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Introduction: Drug target identification is a fundamental step in drug discovery
and plays a pivotal role in new therapies development. Existing computational
methods focus on the direct interactions between drugs and targets, often
ignoring the complex interrelationships between drugs, targets and various
biomolecules in the human system.

Method: To address this limitation, we propose a novel prediction model named
DTGHAT (Drug and Target Association Prediction using Heterogeneous Graph
Attention Transformer based on Molecular Heterogeneous). DTGHAT utilizes a
graph attention transformer to identify novel targets from 15 heterogeneous
drug-gene-disease networks characterized by chemical, genomic, phenotypic,
and cellular networks.

Result: In a 5-fold cross-validation study, DTGHAT achieved an area under the
receiver operating characteristic curve (AUC) of 0.9634, which is at least 4%
higher than current state-of-the-art methods. Characterization ablation
experiments highlight the importance of integrating biomolecular data from
multiple sources in revealing drug-target interactions. In addition, a case study
on cancer drugs further validates DTGHAT’s effectiveness in predicting novel
drug target identification. DTGHAT is free and available at: https://github.com/
stella-007/DTGHAT.git.
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1 Introduction

Influencing the success or failure of a drug candidate (Avorn, 2015; Wu et al., 2018).
Selecting an appropriate molecular target profoundly impacts the safety and efficacy profile
of therapeutic agents, as evidenced by numerous drug candidates that fail approval
processes due to unforeseen side effects or inadequate therapeutic efficacy resulting

OPEN ACCESS

EDITED BY

Lei Wang,
Chinese Academy of Sciences (CAS), China

REVIEWED BY

Bo-Ya Ji,
Hunan University, China
Zou Haitao,
Guilin University of Electronic Technology,
China

*CORRESPONDENCE

Lu Ming,
lumingcs163@163.com

Deng Que,
dengque3s@163.com

†These authors share first authorship

RECEIVED 19 March 2025
ACCEPTED 14 April 2025
PUBLISHED 28 April 2025

CITATION

Jiang X, Wen L, Li W, Que D and Ming L (2025)
DTGHAT: multi-molecule heterogeneous
graph transformer based on multi-molecule
graph for drug-target identification.
Front. Pharmacol. 16:1596216.
doi: 10.3389/fphar.2025.1596216

COPYRIGHT

© 2025 Jiang, Wen, Li, Que and Ming. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Pharmacology frontiersin.org01

TYPE Original Research
PUBLISHED 28 April 2025
DOI 10.3389/fphar.2025.1596216

https://www.frontiersin.org/articles/10.3389/fphar.2025.1596216/full
https://www.frontiersin.org/articles/10.3389/fphar.2025.1596216/full
https://www.frontiersin.org/articles/10.3389/fphar.2025.1596216/full
https://www.frontiersin.org/articles/10.3389/fphar.2025.1596216/full
https://www.frontiersin.org/articles/10.3389/fphar.2025.1596216/full
https://github.com/stella-007/DTGHAT.git
https://github.com/stella-007/DTGHAT.git
https://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2025.1596216&domain=pdf&date_stamp=2025-04-28
mailto:lumingcs163@163.com
mailto:lumingcs163@163.com
mailto:dengque3s@163.com
mailto:dengque3s@163.com
https://doi.org/10.3389/fphar.2025.1596216
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2025.1596216


from incomplete knowledge of their actual molecular targets
(Agamah et al., 2020; Ji et al., 2025). Traditional experimental
methods for identifying drug-target interactions (DTIs), such as
affinity chromatography and protein microarrays, are labor-
intensive, time-consuming, and costly, limiting the pace of drug
discovery (Lotfi Shahreza et al., 2018; Atas Guvenilir and
Doğan, 2023).

