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Background: Lung adenocarcinoma (LUAD) is a major cause of cancer-related
mortality worldwide. Tumor-associated macrophages (TAMs) play a crucial role
in the tumor microenvironment (TME), influencing tumor progression and
immune response. Ferroptosis, an iron-dependent form of regulated cell
death, has been implicated in tumor biology, but its role within TAMs in LUAD
remains unclear.

Aim: This study aimed to screen key genes associated with ferroptosis in
macrophages and construct a prognostic risk model for LUAD based on
these genes.

Methods: Integrating the TCGA-LUAD, GSE131907, and GSE13213 datasets,
macrophage heterogeneity was analyzed through single-cell dimensionality
reduction clustering, pseudotime analysis, and cell-cell communication. Using
the GeneCards ferroptosis gene set (1515 genes), ferroptosis-related differentially
expressed genes in macrophages were screened. Eight machine learning
algorithms (LASSO, SVM, XGBoost, etc.) were leveraged to identify prognostic
genes and build a Cox regression risk model. The functional roles of key genes
were validated through immune infiltration analysis, drug sensitivity prediction,
and Western blot analysis.

Results: Single-cell analysis revealed that macrophages in LUAD lead intercellular
communication through the MIF (CD74+CXCR4) ligand-receptor interaction,
with ferroptosis-related genes (FRGs) highly expressed in macrophages.
73 macrophage FRGs were identified, and through multi-algorithm cross-
validation, HLF, HPCAL1, and NUPR1 were determined as core genes. The risk
model (Risk Score = HLF × (−0.153) + HPCAL1 × 0.261 + NUPR1 × (−0.21))
demonstrated robust predictive performance in both the TCGA and
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GSE13213 cohorts, with 1-, 3-, and 5-year AUC values of 0.756, 0.753, and 0.705.
The high-risk group was enriched in tumor progression pathways (like epithelial-
mesenchymal transition, cell cycle checkpoints), exhibited low expression of
immune checkpoint genes (BTLA, CD47), and showed increased sensitivity to
cyclophosphamide and crizotinib. Western blotting confirmed the expression
levels of HLF, HPCAL1, and NUPR1 were remarkably lower in LUAD cell lines
compared to normal bronchial epithelial cells (P < 0.05).

Conclusion: The research is the first to build a LUAD prognostic model based on
macrophage ferroptosis-related genes (HLF, HPCAL1, NUPR1), revealing the
immune microenvironment characteristics and drug sensitivity differences in the
high-risk group. These findings provide new strategies for precision therapy
targeting ferroptosis in tumor-associated macrophages (TAMs).

KEYWORDS

ferroptosis, lung adenocarcinoma (LUAD), macrophage, prognosis, ferroptosis of
macrophage, single-cell transcriptome analysis

1 Introduction

Lung cancer (LC) is among the most prevalent malignancies
globally and a leading cause of cancer-related mortality (Sung et al.,
2021; Oncology Branch of Chinese Medical AssociationChinese
Medical Association Publishing House, 2023). Lung
adenocarcinoma (LUAD), the predominant histological subtype,
accounts for approximately 40% of all lung cancer cases (Siegel et al.,
2024). The management of LUAD necessitates individualized
treatment strategies tailored to disease progression, with surgery
being the primary modality for early-stage disease, while systemic
therapies are employed for advanced stages (Hirsch et al., 2017; Kris
et al., 2017). Despite treatment advancements, overall survival rates
for LUAD remain suboptimal, particularly the concerning 5-year
survival figures (Yang et al., 2023; Jeon et al., 2023). There is growing
evidence to suggest that therapeutic strategies solely targeting LUAD
tumor cells possess limited efficacy in inhibiting disease progression
or enhancing treatment outcomes.

The tumor microenvironment (TME), including non-tumor
cells such as TAMs, is a current research hotspot and plays a
significant role in tumor development. TAMs promote tumor cell
proliferation, migration, and metastasis by secreting cytokines and
growth factors, while also altering the tumor immune
microenvironment and suppressing immune surveillance, which
ultimately affects the response to cancer therapies (Pan et al.,
2020; DeNardo and Ruffell, 2019; Liang et al., 2022; Mantovani
et al., 2017). Additionally, macrophages significantly impact tumor
cell drug resistance by regulating iron metabolism and promoting
ferroptosis pathways (Dong et al., 2019). Therefore, targeting TAMs
within the TME may represent a promising strategy for future
LUAD treatment.

TAMs are the most abundant stromal cell population in the
TME, mainly consisting of the classically activated M1 phenotype
(anti-tumor) and the selectively activated M2 phenotype (pro-
tumor) (Anderson and Simon, 2020; Zheng et al., 2020; Wu
et al., 2020). M1 macrophages induce inflammatory responses by
secreting pro-inflammatory cytokines such as IL-6, IL-1β, and TNF-
α, which not only affect the activity of enzymes involved in iron,
lipid, and amino acid metabolism (Han et al., 2021; Shanmugam
et al., 2015), but also activate related metabolic pathways through

generating reactive oxygen species (ROS), thereby altering the state
of tissue cells and macrophages themselves (Yuan et al., 2019; Zhang
J. et al., 2019; Kapralov et al., 2020; Yang et al., 2022). Ferroptosis, a
new form of programmed non-apoptotic cell death, features the
accumulation of iron-dependent lipid peroxides, causing cell
membrane rupture and cell death (Dixon et al., 2012). Recent
studies have shown that oxidative stress-induced release of
KRASG12D protein by cancer cells induces autophagy-dependent
ferroptosis in the TME, a process that drives macrophage
polarization toward the M2 phenotype, thus promoting
pancreatic cancer growth (Dai et al., 2020). On the other hand,
iron overload enhances the expression of M1 macrophage markers
(like IL-6, TNF-α, IL-1β) and inhibits the levels of M2 macrophage
markers (such as TGM2), promoting the polarization of
M1 macrophages (Handa et al., 2019). Therefore, the interaction
between ferroptosis and macrophages not only regulates the balance
of the tumor immune microenvironment but may also influence
immune evasion mechanisms in tumors by affecting iron
metabolism and oxidative stress responses. However, the specific
impact of ferroptosis in macrophages on the TME, especially in
terms of tumor infiltration and patient prognosis, remains
incompletely understood. Further investigation into the
regulatory role of ferroptosis in macrophages within the TME
will not only provide new insights into the immune
microenvironment of tumors such as LUAD but may also open
new therapeutic strategies for precision oncology.

