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Mangiferin (MF), a xanthonoid polyphenol, its derivatives, coordination and
inclusion complexes, and carriers have demonstrated notable antitumor
activity in vitro and in vivo. However, their clinical application remains limited
due to MF’s poor water solubility and low systemic bioavailability. This review
critically summarizes advances in the synthesis of MF derivatives and formulation
strategies, such as metal complexes, cyclodextrin inclusion systems, and
nanocarriers, developed over the past decade to enhance MF’s bioavailability
and therapeutic efficacy. Promising results include glycosylated derivatives, MF-
Se (IV) metal complexes, and β-cyclodextrin complexes, each contributing to
improved solubility and cytotoxicity profiles. Continued research is essential to
bridge the gap between experimental success and its clinical implementation in
cancer therapy.
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1 Introduction

Polyphenols, including xanthones, possess molecular characteristics that enable them to
efficiently form chemical derivatives and inclusion complexes. These compounds are highly
compatible with various carriers, which significantly enhances their water solubility and,
consequently, their bioavailability (Ju et al., 2022). Incorporating these natural compounds
has become an important area of research, particularly in exploring their potential as
bioactive agents for several diseases (Ma et al., 2024). Mangiferin (MF), 1,3,6,7-
tetrahydroxyxanthone-C2-β-D-glucoside, stands out as a powerful candidate for
developing antitumor agents, targeting different types of cancers. This includes lung,
brain, breast, cervix, and prostate cancers, as well as leukemia (Nuñez Selles et al.,
2016; Iqbal et al., 2024). Based on the Biopharmaceutics Classification System, it is
classified as a low solubility-low permeability compound (class IV) (FDACenter for
Drug Evaluation and Research, 2017). The absorption of MF primarily occurs in the
small intestine through passive diffusion. However, absorption rates can vary across
gastrointestinal tract segments (Mei et al., 2021a). The GastroPlus software estimates its
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water solubility at 0.38mg/mL (Khurana et al., 2017b). Furthermore,
MF shows low intestinal permeability, likely due to its low
lipophilicity (Kaliappan et al., 2015).

The synthesis of MF derivatives and complexes aimed at
improving bioavailability has seen limited progress over the past
decade. Liang et al. (2019) reported the complexation of MF with a
polyamine-modified β-cyclodextrin (PA-CD), a polysaccharide
composed of glucose units linked by α-1,4-glycosidic bonds. PA-
CD features a unique structure that includes a hydrophobic inner
cavity and a hydrophilic exterior, allowing it to form an inclusion
complex that improves both bioavailability and cytotoxicity
compared to free MF. Additionally, copper (II) and zinc (II)
complexes of MF have shown increased cytotoxicity relative to
free MF, likely due to their ability to intercalate with DNA and
inhibit topoisomerase (Qin et al., 2016).

The synthesis of these metal complexes involves reacting MF
with metal salts under specific conditions to produce stable, water-
soluble complexes. Furthermore, Núñez-Sellés et al. (2022) found
that MF-selenium (IV) complexes provided greater protection
against protein degradation and demonstrated lower peroxidation
potential than MF-Cu (II), and Zn (II) complexes, suggesting the
potential advantages of using MF-Se (IV) complexes for cancer
treatment. Recent efforts to enhance the bioavailability of new MF
formulations have explored various types of carriers. These include
organic carriers such as nanoparticles, lipid-based carriers, protein-
based carriers, and polymer-based carriers. Inorganic carriers like
mesoporous silica and gold nanoparticles have also been explored
(Barakat et al., 2022; Vishwakarma et al., 2024). This review focuses
on the advances made in the last decade in synthesizing MF
derivatives, complexes, and carriers as potential antitumor agents.

2 Data search

Published reports on MF were downloaded and reviewed from
specialized data sources, including PubMed/MedLine,
ScienceDirect, Google Scholar, SciFinder, and the TRIP Database.
The search methodology include terms as “mangiferin,” “mangiferin
derivatives,” “mangiferin complexes,” “mangiferin carriers,”
“mangiferin complex synthesis,” “mangiferin bioavailability,”
“mangiferin permeability,” “mangiferin pharmacological effects”
“mangiferin antitumor effects,” “Inclusion criteria focused on
studies published between the years 2015–2024, emphasizing
comprehensive data regarding bioavailability, mechanisms of
action, and other research related to the chemical synthesis and
antitumor effects of MF, its complexes, and carriers on cancer. The
search included in vitro, in vivo, and clinical studies, while reports on
skin treatment formulations and cosmetic applications were
excluded and will be discussed in a separate context.

3 Antitumor effects of mangiferin

The potential effects of MF as an antitumor agent have been
discussed elsewhere by several authors (Mei et al., 2021b; Sarfraz
et al., 2023). One of the major mechanisms through which MF
exhibits its anticancer and apoptosis-inducing effects is through the
inhibition of the NF-ΚB pathway and its antioxidant effects at the

cellular level. Nuclear translocation of NF-kB has induced the
transcription of several genes involved in various types of cancer,
including brain, breast, lung, and gastric cancer (Moneva-
Sakelarieva et al., 2025). NF-kB activation and cell proliferation
can activate the autocrine production of TNFα, leading to increased
NF-kB activation and resistance to apoptosis. Inflammation plays a
pivotal role in all stages of the development and progression of
cancer; cancer cells release several cytokines and chemokines, which
are related to immune-related tumor progression, with increased
inflammation (Rahmani et al., 2023). On the other hand, OS may
increase the inflammatory environment that promotes tumor
growth and metastatic potential (Yu et al., 2022). Therefore,
when exploring the potential role of MF and its derivatives,
complexes, and carriers for enhancing cancer treatment, these
two effects (anti-inflammatory and antioxidant) have a significant
influence on its antitumor effects.