To overcome these limitations, computational methods have
gained prominence by facilitating the rapid and cost-effective
screening of potential drug-target pairs before experimental
validation. Current computational approaches to DTI
identification can generally be categorized into text-mining-based
methods (Fleuren and Alkema, 2015; Zhu et al., 2005; Hewett et al.,
2002; Chen et al., 2010; Fu et al., 2016; Ji et al., 2020b), biological
feature-based methods (Lavecchia, 2015; Mayr et al., 2018; Lo et al.,
2018; He et al., 2017; Liu et al., 2016), and network-based methods
(Zhang et al., 2021; Ji et al., 2024; Luo et al., 2017; Lu et al., 2017;
Vinayagam et al., 2016; Nascimento et al., 2016; Olayan et al., 2018;
Hao et al., 2017; Zong et al., 2017; Wang et al., 2023). Text-mining
methods rely on extracting semantic similarities from literature data
but are hindered by natural language descriptions’ variability and
ambiguity. Biological feature-based approaches utilize extracted
chemical and molecular properties, applying machine-learning
techniques like logistic matrix factorization and gradient
boosting; however, these methods often overlook vital interaction
networks between drugs and proteins, limiting their
predictive power.

Network-based computational methods, particularly those
leveraging network topology and interaction profiles, have

improved accuracy by predicting unknown DTIs based on
known associations. However, most existing network-based
methods, including recent ones such as DDRO (Olayan et al.,
2018; Ji et al., 2020a) and DNILMF (Hao et al., 2017; Ji et al.,
2024), construct drug and protein networks independently and do
not adequately incorporate associations between drug-protein pairs
(DPPs). This omission neglects crucial insights available through the
interconnected biological network of drugs and proteins. This
hinders their performance in realistic datasets, especially for
novel drugs or targets lacking known interactions.

Recent advancements in graph-based deep learning, especially
graph convolutional networks (GCNs), have demonstrated
substantial potential in capturing complex interactions within
biological data by effectively modeling both local and global
topological information. Zhao et al. (2021), Wei et al. (2024)
introduced a method integrating GCN with deep neural networks
(DNNs) to build a comprehensive drug-protein pair (DPP) network,
where nodes represent specific drug-protein pairs, and edges encode
their associations based on drug-drug and protein-protein
interactions. This approach significantly enhances the ability to
discern true DTIs by capturing previously ignored relationships
within the network.

In this paper, we present a novel graph-based deep learning
framework for drug-target recognition (Figure 1). Our method
proposes a multi-view graph that captures various relationships
(chemical structure similarities, genomic, pathway connections, and
known interactions) between drugs, targets, and other biomolecules.
A graph attention network (GAT) is then utilized to learn topology-
aware features from each view of this graph, thereby effectively

FIGURE 1
The flowchart of DTGHAT. (A)Data sources and some symbols in this study. (B)Multi-molecule correlation graph. (C)Multiple heterogeneous graph
construction andmulti-view graph attention network for graph topology feature extraction of Drugs and Proteins. (D)Multi-layer perceptron for training
and prediction with attribute and graph topology features of Drugs and Proteins.
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highlighting significant connections in the network. We developed a
multi-scale feature fusion module that aggregates information from
multiple graph views and different neighborhood scales to
determine the most effective way to combine local and global
graph context features. Importantly, we incorporate a priori
knowledge of attributes of drugs and targets (such as chemical
descriptors, target protein sequences, and other domain-specific
features) into the model. These attributes enrich the learned
representations and help address the cold-start problem by
enabling the model to predict novel drugs or targets with few or
no known interactions. Our model output is an end-to-end pipeline
in which learned drug and target representations are connected and
fed into a Multi-Layer Perceptron (MLP) classifier to identify novel
drug targets. We trained and evaluated the model on known DTI
data and used cross-validation and holdout tests to assess its
performance. The results demonstrate that our graph-based
approach significantly improves prediction accuracy over
conventional methods.

2 Results

2.1 Performance evaluation under 5-fold
cross-validation

We assessed the performance of our model using k-fold cross-
validation (CV) using a benchmark dataset of known drug-target
interactions. The dataset was split so that in each fold, 80% of the
known interactions were used for training, 10% for validation, and
10% held out for testing. This was done by rotating through k � 5
folds.We ensured that during each fold, the negative examples (non-
interacting pairs) were sampled anew and that any cold-start cases
(e.g., a drug with no interactions in the training fold) were noted for
separate analysis. Our model achieved excellent prediction
performance across these folds (Figure 2). The average ROC

