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Edible salty-flavored Chinese materia medica (ESCM) refers to a category of
traditional Chinese medicine (TCM) that also serve as food, characterized by their
salty flavor. According to the TCM theory, ESCM can soften and disperse knots,
thus potentially offering benefits for cancer prevention and treatment. With
cancer remaining a major global health challenge, its primary prevention
strategies, especially through dietary modification, are crucial. ESCM have
recently garnered substantial attention, due to their remarkable clinical
efficacy and low side-effect profile. Researches on ESCM demonstrate that
they mainly function through inhibition of cancer cell proliferation, migration,
and invasion, induction of cancer cell apoptosis and autophagy, regulation of the
cell cycle, suppression of tumor angiogenesis, and anti-inflammatory and anti-
oxidant properties. Herein, we systematically explore the well-documented
ESCM’s extracts or constituents with explicit anti-cancer properties, alongside
their underlying mechanisms and pathways. The review further highlights both
the primary preventions and clinical trials of ESCM-related products, offering
valuable insights for the development of novel dietary approaches and
therapeutic interventions in cancer management.
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1 Introduction

According to the International Agency for Research on Cancer (IARC), nearly
20 million new cancer cases and 9.7 million cancer-related deaths were projected in
2022. Current estimates indicate that approximately one in five individuals will develop
cancer during their lifetime, while one in nine will succumb to the disease. Demographic
projections suggest that by 2050, annual cancer incidence could rise to 35 million cases
worldwide. Hence, strategic investment in prevention exhibits the potential to avert millions
of future cancer diagnoses, save countless lives, and significantly alleviate the substantial
socioeconomic burden (Vineis and Wild, 2014).

Primary prevention, also known as etiologic prevention, involves implementing
measures to address the root causes or risk factors of a disease (or injury) before it
occurs. The major goal is to reduce harmful exposure and enhance the individual’s ability to
resist, thereby preventing the occurrence of the disease (or injury) or at least delaying its
onset. Thus, primary prevention appears to be the fundamental strategy for the eradication
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of a disease (or injury). This approach is particularly effective in
cancer prevention, as current knowledge indicates that one-third to
one-half of cancer cases are preventable based on risk factors
(McCullough and Giovannucci, 2004).

Dietary factors are indicated to underlie the substantial
international variations in cancer incidence. It represents a highly
effective approach to primary cancer prevention (Ko and Chiu,
2006). In addition to maintain balanced nutrition and avoid harmful
dietary habits, incorporating foods with anti-cancer properties can
play a pivotal role in cancer prevention and treatment. Such food can
mitigate risk factors for cellular carcinogenesis or eliminate early-
stage cancer cells prior to tumor formation.

Traditional Chinese medicine (TCM) utilizes various types of
edible Chinese materia medica (CMM), with notable correlations
between their flavors and therapeutic efficacies (Zhao et al., 2017). In
TCM theory, the well-known function of salty-flavored CMM is to
soften and disperse knots, making them effective in treating cancer-
related tangible lumps, nodules, and masses (Shannon et al., 2021).
Addressing these physical abnormalities is critical for maintaining
individual’s health and preventing the pathological development
from benign conditions to potentially life-threatening diseases.
These highlight the significance of edible salty-flavored Chinese
materia medica (ESCM) and proposes their potential roles in
primary cancer prevention.

Hence, we conduct a comprehensive review of well-documented
ESCM and their anti-cancer properties, emphasizing primary
prevention and clinical trials involving ESCM (or their
constituents)-related products. The reviewed ESCM were selected
from the List of foods that double as medicine, the List of substances
approved for usage in health supplements, and subsequent
supplementary lists, as published by the National Health
Commission of the People’s Republic of China (http://www.nhc.
gov.cn/), papers from China National Knowledge Infrastructure
(CNKI) were also used as references. We specifically explored
those extracts or constituents that have demonstrated explicit anti-
cancer effects (Table 1; Figure 1) and reviewed the research progress
on the mechanisms underlying their anti-cancer properties, the
literature screening process is depicted in Figure 2. Notably, all the
listed ESCM are commercially available as drugs or supplements, and
thus clarifying their bioactive constituents and corresponding anti-

cancer mechanisms can facilitate drug repurposing and dietary health
applications. Overall, this review aims to provide a foundation for the
future usage of ESCM in primary cancer prevention.

2 Anti-cancer

Excessive cell proliferation is a key prerequisite for carcinogenesis,
so inhibiting cancer cell proliferation is an effective means of anti-
cancer treatment. During this process, cancer cells positively compete
with surrounding cells for nutrients (Icard et al., 2018). To enhance
their survival and growth, cancer cells undergo metabolic
reprogramming, preferentially utilizing glucose through aerobic
glycolysis—a phenomenon known as the Warburg Effect (Sun
et al., 2018; Jeong and Seol, 2008). In the early stage of cancer,
directly inhibiting cancer cell proliferation and inducing apoptosis or
autophagy through the action of various signaling pathways can be
highly effective therapeutic modalities (Figure 3).

2.1 Induction of mitochondrial apoptosis

Mitochondria plays a crucial role in apoptotic, with its fission
directly initiating the apoptosis process (Bruckheimer et al., 1998).
Key regulators of apoptosis include B cell lymphoma-2 (Bcl-2)
family proteins (e.g., Bcl-2, Bcl-xL, Bid, Bad, Bik, Bax) and
cysteine-aspartate protease (caspase) family enzymes (Fan et al.,
2005; Zhang et al., 2004). The process unfolds in a stepwise manner,
beginning with the upregulation of cytochrome c (cyt c), followed by
the expression of poly ADP polymerase (PARP), which serves as the
cleavage substrate of caspase. This leads to the downregulation of the
apoptosis inhibitor gene surviving, further facilitating the
progression of apoptosis.

Chrysin can effectively inhibit the growth rate of human cervical
cancer Hela cells and human breast cancer MCF-7 cells through
inducing apoptosis (Geng et al., 2022; Xue et al., 2016). Additionally,
human uveal melanoma cells have been reported to experience
increased mitochondrial membrane permeability when exposed
to chrysin. This causes the release of cyt c into the cell
cytoplasm, which then activates a caspase cascade, particularly

TABLE 1 Selected ESCM and their anti-cancer constituents.