4 Enhancement of antitumor effects of
mangiferin

4.1 Mangiferin derivatives

MF contains two hydroxylated aromatic rings, with four
hydroxyl groups located on carbons 1, 3, 6, and 7; a xanthone
ring, which includes a carbonyl group, and a glucose moiety
(pyranose group) attached to carbon 2 (Figure 1). Consequently,
the hydroxyl groups on C3, C6, and C7 are the primary target sites
for synthesizing MF derivatives. Some substitution reactions may
involve the hydrogen atom on C8, as well as C-C enzymatic cleavage
at C2. The hydroxyl group on carbon atom C1 is hindered by steric
effects from the pyranosyl group and forms an intramolecular
hydrogen bond with the adjacent carbonyl group (Gómez-Zaleta
et al., 2006). However, in a strongly basic medium, it may be possible
to bond the oxygen atom of the C1-hydroxyl group.

The synthesis of MF derivatives using alkyl halides at 60°C, with
dimethylformamide (DMF) as the solvent at pH = 8, has led to the
formation of nine derivatives, as illustrated in Figure 2 (Turkar et al.,
2024). Notably, the substitution with a decyloxy group at positions
C3, C6, and C7 (derivative 6 in Figure 2) exhibited the highest
inhibition ratio (100%), compared to MF, indicating a significant
enhancement in antidiabetic activity due to this novel derivative.

FIGURE 1
Chemical structure of mangiferin (MF). Arrows indicate possible
reaction sites, depending on the synthetic pathway to produce MF
derivatives and/or complexes.
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Similarly, a positive outcome was observed with acetyl derivatives,
which were created by esterifying the four hydroxyl groups in the
pyranosyl group. This method produced acetic, propionic, and
butyric derivatives that demonstrated greater antidiabetic activity
than MF (Figure 3). Additionally, various modifications such as
acetylation, benzylation, cinnamoylation, and methylation were
conducted to develop different MF derivatives aimed at
increasing antioxidant activity (Figure 4). The antioxidant
capabilities of the synthesized derivatives were assessed through
the DPPH test and by evaluating the inhibition of lipid peroxidation.

The results indicated a significant improvement in the antioxidant
activity of the acetylated MF derivative (compound 2, Figure 4).

The synthesis of aryl and alkyl halide MF derivatives has been
reported to enhance its analgesic properties (Khare and Shanker,
2016). However, no significant differences in analgesic effects were
observed (Figure 5). Patil et al. (2022) reported the synthesis of novel
esterified and alkylated aryl amine derivatives of MF aimed at
improving its in vitro antioxidant and antitumor effects
(Figure 6). Some of these derivatives had higher cytotoxic effects
than MF against the breast cancer cell line MDA-MB-231. Liu et al.

FIGURE 2
Chemical derivatives to enhance the mangiferin (MF) antidiabetic activity by inhibiting the Protein Tyrosine Phosphatase 1B (PTP1B). Reaction
conditions: DMF as solvent; K2CO3, RX, stirring 10 h, 60°C. Derivatives 6 and 9 showed 100% and 62.5% higher inhibition than MF against PTP1B (Turkar
et al., 2024).
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(2017) found comparable results using xanthones in the same
cancer cell line.

The synthesis of glycosylated derivatives of MF is regarded as a
promising strategy for enhancing its biological effects, although it
has not been extensively documented in the literature. One approach
involved creating MF-fructosyl derivatives through
biotransformation using Arthrobacter nicolianae and
dextrasucrase, specifically targeting the C6 position of the
pyranosyl group (He et al., 2015; Septiana et al., 2020). This
method was associated with claims of treating antitumor-related
diseases. In a similar effort to increase the antioxidant activity of MF,
researchers used a recombinant maltogenic amylase to produce MF-
glucosyl-α-(1→6)-MF and maltosyl-α-(1→6), resulting in a 5500-
fold increase in water solubility compared to MF. Nevertheless, the
MF glucosides exhibited similar DPPH free radical scavenging
activity (Wu et al., 2021). Additionally, Lee et al. (2022) reported
the synthesis of an MF-glucosyl-α-(1→4) derivative through
glucosyl transferase from Thermoanaerobacter sp. This derivative
was formulated with β-cyclodextrin to create an inclusion complex,
achieving a remarkable 5093-fold increase in water solubility and
demonstrating significantly higher anti-inflammatory
activity than MF.

Five new derivatives of MF were identified in the extract of
mango stem bark, which have not been documented previously
(Figure 7) (Núñez-Sellés et al., 2020). The underlying hypothesis
suggests that the biological effects observed in plant extracts

containing MF may result from a synergistic combination of MF,
glycosylated MF derivatives, galloylated MF derivatives, and
benzoylated MF derivatives. Moreover, computational techniques
have been employed to profile the interaction of MF at the atomic
level against nine selected molecular targets with clinical relevance in
tumorigenesis. In an attempt to investigate the potential of MF as a
viable starting point for synthetic exploration of MF-based analogs,
extensive structural modifications have been explored, which need
to be realized experimentally (Taiwo et al., 2018). Several studies
have been conducted on QSAR studies for MF derivatives focused
on antimicrobial (Nortje et al., 2025) or antidiabetic (da Silva-Lopes
et al., 2024), but there is a lack of information about the antitumor
effects of MF derivatives.