AUC score was 0.95 (with individual fold AUCs ranging from
0.93 to 0.97), indicating a high true-positive rate across various
threshold settings. Similarly, the average PR AUC (AUPR) was 0.95,
reflecting strong precision in recovering true interactions even
among a large set of negatives (Table 1). For instance, under 5-
fold CV, the model attained an AUC of 0.96 ± 0.01 and AUPR of
0.95 ± 0.01, demonstrating both high accuracy and low variance in
performance. Other metrics were encouraging: the mean accuracy
was around 91%, with a sensitivity (recall) of 0.92 and specificity of
0.91 at the optimal threshold, and an MCC exceeding 0.80, which
underscores a strong correlation between predictions and true labels.
These results outperform baseline computational methods for DTI
prediction by a substantial margin. For comparison, we
implemented a matrix factorization-based method and a classic
similarity-based model (which uses a weighted nearest-neighbor
approach for DTIs); those achieved AUCs in the mid-0.80s on the
same data, far below our graph-derived model. Even a simpler GCN
model without multi-view attention reached about 0.90 AUC.

2.2 Parameter analysis

To evaluate the impact of crucial hyperparameters on our model’s
prediction performance, we performed a detailed parameter analysis
by tuning several key factors, including the number of MLP layers,
and embedding dimension size, used for final prediction.

2.2.1 Number of MLP layers
We tested models with varying numbers of MLP layers, ranging

from 1 to 4 layers. The results showed that model performance
improved as the number of layers increased, with diminishing
returns after the third layer. Using 2 layers for the MLP led to
the most suitable trade-off between performance and computation
time, achieving an average AUC of 0.956 ± 0.01 in 5-fold cross-
validation (Table 2).

FIGURE 2
The prediction performance of DTGHAT in 5-fold cross-validation test. (A) The Receiver operating characterisitc analysis results of DTGHAT in 5-
fold cross-validation test. An enlarged view of the curves is provided in the lower right corner. (B) The Precision recall results of DTGHAT in 5-fold cross-
validation test. An enlarged view of the curves is provided in the lower left corner.
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2.2.2 Embedding dimension
The size of the node embedding, a key factor in graph learning,

was also optimized. We tested values ranging from 400 to
1,024 dimensions. The model’s performance showed a consistent
increase with the embedding size, peaking at 64 dimensions. Larger
dimensions (1,024) did not offer significant performance gains but led
to longer training times and increased memory usage. Thus, an
embeded dimension of 732 was selected for optimal results (Table 3).

2.3 Ablation experiment

To evaluate the contribution of each component of our
framework, we conducted ablation experiments. We created
several ablation versions of the model, each with one key
component removed or replaced, and measured the performance
drop relative to the full model. The components analyzed included:
(1) Graph attention mechanism–we substituted the GAT with a
standard GCN (graph convolutional network) that treats all
neighbors equally (no attention weighting); (2) Prior attribute
features–we removed the drug and target attribute vectors,
relying only on learned graph embeddings for predictions.

The ablation results are summarized in Figure 3A (showing the
average AUC and AUPR for each variant). Replacing the graph
attention with a GCN led to a modest drop in performance (AUC
0.92), showing that while much of the gain comes from the overall
graph framework, the attention mechanism still provides a boost by
focusing on the most informative neighbors. The effect was more
pronounced in cases where the graph had noisy connections; the
GAT could down-weight those, whereas the GCN could not, leading
to lower precision.

After we exclude a priori knowledge attributes, we find a
significant effect, especially on the subset of predictions involving
cold-start entities. The overall AUC drops by about 2 percentage
points (to 0.93) when attributes are excluded, while the AUC for the
cold-start subset drops sharply as expected (to 0.5–0.6, which is
essentially no better than random guessing in these cases)
(Figure 3B). This highlights the fact that attribute characterization
is indispensable for the promotion of new drugs or targets. With all
components active, our model takes full advantage of their respective
strengths: graph views bring in various relational signals, attention,
and fusion intelligently combine these signals, and a priori
characterization ensures solid baseline knowledge of each node.
These ablation studies clearly show that each module of the model

TABLE 1 The 5-fold cross-validation performance of DTGHAT.