However, despite increasing research interest in macrophages
and ferroptosis, substantial knowledge gaps persist regarding the
specific roles and molecular mechanisms of macrophage ferroptosis
in the progression of tumors, particularly LUAD, and in the
remodeling of the tumor microenvironment (TME). For instance,
how macrophage ferroptosis precisely modulates the functions of
downstream immune cells and tumor cell behavior remains unclear.
Furthermore, the key regulatory genes and associated signaling
pathways governing macrophage ferroptosis are yet to be fully
elucidated. These unresolved questions impede the potential
development of targeting macrophage ferroptosis as a novel
therapeutic strategy for LUAD. Consequently, an in-depth
investigation into the regulatory network of ferroptosis within
macrophages and its functional implications in the LUAD
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microenvironment is crucial for advancing our understanding of
LUAD immune regulatory mechanisms and identifying new
therapeutic targets.

Single-cell sequencing technologies provide unprecedented
resolution for dissecting the complexity and cellular heterogeneity
of the TME. This study innovatively integrates multi-center LUAD
single-cell transcriptome datasets (n = 3) to systematically analyze
the cellular heterogeneity of TME. Through single-cell
dimensionality reduction clustering, we constructed a spatial
distribution map of immune and stromal cells within the TME,
focusing on the functional characteristics of macrophage
subpopulations. Pseudotime trajectory analysis revealed the
dynamic differentiation pathways of macrophages, and ligand-
receptor interaction networks were used to decipher their cellular
communication patterns, leading to the identification of key genes
regulating the ferroptosis process. Based on these critical genes, a
prognostic risk score model was built, systematically assessing the
relationship between different risk groups, patient prognosis, and
the immune microenvironment. This model not only effectively
predicts patient survival but also provides potential therapeutic
strategies for targeting the tumor immune microenvironment.
Finally, through drug sensitivity analysis, we further validated the
model’s applicability in chemotherapy drug selection, offering
scientific evidence for precision treatment. By combining single-
cell transcriptomics with multi-omics analysis, this study provides
new insights and strategies for immune microenvironment
regulation and personalized precision therapy in LUAD.

2 Materials and methods

2.1 Acquisition and preprocessing of bulk
RNA-seq data

In this study, we utilized The Cancer Genome Atlas (TCGA)
database and the Bioconductor package ‘TCGAbiolinks’ (v2.25.0) to
download whole-genome expression data and related clinical
information for LUAD, with the expression data provided in
TPM (Transcripts Per Million) format. The TCGA-LUAD
dataset (n = 600) includes 541 tumor samples and 59 normal
control samples (https://www.cancer.gov/ccg/research/genome-
sequencing/tcga). Additionally, we obtained the
GSE13213 dataset from the GEO database, encompassing
117 LUAD samples. During data preprocessing (https://www.
ncbi.nlm.nih.gov/geo/), samples with missing survival time or
survival time of zero were excluded to ensure all analyzed
samples had valid prognostic information. Furthermore, samples
with more than 50% missing gene expression data were excluded,
and genes not expressed in more than 50% of the samples were
also removed.

2.2 Download and processing of single-cell
RNA sequencing data

We obtained the single-cell RNA sequencing dataset
GSE131907 from the GEO database (https://www.ncbi.nlm.nih.
gov/geo/). This dataset encompasses 11 tumor tissue samples,

11 distant normal lung tissue samples, 10 normal lymph node
samples, and 10 metastatic brain tissue samples, all from
untreated patients who underwent conservative surgery.
Additionally, the dataset contains seven metastatic lymph node
samples, four lung tumor samples, and five samples from
malignant pleural effusion of advanced LUAD patients. The data
were processed via the ‘Seurat’ package (version 5.1.0) and
normalized using the ‘normalizeData’ function. The initial quality
control (QC) included the calculation of complexity scores
(log10GenesPerUMI = log10 (nFeature_RNA)/log10 (nCount_
RNA)) and mitochondrial gene ratios (mitoRatio), computed
using the PercentageFeatureSet function with the pattern ’̂MT-’.
Cells were filtered based on the following criteria: 500 < nCount_
RNA <5,000, nFeature_RNA >200, log10GenesPerUMI >0.9, and
mitoRatio <0.2. Genes expressed in fewer than 100 cells were
excluded. In addition, we performed comprehensive quality
control procedures: potential doublets were identified and
removed using the scDblFinder package; batch effects across
samples were corrected using the Harmony algorithm to
minimize technical variation; and cell cycle effects were regressed
out during data normalization and scaling to reduce
confounding influences.

High-variance genes were selected based on themean expression
and dispersion, and 19 cell clusters were generated on 30 principal
components (PCs) using the ‘FindClusters’ algorithm, optimized by
the shared nearest neighbor (SNN) module, with a resolution set to
0.8. Subsequently, t-SNE analysis was performed using the
‘RunTSNE’ algorithm to visualize cell clustering. Differentially
expressed genes (DEGs) were identified via the ‘FindAllMarkers’
function in Seurat, and cell clusters were annotated while assessing
the proportions of different cell types.

2.3 AUC score analysis of ferroptosis-related
genes (FRGs)

We retrieved 1,515 FRGs from the GeneCards database (https://
www.genecards.org/). Gene set enrichment analysis (GSEA) was
carried out via the ‘AUCell’ package, and the AUC values for each
cell were calculated to assess the expression levels of FRGs. Cells with
higher AUC values indicate higher expression levels of FRGs. The
AUC scores were visualized using a UMAP plot, displaying the
spatial distribution of cells within different score groups.

2.4 Cell communication analysis

We utilized the ‘CellChat’ package (version 1.6.1) to analyze
intercellular communication, with a focus on the interactions of
macrophages with other cell types. CellChat calculates ligand-
receptor pairs and their associated signaling pathways to reveal
the intercellular communication network. The results were
visualized via heatmaps and bubble plots, displaying the
enrichment of ligand-receptor pairs and the strength of
communication between different cell types. Additionally,
CellChat was used to analyze the relative strength distribution of
endogenous and exogenous signaling pathways across different cell
types, revealing how different cell types respond to external signals
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in the tumor microenvironment, such as immune and
inflammatory responses.

2.5 Pseudotime analysis

We performed pseudotime analysis using the ‘Monocle 2’ tool
on genes with high expression variance and high expression levels
(variance ≥1, average expression ≥0.1), constructing a pseudotime
trajectory plot for the cells. This analysis revealed the developmental
trajectories of LUAD cells and illustrated the changes in cell states.
Branch expression analysis modeling (BEAM) was used to further
analyze gene expression changes during cell fate decisions. The gene
expression differences across various trajectory branches were
visualized using heatmaps. Specifically, an independent
pseudotime ordering trajectory analysis was conducted on
macrophages, revealing their development and differentiation
within the LUAD microenvironment.