Chinese materia medica Anti-cancer constituents

Haizao (Sargassum) Fucoidan; Laminarin (Liu et al., 2022; Han et al., 2020a)

Kunbu (Laminariae Thallus) Eckol (Leong et al., 2022); Fucoxanthin (García-Maldonado et al., 2023); Palmitic acid (Chen et al., 2023a)

Juemingzi (Cassiae Semen) Chrysin; Daidzin; Galangin; Isoquercitrin; Juglanin; Quercetin (Lewenhofer et al., 2018)

Shijueming (Haliotidis Concha) Extract

Walengzi (Arcae Concha) N6 isopentenyl adenosine

Muli (Ostreae Concha) Extract

Biejia (Trionycis Carapax) Extract

Guijia (Testudinis Carapax Et Plastrum) Extract

Xuanshen (Natrii Sulfas Exsiccatus) Astragalin; Hispidulin; Homoplantaginin; Kaempferol; Luteolin; Nepitrin; Rutin (Schwartz et al., 2017)

Lurong (Cervi Cornu Pantotrichum) Extract
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caspase-3 and caspase-9, resulting in mitochondrial impairment and
triggering apoptosis (Yao et al., 2021). Similarly, daidzin can affect
the permeability of mitochondrial membranes in Hela cells, thereby

decreasing the expression of anti-apoptotic proteins Bcl-2 and
survivin. It simultaneously increases the expression of Bax,
caspase-8, and caspase-9, leading to a dose-dependent apoptosis

FIGURE 1
Images of ESCM and chemical structures of anti-cancer constituents. The images were downloaded from the website of Pharmaceutical Network
(https://www.pharmnet.com.cn/tcm/zybb/), the chemical structures were obtained from the website of ChemSpider (https://www.chemspider.com/).
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process (Li et al., 2022; Zhang et al., 2019). The pro-apoptotic and
anti-proliferative activities of eckol (a marine-derived phlorotannin)
are demonstrated by the upregulation of Bax, caspase-3, and
caspase-9 expression, alongside downregulation of Bcl-2
expression through in vivo experiments (Huang et al., 2020).

Galangin has been reported to regulate key apoptotic markers in
a concentration-dependent manner in ovarian cancer cells.
Specifically, it upregulates Bax protein, downregulates Bcl-2
expression, and increases cleaved caspase-3, caspase-7, caspase-8,
and caspase-9 levels, that facilitating apoptosis (Liang et al., 2021).
Liang et al. found that galangin can inhibit the viability of human
gastric cancer MGC-803 cells while sparing normal gastric mucosal
epithelial cells. This selective effect manifests as a decrease in Bcl-2

and an elevation of cleaved caspase-3 and PARP (Ha et al., 2013).
Additionally, galangin can activate caspase-3 and caspase-9 in
human colon cancer cells and induces apoptosis by disrupting
the membrane potential of mitochondria, ultimately leading to
mitochondrial dysfunction (Gao et al., 2014). Hispidulin exhibits
effects similar to those of galangin. It alters mitochondrial
membrane potential, decreases the Bcl-2/Bax ratio, and enhances
the activation and release of cyt c and caspase-3 (Shi et al., 2021a).

Luteolin has been shown to decrease the expression of anti-
apoptotic genes Bcl-2 and Bcl-xL while increasing pro-apoptotic
genes such as Bax, Bad, and Bid (Kang et al., 2017). In human colon
cancer HT-29 cells, luteolin treatment triggered the release of
cytochrome c from mitochondria into the cytoplasm, leading to

FIGURE 2
Flow diagram of the article selection process (PRISMA 2020).
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increased levels of activated caspase-9 and caspase-3 (Raina et al.,
2021). Additionally, luteolin induced apoptosis by depolarizing the
mitochondrial membrane potential and causing DNA damage
(Budisan et al., 2019).

Kaempferol’s effects on the Bcl-2 protein family have been
extensively studied. Lee et al. reported that kaempferol increased
mitochondrial membrane permeability and elevated cytoplasmic
cytochrome c levels in HT-29 cells. It also enhanced the levels of
cleaved caspase-9, caspase-3, caspase-7, and caspase-8.
Furthermore, kaempferol decreased the expression of anti-
apoptotic proteins such as Bcl-xL and Bid, while upregulating
pro-apoptotic proteins like Bad and Bik. Additionally, it activated
cell surface death receptors, contributing to apoptosis (Lee et al.,
2014; Khorsandi et al., 2017).

Cancer cells generate substantial amounts of lactate during
aerobic glycolysis, which is expelled into the tumor

microenvironment via the monocarboxylate transporter protein
(MCT). Quercetin has been shown to significantly downregulate
Bcl-2 expression and upregulate Bax expression in MCF-7 cells,
thereby inducing mitochondrial apoptosis. Moreover, Amorim et al.
reported that quercetin inhibits MCT expression in colorectal cancer
cells, thus disrupting their glycolytic phenotype. This disruption
deprives cancer cells of sufficient energy, followed by cell
proliferation inhibition and apoptosis (Amorim et al., 2015;
Thorpe et al., 2015).

2.2 Intervention in the PI3K/AKT and its
associated signaling pathways

The phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt)
signaling pathway is a well-established biological process involving

FIGURE 3
Summary of the anti-cancer mechanisms of cancer cell proliferation inhibition and apoptosis induction, and inhibition of cancer cell invasion
and migration.
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the regulation of diverse signalings such as apoptosis, metabolism,
cell proliferation and growth, protein synthesis, transcription,
glucose uptake, and aerobic glycolysis in cancer cells (Fresno
Vara et al., 2004; Fruman et al., 2017). Activation of PI3K within
this pathway is driven by oncogenes and growth factor receptors,
and its heightened activity is frequently recognized as a hallmark of
cancer (Chen et al., 2017). Intervention in the adenosine
monophosphate-activated protein kinase (AMPK), mitogen-
activated protein kinases (MAPK), and epidermal growth factor
receptor (EGFR) signaling pathways, as well as inhibition of the
PI3K/Akt pathway through crosstalk effects, are essential for
achieving anti-cancer effects.