Fold Acc. Sen. Spec. Pre. MCC Auc

1st 0.8892 0.8989 0.8796 0.8811 0.7786 0.9530

2nd 0.8965 0.9104 0.8830 0.8829 0.7933 0.9612

3rd 0.9101 0.9083 0.9120 0.9136 0.8202 0.9660

4th 0.9248 0.9227 0.9269 0.9296 0.8495 0.9739

5th 0.9328 0.9338 0.9319 0.9300 0.8656 0.9788

Average 0.9107± 0.0184 0.9148± 0.0136 0.9067± 0.0243 0.9074± 0.0242 0.8214± 0.0366 0.9666± 0.0102

Bold in Table 1 represents the average performance metrics used by the model.

TABLE 2 Parameter analysis on MLP layer.

MLP layers Accuracy Precision Recall F1-score AUC AUPRC

1 0.8742 0.8743 0.8755 0.8756 0.9456 0.9295

2 0.8855 0.8421 0.8851 0.8849 0.9322 0.9322

3 0.8689 0.8726 0.8726 0.8726 0.9515 0.9395

4 0.8927 0.8926 0.8922 0.8922 0.9560 0.9561

Bold in Table 2 represents the best performance metrics when the number of model MLP layers is 4.

TABLE 3 Parameter analysis on Embedding layer.

Embedding size Accuracy Precision Recall F1-score Auc. Auprec.

E = 400 0.7573 0.7030 0.6971 0.6957 0.7573 0.7584

E = 600 0.7051 0.7092 0.7040 0.7029 0.7437 0.7142

E = 732 0.8927 0.8926 0.8925 0.8926 0.9559 0.9551

E = 1,024 0.7836 0.7563 0.7518 0.7419 0.8325 0.7815

Bold in Table 3 represents the best performance when the model embedding layer is selected as 732.
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- GAT and attribute fusion - contributes to the overall performance,
and removing any of them reduces the prediction accuracy.

2.4 Performance comparison with the state-
of-the-art methods

To demonstrate the efficacy of our proposed method, we
compared its performance with several state-of-the-art drug-
target interaction prediction models. These models include:
DeepDTA, GCN-DTI, and GraphDTA.

• DeepDTA: (Öztürk et al., 2018) A deep learning model that
predicts drug-target interactions using convolutional neural
networks (CNNs) with drug sequences and target sequences.

• GCN-DTI: (Zhao et al., 2021) A graph convolutional network
(GCN) model that learns embeddings from drug-target
interaction graphs, using only graph structure and
node features.

• GraphDTA: (Nguyen et al., 2021) A graph-based method that
incorporates drug-target interaction data into a graph neural
network for DTI prediction, focusing on learning end-to-end
representations for both drugs and targets.

FIGURE 3
The comparison of ablation results of DTGHAT in 5-fold cross-validation test. (A) The comparison of ablation results for different network. (B) The
comparison of ablation results for different feature fusion strategies.

FIGURE 4
Performance comparison of DTGHAT with the state-of-the-art methods.
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The comparison results (Figure 4) demonstrate that our model
outperforms these methods in terms of prediction accuracy, as
measured by the Area Under the Curve (AUC) of the Receiver
Operating Characteristic (ROC) and the Area Under the
Precision-Recall Curve (AUPR). Specifically, our model showed
an average AUC of 0.966 ± 0.0102 in 5-fold cross-validation,
outperforming DeepDTA (AUC of 0.913), GCN-DTI (AUC of
0.920), and GraphDTA (AUC of 0.941). Our method also achieved
an average AUPR of 0.964 ± 0.0097 in 5-fold cross-validation,
higher than DeepDTA (AUPR = 0.857), GCN-DTI (AUPR =
0.865), and GraphDTA (AUPR = 0.912). We achieved an
accuracy of 91% for known drug-target interactions, while
DeepDTA and GCN-DTI performed at 85% and 87%,
respectively.

2.5 Case study

To evaluate the performance and applicability of the DTGHAT
model in identifying novel drug-target interactions (DTIs), we
conducted a case study using the DrugBank dataset. This dataset
contains both known drug-target pairs and extensive drug and
protein information, including their molecular properties and
interactions. The case study aims to test the model’s ability to
predict unknown drug-target interactions not previously
documented.