2.6 Identification of DEGs

We used the ‘limma’ package (Liu S. et al., 2021) to identify DEGs
between early-stage LUAD and normal samples. The
Benjamini–Hochberg method was applied for multiple testing
correction, and the adjusted p-values (adj.p-value) were calculated.
DEGs with FDR <0.05 and |log2FC| ≥ 1 were selected. Subsequently,
the ‘clusterProfiler’ package (Yu et al., 2012) was leveraged to perform
enrichment analysis of these DEGs, False discovery rate (FDR)
correction was performed using the Benjamini–Hochberg method,
with a selection criterion of FDR <0.05.

2.7 Identification of FRGs in macrophages

Through Venn diagram analysis, we identified the intersecting
genes between macrophage-related genes and FRGs in LUAD.
Subsequently, we analyzed the differential expression of these
intersecting genes between tumor and normal tissues via the
TCGA-LUAD dataset, ultimately identifying the differentially
expressed FRGs in macrophages in LUAD.

2.8 Construction and validation of the
prognostic risk model

To comprehensively and robustly identify ferroptosis-related
macrophage genes significantly associated with prognosis, we
implemented an integrated strategy combining eight machine
learning algorithms based on distinct principles. These included
regularization-based methods (e.g., LASSO), well-suited for feature
selection in high-dimensional data; kernel-based approaches (e.g.,
SVM), capable of capturing nonlinear relationships; tree-based
ensemble methods (e.g., Random Forest, XGBoost, and Bagging),
known for their robustness and ability to model complex
interactions; and other techniques such as Boruta, which focuses
on identifying all relevant features, and Learning Vector
Quantization (LVQ). To mitigate algorithm-specific bias and

enhance the reliability and reproducibility of the selected genes,
we intersected the outputs from these algorithms and retained genes
identified by at least three of them. This multi-algorithm ensemble
approach is widely adopted in biomarker discovery and recognized
for its improved predictive power and generalizability (Shao X, et al.
Transl Psychiatry, 2024) (Shao et al., 2024).

Following the identification of candidate genes through this
multi-algorithm strategy, statistical methods were employed to
construct a prognostic model. First, univariate Cox regression
analysis was performed for each candidate gene to preliminarily
assess its association with overall survival. Genes demonstrating a
significant association (P < 0.05) were then included in a
multivariate Cox regression analysis. Stepwise selection was
applied to determine the final set of prognostic genes and their
corresponding regression coefficients. Variance Inflation Factor
(VIF) analysis was also conducted to assess multicollinearity
among the selected genes. These Cox regression analyses were
conducted using the ‘survminer’ R package.

A prognostic risk model was then constructed based on the
selected genes and their coefficients derived from the multivariate
Cox regression analysis in the TCGA training cohort. The RiskScore
for each sample was calculated using the formula: RiskScore = β1X1 +
β2X2 + . + βnXn (where β represents the regression coefficients, and X
represents the gene expression values). Subsequently, samples from
both the TCGA training cohort and the GEO validation cohort were
stratified into high-risk (HRG) and low-risk groups (LRG) based on
the median of their calculated RiskScores. The prognostic
performance of the model was evaluated using Kaplan-Meier
survival analysis, comparing the survival rates between the high-
and low-risk groups, and the predictive accuracy of the RiskScore was
assessed by plotting Receiver Operating Characteristic (ROC) curves.

2.9 Correlation analysis between clinical
features and RiskScore

We integrated clinical data from early-stage LUAD patients and
analyzed the distribution differences between various clinical
features (such as age, TNM stage, gender, smoking history, etc.)
and RiskScore.

2.10 Construction of the nomogram

By combining clinical feature data and RiskScore, univariate and
multivariate Cox regression analyses were performed to identify
independent prognostic factors. A Nomogram model was then
constructed using these factors. The rms package was utilized for
analysis and plotting to establish a Nomogram for predicting the 1-
year, 3-year, and 5-year overall survival of early-stage LUAD
patients. The predictive ability of the model was validated
through calibration curves.

2.11 TME analysis

We leveraged the ‘CIBERSORT’ and ‘ssGSEA’ algorithms to
analyze the differences in immune cell infiltration between the HRG

Frontiers in Pharmacology frontiersin.org04

Ji et al. 10.3389/fphar.2025.1598756

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1598756


and LRG. Additionally, the ‘ESTIMATE’ package was used to
compute the immune score, stromal score, and ESTIMATE score
for each group, further exploring the relationship of RiskScore with
the immune microenvironment. This analysis helps to reveal the
potential impact of RiskScore on the tumor immune environment,
particularly in terms of immune cell infiltration and tumor
immune evasion.

2.12 GSEA and GOKEGG analysis

We applied GSEA to carry out enrichment analysis of hallmark
gene sets (c2.all.v2024.1.Hs.symbols) as well as Hub gene-associated
GOKEGG pathways between RiskScore groups. The selection
criteria were p-value <0.05 and |NES| > 1 to ensure the
significance of the enrichment results. Through these analyses,
we further explored the functional and signaling pathway
differences between RiskScore groups, revealing pathways closely
associated with tumorigenesis, immune responses, and cellular
metabolism processes.

2.13 Immune treatment response analysis

We evaluated the differences in tumor mutational burden
(TMB) among patients in different RiskScore groups and
calculated the cytokine gene expression (CYT) scores.
Additionally, we analyzed the expression differences of immune
checkpoint genes. Through these metrics, we explored the
relationship of RiskScore with immune treatment response, with
a particular focus on the potential role of immune evasion
mechanisms in the HRG. False discovery rate (FDR) correction
was performed using the Benjamini–Hochberg method, with a
selection criterion of FDR <0.05. This analysis provides valuable
insights into the potential effectiveness of immune therapy.

2.14 Drug sensitivity analysis

Using the GDSC database, we assessed the sensitivity of patients
in different RiskScore groups to common targeted therapies and
chemotherapeutic agents. The ‘oncoPredict’ package was used to
quantify the IC50 values for each drug, and drugs with significant
differences between HRG and LRG were selected. This analysis
provides valuable insights for personalized treatment in LUAD
patients, particularly in the clinical application of selecting
targeted therapies and chemotherapeutic agents.