2.2.1 Inhibition of the PI3K/AKT signaling pathway
Most listed active constituents address the functions to suppress

the PI3K/AKT signaling pathway. Juglanin has been reported to
suppress the PI3K/AKT signaling pathway, resulting in a reduction
of anti-apoptotic proteins (Bcl-2 and Bcl-xL) and an increase in pro-
apoptotic proteins (Bax and Bad). These enhance the cleavage of
caspase-3 and PARP, thereby promoting apoptosis in cancer cells.
Furthermore, the formation of autophagic vacuoles and
upregulation of autophagy-related genes in juglanin-treated cells
indicate that juglanin also induces cellular autophagy (Yang et al.,
2023a). Astragalin downregulates the phosphorylation level of PI3K/
Akt signaling pathway-related proteins and activates autophagy in
mouse hippocampal neuron HT22 cells (Wang and Tang, 2017). In
vivo and in vitro experiments have shown that galangin can promote
caspase-3 expression by inhibiting the PI3K/AKT signaling pathway
(Hsu et al., 2022).

2.2.2 Activation of the AMPK signaling pathway
AMPK is a crucial energy sensor that monitors changes in AMP/

ATP or ADP/ATP ratios and regulates metabolic processes, playing
a vital role in maintaining cellular energy homeostasis (Nitulescu
et al., 2018). Additionally, it can modulate glucose and lipid
metabolism by responding to fluctuations in nutrient and
extracellular energy levels (Keerthana et al., 2023). Activation of
AMPK and its downstream signaling cascades orchestrates the
dynamics of bioenergetics and metabolism in tumor cells.
Substantial evidence supports the inhibitory role of AMPK
activation in tumorigenesis and progression, suggesting that
targeting the AMPK signaling pathway could provide a
promising strategy for cancer therapy (Zeb et al., 2024).
Astragalin activates the AMPK signaling pathway, and inhibits
the aerobic glycolysis and proliferation of human breast cancer
MDA-MB-231 cells through AMPK-mediated metabolic regulation
(Wang et al., 2015). Hispidulin could potentiate the anti-tumor
activity of temozolomide (TMZ) in glioblastoma by activating the
AMPK signaling pathway (Franco-Juárez et al., 2022). Transcription
factor EB (TFEB), a master regulator of autophagy and lysosomal
biogenesis, is upregulated by homoplantaginin through AMPK/
TFEB pathway activation (Fan et al., 2023; Wu et al., 2017).
Isoquercitrin reduces viability and promotes apoptosis in
T24 bladder cancer cells via AMPK-mediated metabolic
dysfunction and caspase-dependent apoptosis (Zeng and Chen,
2022). The sirtuin (SIRT) protein family critically regulates
mitochondrial biosynthesis and intervenes in mitochondrial
function via an AMPK-dependent mechanism (Guo H. et al.,

2021). Guo et al. reported that quercetin elevates the
SIRT1 expression level and the AMPK phosphorylation level in a
dose-dependent manner, thereby activating the SIRT1/AMPK axis
to trigger mitochondria-dependent apoptotic pathway in human
A549 cells and H1299 cells, to treat the non-small cell lung cancer
(NSCLC) (Lee et al., 2020).

2.2.3 Activation of the MAPK signaling pathway
MAPK are pivotal signaling mediators that respond to diverse

stimuli, including physiological signals (e.g., hormones, cytokines,
and growth factors) and stress-related cues (e.g., endogenous stress
and environmental perturbations). The MAPK family comprises
three major subfamilies: ERK (a pro-survival kinase activated by
mitogenic signals), and the stress-responsive MAPKs, JNK and p38
(Sugiura et al., 2021). Sustained ERK activation can significantly
trigger tumor cell death under specific conditions (Dhanasekaran
and Reddy, 2008). JNK, often termed the stress-activated protein
kinase, primarily regulates stress-induced apoptosis and damage
response. Mechanistically, JNK activation promotes apoptotic
signaling by either upregulating pro-apoptotic genes via trans-
activation of specific transcription factors or by directly
modulating mitochondrial apoptotic pathways through
phosphorylation-dependent regulation of Bcl-2 family proteins
(Sui et al., 2014). Notably, the p38 and JNK pathways exhibit
functional interaction in the induction of apoptosis and
autophagy processes, with their interplay dictating context-
dependent cell fate decisions (Pichichero et al., 2011). Chrysin
induces caspase-dependent apoptosis in both human and murine
melanoma cells through activation of ERK and p38MAPK signaling
pathways (Kim DA. et al., 2012). Galangin-triggered cell apoptosis
was characterized by DNA breaks, caspase-3/9 activation, PARP
cleavage, and coordinated activation of the expression of MAPK
kinases (ERK and JNK) in human gastric cancer SNU-484 (Sabbah
et al., 2020).

2.2.4 Activation of the EGFR signaling pathway
EGFR is a member of the ERBB family of receptor tyrosine

kinases, regulates critical cellular processes, including proliferation,
differentiation, division, survival, and oncogenesis through its
singling cascade (Jackson and Ceresa, 2017; Nam et al., 2016).
Additionally, EGFR overexpression can induce receptor-mediated
apoptosis or autophagy, commonly through intersecting with core
apoptotic and autophagic pathways (Wu and Zhang, 2020; Anson
et al., 2018). Anson et al. demonstrated that luteolin, in the presence
of epidermal growth factor (EGF), can induce caspase and PARP
cleavages, to suppresses the proliferation of glioblastoma cells (Shao
et al., 2012).

