis
abnormalities in AKI induced by different etiologies.

3.1 Cisplatin-induced AKI

Cisplatin is a very effective chemotherapy drug that is often used
to treat solid tumors. Nephrotoxicity is the main side effect, and the
risk of nephrotoxicity in cisplatin-treated patients is between 20%
and 35%, manifested mainly as severe renal tubule injury and acute
renal failure (Fang et al., 2021). In the kidney, cisplatin can be
passively absorbed into renal tubule cells by organic cation
transporter 2 (OCT2) and then continuously accumulate in the
kidney (Eljack et al., 2014). The entry of cisplatin into the urine is
mediated by transporters such as multidrug resistance-associated
proteins (MRPs) and multiantimicrobial extrusion proteins
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(MATEs) (Holditch et al., 2019). Severe nephrotoxicity severely
limits the use of cisplatin. At present, there is still a lack of effective
drugs to prevent cisplatin-induced AKI. There are many molecular
mechanisms of cisplatin-induced AKI, such as oxidative stress
(Huang et al., 2017) and inflammation (Yu et al., 2023; Chen
et al., 2019). However, with the increasing research, the role of
ER homeostasis in cisplatin-induced AKI progression has also
been revealed.

Multiple studies have shown that ER stress is overactivated in
the kidneys of individuals with cisplatin-induced AKI and that the
inhibition of ER stress can effectively slow kidney injury (Yang et al.,
2024; Liu et al., 2024). NSC228155 is a novel compound with
anticancer and antibacterial effects, and it reduces the ER stress
level of cisplatin-induced renal tubular cells and HK-2 cells and
inhibits apoptosis (Li et al., 2022). Similar results revealed that
achyranthes aspera extract and dexmedetomidine attenuate
cisplatin-induced kidney damage by inhibiting ER stress (Lin
et al., 2024; Chai et al., 2020). Moreover, disturbances in energy
metabolism are present in cisplatin-induced AKI and exacerbate the
progression of AKI. Deceased fatty acid oxidation (FAO) levels,
inhibited ATP production and increased lipid deposition in the
kidneys of patients with cisplatin-induced AKI, while increasing the
level of FAO effectively protected the kidney function (Xu et al.,
2022; Li et al., 2020). The main site of fatty acid oxidation is the
mitochondria; however, theMAMdomain is located between the ER
and mitochondria, and the ER can regulate mitochondrial function
through the MAM (Senft and Ronai, 2015; Doghman-Bouguerra
and Lalli, 2019). The MAM mediates the flow of calcium ions from
the ER into the mitochondria, and increased levels of calcium ions
promote mitochondrial ATP synthesis (Sun and Ding, 2020; Li et al.,
2019; Barazzuol et al., 2021). In addition, markers of ER-mediated
cell death, such as caspase-12 and calpain, are activated in rat kidney
tissue (Peyrou et al., 2007). Although a number of studies have
revealed that overactivation of ER stress in cisplatin-induced AKI
and that ER stress inhibitors can effectively reverse renal injury, how
ER homeostasis is disrupted in cisplatin-induced AKI, and its
molecular mechanism have yet to be determined. These
mechanisms need to be further explored in future studies to
better develop drugs that target ER stress.

3.2 Ischemia‒reperfusion injury (IRI)

The kidney is a very sensitive organ to ischemia and hypoxia.
Renal ischemia‒reperfusion injury is a common complication after
transplantation and heart surgery. Renal blood circulation is
restricted during kidney transplantation, which is indispensable
for kidney reperfusion after surgery, resulting in kidney damage
(Zhao et al., 2020). Kidney cells change from aerobic respiration to
anaerobic respiration when the oxygen supply of the kidney
decreases, the production of ATP in the kidney also decreases,
and the accumulation of lactic acid increases (Nieuwenhuijs-
Moeke et al., 2020). Moreover, a decrease in calcium ion
excretion leads an increase in its intracellular concentration.
When reperfusion occurs, the recovery of the oxygen content
leads to the production of many reactive oxygen species, and the
concentration of intracellular calcium ions further increases,
inducing cell death (Nieuwenhuijs-Moeke et al., 2020). In
addition, ER dysfunction plays a key role in the
pathophysiological process of renal ischemia-reperfusion injury.