Using DTGHAT, we predicted several novel drug-target pairs,
which were further validated against literature sources. Some of
these predicted interactions were previously unknown and were not
present in DrugBank (Knox et al., 2024). Notably.

• While acetaminophen’s effects on POLE have not been
reported in DrugBank, previous research Prot et al.(2012)
demonstrated acetaminophen-induced upregulation of POLE
expression in hepatoma cells. This prediction is consistent
with the biological findings and validates DTGHAT’s ability to
detect novel interactions.

• Acetaminophen was found to influence the expression of
MPO, a key protein involved in inflammation and liver
damage. This interaction, although reported by Zheng et al.
(2015) and others, was not previously included in DrugBank.
Our model’s prediction suggests that DTGHAT could be
useful for identifying drug effects beyond direct target
interactions.

• The predicted interaction between Benzydamine and MAPK
was previously noted in studies by Riboldi et al. (2003), but it
was not available in DrugBank. This novel finding highlights
the model’s capability to uncover complex signaling pathway
interactions?

• The predicted interaction between Levodopa and epidermal
growth factor receptor (EGFR) was previously suggested in
studies investigating neuroprotective effects through EGFR
activation in neurodegenerative diseases (Gao et al., 2024; Sun
et al., 2024), but it was not available in DrugBank. This novel
finding highlights the model’s ability to uncover additional
neuroprotective effects of Levodopa beyond its dopaminergic
action, specifically through modulation of the EGFR
signaling pathway.

3 Discussion

In this study, we present a graph-based deep learning
framework for drug target identification that leverages a
methodology. That addresses key challenges in computational
DTI prediction by integrating multiple data views, using
attention mechanisms for feature learning, and incorporating
prior domain knowledge of drugs and targets. We constructed a
multi-view graph to capture complementary relationships (drug-
drug, target–target, and drug–target interactions) and applied a
graph attention network to each view to learn rich topology-aware
embeddings. Through a novel multi-scale feature fusion module,
we efficiently merged these embeddings, extracting both local and
global patterns to form a unified representation for each drug and
target. We also infused prior attributes (e.g., chemical structure
and protein sequence features) into the model, which proved
crucial for enhancing accuracy and enabling predictions for
novel, unseen drugs or targets. The learned drug and target
representations were fed into an MLP in an end-to-end fashion
to predict potential associations.

For future research, several avenues could be pursued. One
direction is to extend this framework to predict not just binary
interactions but quantitative drug–target affinities or
polypharmacology profiles. This would involve adjusting the loss
function and output layer accordingly. Another direction is to
incorporate temporal or condition-specific data–for example,
context-specific interaction networks or time-course gene
expression–to predict drug-target interactions under different
biological states (such as healthy vs. diseased tissues).
Additionally, integrating our approach with molecular docking
simulations or structural models could further refine our
predictions by ensuring they are physically plausible. Finally, as
larger and more diverse datasets become available (e.g., from high-
throughput screens or proteomics), our multi-view approach can
naturally scale by adding new views, and the attention mechanism
will help select the most informative signals from this wealth of data.

4 Materials and methods

4.1 Datasets

The dataset used for training and testing our model consists of
known drug-target interactions (DTIs), obtained from publicly
available databases such as DrugBank (Knox et al., 2024) and
ChEMBL (Gaulton et al., 2012). These databases contain curated
drug-target interactions from experimental sources and
computational predictions. We also incorporate additional data
from other sources like BindingDB (Gilson et al., 2016), STITCH
(Kuhn et al., 2007), and TargetNet to increase drug-target pair
coverage. Each drug-target pair is represented by the drug’s chemical
structure and the target’s protein sequence, along with any available
prior knowledge about their interactions (such as binding affinity,
and known side effects). For each target protein, we extract sequence
features (such as UniProtConsortium, 2015), which include
functional annotations and known protein families.

Furthermore, we also include external data sources to
construct the multi-view graph. For example, drug similarity
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graphs based on molecular fingerprints (Morgan fingerprints),
protein sequence similarity graphs based on BLAST similarity
scores, and known interaction networks are incorporated. All
nodes (drugs and targets) in the graph are assigned feature
vectors that capture the chemical properties and biological
characteristics of the entities.