2.15 Cell culture

BEAS-2B cells (C6106, Beyotime, CN) were cultured in RPMI-
1640 medium (10–040-CVR, Corning, CN) supplemented with 10%
fetal bovine serum (FBS-F-500, CytoBiotech, FR) and 1% penicillin-
streptomycin (PS-100X, CytoBiotech, FR) at 37°C in a 5% CO2

atmosphere. For subculturing, cells were rinsed with pre-cooled PBS
and then digested with 0.25% trypsin-EDTA for 2 min. NCI-H1975
(CL-0298, Procell, CN) and A549 (CL-0016, Procell, CN) cells were

cultured in RPMI-1640 medium containing 10% FBS. Digestion
times were 3–5 min for NCI-H1975 cells and 1–2 min for A549 cells.

2.16 Western blot (WB) analysis

Total protein was extracted using RIPA lysis buffer containing
protease and phosphatase inhibitors (50 mM Tris-HCl, pH 7.4, 1%
Triton X-100). Protein concentration was determined by the BCA
method (A65453, Thermo Fisher, US), with 30 μg loaded per lane.

Proteins were separated by 12% SDS-PAGE and transferred
onto PVDF membranes (ISEQ00010, Millipore, US). Membranes
were blocked with 5% non-fat milk at room temperature for 1 h.

Primary Antibody Incubation: The following primary antibodies
were diluted 1:1000 and incubated overnight at 4°C: HLF (ab317427,
Abcam, United Kingdom), NUPR1 (ab6028, Abcam, United Kingdom),
HPCAL1 (IPD-ANP11286, ABclonal, CN) Secondary Antibody
Incubation: Membranes were incubated with horseradish peroxidase
(HRP)-conjugated secondary antibodies at room temperature for 1 h.
Signal Detection: Detection was performed using ECL, and results were
recorded with the Bio-Rad Chemidoc XRS + imaging system.

3 Results

3.1 Single-cell transcriptomic analysis

3.1.1 Single-cell dimensionality reduction,
clustering, and annotation

We analyzed gene expression profiles of LUAD cell populations
using the GSE131907 dataset, comprising 11 tumor and 11 distant
normal lung tissue samples. Through t-SNE analysis, these cells were
divided into 19 clusters, which were subsequently annotated based
on cell-specific markers and expression patterns. A total of 10 cell
types were identified, including epithelial cells, macrophages, as well
as T cells (Figure 1A). Additionally, AUC score analysis based on
ferroptosis-related genes revealed higher expression of these genes in
smooth muscle cells and macrophages (Figure 1B).

3.1.2 Pseudo-time analysis
In the identified macrophages, we constructed a pseudo-time

cell trajectory to explore key gene expression programs in LUAD
progression. Through pseudo-time analysis, we successfully built the
pseudo-time trajectory of macrophages, revealing distinct
transcriptional states and cell fate decision processes (Figures 1G–I).

3.1.3 Cell communication analysis
To further elucidate the integrated roles of various cell types in

lung cancer tissues, we performed intercellular communication
analysis (Figures 1C, E) as well as macrophage-centric
communication analysis (Figure 1D). The results suggested
macrophages, as the primary signal providers, exhibited the
strongest interactions with other cell types via the MIF (CD74 +
CXCR4) ligand-receptor pair (Figure 1F). Macrophages play a
bidirectional role in both outward and inward signaling,
participating in immune responses through outward signals and
engaging in intercellular interactions via strong responses to
external signals. Notably, macrophages displayed strong

Frontiers in Pharmacology frontiersin.org05

Ji et al. 10.3389/fphar.2025.1598756

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1598756


responses in both outward and inward signaling in pathways such as
EGF and CCL (Figures 1J, K). These preliminary results provide
compelling support for a deeper understanding of the integrated
functions of macrophages in LUAD.

3.2 Identification of ferroptosis-related
genes in macrophages associated
with LUAD

By screening for DEGs between normal lung tissue and LUAD
tissue, we identified 14,953 DEGs, of which 11,657 genes were
upregulated and 3,296 genes were downregulated (Figure 2A).
Further single-cell differential analysis of LUAD tissue revealed
881 macrophage-related genes. Additionally, we retrieved
1,515 ferroptosis-related genes from the GeneCards database. By
taking the intersection of these two sets, we identified 73 ferroptosis-
related genes within macrophages (Figure 2B). A subsequent
differential analysis of these genes led to the selection of
25 filtered genes (Figure 2C). The expression patterns of these
genes are shown in the heatmap (Figure 2D). GO and KEGG

enrichment analyses of the filtered genes suggested these genes
may impact several biological processes in cells, including iron
ion transport (GO:0006826), fatty acid metabolism (GO:
0030670), apoptosis (GO:0072593), and cancer-related signaling
pathways (hsa04066), among others. These enrichment results
provide important insights for further investigation into cellular
responses under various physiological or pathological
conditions (Figure 2E).

3.3 Machine learning-based selection of key
ferroptosis-related genes in macrophages
of LUAD

We employed eight machine learning algorithms (RFE, LASSO,
RF, SVM, GBDT, Bagging, XGBoost, and Boruta) to further screen the
25 filtered genes (Figure 3A). Using the SVM algorithm, we identified
three optimal feature genes (Figure 3B). The LQV algorithm validated
all included genes with a cutoff of 0.5 (Figure 3C). The Boruta
algorithm also validated all included genes and displayed the
changes in z-scores (Figure 3D). The Bagging decision tree selected

FIGURE 1
Single-cell transcriptome analysis. (A) UMAP plot of cell clustering; (B) UMAP plot of AUC scores for ferroptosis-related genes; (C) Single-cell
communication interaction diagram; (D)Macrophage communication interaction diagram. (E) Heatmap of intercellular communication; (F) Bubble plot
of intercellular communication; (G) Pseudotime trajectory analysis; (H) Hierarchical pseudotime trajectory analysis; (I) Pseudotime trajectory of
macrophages; (J) Relative intensity distribution of exogenous signaling pathways across different cell types; (K) Relative intensity distribution of
endogenous signaling pathways across different cell types.
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four genes (Figure 3E). RF, combined with feature selection,
eliminated 22 genes based on the number of classification trees
and error rates (Figure 3F). The Bayesian algorithm selected six
predictive genes (Figure 3G). The LASSO logistic regression
method selected seven predictive genes from statistically significant
univariate analyses (Figure 3H). The XGBoost algorithm identified
four genes (Figure 3I). Ultimately, we selected 10 key genes, which
were recognized by at least three models, for further analysis.

