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Drug target discovery is a fundamental aspect of contemporary drug research
and development. However, the use of conventional biochemical screening,
omics analysis, and related approaches is constrained by substantial technical
complexity and significant resource requirements. With the advancement of
artificial intelligence-based large language models, notable progress has been
achieved in drug target identification. During target mining, large language
models with natural language comprehension capabilities can efficiently
integrate literature data resources and systematically analyze disease-
associated biological pathways and potential targets. Notably, models
specifically designed for biomolecular “language” have demonstrated
advantages across multiple aspects. The genomics-focused large language
model has significantly enhanced the accuracy of pathogenic gene variant
identification and gene expression prediction. In transcriptomics, large
language models enable comprehensive reconstruction of gene regulatory
networks. In proteomics, advancements have been made in protein structure
analysis, function prediction, and interaction inference. Additionally, the single-
cell multi-omics large languagemodel facilitates data integration across different
omics technologies. These technological advancements provide multi-
dimensional biological evidence supporting drug target discovery and
contribute to a more efficient screening process for candidate targets. The
development of these models is generally based on deep neural networks of
Transformer architecture, and powerful representation capabilities are obtained
through large-scale unsupervised pre-training (such as mask languagemodeling,
autoregressive prediction) combined with task-specific supervised fine-tuning.
This review systematically examines recent advancements in the application of
large language models in drug target discovery, emphasizing existing technical
challenges and potential future research directions.
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1 Introduction

Drug development is characterized by an extended timeline,
substantial costs, and considerable risk. From initial research to final
product approval, the process typically spans nearly a decade and
requires an investment exceeding two billion US dollars (Hinkson et al.,
2020). This progression encompasses target identification, candidate
compound screening and optimization, preclinical evaluation, clinical
trials, and commercial application. Each stage demands extensive
resources, exhibits a low success rate, and presents significant
industry challenges. As a fundamental stage in research and
development, drug target identification plays a decisive role in
project success. The primary objective of this process is to identify
biological molecules or cellular pathways that serve as key regulators in
disease pathogenesis and determine therapeutic intervention points,
which include biological macromolecules such as gene loci and
membrane receptors. The identification of innovative drug targets
forms the basis of the modern drug research and development
system, enhancing treatment precision and minimizing adverse effects.

Drug target discovery faces significant challenges due to
technical complexities, high resource demands, and intricate
disease mechanisms. As of 2022, the number of empirically
validated drug targets worldwide remained below 500 (Zhou
et al., 2022), highlighting the urgent need to enhance target
discovery efficiency, with technological innovation being a critical
factor. Currently, mainstream technical strategies include
experimental-based approaches, multi-omics integrated analysis,
and computer-aided prediction methods (Pun et al., 2023).
Experimental-based techniques, such as small molecule affinity
probe labeling, play a crucial role in target validation. Multi-
omics strategies integrate diverse omics data to identify potential
targets; however, these methods require high-quality samples and
substantial resources. For example, CRISPR-based functional
genome screens can systematically identify essential genes, but
their large-scale application is limited by experimental
throughput and cost. Computer-aided prediction methods offer
potential for identifying novel molecular targets based on the
chemical properties of compounds, yet their applicability is
restricted by the reliance on three-dimensional protein structural
information. Between 2013 and 2022, the median cost and duration
of new drug development increased steadily, with median costs
reaching about 2.4 billion US dollars—about a 20% rise compared to
a decade earlier—and development timelines extending by one to
2 years. Advancing target discovery and achieving technological
breakthroughs are essential for improving research and
development efficiency.

Artificial Intelligence (AI), recognized as a transformative
technology of the 21st century, has achieved significant
advancements in computer vision and natural language
processing while also reshaping the entire innovation process in
drug research and development (Gangwal et al., 2024). Insilico
Medicine, an innovative company leveraging AI to accelerate

drug discovery, has developed an “end-to-end” AI platform
(PandaOmics + Chemistry42) that has demonstrated high
efficiency in drug-target identification and preclinical candidate
screening. For instance, in the case of idiopathic pulmonary
fibrosis, AI platforms facilitated new target discovery, enabled the
launch of the first AI-generated drug, and advanced it to phase II
clinical trials within 18 months. Similarly, for HCC treatment,
PandaOmics identified CDK20 as a novel target, and in
combination with AlphaFold-predicted structures,
Chemistry42 generated a novel inhibitor, ISM042-2–048 (IC50 =
33.4 nmol/L), validating the AI platform’s “end-to-end” capabilities
(Ren et al., 2023). These practical applications highlight AI’s
advantages in enhancing target screening accuracy, reducing drug
development timelines, and optimizing research and development
efficiency, providing an innovative technical pathway for addressing
complex diseases. The emergence of ChatGPT has driven
widespread adoption of artificial intelligence large language
models (LLMs), characterized by an extremely high number of
parameters. These models employ deep learning to perform
language rule modeling, syntactic and semantic parsing, and text
generation in natural language processing by analyzing extensive
text datasets. Their underlying technology is based on the
Transformer architecture, introduced by Vaswani’s team in 2017
(Vaswani et al., 2017), with the self-attention mechanism as a core
feature, dynamically assessing text relevance and capturing long-
range dependencies, revolutionizing natural language processing
and sequence transformation. The integration of large language
models into drug discovery represents a paradigm shift in research
and development (Zheng et al., 2024). In healthcare, Google’s Med-
PaLM model set the bar. Med-PaLM was the first medical LLM to
pass the United States Medical Licensing Examination (USMLE),
demonstrating its authority in medical question answering tasks. Its
iterative version Med-PaLM 2 is based on the more powerful PaLM
2 basic model, and introduces “ensemble optimization” and
“retrieval chain” strategies to significantly improve the inference
ability. It achieves an accuracy of 86.5% on clinical topic datasets
such as MedQA, which is close to or better than the existing optimal
level, and performs better in adversarial problem processing and
factual accuracy. The multilingual support and generation
capabilities of Med-PaLM 2, such as report generation, have been
applied in several scenarios such as clinical decision support, health
education, and drug discovery. In drug target discovery, these
models facilitate literature mining and patent data analysis to
explore disease-related biological pathways and core targets.
Specialized models trained on biomolecular “language” can
analyze and predict multi-omics data, such as genomics, to
enhance candidate target identification. Protein language models,
including ESMFold (Lin et al., 2023), overcome traditional structural
similarity analysis limitations by employing 3D structure prediction
technologies. This review systematically examines the innovative
applications of large language models in drug target discovery,
addressing current technical bottlenecks and development
challenges (Figure 1).