In summary, alkylation and acylation reactions at positions C3,
C6, and C7 resulted in MF derivatives with improved antidiabetic
and antioxidant activities, respectively. Additionally, esterification
and aryl-alkylation reactions, particularly at position C6, produced
MF derivatives that exhibited greater cytotoxicity against a breast
cancer cell line compared to free MF. However, not all MF
derivatives synthesized through these chemical reactions
demonstrated improved biological activity over MF, which
underscores the necessity for quantitative structure-activity
relationship (QSAR) studies focused on the biological effects of
MF derivatives (Benard and Chi, 2015). A promising strategy for
developing antitumor agents from MF includes creating derivatives
with oxygenated radicals, such as acetylated, benzoylated,

FIGURE 3
Chemical derivatives to enhance the mangiferin (MF) antidiabetic activity in a streptozotocin-induced hyperglycemia mouse model. Reaction
conditions: alkyloxy anhydride, H2SO4, stirring 18 h, 40°C. All derivatives showed significantly higher antidiabetic activity than MF (Turkar et al., 2024).
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glycosylated, and galloylated, attached to both the xanthone ring and
the pyranosyl group.

4.2 Mangiferin complexes

4.2.1 Inclusion complexes with cyclodextrins
Cyclodextrin (CyD) inclusion complexes are one of the

strategies for increasing the solubility of poorly soluble drugs.
CyDs belong to the family of cyclic oligosaccharides, with the
primary being α-, β-, and γ-CyD, which consist of 6, 7, and 8 units
of glucopyranose, respectively (Figure 8A) (Crini et al., 2018).
Due to their toroidal or truncated cage-like supramolecular
configurations (Figure 8B), they can encapsulate hydrophobic
compounds by forming inclusion complexes (Alshati et al., 2023).
Various chemical modifications, such as methylated β-CyD
(Santos et al., 2017), hydroxypropyl β-CyD (D’Aria et al.,
2022), and hydroxypropyl methyl β-CyD (Zucca et al., 2025)
have envisaged the use of CyDs in a range of pharmaceutical and
medical applications. Drug inclusion complexes, particularly

those involving β-CyD, have demonstrated improved solubility,
enhanced bioavailability, reduced drug resistance, target
delivery, and better tissue or organ penetration (Carneiro
et al., 2019).

Several studies have reviewed the use of cyclodextrins (CyDs) to
enhance the bioavailability and membrane permeation of antitumor
drugs (Gidwani and Vyas, 2015; Gandhi et al., 2020). Notable
examples of drugs that form inclusion complexes with CyDs
include oxaliplatin (Zhang et al., 2016), 5-fluorouracil (Di
Donato et al., 2016), bufalin (Zou et al., 2017), gemcitabine
(Rescifina et al., 2019), and bicalutamide (De Gaetano et al.,
2022), among others. Additionally, the use of CyDs to deliver
natural compounds with antitumor activity has also been
reviewed (Christaki et al., 2023).

Notably, only a few reports over the last decade have focused on
the inclusion complexes of MF for pharmaceutical applications. It
highlights the need to further explore this research approach to
enhance MF bioavailability. Hernández-García et al. (2022)
documented the physicochemical characteristics of the MF-β-
CyD inclusion complex, showing that MF was incorporated into

FIGURE 4
Chemical derivatives to enhance the mangiferin (MF) analgesic activity by inhibiting the cyclooxygenase enzyme. Reaction conditions: DMF as
solvent, K2CO3, stirring overnight, room temperature. MF and all its derivatives had similar analgesic and anti-inflammatory effects (Turkar et al., 2024).

Frontiers in Pharmacology frontiersin.org05

Melo-Betances et al. 10.3389/fphar.2025.1598719

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1598719


the inner cavity of the β-CyD toroid through the xanthone ring,
forming a stable 1:1 stoichiometric inclusion complex (MF-β-CyD).
Li et al. (2021) reported the same sterical behavior for MF-γ-CyD,
regarding the inclusion of the xanthone ring into the inner cavity,
which enhanced the antioxidant activity of MF. Additionally, the use
of polyamine-β-CyD improved the formation of another inclusion
complex (MF-polyamine-β-CyD) with the same 1:1 stoichiometric
ratio, demonstrating significantly lower toxicity to human normal
cells compared to free MF (Liang et al., 2019).

4.2.2 Other inclusion complexes
Inclusion complexes of MF with a mixture of humic acids can

significantly increase its water solubility fivefold, from 0.02 mg/
mL up to 0.1 mg/mL (Morozova et al., 2022). These nanoparticles
(HA-MF) may function as lipophilic and pH-responsive drug
carriers that can target cancer cells by inducing apoptosis and
causing cell cycle arrest, in addition to their proven antiviral
effect. Targeted polymeric self-assembled nanoparticles with
hyaluronic acid, a naturally occurring glycosaminoglycan
found throughout the body’s connective tissue, have been
developed to deliver MF with a high loading content of
6.86% ± 0.60%. These nanoparticles demonstrate excellent
blood circulation and exhibit missile-like delivery to the
pancreas (Wang M. et al., 2022).

4.2.3 Metal coordination complexes
Metal coordination of phenolic compounds has been widely

described in the literature (Kalinowska et al., 2020). Metals can alter
biological activity, including the biological properties of ligands, by
affecting the molecular structure and charge density of phenolic
compounds. Research has shown that metal chelates can have higher
pharmacological effects than the phenolic compounds alone
(Kowalczyk et al., 2021). Research on the therapeutic applications
of coordination complexes with bioactive organic ligands has shown
significant progress during the first 2 decades of the 21st century
(Khater et al., 2019). The redox activities of these complexes and
their impact on homeostasis at the cellular level have been
extensively studied (Kasprzak et al., 2015). The use of flavonoids
as bioactive ligands for synthesizing metal complexes focused on
4′,7,8-trihydroxy-isoflavone combined with zinc (II), copper (II),
manganese (II), nickel (II), cobalt (II), and selenium (II) has been
studied by Tang et al. (2011). The results showed that all the metal
complexes exhibited a higher cytotoxic effect than the free
isoflavone. The metallic nucleus was coordinated with the two
adjacent hydroxyl groups in the catechol moiety of two
isoflavone derivative ligands, which had a strong interaction with
calf-thymus DNA.