3.4 Construction and validation of the
prognostic risk model

Univariate and multivariate Cox regression analyses were
carried out on the key genes selected by machine learning,
identifying three hub genes associated with prognosis (Figures

4A, B). Using these hub genes, we constructed a risk score
(RiskScore) formula: RiskScore = HLF * (−0.153) + HPCAL1 *
0.261 + NUPR1 * (−0.21). The survival status, risk scores, as well as
time-dependent ROC curves of high and low-risk score groups in
both the TCGA training cohort and the GSE13213 validation cohort
exhibited robust predictive performance (Figures 4C–H).

3.5 Expression of hub genes

The expression of hub genes was displayed in dot plots and
UMAP plots, revealing that HLF, HPCAL1, and NUPR1 are highly
expressed in macrophages and epithelial cells, suggesting that they
may play important roles in immune-related functions. The
expression levels in other cell types were lower, indicating the
potential significance of these genes in specific cell types (Figures

FIGURE 2
Selection of differentially expressed genes (DEGs) and identification of ferroptosis-related genes. (A) Volcano plot of DEGs in the TCGA database; (B)
Venn diagram of macrophage-related genes and ferroptosis-related genes; (C) Volcano plot of differentially expressed genes at the intersection of
macrophage-related and ferroptosis-related genes in the TCGA database; (D) Heatmap of differentially expressed genes at the intersection of
macrophage-related and ferroptosis-related genes; (E)Combined GOKEGG and fold change (FC) circos plot of intersecting differentially expressed
genes in macrophages and ferroptosis.
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5A, C). Through pseudo-time heatmap analysis, we revealed the
expression trends of HLF, HPCAL1, and NUPR1 in the cell
populations, and the dynamic characteristics of these genes in

response to time or conditions. The heatmap clustering results
highlighted the similarities and differences in gene expression
across different cell populations, suggesting that these genes may

FIGURE 3
Selection of prognosis-related genes and identification of diagnostic genes. (A) Intersection size of eight machine learning algorithms; (B) Accuracy
of the support vectormachine (SVM)model; (C) LQV feature importance assessment; (D) Boruta feature selection results; (E) Accuracy of the bagged tree
model; (F) Accuracy of the random forest model; (G) Accuracy of the Bayesian model; (H) Frequency distribution of LASSO model feature selection; (I)
Accuracy of the XGBoost model.
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play key roles in specific biological processes (Figure 5B). Analysis of
data from 33 common cancers in the TCGA database revealed that
the genes HLF, HPCAL1, and NUPR1 exhibit significant differential
expression between tumor and normal tissues in LUAD and several
other cancers. Notably, these expression differences vary across
cancer types (Figures 5E, G, I).

Western blot analysis confirmed significantly lower expression
levels of HLF, NUPR1, and HPCAL1 in NCI-H1975 and
A549 cancer cells (p < 0.05) (Figures 5D, F, H), suggesting these
genes may be involved in the development of LUAD.

3.6 Correlation between clinical features
and RiskScore

By combining clinical data from LUAD patients, we analyzed
the distribution differences of RiskScore across different clinical
factors. The results showed significant differences in RiskScore with
respect to age, gender, smoking history, mortality, and TNM staging
(Figures 6A–H). Additionally, we constructed a heatmap of
RiskScore in relation to clinical factors to further explore its
clinical significance (Figure 6I).

FIGURE 4
Construction and validation of the prognostic riskmodel. (A)Univariate Cox regression analysis of intersecting genes; (B)Multivariate Cox regression
analysis of intersecting genes; (C) TCGA cohort: Risk score, survival distribution, and heatmap of gene expression; (D) Kaplan-Meier survival curve of the
TCGA cohort; (E) Time-dependent ROC curve of the TCGA cohort; (F) GSE13213 cohort: Risk score, survival distribution, and heatmap of gene
expression; (G) Kaplan-Meier survival curve of the GSE13213 cohort; (H) Time-dependent ROC curve of the GSE13213 cohort.
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3.7 Construction of the nomogram

Through univariate and multivariate Cox regression analyses,
RiskScore, T stage, as well as N stage were identified as independent
prognostic factors (p < 0.05) (Figures 7A, B). A nomogram was then
generated, combining RiskScore, T stage, N stage, as well as the total
score, to predict the 1-year, 3-year, and 5-year survival probabilities
of LUAD patients (Figure 7C). The lower the total score of

independent prognostic factors, the greater the likelihood of
survival for the patient. Calibration curves demonstrated that the
nomogram had high accuracy in predicting survival probability in
LUAD patients (Figure 7D). The time-dependent ROC curves of the
nomogram model integrating T stage, N stage, and RiskScore
demonstrated good predictive performance, with AUC values of
0.756, 0.753, and 0.705 for 1-year, 3-year, and 5-year survival
predictions, respectively (Figure 7E).

FIGURE 5
Expression patterns of hub genes. (A) Dot plot of hub genes; (B) Pseudotime heatmap of hub genes; (C) UMAP plot of hub gene expression; (D)
Differential expression of HLF in NCI-H1975, A549, and BEAS-2B cell lines; (E) Expression levels of HLF in different cancer types and normal tissues; (F)
Differential expression of HPCAL1 in NCI-H1975, A549, and BEAS-2B cell lines; (G) Expression levels of HPCAL1 in different cancer types and normal
tissues; (H)Differential expression of NUPR1 in NCI-H1975, A549, and BEAS-2B cell lines; (I) Expression levels of NUPR1 in different cancer types and
normal tissues.
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3.8 TME analysis

The immune score calculated by the ESTIMATE algorithm
was higher in the LRG, while the ESTIMATE score was higher in
the HRG (p < 0.05, Figures 8A–C). Using the ‘ssGSEA’
algorithm, nine different immune cell types were identified
between the two risk groups, including Activated B cells,
Activated CD4 T cells, Eosinophils, Mast cells, Natural Killer
cells, and others (Figure 8D). Immune infiltration analysis using
the CIBERSORT algorithm showed that in the low-risk group,
Plasma cells, CD4 memory resting T cells, Activated NK cells,
and Resting Mast cells were more prevalent, whereas the high-
risk group exhibited higher abundance of Activated
CD4 memory T cells, M0 Macrophages, and Neutrophils (p <
0.05, Figure 8F).