During IRI, renal cells undergo hypoxia, oxidative stress, and
disruption of calcium homeostasis, all of which can lead to ER stress.
Multiple studies have shown that renal IRI induces ER stress in renal
tubular epithelial cells. Tang et al. demonstrated through single-cell
RNA sequencing that kidney cells from ischemic AKI patients who
differentially expressed genes in renal proximal tubular cells were
enriched mainly in ER stress signals (Tang et al., 2023). Similar
evidence has been reported in the kidneys of both mice and rats
(Zhang et al., 2020; Tang et al., 2020), and persistent ER stress
exacerbates kidney damage, whereas drug-mediated inhibition of ER
stress can effectively slow kidney damage (Zhang et al., 2024).
However, the role of ER stress in IRI still needs further
exploration. Although most studies have shown that inhibiting
ER stress can alleviate IRI-related renal damage, the role of the
ER is different in the early stages of the disease. Chandrika et al.
reported that the use of the ER stress inducer tunicamycin to
intervene in renal tubular epithelial cells activated ER stress,
increased the expression of the ER chaperone protein Grp78, and
triggered downstream autophagy pathways, thereby inhibiting the
activation of caspase-3 and cell death (Chandrika et al., 2015). This

FIGURE 1
Double-sided endoplasmic reticulum stress in acute renal injury. External stimuli induce ER stress in the kidneys, which activates the unfolded
protein response to clear unfolded proteins in a timelymanner. Moreover, the occurrence of ER-phagy ensures that the damaged ER is cleared in a timely
manner. When these protective mechanisms are insufficient to cope with sustained stress, ER stress leads to pathological processes such as cell
apoptosis, the inflammatory response, and oxidative stress, further exacerbating kidney damage.
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means that when ER stress is in the early to middle stages, autophagy
can be induced to promptly clear damaged proteins and organelles,
whereas when ER stress is too severe or excessive, the apoptotic
pathway may be activated. Therefore, when the ER is targeted as a
preventive and therapeutic target for renal IRI, controlling and
monitoring ER stress levels is crucial.

3.3 Sepsis

Sepsis is a serious form of organ dysfunction caused mainly
by the host’s dysregulated response to infection (Srzic et al.,
2022). When faced with severe infections, the body produces
excessive inflammatory factors such as interleukins and tumor
necrosis factor, and experiences endothelial damage and
abnormal secretion of vasoactive substances, which can trigger
AKI (He et al., 2022). Bagshaw et al. reported that approximately
64.4% of septic shock patients develop early AKI (Bagshaw et al.,
2009). However, even in patients without severe sepsis or shock,
AKI is still common: 34% of nonsevere community-acquired
pneumonia patients develop AKI (Murugan et al., 2010).
Regardless of the species, disease stage, and severity of sepsis,
three pathophysiological changes are consistently observed in
sepsis patients and animal models: microcirculation dysfunction,
inflammation, and the bioenergetic adaptive response to injury
(Zarbock et al., 2014). Overall, the occurrence of sepsis AKI
significantly increases the risk of in-hospital mortality (2-6 times)
and is closely associated with the likelihood of later progression
to chronic kidney disease (Hoste et al., 2015; Pais et al., 2024).
However, there is still a lack of specific molecular markers and
treatment methods for sepsis-induced AKI in clinical practice.
Therefore, a deeper understanding of the pathogenesis of sepsis-
induced AKI is necessary. Recently, multiple studies have shown
that abnormal ER homeostasis is involved in the occurrence and
development of sepsis-induced AKI.

Excessive misfolded proteins in the ER can further exacerbate
ER stress and lead to apoptosis. Molecular chaperones are
particularly important for promoting protein folding in the
ER. Porter et al. demonstrated that knocking out the ER-
resident protein GRP170 resulted in an acute kidney injury
phenotype in mice (Porter et al., 2022). Moreover, in a cell
model induced by lipopolysaccharide (LPS), the expression of
the key protein GRP78 in ER stress is elevated, accompanied by
an increase in apoptosis. The absence of GRP78 can alleviate the
LPS-induced immune response and oxidative stress (Teng et al.,
2018). Similar results have also been reported, with a significant
increase in ER stress marker proteins in septic AKI mouse or rat
models (Sun et al., 2024; Luo et al., 2020). Drug or gene
knockout-mediated inhibition of ER stress can effectively
delay sepsis-induced AKI-related kidney damage. Sun et al.
reported that Marins-1 treatment significantly inhibited
kidney damage in AKI model mice induced by cecal ligation
and puncture, whereas an AMPK inhibitor (Compound C)
partially blocked the protective effect of Marins-1 (Sun et al.,
2024). Although multiple studies have revealed that maintaining
ER homeostasis and inhibiting ER stress can effectively alleviate
sepsis-induced AKI, current research has several limitations. At
present, the molecular mechanism of ER stress in sepsis-induced