2.2.5 Crosstalk of signaling pathways associated
with PI3K/Akt

Multiple constituents of ESCM can act on the upstream or
downstream pathways of PI3K/Akt, ultimately intervening in the
PI3K/Akt pathway through crosstalk effects. For example, chrysin
and kaempferol can suppress the Akt/mTOR pathway by
significantly activating the AMPK signaling pathway (Filomeni
et al., 2010; Boo et al., 2013). Fucoidan, luteolin, and quercetin
can also inhibit the expression of PI3K/Akt by activating the MAPK
pathway (Lu et al., 2017; Granato et al., 2017; Han et al., 2017).
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Luteolin also reduces phosphorylated Akt and mTOR levels through
activation of the EGFR, to inhibit its downstream Akt/mTOR
signaling pathway (Shao et al., 2012). Among them, fucoidan
(Hyun et al., 2009; Shi et al., 2021b), luteolin (Lin et al., 2015;
Glaviano et al., 2023), kaempferol (Wang R. et al., 2023; Carnero
et al., 2008; Xie et al., 2013; Jia et al., 2018), and quercetin (Fu et al.,
2021) have all been proven to possess the ability to directly intervene
in the PI3K/Akt pathway. To clarify the ESCM with both direct and
indirect effects on the PI3K/Akt pathway, we constructed Table 2 for
presentation and comparison.

2.3 Activation of endoplasmic
reticulum stress

Endoplasmic reticulum (ER) is a critical organelle for protein
synthesis and maturation. Various physiological and pathological
conditions can lead to an accumulation of misfolded proteins in the
ER lumen—a conserved adaptive reaction known as ER stress, and
triggering the unfolded protein response (UPR) (Fu et al., 2021; Bhat
et al., 2017). Persistent ER stress may induce apoptosis or autophagy
as compensatory mechanisms to restore proteostasis (Chen et al.,
2014). Targeting ER stress cascades has emerged as a promising anti-
cancer strategy. For instance, Chen et al. demonstrated that fucoidan
can exert anti-tumor effects by modulating ER stress-related
apoptosis (Liu et al., 2017). Similarly, quercetin participates in the
mitochondrial apoptotic pathway through Bcl-2-regulated ER stress
while concurrently activating cytoprotective autophagy in human
ovarian cancer cells (Liu et al., 2023). Isoquercitrin also promotes
immunogenic cell death (ICD) in human gastric cancer cells
through ER stress activation (Hu et al., 2019).

Sustained ER stress upregulates the C/EBP homologous protein
(CHOP), a predominant pro-apoptotic transcription factor in ER,
triggering downstream cascade responses (Kim et al., 2018).
Kaempferol, for example, activates the JNK/CHOP signaling axis
to induce ER stress and autophagy (Ibrahim et al., 2019).
Additionally, glucose-regulated protein (GRP) 78 and GRP94 are
crucial ER chaperone proteins, that facilitating the refolding or
degradation of misfolded proteins via ER-associated degradation
(ERAD) signaling pathways (Eletto et al., 2010; Su et al., 2013).
Galangin enables the prolonged ER stress in hepatocellular
carcinoma (HCC) by elevating GRP78, GRP94, and CHOP levels,
thereby suppressing proliferation (Song W. et al., 2017). Moreover,
galangin enhances TRAIL (tumor necrosis factor-related apoptosis-
inducing ligand) sensitivity by upregulating CHOP-dependent DR4

(death receptor 4) activity and activating AMPK signaling. This dual
mechanism promotes caspase-3-mediated apoptosis in breast cancer
cells (Kuang et al., 2023).

Ferroptosis, an iron-dependent form of programmed cell death
driven by lipid peroxidation, holds therapeutic potential. Palmitic
acid (PA) suppresses colorectal cancer cell viability in vitro and in
vivo by inducing ER stress. Mechanistically, PA disrupts intracellular
iron homeostasis via ER calcium release, upregulates transferrin
(TF)-mediated iron transport, and ultimately triggers ferroptotic
death through iron overload (Engeland, 2022).

2.4 Induction of cell cycle arrest

Cell cycle arrest, achieved by downregulating cyclins and cyclin-
dependent kinases (CDKs), represents a key anti-cancer strategy.
Tumor suppressors such as p53 (which induces apoptosis and cycle
arrest) and p21 (a CDK inhibitor and primary transcriptional target
of p53) are central to this process (Weng et al., 2005). Integrating cell
cycle arrest with apoptosis or autophagy often enhances
therapeutic efficacy.

Chrysin induces G1-phase arrest in rat glioma C6 cells by
activating p38 MAPK, which drives p21 accumulation and
suppresses CDK2/CDK4 activity in a dose- and time-dependent
manner (Yang et al., 2014a). Hispidulin has been indicated with
diverse mechanistic insights in cell cycle arrest: in gastric cancer
AGS cells, it sustains NAG-1 (NSAID-activated gene-1) expression
through ERK activation, followed by the downregulation of
cyclin D1/E, and eventually induces G1/S arrest with apoptosis
(Yu et al., 2013; Lin et al., 2010); in glioblastoma multiforme (GBM)
cells, it activates AMPK, thereby inhibiting the downstream mTOR
expression, and thus upregulating p53/p21 to block G1 progression
(Ishikawa et al., 2008). Fucoxanthin downregulates cyclin D1/2 and
CDK4/6 to trigger G0/G1 arrest while simultaneously promoting
apoptosis via caspase-3/8/9 activation, PARP cleavage, and
suppression of anti-apoptotic proteins Bcl-2, Bcl-xL, and survivin,
which has been validated in vitro and in vivo (Kim KN. et al., 2013;
Liu et al., 2018).

Galangin suppresses PI3K/Akt signaling in both MCF-7 cells
and human nasopharyngeal carcinoma cells, downregulating cyclin
D3/B1 and CDK1/2/4 while elevating p21/p53 levels. This results in
cell cycle arrest in the S phase along with mitochondrial apoptosis
(Lee et al., 2018; Wu et al., 2018). Kaempferol exhibits selective
toxicity toward EJ bladder cancer cells compared to normal bladder
cells. It inhibits p-AKT, cyclin D1, CDK4, Bid, and Bcl-xL while

TABLE 2 ESCM with both direct and indirect effects on the PI3K/Akt pathway and their indications.