We partition the dataset into training, validation, and test sets
with a ratio of 80% training, 10% validation, and 10% testing. This
ensures that no drug-target pair overlaps between training and
testing sets. This split ensures that our model generalizes well to
unseen data and is not biased by prior interactions. Additionally,
negative samples (drug-target pairs not known to interact) are
generated by randomly selecting non-interacting drug-target
pairs from the dataset, providing a balanced contrast for
model training.

4.2 Multimolecular association graph
construction

The heterogeneous biological entity graph is composed of
various biomolecule types, such as drugs, proteins, and diseases.
Each biomolecule type is represented as a node, and interactions
(such as drug-target interactions, protein-protein interactions,
and disease pathways) are represented as edges. This graph is
carefully designed to capture both direct and indirect
relationships between the biomolecules. This allows the model
to learn topological patterns that reflect the underlying biological
complexities of drug-target interactions. The graph construction
process relies on publicly available databases, ensuring
biologically relevant and up-to-date data. The graph
construction can be expressed as follows Formula 1:

G � V, E( ) (1)
where V represents the set of nodes (biomolecules), and E represents
the set of edges (biomolecule relationships). Each edge eij in the
graph represents the relationship between two nodes vi and vj,
which could be of various types such as drug-target interactions,
protein interactions, or disease pathways.

4.2.1 Multi-view feature fusion
Given the heterogeneous nature of the data, we adopt a multi-

view feature fusion approach to integrate information from various
graph perspectives. The embeddings learned from different views
(such as drug similarity, target similarity, and drug-target
interactions) are combined through a fusion module. This
module adaptively weighs the importance of each view and
learns the optimal feature combination for accurate prediction.
The fusion of features can be mathematically represented as
follows Formula 2:

z � ∑N
i�1

αihi (2)

where hi denotes the feature vector from the i-th view, and ai is
the weight assigned to the i-th view, which is learned through
training. The summation of all views gives the fused feature
vector z, which is then used for downstream predictions.

4.2.2 Prior knowledge integration
To further enhance model performance, particularly in cold-

start scenarios, we integrate prior knowledge about drugs and
targets. This includes incorporating chemical descriptors
(molecular fingerprints for drugs) and protein sequence
embeddings. This integration improves the model’s ability to
generalize across unseen drugs or targets. The prior knowledge
incorporation is given by Formula 3:

fprior � concat f chem, fseq( ) (3)

where fchem represents the chemical descriptor features of the drug,
and fseq represents the protein sequence embedding of the target.
The concatenated features fprior are added to the graph feature
vectors, enhancing the model’s predictive capacity.

4.3 Molecular heterogeneous graph
transformer

The core of the DTGHAT model is the Graph Attention
Transformer (GAT), which incorporates both the structural
relationships of the graph and the feature representations of the
nodes. GAT allows the model to focus on the most informative
nodes and relationships, providing a better understanding of drug-
target interactions. The graph attention mechanism can be
expressed as Formula 4:

aij � softmax Qi · Kj( ) (4)

whereQi andKj represent the query and key vectors for nodes i and
j, respectively. The attention score aij determines the importance of
node j in the context of node i, and is used to weigh the contribution
of node j’s features when updating node i.

Each node’s feature is then updated using the attention
mechanism and message passing. The message passing can be
formalized as Formula 5:

h l+1( )
i � ReLU ∑

j∈N i( )
aijW

l( )h l( )
j

⎛⎝ ⎞⎠ (5)

where N(i) represents the set of neighbors of node i, W1 is the
weight matrix at layer l, and h(l)j is the feature of node j at layer l.
The ReLU activation ensures that only positive features are
passed along.

The final learned node embeddings are then passed through a
Multi-Layer Perceptron (MLP) to predict the likelihood of
interaction between drug-target pairs Formula 6:

ŷij � MLP hi ⊕ hj( ) (6)

where ⊕ denotes the concatenation operation between the
embeddings of the drug and target, and ŷij represents the
predicted interaction score between the drug i and target j.
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