AKI is not clear. Currently, only ER stress has been observed
during sepsis-induced AKI, but its molecular mechanism still
needs to be explored. Therefore, a deeper understanding of the
molecular mechanism of ER stress in the occurrence of sepsis
AKI is beneficial for targeting ER homeostasis as a therapeutic
drug for sepsis AKI in the future.

3.4 Contrast-induced (CI) AKI

CI-AKI refers to the sudden deterioration of renal function
caused by intravenous or arterial injection of iodinated contrast
agents (Mccullough et al., 2016). Its main manifestation is a
sudden and long-term decline in renal function that occurs
48–72 h after injection (Ward and Valentovic, 2019). It was
first described by Bartels et al., in 1954 (Bartels et al., 1954). With
the development of follow-up imaging, the incidence rate of CI-
AKI has gradually increased. Although the incidence of CI-AKI is
low in the general population, it is significantly greater in high-
risk groups, such as those with renal insufficiency, diabetes,
dehydration, heart failure and elderly individuals (Rundback
et al., 2011). Currently, there is still a lack of effective
prevention and control measures for CI-AKI. Recent studies
suggest that ER dysfunction may be involved in the
occurrence and development of CI-AKI. The radiocontrast
agent meglumine diatrizoate can upregulate the expression of
GRP78, ATF4, and CHOP to induce ER stress, leading to the
activation of the renin‒angiotensin system and the apoptosis of
renal tubular cells in rats. However, pretreatment with valsartan
significantly inhibited ER stress levels and renal injury (Sun et al.,
2017). Apelin is an endogenous antioxidant and anti-
inflammatory physiological regulator (Vinel et al., 2018). Liu
et al. reported that exogenous apelin-13 can alleviate cell and
renal tissue damage in rats induced by contrast agent
intervention by inhibiting ER stress (Liu et al., 2023). These
studies have partially revealed the role of ER stress in CI-AKI,
and the inhibition of ER stress can alleviate CI-AKI injury.
However, the molecular mechanism of ER stress activation in
CI-AKI needs to be further explored.

4 ER stress inhibitors and clinical
translation

Given the role of ER stress in the occurrence and
development of different types of AKI, targeting ER stress is a
potential approach for developing drugs for the prevention and
treatment of AKI in the future. Currently, multiple studies have
reported that some compounds or drugs can alleviate AKI by
inhibiting ER stress, and we have summarized these finding
here (Table 1).

Drug intervention targeting ER homeostasis is a promising
approach for the treatment of AKI. At present, small molecule
inhibitors of key proteins in the ER stress pathway and some
chemical chaperones, such as 4-PBA, have been found to
improve AKI by inhibiting ER stress in cell and animal models,
but there are still challenges that need to be further addressed in the
use of ER stress as a target for the treatment of AKI in the future.
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First, many ER stress regulators lack specificity and may have
unexpected effects on other cellular processes. For example, some
regulators may reduce ER stress while inhibiting the necessary UPR
pathways required for cell survival. In addition, ER stress has both
protective and harmful effects. Excessive inhibition may hinder
necessary adaptive responses, whereas excessive activation may
lead to apoptosis and inflammation. Therefore, how to precisely
regulate ER stress to achieve the best balance between adaptation
and cell death is a considerable challenge. Most of the existing
preclinical models use acute injury conditions and cannot fully
represent the complexity of human AKI, especially in the case of
chronic kidney injury. Furthermore, there may be differences in ER
stress responses between animal models and human tissues, making
it difficult for preclinical research results to accurately predict
clinical outcomes and limiting the transformation of research

results into human applications. Finally, at present, relatively few
studies on ER stress in samples from AKI patients exist. The very
limited clinical research data make it difficult to determine the exact
role and therapeutic effect of ER stress in human AKI, and
evaluations of the safety and efficacy of related drugs in patients
with kidney diseases are lacking.