This figure summarizes the application of artificial intelligence
big language models in drug target discovery and their
representative models, including natural language models and
language models applied to genomics, transcriptomics,
proteomics and multi-omics.

Abbreviations: DOAJ, Directory of open access journals; LD, Linear
dichroism; MDPI, Multidisciplinary Digital Publishing Institute; TLA, Three
letter acronym.
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2 Analysis of the application of the
natural language model in drug target
text information mining

Pre-trained language models based on the Transformer
architecture, such as GPT and BERT, have gained significant
attention in recent years. These models have enabled large-scale
advancements in natural language processing due to their strong
semantic parsing and text generation capabilities. In biomedical
research, they provide innovative solutions for analyzing disease
pathogenesis and identifying therapeutic targets through techniques
such as literature mining and professional term recognition. The

generalization capability of language models pre-trained on extensive
text corpora allows for the effective identification of cross-domain
linguistic features, while the acquired common language rules
significantly improve the efficiency of downstream tasks (Zheng
et al., 2024). Biology-specific language models, designed and trained
specifically for the biomedical domain, possess an enhanced ability to
interpret the semantics of specialized terminology and accurately
analyze complex sentence structures and domain-specific concepts
within biomedical literature. In drug target design, both general-
purpose and domain-specific language models offer unique technical
advantages and play an indispensable role in advancing research and
development.

FIGURE 1
Application of AI big language models in drug target discovery.
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2.1 General purpose natural language model

General natural language models are trained on extensive text
datasets, including scientific papers, textbooks, and general
literature. The large-scale training data enable these models to
comprehend diverse human languages while also developing a
deep understanding of scientific background knowledge. In
scientific applications such as drug target discovery, general
language models, including GPT-4 (Microsoft Research
AI4Science Microsoft Quantum, 2023), DeepSeek, BERT (Devlin
et al., 2019), and Claude, can analyze vast amounts of literature,
integrate extracted data into knowledge maps, and reveal internal
relationships between genes and diseases, enhancing target
interpretability. These models contribute to exploring disease
mechanisms (Savage, 2023). Their ability to effectively process
both complex scientific language and general knowledge provides
significant advantages, particularly in terms of broad knowledge
coverage and the capability to establish connections across
different topics.

2.2 Dedicated natural language models

General natural language models have contributed
significantly to biomedical text mining. However, these models
directly transfer the word distribution of natural language from
general corpora to biomedical corpora, limiting their ability to
process text requiring specialized biomedical knowledge. With
advancements in biomedicine, domain-specific natural language
models have been developed. Medical corpora such as PubMed
and PubMed Central (PMC) literature are commonly used in the
pre-training stage of biomedical-specific language models (Zhou
et al., 2023). BERT-derived models, including BioBERT (Lee
et al., 2020) and PubMedBERT (Gu et al., 2021), as well as
GPT-derived models, such as BioGPT (Luo et al., 2022) and
ChatPandaGPT, have enhanced accuracy and efficiency in
biomedical natural language processing tasks. BioGPT,
developed by Microsoft Research, is based on the GPT
architecture and has been optimized through large-scale
literature training in the biomedical field. It demonstrates
outstanding performance in understanding professional terms
and complex conceptual relationships in various multi-task
scenarios, such as relation extraction, question answering, and
text classification, significantly outperforming its predecessors.
Its open-source nature also lowers the barriers for research and
application. BioBERT, fine-tuned using data from the Human
Protein Atlas, performs multiple functions such as biomedical
named entity recognition, relationship extraction, and question
answering. Additionally, it extracts information from scientific
literature to identify novel drug targets (Lee et al., 2020).
ChatPandaGPT, integrated into the PandaOmics platform by
Insilico Medicine, facilitates the review of complex data and
enables the identification of potential therapeutic targets and
biomarkers through natural language interactions. Furthermore,
Galactica automatically extracts molecular interactions and
pathway information from scientific literature, improving the
understanding of complex biological processes and aiding in drug
target discovery (Park et al., 2023). DeepSeek also demonstrates

potential in biomedical text mining by learning from extensive
biomedical literature, enabling precise identification of
specialized terminology and complex concepts, thereby
providing valuable support for drug target identification. It is
worth noting that building high-performance biomedical-
specific models typically relies on effective domain adaptation
fine-tuning. This is not merely about continuing the pre-training
of a general model on biomedical corpora, but rather involves
fine-tuning for specific downstream tasks such as relation
extraction and target entity recognition. Common strategies
include parameter-efficient fine-tuning techniques like LoRA
(Low-Rank Adaptation), as well as hierarchical learning rate
adjustments, to efficiently inject domain-specific knowledge
while retaining general language knowledge and optimizing
task performance. This targeted fine-tuning is a key technical
approach to overcoming domain shift and improving precision
and recall in drug target text mining tasks.