3.9 GSEA analysis, GOKEGG analysis, and
immune checkpoint analysis

The high-risk group (HRG) exhibited higher TMB and lower
cytotoxicity (CYT), whichmay be associated with tumormalignancy
and immune evasion mechanisms (Figures 9A, B). GSEA analysis
revealed significant enrichment in multiple signaling pathways in
the HRG, particularly in pathways related to tumor progression, like
immune response pathways including REACTOME_FCGR_
ACTIVATION (FCγ receptor activation), REACTOME_
ANTIGEN_ACTIVATES_B_CELL_RECEPTOR_BCR_LEADING
_TO_GENERATION_OF_SECOND_MESSENGERS (Antigen
activation of B cell receptor BCR leading to second messenger
generation), cell cycle pathways like REACTOME_CELL_
CYCLE_CHECKPOINTS (cell cycle checkpoints), ZHOU_CELL_

FIGURE 6
Correlation between RiskScore and various clinical features. (A–H). Distribution of RiskScore across different clinical characteristics; (I). Heatmap of
clinical characteristics and RiskScore.
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CYCLE_GENES_IN_IR_RESPONSE_24HR (cell cycle genes in
radiation response), and tumor cell proliferation pathways such
as SARRIO_EPITHELIAL_MESENCHYMAL_TRANSITION_UP
(epithelial-mesenchymal transition upregulation), REACTOME_
ROLE_OF_PHOSPHOLIPIDS_IN_PHAGOCYTOSIS (role of
phospholipids in phagocytosis) (Figures 9C, D). The samples
with higher RiskScore may be closely associated with these more
active tumor progression pathways. Additionally, the GOKEGG
analysis of hub genes revealed their enrichment in multiple
biological pathways, including Transcriptional Misregulation in
Cancer, DNA-binding Transcription Activator Activity, and
Transcription Coactivator Activity, all of which regulate gene
expression in cancer cells (Figure 9E). Immune checkpoint gene

expression analysis found that immune checkpoint genes, such as
BTLA and CD47, were remarkably downregulated in the HRG (p <
0.05), suggesting the HRG may respond better to immune
therapy (Figure 9F).

3.10 Chemotherapy and targeted drug
IC50 analysis

The IC50 analysis results demonstrated variations in drug
sensitivity between patients in different RiskScore groups for
common chemotherapy and targeted drugs. The results suggested
the HRG exhibited higher sensitivity to chemotherapy drugs like

FIGURE 7
Construction and validation of the prognostic nomogram. (A) Univariate Cox regression analysis; (B) Multivariate Cox regression analysis; (C)
Prognostic nomogram; (D) Calibration curve; (E) Time-dependent ROC curve for evaluating the diagnostic performance of the nomogram.
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FIGURE 8
Relationship between tumor microenvironment (TME) and RiskScore. (A–C) Differences in StromalScore, ImmuneScore, and ESTIMATEScore
between high-risk and low-risk groups; (D) Immune cell infiltration analysis based on the ssGSEA algorithm; (E) Immune cell infiltration analysis based on
the CIBERSORT algorithm; (F) Correlation between RiskScore, three key genes, and immune cells in the CIBERSORT algorithm; (G) Correlation between
RiskScore, three key genes, and immune cells in the ssGSEA algorithm.
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Cyclophosphamide and targeted drugs like Crizotinib, whereas the
low-risk group showed greater sensitivity to chemotherapy drugs
including Vinorelbine, Paclitaxel, Docetaxel, Vinblastine, and
targeted drugs like Erlotinib and Gefitinib (Figure 10).

4 Discussion

This study first analyzed the gene expression characteristics of
LUAD cell populations and ultimately identified 10 cell types,

FIGURE 9
GSEA analysis, GOKEGG analysis, and immune checkpoint analysis. (A) Tumormutation burden (TMB) distribution across different RiskScore groups;
(B) Cytokine gene expression (CYT) distribution across different RiskScore groups; (C, D) GSEA analysis comparing high-risk and low-risk groups; (E)
GOKEGG analysis of hub genes; (F) Differential expression of immune checkpoint genes across different RiskScore groups.
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encompassing epithelial cells, macrophages, and T cells. Through
trajectory analysis and intercellular communication analysis, the
developmental trajectory of macrophages was revealed, and it was
found that they exhibit strong responses to both outward and inward
signaling in pathways such as EGF and CCL. Research by Wang Y.
et al. (2023) has shown that macrophages are the most abundant cell
type in LUAD, and their impact on cancer progression varies greatly,
depending on their phenotype in TME (Mantovani et al., 2002).
M1 macrophages are primarily involved in pro-inflammatory
responses, whereas M2 macrophages mainly participate in anti-
inflammatory responses (Yunna et al., 2020). By downregulating the
EGFR signaling pathway, the cannabinoid receptor two agonist
JWH-015 prevents M2 macrophage-induced epithelial-to-

mesenchymal transition (EMT) in NSCLC cells (Ravi et al.,
2016). Additionally, M2 macrophages can upregulate anti-
inflammatory cytokines and chemokines, encompassing IL-10,
TGF-β, and CCL family chemokines (e.g., CCL17, CCL18,
CCL22, and CCL24) (Biswas et al., 2013). In this study, AUC
score analysis further revealed FRGs were highly expressed in
smooth muscle cells and macrophages, suggesting a significant
role for ferroptosis in these cell populations.

Ferroptosis is a form of cell death triggered by iron-dependent
lipid peroxidation (LPO). Research by Hao et al. (2022) found
inhibiting APOC1 promotes the conversion of M2 macrophages
to M1 macrophages through the ferroptosis pathway, reshaping the
tumor immune microenvironment and enhancing the response of

FIGURE 10
Chemotherapy and targeted drug IC50 analysis.
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hepatocellular carcinoma (HCC) to PD1 immunotherapy. The
plasticity of macrophages highlights macrophage reprogramming
as an attractive therapeutic strategy, enabling these cells to adjust
their functions tomeet the demands of tumor defense. In recent years,
the connection between macrophages, ferroptosis, and cancer has
garnered increasing attention. However, prior studies have mostly
concentrated on the interaction betweenmacrophages and ferroptosis
within tumor tissues, with few addressing the impact of ferroptosis in
macrophages on TME. Hence, this research presents a new
perspective, aims to highlight the significance of ferroptosis-related
gene signatures within TAMs on TME status and patient prognosis,
which may offer complementary insights for understanding LUAD
therapeutic strategies and predicting outcomes.