ESCM Direct effects Indirect effects

Through AMPK pathway Through MAPK pathway Through EGFR pathway

Fucoidan Bladder cancer
Colon cancer

— Prostate cancer —

Luteolin Breast cancer; Choroidal melanoma — Gastric cancer Glioblastoma

Kaempferol Non-small cell lung cancer; Bladder cancer Cervical cancer — —

Quercetin Breast cancer — Primary effusion lymphoma —
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upregulating p53/p21/Bax to induce S-phase arrest and apoptosis
(Huang et al., 2013). In hepatocellular carcinoma SK-HEP-1 cells,
kaempferol triggers G2/M arrest via cyclin B/CDK1 downregulation
and activates AMPK-mediated autophagy by suppressing Akt/
mTOR (Wang QZ. et al., 2023). Furthermore, the differential
metabolite of walengzi, N6-isopentenyladenosine, induces
S/G2 arrest and apoptosis in thyroid cancer TPC-1 cells (Sun
et al., 2017). Exposure to juglanin activates JNK in human breast
cancer cells, leading to the activation of cleaved caspase-3/8/9, and
induces autophagy (evidenced by autophagosome formation). This
combined effect results in G2/M phase block, apoptosis, and
autophagy, effectively inhibiting cancer cell proliferation (Deng
et al., 2013).

Quercetin exhibits broad-spectrum cell cycle interference
capability across cancer types. In MCF-7 cells, quercetin induces
G0/G1 arrest by downregulating survivin mRNA to promote
apoptosis (Mu et al., 2007); in HepG2 hepatocellular carcinoma,
it elevates p53 and p21 to block G1 progression (KimH. et al., 2013).
Additionally, quercetin activates caspase-3/7/9, promotes PARP
degradation, stimulates JNK, and increases the expression of p53.
The subsequent translocation of p53 to mitochondria triggers the
release of cyt c into the cytoplasm, thereby inducing mitochondrial
apoptosis and modulating cell death in human glioma
U373MG cells (Moon et al., 2003). Quercetin can further
suppress ERK activity, followed by downregulation of cyclins and
CDKs, and upregulates the CDK inhibitor p21 to enforce G1-phase
arrest (Jeong et al., 2009). Its cell cycle interference spans multiple
phases: in ovarian cancer SKOV-3 cells, it downregulates cyclin
B1 and CDK1—key drivers of G2/M progression—thereby blocking
the G0/G1-to-G2/M transition and inducing apoptosis (Ren et al.,
2015; Ong et al., 2004). In nasopharyngeal carcinoma HK1 and
CNE2 cells, quercetin exhibits synergic effects regarding cell cycle
arrest and apoptosis, wherein it regulates pro-apoptotic mediators
(Bad, caspase-3, and caspase-7) to induce cytotoxic effects while
concurrently arresting cells in G0/G1 or G2/M phases (Pastushenko
and Blanpain, 2019).

3 Anti-metastatic/immunomodulatory

Metastasis is the most lethal manifestation of cancer, accounting
for the majority of cancer-related deaths. Unlike localized tumors,
metastatic ones are systemic and frequently exhibit therapy
resistance, underscoring the urgency and the potential of
targeting metastatic pathways. During this process, tumor cells
acquire invasive traits to dissociate from the primary tumor,
migrate through surrounding tissues, and colonize distant
organs—a progression driven by dynamic interactions with
immune, stromal, and extracellular matrix components (Zhao
et al., 2023). Emerging evidence highlights bioactive constituents
from ESCM as promising anti-metastatic agents (Figure 3). These
constituents interfere with metastasis-associated signaling networks,
including pathways regulating matrix metalloproteinase (MMP)
activity, epithelial-mesenchymal transition (EMT), and micro-
environmental crosstalk (Zheng et al., 2024; Deryugina and
Quigley, 2006). Other effective intervention methods include
targeting VEGF-mediated tumor angiogenesis, anti-inflammatory
and anti-oxidant.

3.1 Inhibition of MMP expression

Matrix metalloproteinases (MMPs), a family of proteolytic
enzymes critically implicated in tumor metastasis, drive cancer
progression by degrading extracellular matrix (ECM) components
and thus facilitating invasive cell behavior, with elevated MMP
expression strongly correlating with aggressive metastatic
phenotypes (Yang et al., 2014b). Targeting MMP activity through
pharmacological or genetic interventions has emerged as a validated
strategy to suppress cancer cell invasion, as exemplified by bioactive
compounds derived from natural sources. Chrysin selectively
downregulates MMP-10, demonstrating potent anti-metastatic
effects in triple-negative breast cancer (TNBC) models (Han M.
et al., 2016), whereas quercetin dose-dependently reduces MMP-2/
9 levels to block colorectal Caco-2 cell motility (Fu et al., 2021;
Chung et al., 2013). Similarly, fucoxanthin decreases MMP-9
expression and secretion, and further broadens its mechanistic
impact through downregulating cell-surface glycoproteins and
chemokine receptors essential for adhesion and invasion (Delma
et al., 2015). Fucoidan, in addition to suppressing MMP-2/9 activity
in pancreatic cancer cells, synergistically inhibits proliferation and
induces apoptosis (Han et al., 2015). This effect might be attributed
to its dose-dependent inhibition of the PI3K/Akt/mTOR pathway
that reducing MMP-2 expression, as observed in HT-29 cells
(Monsef-Esfahani et al., 2014) Nepitrin, even at low
concentrations, directly inhibits the enzymatic activity of MMP-2
and MMP-9, thereby attenuating proteolytic ECM remodeling (Yao
et al., 2019), while luteolin suppresses MMP-2/9 expression to
impair migration and invasion of cells of colorectal cancer and
breast cancer (Feng et al., 2020; Li et al., 2015). Kaempferol
exemplifies multi-targeted efficacy: by downregulating ERK, JNK,
and p38 expression, it suppresses MAPK signaling to reduce MMP-
2/9 activation, thereby inhibiting adhesion, migration, and invasion
in breast cancer MDA-MB-231 cells. Critically, in vivo studies
confirm kaempferol’s translational potential, as it disrupts the
MAPK/MMP-9 signaling cascade to prevent lung metastasis in
murine melanoma B16F10 models (Chen et al., 2013; Lamouille
et al., 2014). Collectively, these findings underscore MMP
suppression as a cornerstone of anti-metastatic therapy, with
natural compounds offering multifaceted mechanisms to block
ECM degradation, impair cell motility, and synergize with
apoptotic and proliferation pathways.