With the capability to parse natural semantics and interpret
complex scientific concepts, natural language models serve as a
crucial technological tool for enhancing the efficiency of drug target
discovery. General-purpose language models offer significant
adaptability in multi-task scenarios; however, when applied to
specialized domains, optimization through domain-adaptive fine-
tuning is often required to improve the accuracy of professional term
interpretation and contextual understanding. The primary strength
of domain-specific language models lies in their ability to deeply
integrate subject-specific knowledge. However, their high
specialization limits interdisciplinary applications due to technical
constraints. Future advancements are expected to focus on
developing hybrid architectures that balance domain-specific
accuracy with cross-domain generalization, providing more
effective solutions for multidisciplinary research, including
biomedicine. It is important to note that current models are
predominantly trained on historical literature databases, which
may result in the algorithm inheriting biases inherent in human
cognition. Moreover, excessive dependence on existing literature
data could restrict the model’s capacity for breakthrough
innovations in novel drug target discovery. Establishing a multi-
dimensional collaborative framework that integrates natural
language models, computational biology models, and
experimental validation systems may represent a critical technical
pathway for identifying innovative and efficient drug targets (Pun
et al., 2023; Sarumi and Heider, 2024).

3 Analysis of the application of
genomics large language model in the
discovery of drug target gene code

With the increasing demand for biological data mining in drug
target discovery and new drug development, research has expanded
the application of natural language processing technology to
biological data, which is larger in scale, more complex, and
highly specialized. This has led to the emergence of genomics-
focused large language models. Genomics primarily investigates
an organism’s complete DNA, emphasizing the detailed analysis
of genome structure, function, evolution, mapping, and editing.
Advancements in next-generation genomic technologies have
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enabled researchers to generate vast amounts of genomic data (Li R.
et al., 2022). The integration of large language models with genomic
analysis is now creating new research pathways and application
scenarios. Trained on extensive genomic datasets, genome-focused
large language models provide deeper insights into gene function,
regulation, and interactions while possessing the capability to
predict pathogenic variants and gene expression. These
capabilities establish a theoretical foundation for drug target
discovery and offer strong support for the development of new
therapeutic agents.

3.1 Gene function prediction

The genomics-focused large language model integrates DNA
sequence data to identify functional elements, genetic variations,
and structural features, providing a theoretical foundation for
drug target discovery. Notable examples include DNABERT (Ji
et al., 2021), which transforms DNA sequences into language
symbols and utilizes k-mers to capture intricate patterns,
enabling high-precision predictions of disease-associated
mutations and DNA-protein binding sites. LOGO (Yang M.
et al., 2022), a lightweight human genome language model,
was developed using pre-trained parameters as initial weights.
After task-specific fine-tuning, it has been effectively applied to
promoter region identification, enhancer-promoter interaction
prediction, chromatin feature inference, and pathogenic variant
prioritization. Evo (Nguyen et al., 2024), a multimodal genome
infrastructure developed by Arc Institute, facilitates the analysis
of natural genomic variations and predicts the effects of small
DNA modifications on organism adaptability. This model
represents a significant advancement in understanding and
designing cross-modal biological systems, establishing a
technical foundation for precise target screening.

3.2 Regulation of gene expression

Large language models significantly enhance the identification
efficiency of core factors involved in gene expression regulation and
enable high-precision prediction of gene interaction networks,
providing deeper mechanistic insights into gene regulatory
network analysis (Joachimiak et al., 2024). The Enformer model,
developed by DeepMind, constructs a quantitative prediction
framework for enhancer-regulated gene expression by integrating
long-range interaction data spanning up to 200,000 base pairs in the
genome, exceeding traditional methods by more than fivefold
(Avsec et al., 2021). Notably, the progression of various diseases,
including tumors, is often associated with epigenetic abnormalities,
such as fluctuations in DNA methylation levels and disruptions in
histone modifications, which can be targeted through
pharmacological interventions. The optimized GeneBERT model,
built on the BERT framework, specializes in genome function
prediction, effectively inferring the impact of histone
modification variations on gene expression and analyzing gene
regulatory mechanisms. Additionally, models such as BERT6mA
(Tsukiyama et al., 2022), iDNA-ABT (Yu et al., 2021), and MuLan-
Methyl (Zeng et al., 2023) facilitate the analysis of DNA sequence

methylation characteristics and their potential influence on gene
regulatory networks. These advancements have expanded the
understanding of how epigenetic modifications regulate gene
expression (Sarumi and Heider, 2024), introducing a novel
research paradigm for innovative drug target development.