This study identified 14,953 DEGs between the normal and early-
stage LUAD groups and extracted 1,515 ferroptosis-related genes
from the GeneCards database. Through intersection analysis and
differential expression analysis, 25 filtered genes were ultimately
selected. GO and KEGG enrichment analyses of these genes
indicated their potential roles in various biological processes,
encompassing iron ion transport, fatty acid metabolism, apoptosis,
and the regulation of cancer-related signaling pathways. Since LUAD
is often diagnosed at an advanced stage, it is essential to identify
potential biomarkers for early diagnosis and prognosis. In recent
years, multiple prognostic gene signatures for lung cancer have been
identified. For instance, a linear prognostic model comprising eight
genes (DLGAP5, KIF11, RAD51AP1, CCNB1, AURKA, CDC6, OIP5,
and NCAPG) has been established and proposed as a potential
prognostic biomarker for LUAD (Li et al., 2018). Although the
researchers validated this prognostic model in their hospital, the
study did not provide the area under ROC curve AUC values. In
our study, the AUC values of the ROC curves were 0.756, 0.753, and
0.705. To screen the filtered genes, we leveraged eight machine
learning algorithms and identified three hub genes—HLF,
HPCAL1, and NUPR1—which were used to construct a prognostic
risk model. Similar to our study, Wu et al. developed a robust four-
gene prognostic model that revealed these genes function as tumor
suppressors in LUAD, with their high expression predicting a lower
risk of mortality (Wu et al., 2022). Notably, their model includedHLF,
one of the hub genes identified in our study, further validating the
reliability of our findings. Furthermore, we analyzed the distribution
differences of RiskScore across various clinical parameters and found
that RiskScore showed superior prognostic value compared to clinical
factors like age and tumor stage. Additionally, univariate Cox
regression analysis was carried out to identify prognosis-related
factors, leading to the construction of a nomogram model capable
of accurately predicting 1-year, 3-year, and 5-year overall survival.
Moreover, in terms of the number of genes used, our study employed
fewer genes compared to previous reports. This reduction in gene
number may facilitate subsequent clinical translation and the
development of diagnostic tools, ultimately promoting clinical
applications.

HLF belongs to the family of transcription factors known as the
proline and acidic amino acid-rich basic leucine zipper (PAR bZIP),
which also contains the thyrotroph embryonic factor (TEF) and
albumin D-site-binding protein (DBP) (Hunger et al., 1992).
Dysregulation of HLF has been observed in various cancer types,
with its role varying depending on the biological context,
functioning as either an oncogene or a tumor suppressor gene. In

ovarian tissue and ovarian stem cells, HLF expression is upregulated,
promoting ovarian cancer stem cell properties, proliferation, as well
as metastasis (Han et al., 2023). In triple-negative breast cancer
(TNBC), HLF enhances proliferation, metastasis, cisplatin
resistance, and ferroptosis resistance by activating γ-glutamyl
transferase 1 (Li et al., 2022). However, in gliomas and LUAD,
HLF functions as a tumor suppressor. Studies have suggested HLF
expression is remarkably downregulated in LUAD and is related
with a better prognosis (Wang et al., 2021). Furthermore, HLF is
related to multiple biological processes, including apoptosis, cell
cycle regulation, EMT, and hormone-related pathways such as
androgen receptor (AR) and estrogen receptor (ER) signaling.
Additionally, HLF is implicated in critical oncogenic pathways,
such as the PI3K/AKT, Ras/MAPK, and receptor tyrosine kinase
(RTK) signaling pathways (Ahmadi et al., 2024). As a transcription
factor, HLF might potentially modulate ferroptosis sensitivity in
macrophages by regulating the expression of genes involved in iron
metabolism or antioxidant responses.

HPCAL1, which expresses in the plasma membrane and is also
known as a visinin-like protein-3 (VILIP-3), is a member of the
neuron-specific calcium-binding protein family (Wang L. et al.,
2023). Recently, Chen et al. (Wang L. et al., 2023) reported
HPCAL1 is a novel driver of autophagy-dependent iron death. It
is widely distributed in various human tissues and is expressed in
various tumor tissues. The results of existing studies are inconsistent
regarding the role of HPCAL1 in tumor growth. The HPCAL1-
induced iron death was able to inhibit tumor growth, as found by
Chen et al. (2023). HPCAL1 promotes tumor growth in NSCLC and
promotes proliferation in glioblastoma, the latter occurring through
activation of the Wnt/β-catenin signaling pathway (Zhang D. et al.,
2019; Wang et al., 2022). Therefore, the mechanism and function of
HPCAL1 in the regulation of tumors require further investigation.
The identification of HPCAL1 as a high-risk associated gene in this
study suggests a predominantly pro-tumorigenic role in LUAD.
Potential mechanisms could involve its participation in the
ferroptosis process through the regulation of autophagy or
calcium signaling pathways.

NUPR1 is a member of AT hook-containing chromosomal
DNA-binding proteins that was first identified and cloned in a
study of pancreatitis-induced tissue injury (Mallo et al., 1997). Over
the past 2 decades, NUPR1 has been clearly indicated to play a
critical role in the development and progression of several cancers,
and is also closely associated with a variety of other pathological
states such as pancreatitis, diabetes mellitus, neurological disorders,
and inflammatory disorders (Martin et al., 2021). NUPR1 prevents
the onset of iron death or tissue damage by directly up-regulating the
expression of LCN2 (Liu J. et al., 2021). In a cohort study, Tao et al.
found NUPR1 acted as a protective factor in the survival prognosis
of LUAD (Shu et al., 2022). Furthermore, Zhang et al. revealed that
macrophages were the immune cells type most strongly associated
with NUPR1 expression in bladder cancer (BLCA) (Zhang et al.,
2023). Therefore, it becomes particularly important to study the
effect of iron death-related genes in macrophages on tumors.
GOKEGG analysis corroborates the involvement of these three
core genes in transcriptional regulatory activities, implying that
they may exert their functions by altering gene expression profiles.