Fan et al. (2017) reported on the use of epigallocatechin gallate-
iron (III) complexes as a drug delivery system aimed at enhancing

FIGURE 5
Chemical derivatives to enhance the antioxidant activity of mangiferin (MF) by DPPH test and inhibition of lipid peroxidation. Reaction conditions:
Acetylation and cinnamoylation (alkyloxy and pyridine as solvent); Methylation (acetone, DMS, K2CO3, stirring between 7 and 36 h, room temperature.
Derivatives 3 and 4 had higher antioxidant activity than MF by 77.2%, and 83.7%, respectively (Turkar et al., 2024).
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conventional cancer treatments. These complexes were found to
reduce cancer metastasis by eliminating epithelial-mesenchymal
transition cells. Additionally, Xie et al. (2021) reviewed other
applications of metal-polyphenol complexes (MPN) in cancer
therapy and diagnosis with several polyphenolic ligands
(myricetin, quercetin, luteolin, fisetin, and epigallocatechin) and
metals such as Fe (II and III), Mg (II), Mn (II), Al (III), Ti (IV), Co
(II), V (III), Cu (II), Zn (II), Ni (II), Cr (IV), Zr (IV), and Mo (IV),
including also several transition metals, which have been explored as
chemotherapeutics or diagnostic tools in cancer research. These
MPN complexes are being intensively studied because of their
biomedical applications (Rosenblum et al., 2018). However,
synthetic routes and biomedical applications of MF metal
complexes have not been extensively studied. Exploring the
potential of forming metal complexes to enhance the
antitumor mechanism of MF could be a promising approach
to increase its bioavailability and bioactivity (Rodríguez-Arce
and Saldías, 2021).

Qin et al. (2016) have reported the synthesis of MF-Cu (II) and
MF-Zn (II) complexes in a 1:1 stoichiometric ratio, at pH 7.5, and
proposed the structure shown in Figure 9 according to the spectral
data. MF was attached to the metal nucleus through the electron pair
of the oxygen atom in the carbonyl group and the hydroxyl group in
C1. MF-metal complexes were tested through the MTT test on
breast (MCF-7), liver (HepG2), ovarian (SKOV 3), and lung (NCI-
H460) cancer cell lines. Inhibition of cell proliferation was enhanced
between 1.6-fold and 6.1-fold, as compared to MF. MF-Cu (II)
complex showed the best inhibition number for MCF-7 and NCI-
H460 cancer cell lines, and the poorest for SKOV3 cell line. The MF-
Zn (II) complex did not show a significant improvement in cell
proliferation as compared to MF.

The formation of metal complexes with MF in plant aqueous
extracts may help explain why the biological activity of these extracts
can sometimes exceed that of the isolated MF (Nuñez Selles et al.,
2016). It has been suggested that the combination of MF with trace
elements such as Cu (II), Zn (II), and Se (IV)—likely through the

FIGURE 6
Chemical derivatives to enhance the antitumor activity of mangiferin (MF) in breast cancer cell line (MDA-MB-231). Derivatives 6, 11, and 12 showed
significantly higher cytotoxic effects than MF in this cell line (Patil et al., 2022).
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formation of MF metal complexes—may contribute to the
synergistic effects of both MF and the inorganic elements.
Enhancing the antitumor effect of MF by forming metal
complexes could potentially increase both its bioavailability and
bioactivity. In vitro studies have shown that MF-Se (IV) complexes
in stoichiometric ratios of 1:1, 2:1, and 3:1 exhibited greater
inhibition of lipid peroxidation and stronger protection against
protein oxidation compared to similar complexes formed with
Cu (II) and Zn (II) (Núñez-Selles et al., 2022). Selenium, as the
central nucleus of MF or polyphenol metal complexes, has not been
extensively studied, despite its attractive biological properties
(Kiełczykowska et al., 2018; Zoidis et al., 2018). Table 1
summarizes several types of MF inclusion and metal complexes
that have enhanced the antitumor effects of MF through their
increase in water solubility and cell permeability, which have
been reported in the last decade (2015–2024).

5 Mangiferin carriers

5.1 Organic carriers

Nanoparticle carriers are considered one of the most promising
methods for enhancing the bioavailability of MF in cancer
treatment, as extensively reviewed by Barakat et al. (2022).
Among these carriers, Nanostructured Lipid Carriers (NLCs)
represent a second generation of lipid-based carriers developed to

address the limitations of earlier solid lipid carriers (SLCs) (Viegas
et al., 2023). NLCs consist of a mixture of biocompatible solid and
liquid lipids (in a 7:3 ratio), along with a surfactant, offering higher
drug loading capacity and stability compared to SLCs. The MF-NLC
formulation has been utilized for ocular delivery, as reported by
Santonocito et al. (2022), using 888ATO as the solid lipid and
miglyol as the liquid lipid. This formulation was found to be non-
irritating to the eyes and demonstrated a significant increase in the
antioxidant activity of MF. Khurana et al. (2017a) prepared MF-
NLC by refluxing various molar ratios of MF and Phospholipon 90G
(1:1, 1:2, 1:3) before incorporating them into the NLC formulation,
which consisted of Compritol and Labrafil M2125. They achieved a
controlled release formulation that lasted up to 10 h, resulting in a
fivefold increase in MF plasma concentration. Additionally, MF-
SLC was successfully developed using Labrafil M 2130 CS as the lipid
carrier and Tween 80 as the surfactant, which enhanced antidiabetic
activity in Wistar rats with streptozocin-induced diabetes (Foudah
et al., 2024).