4 Analysis of the application of
transcriptomics large language model
in the construction of drug-target
related regulatory network

With advancements in genomic data analysis, research has
increasingly shifted toward exploring dynamic gene regulatory
systems, emphasizing the systematic study of the spatiotemporal
characteristics of gene expression networks and regulatory
mechanisms. Transcriptomics, which systematically examines
all transcript products within an organism, provides essential
data for studying biological processes by analyzing changes in
gene expression levels and their functional regulation under
various physiological and pathological conditions. This field
plays a crucial role in disease mechanism analysis and
precision medicine, offering a scientific foundation for
optimizing clinical diagnostic and therapeutic strategies and
developing personalized medical approaches. Transcriptomics
analysis based on large language models facilitates key
research tasks, including disease-specific gene expression
profiling, gene regulatory network reconstruction, and
pathogenic mechanism interpretation. Additionally, it
establishes a multi-dimensional data support framework for
drug target discovery, enhancing the efficiency and accuracy of
identifying potential therapeutic targets.

4.1 RNA structure prediction

Structural changes in RNA are often closely associated with its
function. Predicting RNA secondary and tertiary structures allows for a
deeper understanding of its specific roles in biological processes and
facilitates the identification of novel therapeutic targets. RNABERT
(Akiyama and Sakakibara, 2022), a pre-trained model based on the
BERT architecture, is specifically designed for secondary structure
prediction and RNA clustering. This model efficiently aligns
unknown sequences with existing RNA families, providing a
valuable tool for annotating newly discovered transcripts. RhoFold +
integrates the large-scale pre-trained RNA language model RNA-FM to
extract sequence features and employs a deep learning module for end-
to-end RNA three-dimensional structure prediction, addressing
challenges related to data scarcity (Shen et al., 2024). RNA structure
prediction not only enhances the understanding of RNA function and
binding sites but also serves as a critical structural foundation for drug
target discovery and the development of RNA-targeted therapeutics.

4.2 Gene expression analysis

InMay 2023, the Theodoris research team introduced Geneformer,
the first general large language model in the field of transcriptomics
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(Theodoris et al., 2023). This model was pre-trained using over
30 million single-cell transcriptome datasets and enables three core
functions: predicting gene network dynamics, mapping gene networks,
and accelerating the identification of therapeutic targets for diseases,
even under sparse data conditions (Theodoris et al., 2023). The model
was applied to research on hypertrophic cardiomyopathy and dilated
cardiomyopathy, successfully screening more than 400 associated genes
for each condition. In the case of hypertrophic cardiomyopathy,
Geneformer accurately identified specific therapeutic targets and
patented drug targets in cardiomyocytes. Additionally, for dilated
cardiomyopathy, the inhibition of candidate genes predicted by the
model demonstrated an improvement in cardiomyocyte function
within disease models. These empirical findings highlight the
technical significance of Geneformer in the discovery of therapeutic
targets for human diseases.

GeneCompass (Yang et al., 2024), developed by the research
team at the Chinese Academy of Sciences, is a cross-species
foundational model capable of deciphering gene regulatory codes.
It demonstrates significant potential in identifying key factors
involved in cell fate regulation and screening candidate drug
targets. The Lomics (Wong et al., 2024) model enhances the
analysis of complex gene interaction networks by improving the
accuracy of pathway analysis and gene set enrichment in
transcriptome data, enabling the integrated analysis of multi-
omics data. Notably, single-cell large model technologies, such as
scBERT (Yang F. et al., 2022) and scFoundation (Hao et al., 2024),
also exhibit promising applications in single-cell transcriptome data
analysis and related research scenarios. In 2024, it was reported that
scFoundation showed “the highest accuracy” in the cell type
annotation task, especially in identifying rare cell types such as
CD4+ T helper 2 and CD34+ cells.

4.3 Post-transcriptional regulatory studies

Post-transcriptional regulation plays a crucial role in controlling
gene expression through mechanisms such as RNA splicing, editing,
stability regulation, transport, and translation, which are essential
for maintaining gene expression homeostasis. The SpliceBERT
model (Chen et al., 2024) enhances splice site prediction
accuracy, enabling in-depth analysis of splice variant regulatory
mechanisms in biological processes and their impact on gene
expression. Long non-coding RNA (lncRNA), a key transcription
product, significantly influences malignant tumor progression and
disease development. Recent studies have identified small open
reading frames (sORFs) within lncRNAs capable of encoding
functional peptides. The LncCat tool (Feng et al., 2023) is
designed to identify lncRNA molecules containing sORFs,
providing technical support for discovering novel regulatory
elements. RNA modifications are widely involved in life activity
regulation and disease evolution. The BERT-m7G system (Zhang
et al., 2021) accurately identifies m7G modification sites in RNA
sequences, offering a foundation for understanding the regulatory
effects of this modification on gene function. By elucidating the
dynamic regulatory network of gene expression, post-
transcriptional regulation research introduces innovative
directions for drug target identification and significantly advances
the development of novel therapeutics and personalized medicine.

5 Analysis of the application of
proteomics big language model in
accelerating the prediction of drug
target structure and function

While investigating gene regulatory networks, drug target discovery
can also be approached by analyzing protein-level characteristics.
Proteins play a fundamental role in life processes, serving as key
executors of most cellular biological functions. Many diseases are
directly associated with the dysfunction of specific proteins. Through
an in-depth examination of protein structure, function, and
interactions, disease-related targets can be precisely identified,
facilitating the development of highly specific and effective drugs. By
learning and analyzing protein sequence, structure, and omics data,
large language models have demonstrated significant potential in
accelerating data analysis, enhancing drug target screening and
design, and improving structure prediction. These advancements not
only increase research efficiency but also contribute to reducing overall
research costs.