3.2 Suppression of EMT process

EMT is a reversible cellular reprogramming process enabling
epithelial cells to acquire migratory mesenchymal traits. It is a
critical driver of cancer metastasis that intimately correlates with
advanced tumor stage, therapeutic resistance, and poor clinical
prognosis (Zhao et al., 2023). During EMT, diminished cell
adhesion—marked by downregulated E-cadherin and upregulated
N-cadherin and vimentin—enhances cancer cell invasiveness and
migration ability, facilitating detachment from primary tumors and
dissemination to distant organs (Zhang and Weinberg, 2018).
Furthermore, EMT synergizes with MMP overexpression to
degrade ECM barriers, amplifying metastatic potential (He
et al., 2019).
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Natural compounds targeting the EMT process demonstrate
considerable therapeutic promise. Chrysin reverses EMT in TNBC
by restoring E-cadherin and suppressing vimentin, directly
impeding metastasis (Han M. et al., 2016). Fucoidan-treated rat
serum modulates MCF-7 cells by upregulating E-cadherin and
downregulating MMP-9, as it can significantly inhibit migration
and invasion via attenuating EMT, while concurrently enhancing
apoptosis (Lin et al., 2017). Similarly, luteolin upregulates
E-cadherin and downregulates mesenchymal markers such as
N-cadherin, and vimentin expression, thereby restoring the
epithelial phenotype of TNBC cells (Jo et al., 2015). In NSCLC
A549 cells, kaempferol effectively blocks TGF-β1-induced EMT and
cell metastasis by reestablishing E-cadherin expression and
inhibiting MMP-2 and TGF-β1 upregulation (Zhu et al., 2021).

The PI3K/Akt/mTOR pathway is a central upstream regulator of
EMT, that drives metastasis by promoting cadherin switching,
vimentin overexpression, and MMP-2/9 activation.
Pharmacological inhibition of PI3K, Akt, and mTOR, at both
protein and mRNA levels, reversing EMT and hindering cancer
cell proliferation, invasion, and migration. For example, biejia
extract could inhibit PI3K/Akt/mTOR signaling in MDA-MB-
231 breast cancer cells, attenuating EMT and metastatic
behaviors (Chen et al., 2018). Chen et al. found that luteolin
demonstrates multi-target efficacy by disrupting RPS19-activated
EMT in cutaneous squamous cell carcinoma via Akt/mTOR
pathway blockade (Yang et al., 2022). Additionally, daidzin
suppresses PI3K/Akt/mTOR pathway and TGF-β expression,
effectively impeding EMT and reducing invasiveness in colon
(SNU-C2A) and prostate (DU145, PC-3) cancers (Wei et al.,
2021). These findings manifest PI3K/Akt/mTOR inhibition as a
potent strategy to counteract EMT-driven metastasis.

3.3 Targeting VEGF-mediated tumor
angiogenesis

Vascular endothelial growth factor (VEGF) drives tumor
angiogenesis through hypoxia-inducible factor 1α (HIF-1α)-
mediated transcriptional regulation, a process amplified by
oncogene signals, growth factors, and hypoxic stress. Tumors
exceeding 1–2 mm in diameter require neovascularization to
overcome diffusion-limited nutrient supply. This further prompts
VEGF-dependent endothelial proliferation and vasculogenic
mimicry (VM), where tumor cells self-organize into functional
microvascular networks, bypassing traditional angiogenic
pathways (Rashid et al., 2021). HIF-1α serves as the molecular
linchpin, simultaneously upregulating VEGF while activating
PI3K/Akt/mTOR and MAPK signaling cascades, thereby creating
a feedforward loop that sustains tumor vascularization and
progression (DeNicola and Cantley, 2015; Carmeliet, 2005). This
mechanistic overlap posits VEGF suppression as a strategic
therapeutic frontier, particularly given VM’s resistance to
conventional anti-angiogenic therapies (Figure 4) (Mabeta and
Steenkamp, 2022; Liu et al., 2016).

The previously documented constituents demonstrate multi-
target efficacy against VEGF-driven tumor angiogenesis: fucoidan
exhibits pan-inhibitory efficacy across diverse malignancies,
including multiple myeloma (RPMI-8226, U266) and breast

cancer (4T1), which suppresses VEGF expression to potently
ameliorate tumor neoangiogenesis (Xue et al., 2012; Liu et al.,
2012). Mechanically, it disrupts both microvascular proliferation
and vascular network patterning, while concurrently suppressing
lymphangiogenic signaling pathways, thereby reducing lymphatic
metastasis incidence in preclinical models (Yang et al., 2016; Huang
et al., 2015). Galangin inhibits angiogenesis in ovarian carcinoma
OVCAR-3 cells via VEGF suppression and prevents
neovascularization through blockade of the Akt/HIF-1α pathway
(He et al., 2011). Similarly, hispidulin interferes with the VEGF
receptor-2 (VEGFR-2) mediated PI3K/Akt/mTOR signaling axis to
inhibit the growth of pancreatic tumors and angiogenesis (Hasan
and Fischer, 2023). Parallel targeting of Notch signaling, a HIF-1α/
Akt-regulated endothelial specification pathway, enhances anti-
angiogenic efficacy, as evidenced by luteolin-enabled reduction in
gastric cancer VM formation via Notch1/VEGF crosstalk inhibition
(Zang et al., 2017; Lirdprapamongkol et al., 2013). Chrysin
eliminates hypoxia-induced VEGF transcription in mouse breast
cancer model with decreased pulmonary metastasis (Coussens and
Werb, 2002). These indicate phytochemical strategies as viable
solutions to overcome tumor vascular plasticity.