5 Conclusion

AKI is a common critical disease with high morbidity and
mortality. There is an urgent need to investigate its pathogenesis
and find effective treatments. The role of ER homeostasis in acute
renal injury has been thoroughly investigated. While the findings
were surprising, there were several limitations. The double-edged

TABLE 1 ER stress inhibitors.

Type of
compounds

Name Target Diseases References

ER-targeted agents GSK2606414 PERK/p-eIF2α/ATF4/
CHOP axis

Cerebral ischemia
Periodontitis

Zhou et al. (2023), Gao et al. (2024)

Ceapins ATF6α Cancer Gallagher et al. (2016)

AA147 ATF6 Multiple sclerosis Aksu et al. (2025)

ISRIB eIF2B Traumatic brain injury, Breast cancer Zhou et al. (2024), Lee et al. (2022)

Salubrinal eIF2α Insulin resistance
Breast cancer, Cholangiocarcinoma

Nguyen et al. (2024), Alsterda et al.
(2021), Yu et al. (2018)

KIRA6 IRE1α Cancer
Traumatic brain injury

Luo et al. (2024), Shi et al. (2023)

Chemical Compounds Dexmedetomidine PERK
IRE1
ATF6
GRP78

Cisplatin-induced AKI, Traumatic brain
injury

Chai et al. (2020), Sun et al. (2020)

Recombinant human
erythropoietin

CHOP
GRP78

Cisplatin-induced AKI, Nonalcoholic
fatty liver disease

Kong et al. (2013), Hong et al. (2019)

TUG891 ATF6, PERK, eIF2α,
XBP1

Cisplatin-induced AKI, Intraventricular
hemorrhage

(Huang et al., 2020; Wang et al., 2023)

Melatonin GRP78, IRE1, PERK,
ATF4

Nonalcoholic fatty liver disease
Periodontitis

Guan et al. (2023), Cui et al. (2023)

Valsartan eiF2α, CHOP, Grp78,
ATF-4

Doxorubicin-induced cardiotoxicity Wu et al. (2023), Kim et al. (2022)

Pioglitazone IRE1α, Xbp1, Grp78 Diabetes
Cardiovascular disease

Hong et al. (2018), Soliman et al. (2019)

Exendin-4 PERK/CHOP/eiF2α axis,
ATF-4, Xbp1

Diabetes Oh et al. (2013)

Natural compounds Resveratrol eiF2α, CHOP, GRP78,
Xbp1

Cancer Rojas et al. (2014)

Forsythiaside A GRP78, PERK, CHOP,
ATF4

Septic acute liver injury, Sepsis-
induced AKI

Fu et al. (2023), Chen X. et al. (2023)

Pinocembrin ATF4, eiF2α Sepsis-induced AKI Zhang et al. (2022)

Leonurine ATF4, CHOP Cisplatin-induced AKI Zhang et al. (2022)

Naringenin GRP78, CHOP Renal ischemia‒ reperfusion Zhang et al. (2022)

Puerarin IRE1α, PERK, eIF2α Acute myocardial infarction Xue et al. (2024)
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sword effect and spatiotemporal dynamics of ER stress in AKI are
worthy of exploration. ER stress is a protective response in the early
stage that aims to restore ER homeostasis. However, persistent or
excessive ER stress results in proapoptotic and proinflammatory
responses. How to precisely define this “turning point” and the exact
role (whether it is a driving factor or an accompanying
phenomenon) of ER stress at different stages of AKI remain
unclear. Moreover, there is complex crosstalk and feedback
regulation among the three main pathways of the UPR (PERK,
IRE1α, and ATF6). In AKI, how these pathways precisely coordinate
to determine cellular outcomes is not fully understood. Currently,
research on ER stress and AKI often uses animal models, such as rats
and mice. However, there are differences between animal models
and humans in terms of physiology, pathology, and immune
response, which limits the applicability of research results in
humans. In the future, research should focus on the precise
regulation of the ER stress signaling pathway and the
development of safe and effective treatment strategies. Overall,
targeting ER homeostasis is an effective potential therapeutic
target for AKI.
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