5.1 Protein structure prediction

The three-dimensional conformation of proteins plays a crucial
role in drug target identification, as the specific binding of drug
molecules to target proteins typically relies on precise structural
compatibility. As of 2025, the UniProt database contains over
250 million protein sequences, while the PDB database holds
only about 240,000 3D structures covering about 70,000 proteins,
representing less than 0.1% of known proteins. Traditional
experimental techniques for protein structure analysis are time-
intensive and costly, creating a significant gap between output
efficiency and the demands of drug research and development
(Dana et al., 2019). In recent years, deep learning and artificial
intelligence technologies have transformed protein structure
prediction. A major breakthrough was achieved in 2020 with the
development of AlphaFold2 by DeepMind. Utilizing a homologous
sequence alignment strategy, this model reached near-experimental
accuracy. Following the prediction of over 200 million protein
structures, about 35% met high-confidence criteria, and 80% of
the structural data exhibited multi-dimensional characteristics. By
integrating an attention mechanism with a self-distillation training
strategy, the model significantly enhances predictive performance,
advancing the field of protein structure analysis and its applications
in drug discovery. RoseTTAFold, introduced alongside AlphaFold2,
employs a three-track attention architecture that enables neural
networks to process three-dimensional information simultaneously,
establishing a technical benchmark comparable to AlphaFold2. In
2022, Andrew G. Jamieson’s research group utilized the AlphaFold-
predicted structure of the GPR84 protein to conduct a structure-
activity relationship study on GPR84 antagonists. This study
identified compounds 7 and 8 as exhibiting favorable activity and
selectivity, validating the utility of AI-predicted structures in target
optimization (Marsango et al., 2022; Mahin et al., 2022). On
31 October 2023, AlphaFold3, jointly developed by DeepMind
and Isomorphic Labs, introduced a diffusion module to replace
the original structure module, reducing reliance on homologous
sequences. This model achieves high-accuracy predictions of protein
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interactions with various biomolecules, improving overall accuracy
by more than 50% compared to its predecessor and achieving a
twofold breakthrough in key performance metrics. Recent studies
integrating AlphaFold3 with Mendelian randomization methods
successfully identified seven proteins with structural
abnormalities resulting from missense mutations, providing new
insights into the mechanisms of Alzheimer’s disease and facilitating
the screening of potential therapeutic targets.

The field of protein structure prediction is undergoing a
paradigm shift, with protein language models based on direct
sequence prediction offering advantages in both computational
efficiency and accuracy. RGN2, introduced in 2022, employs an
end-to-end microcyclic geometric network architecture, where the
AminoBERT protein language model extracts potential structural
features from unaligned sequences. This approach has demonstrated
superior performance over traditional homology alignment
methods from both practical and theoretical perspectives.
Simultaneously, Meta released the ESMFold model, built on the
Transformer framework with 15 billion parameters, capable of
predicting amino acid sequence structures with atomic-level
accuracy. This model achieves a computational speed ten times
faster than AlphaFold2 while maintaining comparable prediction
accuracy, enabling large-scale real-time resolution of metagenomic
protein structures. The average GDT_TS score of ESMFold on
CASP15 was 61.62, close to the 73.06 of AlphaFold2, indicating
good performance but still a gap. ESMFold, on the other hand,
predicted shorter amino acid sequences an order of magnitude faster
than AlphaFold2, even 60 times faster in some cases. Its subsequent
version, ESM2, further set the bar for protein language models.
ESM2 is also based on the Transformer architecture and focuses on
efficient generation of semantic representations of protein
sequences. It performs well in protein structure prediction,
function annotation (e.g., GO classification, BP function
prediction), and drug target identification (e.g., TCR-pMHC
interaction prediction). Compared with models such as ProtT5,
ESM2 is particularly outstanding in terms of speed and performance
balance. Its simple “no external encoder” design simplifies the
protein processing process and provides a powerful new tool for
protein engineering and target discovery. These advancements
highlight the capability of language models to identify
evolutionary patterns and structural features from extensive
sequence data, establishing a robust foundation for reverse
molecular docking and binding site similarity analysis in
structural biology.

5.2 Protein sequence generation

The advancement of big data and artificial intelligence
technologies has introduced an innovative approach to target
discovery—a new paradigm centered on protein sequence
generation. The ProGen2 model (Nijkamp et al., 2023) generates
novel protein sequences with predefined structural and functional
properties by analyzing complex sequence patterns and their
interrelations. ProtGPT2 (Ferruz et al., 2022), developed using
the GPT-2 autoregressive architecture, enhances protein
engineering design and function prediction capabilities. The
generated sequences exhibit compositional tendencies that align

with the distribution characteristics of natural amino acids. These
AI-generated proteins not only adhere to the principles of biological
evolution but can also be tailored to exhibit specific functional
properties, providing a valuable tool for identifying potential
targets in previously unexplored biological domains. Molecular
docking simulation technology allows researchers to virtually
screen these AI-generated sequences against existing drug
libraries, enabling the selection of candidate proteins with high
binding affinity, followed by targeted experimental
validation studies.