A noteworthy approach in the treatment of lung cancer has
involved the use of a system based on transferrin (Tf) and MF,
capitalizing on the overexpression of Tf in lung cancer cell receptors
(Zhou et al., 2023). The Tf-MF-SLN was created using the
emulsification-solvent evaporation method with DSPE-PEG2000-
Tf (where DSPE stands for 1.2-Distearoyl-sn-glycero-3-
phosphoethanolamine). The release of MF, MF-SLN, and MF-
SLN-Tf was investigated in a specific lung cancer cell line using
confocal microscopy. It was observed that MF-SLN-Tf was

FIGURE 7
Mangiferin derivatives found in aqueous mango stem bark extract by HPLC/MS-MS (Núñez-Sellés et al., 2020).
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FIGURE 8
Structures of the most common cyclodextrins (CyDs) to enhance the bioavailability of poorly water-soluble bioactives. 1. α-cyclodextrin; 2. β-
cyclodextrin; and 3. γ-cyclodextrin (Sharma and Baldi, 2016). (A) 2D structures; (B) 3D toroidal structure of CyDs.

FIGURE 9
Proposed structure of the mangiferin (MF)-metal complex -Cu (II) and Zn (II)- with improved inhibition of cell proliferation in cancer cell lines as
compared to MF (MTT assay) (Qin et al., 2016).
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internalized by the cells within 2 h, whereas free MF and MF-SLN
were not detected. Additionally, the benefits of MF-SLN-Tf were
evident in terms of cell cytotoxicity and the inhibition of cell
proliferation.

Nanoemulsions serve as versatile carriers for the delivery of
lipophilic, hydrophilic, and amphiphilic bioactives, enhancing the
bioavailability of poorly absorbed drugs (Mohammad et al., 2017;
Dhumal et al., 2022). A self-assembly method of MF using
phosphatidylcholine and chitosan has achieved a complete release
of MF within 60 min for oral administration (Duyen and Duy,
2024). Self-assembled phospholipidic nanomicelles of MF, co-
delivered with vitamin E, enhanced the cytotoxicity and cellular
uptake on MCF-7 and MDA-MB-231 breast cancer cell lines,
resulting in a higher and faster uptake by the cells (Khurana
et al., 2018). Carbon dots (CDs) have been developed as organic
carriers, but they also have photoluminescent and chemical
structures that may be adapted for several pharmaceutical
applications (Magdy et al., 2023). A water-soluble CD
nanoemulsion containing MF (MF-CD) has demonstrated an

increase in pharmacokinetic parameters, especially showing a 1.6-
fold increase in the area under the curve for the maximum blood
concentration in normal rats. This finding presented a novel
approach for developing MF formulations with enhanced
bioavailability (Kong et al., 2024).

A specific study investigated polyethylene glycol linked to
carbon nanotubes (PEG-CNTs) as carriers for methotrexate (MT)
in brain cancer treatment (Harsha et al., 2019). Cytotoxicity studies
conducted on the U-87 brain cancer cell line showed a 1.28-fold
decrease in the IC50 dose compared to MTX alone. This suggests
that PEG-CNTs may be a promising approach to enhance the
antitumor effects of MTX. Nanoparticles of MTX combined with
hyaluronic acid (HA) have been synthesized using a self-assembly
method to reduce the toxicity of MTX in cancer treatment (Wang
et al., 2023). The MF-HA-MTX nanoparticles specifically inhibited
the K7 cancer cell line while exhibiting lower toxicity compared to
traditional MTX chemotherapy. A similar study by Meng et al.
(2019) reported the assembly of an ionic peptide (RADA16-I) with
MTX. The RADA16-I-MF-MTX nanoparticles demonstrated a

TABLE 1 Chemical derivatives and complexes of mangiferin (MF) and other antitumor drugs to enhance its water solubility and cell permeability.

Type Antitumor
agent

Ligand Dose Enhanced effect References

Chemical
derivatives

MF-decyl Alkyl 5.4 μM ↑PTP1 B inhibition (100%) Turkar et al. (2024)

MF-alkyl/aryl Arylalkyl 0.35 M ≈Analgesic activity Khare and Shanker (2016)

MF-acetyl Alkyloxy 0.5 mM ↑Hypoglycemic activity Turkar et al. (2024)

MF--derivatives Galloyl- & Hydroxybenzoyl 0.1 mM Synergic effect Núñez-Sellés et al. (2020)

MF-Glycosyl Glycosyl 8–10.5 μM ↑Antioxidant activity He et al., 2015; Septiana et al., 2020;
Lee et al., 2022

Inclusion
complexes

Oxaliplatin β-CyD 31–45 μM ↑Cytotoxicity on HCT 116 and MCF-7
cells

Zhang et (2016)

5-fluorouracil β-CyD 18–55 μM ↑Cytotoxicity on MCF-7, Hep G2,
Caco-2, A-549 cells

Di Donato et al. (2016)

bufalin β-CyD 500 nM ↑Cytotoxicity on HCT116 cells Zou et al. (2017)

gemcitabine β-CyD 0.5 μM ↑Cytotoxicity on $-549 cells Rescifina et al. (2019)

bicalutamide β-CyD 0.2 mM ↑Cytotoxicity on PC-3 andDU-145 cells De Gaetano et al. (2022)

NA Non-modified and modified β-CyDs NA Several biological effects Santos et al. (2017)
Hernández-García et al. (2022)

D’Aria et al. (2022)
Zucca et al. (2025)

MF Hyaluronic acid NA ↑Cytotoxicity MTX on MCF-7 cells Wang et al. (2023)

MF Polyamine modified β-cyclodextrin NA ↓Toxicity in human normal cells
(HEK 293)

Liang et al. (2019)

Humic acids NA ↑Apoptosis induction Morozova et al. (2022)

Metal
complexes

Metal complex Epigallocatechin gallate 35–70 μM ↓Cancer metastasis Fan et al. (2017)

MF 2.3 μM ↑Cytotoxicity on MCF-7, Hep G2,
SKOV3, and NCI-H460 cells

Qin et al. (2016)

MF 8–16 μM ↑Protein protection and ↓lipid
peroxidation

Núñez-Sellés et al. (2022)

Myricetin, quercetin, fisetin, luteoin
and epigallocatechin

NA ↑Cytotoxicity on several cancer cell lines Xie et al. (2021)

Legend: PTP1B: Protein tyrosine phosphatase 1B; β-CyD: β-Cyclodexdtrin; MF: mangiferin; MTX: methotrexate; NA: not applicable.
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TABLE 2 Several types of mangiferin (MF) carriers to enhance its water solubility and cell permeability.