3.4 Anti-inflammatory

Chronic inflammation constitutes a pivotal driver of
carcinogenesis, with approximately 20% of malignancies arising
from infection-associated or inflammation-prone
microenvironments (Quail and Joyce, 2013). Sustained
inflammatory insults induce cumulative DNA damage and
epigenetic reprogramming, fostering malignant transformation
through two synergistic mechanisms: (1) persistent immune cell
activation (neutrophils, macrophages, lymphocytes) and (2) tumor
co-option of inflammatory mediators (IL-6, TNF-α, COX-2) as
metastatic accelerants. The tumor microenvironment (TME),
comprising immune cells (e.g., myeloid-derived suppressor cells,
tumor-associated macrophages), stromal fibroblasts, and vascular
endothelial cells, exploits this inflammatory circuitry by repurposing
cytokines like IL-1β and IFN-γ to activate invasion-associated
MMPs and immune-evasion pathways (Figure 4) (Eggert and
Greten, 2017; Wang et al., 2024). Consequently, therapeutic
strategies targeting inflammatory pathways demonstrate dual
efficacy of attenuating chronic tissue damage that predisposes to
malignant transformation and disrupting pro-tumorigenic cytokine
networks within TME (Chen et al., 2016).

3.4.1 Inflammatory cytokine modulation
Immunomodulatory constituents enhance innate immune

surveillance. Biejia and shijueming extracts can both augment
macrophage phagocytic activity to reduce neutrophil infiltration
and immune response (Chen et al., 2021). Additionally, biejia extract
simultaneously elevates pro-inflammatory cytokines (IL-2, IL-4,
IFN-γ, and TNF-α) and immunosuppressive IL-10, suggesting a
rebalancing of immune homeostasis. Furthermore, administration
of biejia extract and muli hydrolysate manifests enhanced immune
ability correlating with increased thymic indices and splenic
lymphocyte proliferation (Wang et al., 2010; Kim TH. et al.,
2012). Apart from these, eckol activates macrophage populations
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while inhibiting leukocyte adhesion through integrin modulation
(Huang et al., 2020; Suh et al., 2007). Lurong hydrolysate can also
significantly reduce the expression of IFN-γ and TNF-α in mice
models (Granato et al., 2017).

Targeted cytokine suppression with constituents can disrupt
tumor-immune crosstalk. Quercetin uniquely facilitates
immunogenic cell death by upregulating surface calreticulin,
improving immune recognition of apoptotic cells while reducing
IL-6 and IL-10 secretion (Chen et al., 2019). Juglanin demonstrates
dual efficacy, reducing chronic ultraviolet radiation b (UVB)-
induced pro-inflammatory cytokine release and IL-1β-driven
MMP production, thereby inhibiting ECM degradation and
remodeling TME (Rehman et al., 2013). Moreover, chrysin and
juglanin attenuate inflammatory signaling responses by suppressing
COX-2, IL-6, and TNF-α expression across multiple animal cancer
models (Kong and Xu, 2020; Song K. et al., 2017).

Certain marine polysaccharides of ESCM constituents have been
shown to regulate adaptive immunity. Laminarin enhances dendritic
cell maturation and antigen presentation, leading to robust cytotoxic
T-cell activation and reduced growth and hepatic metastasis of
melanoma tumor (Park et al., 2020). Similarly, fucoidan
promotes cytotoxic T-lymphocytes proliferation and cytokine
production, significantly suppressing CT-26 carcinoma growth in
vivo (Zhou et al., 2024).

The NLRP3 inflammasome serves as a double-edged sword in
carcinogenesis, mediating protective immune responses while driving
pathological inflammation when dysregulated (He et al., 2016).

Homoplantaginin inhibits caspase-1 activation through epigenetic
modulation of inflammasome components, effectively blocking IL-
1β processing and inflammatory cascade amplification (Zhang et al.,
2021). This effect is mechanistically distinct from galangin, which
suppresses aberrant NLRP3 activation in ovarian cancer xenograft
mouse models, downregulating both NLRP3 expression and IL-1β
maturation (Hoesel and Schmid, 2013).

3.4.2 Inhibition of the NF-κB pathway
Nuclear factor-κB (NF-κB) is a transcription factor highly

associated with inflammation, mainly composed of the p65 subunit
and the p50 subunit. Activation of NF-κB promotes cancer
progression by inducing various genes responsible for cancer cell
survival, proliferation, and metastasis, and interacts with multiple
cancer-associated pathways such as PI3K/Akt, AMPK, and MAPK
(Chen et al., 2020). Several constituents have been reported to inhibit
the upregulation of the NF-κB pathway caused by different
pathological factors. Quercetin can reduce the production of
inflammatory factors such as TNF-α, COX-2, and IL-6, and inhibit
TNF-α-induced apoptosis and inflammation by blocking NF-κB
signaling pathway (Li et al., 2024). Homoplantaginin similarly
attenuates TNF-α-induced inflammation, but it is the NF-κB/
MAPK signaling pathway that is blocked (Liu et al., 2013).

Toll-like receptor 4 (TLR4) is predominantly expressed on
macrophages. As an upstream factor of NF-κB, it can influence
downstream transcription factors through the TLR4/NF-κB
signaling pathway and drive tumor progression during chronic

FIGURE 4
Summary of the anti-cancer mechanisms of targeting VEGF-mediated tumor angiogenesis, and anti-inflammatory and anti-oxidant effects.
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inflammation. Activation of TLR4 on macrophages stimulates
increased secretion of the cytokines IL-10, MMP-2, and MMP-9.
It not only accumulates inflammatory damage, but also increases
cancer cell proliferation and migration (Zhang and Xu, 2018).
Juglanin inhibits NF-κB activation induced by IL-1β and also
blocks the TLR4/NF-κB pathway, significantly reducing pro-
inflammatory cytokine production induced by lipopolysaccharide
(LPS), and to ameliorate inflammation (Han MA. et al., 2016).
Galangin likewise significantly induces apoptosis in renal cancer
(Caki, ACHN and A498) cells but not normal cells by inhibiting NF-
κB pathway activation, which induces downregulation of Bcl-2
protein and survivin expression at the transcriptional level (Hou
et al., 2018). In the meantime, juglanin significantly attenuates both
p38/JNK and PI3K/Akt signaling pathways to inhibit NF-κB
activation induced by UVB in vivo and in vitro (Khan et al.,
2011a). After applying chrysin to early hepatocellular carcinoma
cells induced by N-nitrosodiethylamine (DEN), the expression of
COX-2 and NF-κB was significantly reduced at both mRNA and
protein levels, similarly, the level of the anti-apoptotic marker Bcl-xL
was decreased, whereas the expression of p53, Bax, and caspase-3
was elevated, which inhibited DEN-induced hepatocellular
carcinoma cell proliferation and apoptosis (Khan et al., 2011b;
Batlle and Massagué, 2019).