5.3 Protein function prediction

Proteins serve as core functional modules in regulating cellular
metabolism, signal transduction networks, and structural support
systems. Therefore, systematic analysis of protein biological
functions holds significant scientific value for drug target
discovery and disease mechanism research (Liu et al., 2024). The
ProteinBERT model (Brandes et al., 2022) efficiently captures
complex sequence features and biological characteristics by
processing large-scale sequence data, demonstrating strong
versatility across various protein research tasks. The ProtST
framework (Xu et al., 2023), a multimodal learning system for
protein sequences and biomedical texts, integrates sequence data
with textual information to enhance feature representation and
enable in-depth protein function analysis. This model facilitates
the identification of functional proteins from extensive databases,
even in cases lacking functional annotation. ESM-1b applies a self-
supervised learning strategy to process vast numbers of unlabeled
sequences, effectively extracting evolutionarily conserved features
and residue interactions. The QuoteTarget method (Chen et al.,
2023) innovatively combines ESM-1b with a graph convolutional
neural network to achieve efficient protein coding using only
sequence information. This approach achieved 95% classification
accuracy on a non-redundant drug target validation dataset. When
applied to the entire human proteome, it successfully identified
1,213 previously unexplored potential therapeutic targets.

Intrinsic disordered regions (IDRs) represent a distinct class
of domains within protein sequences, characterized by
conformational dynamics and the absence of a stable three-
dimensional structure under physiological conditions. The
structural flexibility of IDRs allows them to interact with
various ligand molecules, making them highly valuable sites
for drug action. Accurate identification of IDRs and
elucidation of their functional mechanisms are crucial for
enhancing drug design efficiency (Pang and Liu, 2024). The
DisoFLAG model (Pang and Liu, 2024), a specialized
prediction tool for disordered regions, employs a sequence-
driven strategy to precisely locate IDRs and analyze their
functional properties. As an emerging target in drug
development, IDRs may provide a novel pathway for
therapeutic discovery. In drug-target interaction studies,
accurate assessment of binding affinity is a critical step in the
research and development process. Traditional experimental
methods face limitations in scalability, leading to the
development of various computational prediction models,
including sequence-driven approaches, graph neural networks,
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and multimodal fusion techniques. While these methods have
shown progress, further improvements in prediction accuracy
and mechanistic interpretability remain necessary.

5.4 Antigen-receptor interaction and
recognition of neoantigens

In the study of cancer, immune system diseases, and infectious
diseases, a comprehensive understanding of the interaction
mechanisms between antigens and receptors may contribute to
the advancement of drug target development. These fundamental
research breakthroughs also provide new opportunities for the
implementation of personalized medical strategies. In China’s
current medical innovation framework, malignant tumor research
holds a dominant position in clinical trials and drug development (Li
et al., 2022b). Neoantigens, which serve as specific tumor markers,
arise from gene mutations or abnormal alterations in genetic
material within cancer cells. These antigens are entirely absent in
healthy tissues. Due to their unique tumor-specific properties,
neoantigens can effectively activate the immune response, making
them a focal point in immunotherapy research (Li et al., 2023). For
example, a team from Peking University Cancer Institute
successfully used a neoantigen prediction model combined with
TCR sequencing to screen highly immunogenic neoantigens for
specific solid tumor patients and used them for individualized TCR-
T cell therapy. The initiation of an immune response relies on the
binding of antigen peptides to T cell receptors (TCR), a process
mediated by major histocompatibility complex (MHC) molecules.
As the central recognition element of T lymphocytes in identifying
pathogens and malignant cells, TCR plays a crucial role in the
immune defense mechanism. For the quantitative assessment of the
binding affinity between MHC-I and MHC-II molecules and
peptides, prediction models such as MHCRoBERTa (Wang F.
et al., 2022) and BERTMHC (Cheng et al., 2021) have been
developed, significantly enhancing the efficiency of predicting
interactions between key immune molecules. Based on the BERT
framework, the TCR-BERT model (Wu et al., 2024) enables the
analysis and prediction of TCR-antigen interactions using deep
learning technology. This approach not only expands the
analytical scope of antigen recognition but also allows for more
precise and adaptable characterization of binding properties.
Notably, the complementarity-determining region 3 (CDR3) of
TCR molecules serves as a functional domain directly involved in
antigen contact, with its sequence variation being a critical
determinant of TCR receptor diversity. The TCR-BERT model
effectively extracted generalized feature representations of TCR
sequences by training on extensive unlabeled CDR3 sequence
data, and this pre-training strategy significantly improved the
performance of subsequent antigen-specific recognition
prediction models (Liu et al., 2024).