Type Sub-type Carrier Dose Enhanced effect References

Organic Carriers Lipidic 888ATO + miglyol 2 μM ↑Antioxidant effect in ocular delivery Santonocito et al. (2022)

Phospholipon 90H 0.1 mM ↑Antioxidant effect Telange et al. (2021)

Phospholipon90G + compritol + Labrafil
M2125

100 μM ↑Cytotoxicity on CaCo 3 cells Khurana et al. (2017a)

Labrafil M 2130CS + Tween 80 0.2 μM ↑Antidiabetic Foudah et al. (2024)

DSPE + Transferrin 7.5 μM ↑Cytotoxicity on A549 cells Zhou et al. (2023)

Nanoemulsion Phosphatidylcholine + chitosan NA ↑MF release (100%) Duyen and Duy (2024)

Phospatidylcholine + sodium glycolate NA ↑Cytotoxicity on CaCo 2 cells Thiengkaew et al. (2021)

Phospholipon90G + vitamin E-TPGS 4.4 nM ↑Cytotoxicity on MCF-7 cells Khurana et al. (2018)

Carbon dots >1.5 μM ↓Toxicity in human normal cells
(H7-22)

Kong et al. (2024)

Amphiphilic
carrier

Mangiferin NA ↓Drug chemoresistance in cancer
treatment

Zheng et al. (2025)

Carbon nanotubes Polyethylene glycol 8–26 μM ↑Cytotoxicity on U-87 cells Harsha et al. (2019)

Inorganic carriers Nanoparticles Gold NA ↑Targeted delivery for prostate cancer Mitri et al. (2023)

0.25 mM ↓Toxicity in human normal cells
(MCF-10A)

Patra et al. (2018)

2.4 mM ↑Cytotoxicity of DOX on U87 cells Aboyewa et al. (2021)

2.4 mM ↑Cytotoxicity in breast cancer Aboyewa et al. (2022)

Inorganic carriers Nanoparticles Radioactive gold 5–15 μM ↑Cytotoxicity on PC-3 cells Al-Yasiri et al. (2017)

Metal oxides Zinc oxide (ZnO) NA ↑Cytotoxicity on A549 cells Rajeshkumar et al. (2018)

Mesoporous silica Syloid®XDP3050 NA ↑Water solubility Baán et al. (2019)

Mesoporous silica SBA15 NA ↑Water solubility Pontes-Silva et al. (2017)

Microspheres Magnetic iron III NA ↑Cytotoxicity on cancer cell lines Xiao et al. (2021)

Polymer-based
carriers

Polysaccharide Chitosan NA Several biological effects Athipornchai et al. (2024)
Demeyer et al. (2021)

Samadarsi and Dutta (2020)

Chitosan-PVA NA ↑Water solubility Pipattanawarothai et al.
(2019)

Chitosan-PVA-gelatin NA ↑Water solubility Pipattanawarothai et al.
(2019)

N-succinyl-alginate-chitosan 23.6 μM ↑Hypoglycemic activity Wang et al. (2022b)

Carboxymethyl-chitosan 18–36 μM ↑Cytotoxicity on MG63 cells Yusri et al. (2020)

Copolymers PLGA-Polysorbate 80 10–20 μM ↑MF brain bioavailability Ahmad et al. (2024)

PLGA-ZnO ↑Cytotoxicity on HepG2 cells Fabián et al. (2023)

GLP-1-PEG-PCL 2 μM ↑Hypoglycemic activity\ Wang et al. (2022b)

Protein β-lactoglobulin 900 μM Colonic control release Samadarsi and Dutta (2019)

Ovoalbumin NA ↑Anti-diabetic effect Chen and Zhen (2022)

Legend: PVA: polyvinyl alcohol; PLGA: polylactic globulinic acid; PEG: polyethylenglicol; PCL: polycaprolactone; GLP-1: Pancreas-targeting agent; DSPE: 1,2-diestearoyl-sn-glycero-3-

phosphoethanolamine; TPGS: α-Tocopheryl polyethylene glycol succinate; MF: mangiferin; DOX: doxorubicin; NA: not applicable.
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significantly greater inhibition of colorectal adenocarcinoma cells
(DLD-1) and colon cancer cells (KYSE 30) compared to MTX alone
after 24, 48, and 72 h. MF has also been used as a carrier for
delivering antitumor drugs (Zheng et al., 2025). The MF carrier
consists of four components: i. a modulator for the tumor’s
inflammatory environment, ii. an inducer of ferroptosis, iii. a
tumor-penetrating agent, and iv. MF itself, which together form a
self-assembled MF amphiphile that incorporates the antitumor drug
(paclitaxel). The anticancer efficacy of the MF-carried formulation
against paclitaxel-resistant breast tumors was confirmed in both
in vitro and in vivo studies, demonstrating the effectiveness of this
new cancer treatment approach.

In summary, organic carriers have been widely used to enhance
the biological effects of MF. Among these, NLCs appear to be the
most promising option for improving MF bioavailability when
combined with specific tumor-targeting agents. Additionally,
CyDs, CDs, and carbon nanotubes have been recently introduced
as organic carriers for MF. These carriers have demonstrated
favorable properties for cancer treatment due to their low toxicity
in cancer cell lines.