TME has a crucial role in tumor initiation and progression.
Analysis using the ‘CIBERSORT’ and ‘ssGSEA’ algorithms revealed
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significant differences in immune cell proportions between the HRG
and LRG, particularly in macrophages, eosinophils, and mast cells.
Moreover, the TMB in the HRG was remarkably higher than that in
the LRG (p < 0.001), and GSEA demonstrated significant
enrichment of multiple tumor-related pathways in the HRG, such
as epithelial-mesenchymal transition (EMT) and cell cycle
checkpoint pathways, the activation of which is commonly
associated with tumor progression and unfavorable prognosis.
Although a direct link between these pathways and the regulation
of macrophage ferroptosis by the core genes was not established in
this study, they might collectively influence the tumor
microenvironment and impact disease progression, thereby
highlighting a direction for future investigation. These findings
suggest tumors in the HRG are typically associated with enhanced
immune evasion mechanisms, enabling them to evade immune
surveillance and attack by the host immune system. Studies have
shown that tumor-associated macrophages (TAMs) derived from
malignant ascites of gastric cancer exhibit a predominant
M2 phenotype, which is closely related with poor prognosis in
gastric cancer (Eum et al., 2020). Consequently, TAMs in the
HRG tend to polarize toward the M2 phenotype, which suppresses
T-cell activity by secreting immunosuppressive factors like IL-10 as
well as TGF-β, thereby promoting tumor cell proliferation and
metastasis (Biswas et al., 2013). The role of eosinophils in cancer
immunity has also gained increasing attention. As early as the late
20th century, reports identified the presence of eosinophils in the
peripheral blood of cancer patients. Eosinophils not only participate in
the antitumor response triggered by immune checkpoint inhibitors
(ICIs) but also interact with lymphocytes and T cells (Grisaru-Tal
et al., 2022). A clinical study demonstrated that peripheral eosinophil
counts significantly increased following ICI therapy (Rafei-
Shamsabadi et al., 2022). Additionally, increased eosinophil counts
during ipilimumab treatment have been associated with prolonged
survival in melanoma patients (Lang et al., 2018). Mast cells also
exhibit a dual role in tumor growth by secreting various mediators
that either promote or inhibit tumor progression, depending on the
tumor type (Ribatti, 2023). Clinical studies have shown increased
infiltration of mast cells and CCR2+ cytotoxic T lymphocytes (CTLs),
along with their colocalization, are closely related to favorable
postoperative prognosis but not to improved survival following
chemotherapy (Fan et al., 2023). Moreover, analysis of immune
cell density in the tumor and its surrounding stroma has indicated
that mast cell infiltration is significantly associated with recurrence-
free survival (RFS) in early-stage LUAD (Kammer et al., 2023).
Tumors in the HRG interact with immune cells in the TME
through immune evasion mechanisms, thereby escaping host
immune surveillance and accelerating tumor progression and
metastasis. These findings provide novel insights for optimizing
future immunotherapeutic strategies, particularly those targeting
immune evasion mechanisms.

This study also compared the differences in IC50 values of
chemotherapeutic agents between different risk score groups. The
results indicated that the high-risk group exhibited higher sensitivity
to the chemotherapeutic agent cyclophosphamide and the targeted
therapy crizotinib. In contrast, the LRG demonstrated greater
sensitivity to chemotherapeutic agents like vinorelbine, paclitaxel,
docetaxel, vinblastine, as well as targeted therapies including
erlotinib and gefitinib. These findings suggest the risk score can

serve as an effective predictor of the sensitivity of LUAD patients
to commonly used chemotherapeutic agents. This discrepancymay be
closely related to differences in tumor characteristics, immune
microenvironment, and molecular mechanisms between the risk
groups. The HRG typically features elevated TMB and enhanced
immune evasion mechanisms, which may contribute to increased
sensitivity to certain drugs. High-TMB tumors are often associated
with immune response activation, which could potentiate the efficacy
of specific chemotherapeutic agents. Furthermore, an analysis of
immune therapy response revealed that two immune checkpoint
genes, BTLA and CD47, were remarkably downregulated in the
HRG (p < 0.001). BTLA is widely expressed in the immune
system, predominantly on T cells, B cells, macrophages, and
dendritic cells, with low-level expression on NK cells. Circulating
BTLA has been identified as a blood-based predictive biomarker for
immune therapy responses in various cancers (Sordo-Bahamonde
et al., 2023). CD47 is ubiquitously expressed on the surface of all
examined human and mammalian cells. A study by Yoshida et al.
demonstrated in early-stage gastric cancer, the CD47 positivity rate
was 49.5%, and the 5-year survival rate of the CD47-positive subgroup
was remarkably lower than that of the CD47-negative subgroup
(Mittrücker et al., 2014). In non-small cell lung cancer (NSCLC)
patients, high CD47 expression has been closely related with poor
prognosis (Yang et al., 2021). Therefore, we speculate that these two
immune checkpoint genes may serve as potential therapeutic targets
for early-stage LUAD immunotherapy.

Despite the meaningful findings obtained in this study, several
limitations should be acknowledged. Primarily, this research relies
heavily on bioinformatic analysis of public datasets, and a key
constraint is the lack of direct experimental validation to confirm
the observed associations. Specifically, the precise functions of the
three key macrophage-associated ferroptosis-related genes (HLF,
HPCAL1, NUPR1) in regulating macrophage ferroptosis,
polarization, and their interactions with LUAD cells and
chemotherapeutic agents remain to be experimentally confirmed.
Furthermore, the elucidation of their exact molecular mechanisms,
such as specific signaling pathways or protein interactions, requires
further investigation. Secondly, while the prognostic model and
nomogram developed herein demonstrated good performance on
the existing datasets, their practical clinical utility and
generalizability necessitate rigorous evaluation in additional,
independent external cohorts, particularly through prospective
clinical studies. Concurrently, potential biases from public data
representativeness and technical artifacts from bioinformatic
analyses are constraints to consider. Moreover, translating these
fundamental research findings into clinically viable therapeutic
targets remains a long-term and challenging endeavor.

Therefore, future research is crucial to address these limitations
and deepen our understanding. Subsequent efforts should focus on
functional validation through experimental approaches: (1)
Utilizing gene editing (e.g., CRISPR/Cas9), overexpression/
knockdown techniques, combined with co-culture systems, to
conduct in-depth in vitro investigations into the specific
mechanisms by which HLF, HPCAL1, and NUPR1 regulate
macrophage ferroptosis, polarization, and interactions with
LUAD cells; (2) Developing relevant gene knockout or
conditional knockout mouse models to validate their actual roles
in LUAD development and TME remodeling in vivo; (3) Further
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exploring the upstream and downstream regulatory networks of
these core genes to identify potential pharmacological intervention
targets. Such follow-up studies will provide more robust support for
our findings and facilitate the development of novel LUAD
therapeutic strategies based on macrophage ferroptosis.

5 Conclusion

This study established a novel prognostic risk model for early-
stage LUAD based on three macrophage-related ferroptosis genes.
This model effectively evaluates the survival outcomes of early-stage
LUAD patients and provides potential biomarkers and therapeutic
targets. These findings offer critical theoretical support for targeted
therapeutic strategies in early-stage LUAD, particularly those
focusing on macrophage ferroptosis.
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