5.5 Large language models of antibodies

In the advancement of immunology and biomedicine, large
language model-based technologies are increasingly
demonstrating their significance. These models, inspired by

protein language models, enable the prediction of key parameters
such as antibody structural features, functional activity, interaction
dynamics, and binding affinity. By deciphering the “language rules”
of antibodies, AntiBERTa can trace the developmental origins of
B-cell-derived antibodies, evaluate immunogenicity strength, and
predict potential binding sites and other complex tasks (Leem et al.,
2022). As a deep learning-based epitope prediction tool,
ParaAntiProt efficiently extracts predictive feature embeddings by
integrating pre-trained protein and antibody language models. This
approach requires only amino acid sequence data, eliminating
dependence on antigen-related information (Kalemati et al.,
2024). Due to the unique gene rearrangement mechanism and
the diversity of complementarity-determining regions, antibody
three-dimensional structure prediction presents distinct
challenges in protein structure research. The pre-trained IgFold
model (Ruffolo et al., 2023), trained on a dataset of 558 million
natural antibody sequences, achieves atomic coordinate prediction
with accuracy comparable to AlphaFold while offering significant
advantages in computational efficiency. As an advanced iteration,
AlphaFold3 has introduced breakthroughs in antibody structure
prediction, particularly in the structural modeling of the heavy chain
complementarity-determining region 3 (CDRH3), a critical domain
that defines antigen binding specificity and affinity. This model has
markedly reduced the root mean square deviation of predictions
from 2.74 Å to 1.34 Å (Abramson et al., 2024). The application of
large language models has greatly enhanced the efficiency and
optimization of antibody design, providing essential technical
support for novel drug target development. Additionally, these
advancements establish a crucial foundation for precision
medicine, vaccine development, and improvements in antibody-
based therapeutics.

5.6 LLM-driven automated drug
molecule design

After successfully identifying and validating protein targets and
their key features (such as binding sites and functional domains),
one of the core challenges in drug development lies in efficiently
designing candidate drug molecules that can effectively act on these
targets. Large language models (LLMs) are being utilized to build
end-to-end automated molecular design systems, significantly
accelerating this process. Take the DrugAgent system as an
example. As a multi-agent framework based on LLMs, it aims to
automate key steps in the drug discovery process, including data
acquisition, model training, result evaluation, and final molecular
design optimization, achieving an end-to-end design from target
information to candidate molecules. The core of this system is
driven by two agent components: the LLM Director is
responsible for integrating professional knowledge from fields
such as drug chemistry, biology, and pharmacology to guide the
direction of the entire molecule generation and optimization
process; the LLM Planner is responsible for optimizing the search
strategy in the molecular space and dynamically adjusting the
generation direction based on experimental feedback or
prediction results. In empirical studies, the model guided by the
DrugAgent system achieved significant performance improvements
in predicting the intestinal absorption characteristics of drug

Frontiers in Pharmacology frontiersin.org08

Liu et al. 10.3389/fphar.2025.1597351

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1597351


molecules (based on the PAMPA dataset), with an F1 score reaching
0.92, significantly outperforming traditional methods, effectively
demonstrating the effectiveness of LLMs in integrating
knowledge, guiding model selection, and optimizing the
prediction process. The technical highlight of this system lies in
its dynamic idea space management capability, which can generate
structurally diverse molecules in the early exploration stage to
expand the coverage of the chemical space; and it builds an
iterative optimization closed loop, continuously improving the
quality of generated molecules based on experimental data or
computational prediction feedback (such as absorption, activity,
toxicity, etc.). Ultimately, through the automatic coordination of
data, models, and decisions by the agents, it significantly reduces
manual intervention and lowers the reliance on the highly expert-
experience-dependent and manual operation-intensive steps in
traditional drug design, significantly enhancing overall efficiency.
The DrugAgent system is a typical representative of the LLM-
enabled “rapid design” paradigm for drug molecules. Its core lies
in constructing a highly automated “design-predict-verify (or
simulate)-redesign” closed loop. The LLM Planner can adjust the
search strategy and generation direction in real time based on
feedback (whether from experiments or high-precision
computational simulations, such as molecular docking and
ADMET prediction models), for example, focusing on specific
chemical spaces, avoiding known toxic groups, and optimizing
specific properties. This dynamic, data-driven iterative process
greatly accelerates the cycle of lead compound discovery and
optimization, significantly differentiating from the time-
consuming and labor-intensive trial-and-error exploration in
traditional methods. By combining expert knowledge (encoded in
the LLM Director) with automated iterative optimization, such
systems can explore the vast chemical space at a speed far
exceeding traditional methods, achieving rapid discovery and
evolution of candidate molecules.

6 Analysis of the application of single-
cell multi-omics large language model
in the integration of multi-dimensional
data for drug target discovery

Across multiple research domains, including genomics,
transcriptomics, and proteomics, large-scale language models
facilitate targeted analysis and provide critical insights for drug
target screening. Notably, single-cell multi-omics language models
significantly broaden the scope of target identification by integrating
multi-dimensional data, enabling the discovery of potential
therapeutic targets that may not be captured using traditional
methods. As systems medicine continues to drive improvements
in drug research and development efficiency, multi-omics
technology has emerged as a key enabler (Wang M. et al., 2022).
By collaboratively analyzing biological data across genomics,
transcriptomics, proteomics, and metabolomics, researchers can
perform cross-comparisons and in-depth assessments of multi-
source omics data. This approach allows for precise identification
of disease-associated signaling pathways and core regulatory
elements, ultimately leading to the selection of candidate targets
with therapeutic potential. This systematic research framework not

only enhances the understanding of disease mechanisms but also
provides a scientific foundation for drug molecular design and
optimization of therapeutic efficacy, achieving the dual objectives
of improving treatment outcomes while minimizing adverse effects.