5.2 Inorganic carriers

Gold nanoparticles (AuNPs) with anti-microbial, anti-viral, and
anti-tumor properties have gained attention in prostate cancer, as
summarized in a recent review by Mitri et al. (2023). In addition to
their cytotoxic effects on cancer cell lines, particularly prostate
cancer cells, AuNPs can effectively target tumor cells by
delivering antibodies and ligands that specifically eliminate
prostate tumors (Khoobchandani et al., 2021). The synthesis of
MF-loaded gold nanoparticles (MF-AuNPs) and their effects on the

MCF-10A breast cancer cell line have been reported by Patra et al.
(2018). Their study noted the cleavage of the C-C bond of the
pyranose moiety along with the oxidation of the phenolic hydroxyl
groups (C1, C3, C6, and C7) during the formation of MF-AuNPs.
Furthermore, Aboyewa et al. (2021) indicated that MF-AuNPs could
be beneficial in the cotreatment of colorectal cancer when used
alongside doxorubicin, showing effectiveness in the Caco 3 cancer
cell line and HT-29 (colorectal adenocarcinoma), as well as inMDA-
321 (breast cancer) cell lines (Aboyewa et al., 2022).

Radioactive gold (198Au) nanoparticles loaded with MF (MF-
198AuNPs) have been shown to enhance radiotherapy for prostate
cancer (Al-Yasiri et al., 2017). The intratumoral delivery of MF-
198AuNPs demonstrated that over 80% of the injected dose
remained in prostate tumors for up to 24 h. Additionally, there
was a five-fold reduction in tumor volume after 3 weeks of
treatment compared to the control group, which received a
saline solution. Moreover, MF-198AuNPs have led to efficient
endocytosis of prostate tumor cells, via the MF pyranose
moiety, in SCID mice implanted with prostate tumor (PC-3)
xenografts (Katti et al., 2017; Katti et al., 2018).

Zinc oxide (ZnO) has recently been utilized as an encapsulating
agent for various antitumor drugs due to its cytotoxic effects
associated with compounds produced during the synthesis of
ZnO nanoparticles (Hamrayev et al., 2020; Razura-Carmona
et al., 2022; 2023; Wang Y. et al., 2022; Missier et al., 2024;
Shubha et al., 2024). Extracts from Mangifera indica (mango)
containing MF have been encapsulated in ZnO nanoparticles and
tested against the A549 lung cancer cell line (Rajeshkumar et al.,
2018). The cytotoxic effect of the ZnO-microencapsulated mango
extract increased with higher concentrations of the formulation and
was comparable to that of the positive control, cyclophosphamide, at
lower doses.

FIGURE 10
Diagram of main challenges for improving mangiferin solubility and bioavailability for cancer treatment. (QSAR: Quantitative Structure-Activity
Relationships, NLCs: Nanolipid Carriers, AuNPs: Gold Nanoparticles).
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Mesoporous silica (Syloid® XDP 3050) has been reported to
form MF complexes following rotary mill mixing with MF in a
1:1 ratio (Baán et al., 2019), leading to enhanced water solubility;
however, no biological data were provided. MF magnetic
microspheres (MF-MG-MS) have been identified as potential
carriers for cancer treatment (Xiao et al., 2021). The MF-MG-MS
carrier was synthesized using iron acetylacetonate in phenyl ether,
incorporating oleic acid and oleylamine. Additionally, copolymers
(PCL-PEG-PCL) were created through the ring-opening of ε-
caprolactone, and MF-MG-MS were produced by the solvent
diffusion method.

5.3 Polymer-based carriers

Polymer-based carriers are micro- or nano-particle spherical
matrices that deliver bioactive molecules. These carriers can be
created using one or more types of polymers (Lu et al., 2021).
They have been utilized in various applications, including bone and
cartilage tissue engineering (Zhou et al., 2023), cancer treatment
formulations (Yan et al., 2018), ocular drug delivery (Naik et al.,
2020), insulin delivery (Mansoor et al., 2019), and vaccine delivery
systems (Lambricht et al., 2017), among others. Various polymer-
based carriers have been employed to enhance the bioavailability of
MF, as discussed in a review by Morozkina et al. (2021).

Chitosan, a polysaccharide derived from acid hydrolysis of
chitin, and chitosan-modified polymers have attracted the
scientific community as drug carriers for several applications
(Ghaz-Jahanian et al., 2015; Demeyer et al., 2021; Saeedi et al.,
2022; Goyal et al., 2024; Athipornchai et al., 2024; Lv et al., 2024).
Samadarsi and Dutta (2020) utilized MF-chitosan nanoparticles
(MF-Chi-NPs) with tripolyphosphate as a crosslinker to enhance
the antioxidant effects of MF. In addition to exhibiting a greater free
radical scavenging effect, as compared to free MF, the MF-Chi-NPs
demonstrated a synergistic effect on the antioxidant enzymes
catalase and peroxidase. This led to improved protection against
protein oxidation and enhanced inhibition of lipid peroxidation.
The effectiveness of MF carboxymethyl chitosan on the
MG63 osteosarcoma cell line has been shown to inhibit cell
growth, with IC50 values ranging from 7.8 to 15.6 μg/mL. In
comparison, MF required significantly higher concentrations
(Yusri et al., 2020). Additionally, MF has been incorporated into
alginate-grafted N-succinyl chitosan (MF-Chi-NSC) to lower
glucose, cholesterol, and triglyceride levels (Wang Y. et al., 2022).
In vivo experiments demonstrated a reduction in glucose levels from
300 to 90 mg/mL with MF-Chi-NSC (300–180 mg/mL with MF);
cholesterol levels decreased by approximately 37% (compared to
1%–36% with MF), and triglyceride levels dropped by around 60%
(10%–40% with MF).