The application of large language models in multi-omics data
integration is demonstrating significant breakthroughs. The scGPT
model (Cui et al., 2024), leveraging single-cell multi-omics data,
enables in-depth analysis of gene interactions at single-cell
resolution through the collaborative examination of genetic
regulatory networks, enhancing the biological interpretability of
the model. The scMVP system (Li et al., 2022c) is an innovative
framework specifically designed for the integrated analysis of single-
cell transcriptome sequencing (RNA-seq) and epigenome
sequencing (ATAC-seq) data, facilitating simultaneous
examination of gene expression patterns and chromatin
accessibility within individual cells. For single-cell multimodal
data, including RNA sequencing, ATAC sequencing, and
antibody marker sequencing, the DeepMAPS model (Ma et al.,
2023) successfully establishes the mapping relationship between cell
subtypes and gene functional modules by constructing a gene-cell
two-dimensional network, enabling the collaborative learning of
both local and global features. By incorporating high-precision
multi-dimensional data, single-cell multi-omics research offers
innovative solutions to address challenges such as data variability,
sample dispersion, and cell subset diversity (Liu et al.,
2024) (Figure 2).

7 Summary and outlook

Drug development, a time-intensive and costly process,
prioritizes drug target discovery, which involves identifying
biomolecules or regulatory pathways that play a critical role in
disease mechanisms. However, due to the high complexity and
technical challenges in this field, the number of validated
effective drug targets remains limited. In recent years,
advancements in experimental technology, multi-omics analysis
platforms, and computational methods have significantly
contributed to the refinement of target identification strategies.
Despite these advancements, traditional experimental approaches
and multi-omics studies often require substantial resources, and the
reliability of results is highly dependent on the standardization of
biological samples. Artificial intelligence technology, particularly
models based on the Transformer architecture, is reshaping the
drug research and development landscape. These models achieve
human language parsing and logical text generation through deep
learning from large-scale text datasets. In drug target design, natural
language processing enables systematic literature mining and the
construction of patent maps, enhancing the efficiency and accuracy
of target discovery. Specialized models such as BioBERT
significantly enhance the accuracy and efficiency of biomedical
text processing by precisely analyzing scientific concepts. Notably,
large language models have demonstrated breakthrough potential in
genome analysis, transcriptional regulation research, protein system
analysis, and single-cell multi-omics integration. In genomics,
dedicated models have deepened the understanding of gene
function, regulatory mechanisms, and interactions while
significantly improving the prediction of pathogenic mutations
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and inference of expression patterns. In transcriptomics, tools such
as Geneformer simulate dynamic changes in gene networks,
providing a multi-dimensional biological foundation for drug
target discovery. Protein language models play a crucial role in
structure-activity relationship prediction, target screening, and
optimization, continuously improving research efficiency and
reducing development costs. Single-cell multi-omics integration
models effectively analyze disease-related signaling pathways and
core regulatory elements by integrating multi-dimensional data.
These technological advancements not only enhance the
understanding of fundamental biological processes but also
accelerate target identification and drug development, paving the
way for personalized medicine.

Although artificial intelligence has achieved significant
advancements in target discovery, several challenges remain in
its practical application. A major limitation is the need to
improve the interpretability of algorithmic predictions, which
is essential for gaining acceptance in scientific research and
medical fields. Current models primarily focus on sequence
features and functional analysis of gene expression regulatory
networks. However, limited consideration of critical parameters
such as target specificity, tissue distribution characteristics, and
toxicological properties may reduce the translational value of
prediction results. Strengthening these aspects is crucial for
enhancing the reliability and applicability of AI-driven target
discovery in drug development. Data bias presents a significant

FIGURE 2
Performance comparison and applicable scenarios of different large language models in drug target discovery.
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challenge in model training, as models developed using biased
datasets may reinforce inherent cognitive biases (Sarumi and
Heider, 2024). Addressing this issue requires the construction of
diverse and representative training datasets to enhance model
generalization. Additionally, in the extensive data collection and
model development processes, ethical review, privacy protection,
and compliance framework establishment remain critical areas
for improvement (Pun et al., 2023). Going forward, establishing a
unified, comprehensive and challenging Benchmarking system is
essential to promote the development of LLM in the field of drug
target discovery. Currently, the data sets, evaluation metrics, and
comparison baselines used by different research teams vary
greatly, making it difficult to objectively compare model
performance. There is an urgent need to build standardized
benchmark datasets and evaluation protocols covering the
whole process of target discovery, from literature knowledge
mining, omics data analysis, target property prediction to
molecule generation and optimization. These benchmarks
should incorporate publicly available gold standard datasets
(e.g., known validated targets, protein-ligand complex
structures, activity/toxicity data), negative samples (nontarget/
inactive molecules), and tasks that mimic real-world complexity
(e.g., predicting novel targets, processing noisy data, generalizing
across tissues/diseases). At the same time, the evaluation index
should go beyond the simple accuracy or AUC, and should
include the comprehensive consideration of the biological
rationality, interpretability, computational efficiency and
finally the impact on the success rate of experimental
verification. Strong benchmarking will facilitate iterative
model optimization, fair comparison of different technology
routes, and ultimately drive the establishment of best practices
in the field. With continuous technological advancements, large
language models are expected to further expand their
applications in drug research and development, accelerating
progress through innovative analytical paradigms. These
advancements will enhance the efficiency, innovation, and
cost-effectiveness of drug target discovery and new drug
development, ultimately driving a transformative shift in the
pharmaceutical industry.
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