The research conducted by Pipattanawarothai et al. (2019)
investigated the loading of MF into various blending systems,
including binary systems composed of polyvinyl alcohol (PVA)
and chitosan (CHI), as well as ternary systems that combine
PVA, CHI, and gelatin. The study revealed that MF can form
hydrogen bonds with the amide groups of chitosan and the
hydroxyl groups of polyvinyl alcohol in homopolymer matrices.
Notably, MF exhibited a stronger tendency to form intermolecular
hydrogen bonds with the hydroxyl groups of chitosan compared to

those of polyvinyl alcohol. Consequently, as the content of chitosan
in the polymer-based carrier increases, the release of MF decreases.

The enhancement of brain bioavailability for MF has been
achieved using polylactic-glycolic acid (PLGA) nanoparticles coated
with polysorbate 80, administered via intranasal delivery in rats
through an ischemia-induced model (Ahmad et al., 2024). The
absorption of MF was higher than 80%, with a controlled release
lasting 8 h. Additionally,MF-β-LG nanoparticleswere formulatedwith
β-lactoglobulin using tripolyphosphate as a cross-linker,
demonstrating an 80% release in simulated colonic fluid within 8 h
and only 9% release in simulated gastric fluid. This suggested that these
nanoparticles could be a promising system for targeted MF delivery in
oral formulations (Samadarsi and Dutta, 2019). However, there is a
risk that the nanoencapsulation with β-lactoglobulin could reduce the
biological properties of MF, which may affect its oral bioavailability.

Targeted polymeric nanoparticles have been developed to deliver
MFwith a high loading content of 6.86%± 0.60%. These nanoparticles
demonstrate excellent blood circulation and exhibit missile-like
delivery to the pancreas (Wang M. et al., 2022). A pancreas-
targeting agent, GLP-1, was immobilized on the copolymer
polyethylene glycol-polycaprolactone (PEG-PCL) to create GLP-1-
PEG-PCL (GLPP). These nanoparticles were self-assembled with MF,
resulting in MF-GLPP nanoparticles that exhibited a higher
concentration in the pancreas compared to free MF formulations
in vivo. MF particles loaded with PGE have been evaluated concerning
the inhibition of the enzyme α-glucosidase, which showed a more
effective inhibition, around 95.42%, when compared to the free-form
MF (90.42%) (Bezerra et al., 2019).

Recently, there has been a review of alternatives to forming
macromolecular organic carriers with an inhibitor to enhance cell
permeability (Skwarecki et al., 2020). Once these conjugates are
internalized into the cell, either through direct translocation or
endocytosis, they can release the active compound and target
intracellular sites. Polymer-based carriers for the bioactive
compound have demonstrated their high structural versatility,
making them an appealing option for delivery. Modifying these
carriers using homopolymers, copolymers, peptides, or proteins can
facilitate specific targeting of therapeutic or diagnostic active sites.
This targeting potentially increases the efficacy and sensitivity of the
treatment. Table 2 summarizes the MF-drug carriers that enhance
MF’s water solubility and permeability.

6 Future perspectives

Future research on the synthesis of chemical derivatives,
coordination metal complexes, and carriers for the formulation of
MF in cancer treatment should focus on several key directions to
enhance its therapeutic efficacy and bioavailability (Baghel et al.,
2024). Firstly, the development of novel synthetic methods to
create MF derivatives with improved physicochemical properties
could yield compounds with higher potency against various cancer
types. Derivatives optimization for cancer treatment should explore
QSAR modelling for specific cancer targets using adequate structure
descriptors. Within the metal coordination complexes with MF as
ligand, the use of selenium as the central nucleus has shown better
results as compared to other metals. The challenge is to conduct
clinical trials to prove the initial results in clinical practice. Evaluating
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the synergistic effects of MF when combined with existing
chemotherapy agents may also provide insights into multi-modal
treatment strategies that can overcome resistance mechanisms. The
exploration of advanced nanocarrier systems—such as liposomes,
polymeric nanoparticles, and dendrimers—could facilitate targeted
delivery of MF to tumor-specific sites, minimizing systemic toxicity
and maximizing therapeutic effects. Implementing strategies to
enhance the solubility and stability of MF is crucial to ensure
adequate bioavailability. Furthermore, in vivo studies and clinical
trials should be prioritized to assess the safety and effectiveness of
these formulations in cancer patients. Overall, a multi-faceted
approach incorporating synthetic chemistry, material science, and
pharmacologywill be essential to fully realize the potential ofMF as an
effective anti-cancer agent. A summary of future directions in research
on MF’s challenges for cancer treatment is shown in Figure 10.

7 Conclusion

The most significant advantage of MF derivatives, complexes,
and carriers for cancer treatment is their improved bioavailability,
leading to higher cell penetrability and thus higher cytotoxicity on
cancer cells. Glycoside derivatives and metal coordination
complexes have shown great promise among the reviewed MF
derivatives for cancer treatment. Further research is needed to
explore the advantages of MF-Se (IV) complexes, which
potentially enhance both bioavailability and bioactivity,
particularly considering the biological importance of selenium as
a cofactor for endogenous antioxidant enzymes. Among various
matrices, β-Cyclodextrin has emerged as the most effective for
delivering MF due to its toroidal structure and biocompatibility.
However, research on the antitumor effects of MF derivatives,
complexes, and carriers for cancer treatment remains limited,
both in vivo and in clinical settings. MF-based Nanostructured
Lipid Carriers (NLCs), Gold Nanoparticles (AuNPs), and
Polymer-based Nanoparticles (PNPs) have been more extensively
investigated and have proven to be viable technological alternatives
to address the water solubility challenges associated with MF.
Comparative studies efficacy of all these carriers for delivering
MF in cancer treatment are needed. All of these strategies to
enhance MF’s bioavailability and cell penetration lay the
groundwork for future drug development in cancer research.
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