3.4.3 Inhibition of TGF-β expression
Transforming growth factor (TGF)-β is an important enforcer of

immune homeostasis, associating many constituents and functions
of the immune system, and perturbations in its signaling underlie
the pathology of inflammatory diseases (Derynck and Zhang, 2003).
Smad proteins are intracellular effectors of TGF-β signaling,
activation of the TGF-β/Smad signaling pathway will promote
EMT (Hu et al., 2017). The extract peptide of biejia can inhibit
the TGF-β1/Smad pathway, alter the expression levels of various
types of collagen in the extracellular matrix, and inhibit the
activation and proliferation of the hepatic stellate cell line, HSC-
T6, which was induced by TGF-β1 (Tang et al., 2013; Guo Y. et al.,
2021). Quercetin antagonizes the TGF-β/Smad signaling pathway by
decreasing TGF-β1 levels and can inhibit EMT, thereby inhibiting
the growth, migration and invasion of pancreatic cancer cells and
inducing its apoptosis (Chen QQ. et al., 2023).

3.4.4 Increasing intake of amino acids
Both biejia and guijia have been shown to be rich in amino

acids (Zou et al., 2022; Zhao et al., 2020). Amino acids can assist
innate immunity and play an effector function in the survival and
proliferation of immune cells (Wang and Zou, 2020). A variety of
amino acids are involved in the regulation of immune responses
in the tumor microenvironment and are involved in
immunotherapy of cancer (Yang et al., 2023b). Increasing
amino acid content and reconnecting amino acid metabolism
can enhance immunity and treat inflammation and cancer (Jelic
et al., 2021).

3.5 Anti-oxidant

Reactive oxygen species (ROS) damage lipids, nucleic acids, and
proteins, thereby altering their function. A state of oxidative stress

occurs when the balance between ROS production and ROS
scavenging by anti-oxidant defenses is disturbed (Klaunig, 2018).
Oxidative stress produces multiple pathological products, such as
Superoxide Dismutase (SOD), Malondialdehyde (MDA), etc., which
cause damage to cellular macromolecules and most importantly,
mutations in genomic DNA (Blaser et al., 2016). In addition, NF-κB
and ROS interact and promote each other in a positive feedback loop
(Dhar et al., 2002; Guan et al., 2018). ROS mediate multiple protein
expression and signaling pathways downstream, including TGF-β
and EGFR/MEK/ERK pathways (Wang et al., 2018; Vermot et al.,
2021). Anti-oxidants are not only anti-inflammatory but also
effective in preventing DNA mutations. Physiological processes
associated with resistance to oxidative stress, including inhibition
of expression of nicotinamide adenine dinucleotide phosphate
oxidase (NOX) protein, which is a ROS-producing enzyme, and
activation of the nuclear factor erythroid 2-related factor 2 (NRF2)
pathway that is resistant to oxidative damage (Figure 4) (He et al.,
2020; Heo and Jeon, 2009).

It has been demonstrated that fucoxanthin can enhance the anti-
oxidant capacity of the organism, increase the SOD activity, reduce
the MDA content, and have the ability to resist oxidative stress
(Meng et al., 2022). Homoplantaginin inhibited oxidized low-
density lipoprotein (ox-LDL)-induced cellular damage through
activation of the NRF2 anti-oxidant signaling pathway and
reduced ROS production, ERK phosphorylation, and NF-κB
transcription (Wang et al., 2021). Juglanin downregulates the
expression of NOX4, decreases SOD activity, and inhibites the
caspase-1 axis activation, and reduces IL-1β and IL-18
production, ameliorating cellular damage and exerting anti-
inflammatory and anti-oxidant physiological utility (Sul and Ra,
2021). Quercetin has both anti-inflammatory and anti-oxidant
effects. It reduces LPS-induced elevation of intracellular ROS
levels and inhibits LPS-stimulated NOX2 mRNA and protein
expression. It also inhibits the nuclear translocation of NF-κB and
decreases the levels of IL-1 and IL-6 (Michalcova et al., 2019).
Isoquercitrin inhibits the production of ROS in ovarian cancer
cells, while kaempferol inhibits the production of ROS in the bone
marrow-derived neutrophils of the mice mammary tumor model,
thus limiting the oxidative stress (Zeng et al., 2020; Doi et al., 2021).

4 Clinical trials

The establishment of clinical trials for CMM is a crucial step to
enhance their safety and efficacy, as well as a necessary measure to
gain international recognition (He et al., 2018; Tsai et al., 2023).
Meanwhile, in vitro and in vivo experiments have demonstrated the
exact therapeutic effect of ESCM on cancer, and its clinical
translation should be the next research focus. Randomized
controlled trials have shown that as complementary treatments,
fucoidan and luteolin can effectively improve the quality of life of
terminal cancer patients after undergoing radiotherapy or
chemotherapy (Takahashi et al., 2018; Naiki et al., 2025; Rui
et al., 2023). Although clinical trial evidence proving ESCM’s
therapeutic effect on cancer remains limited, there are currently
ongoing clinical trials investigating this. In order to clarify the
declaration of clinical trials of ESCM, we searched for relevant
clinical trials both domestically and internationally on the
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International Clinical Trial Registry Platform (https://trialsearch.
who.int/) with the keywords of ESCM, the constituents, and
“cancer”. The results were listed in Table 3. It indicated that
colon cancer can be prevented with rutin as a dietary supplement
(NCT00003365). Luteolin can be used to treat prostate cancer
(JPRN-jRCTs041230029), and inhibit ovarian cancer stem cells
proliferation by interfering with the KDM4C/PPP2CA/YAP
pathway (ChiCTR2200056567). Quercetin, in combination with
other therapeutic modalities, is effective in the treatment of
desmoplasia-resistant prostate cancer (NCT06615752), and also
reverses chemotherapy resistance in triple-negative breast cancer
(NCT06355037). Quercetin and its encapsulated nanoparticles can
also be therapeutic for cell line of tongue squamous cell carcinoma
(NCT05456022).

5 ESCM-related health products with
anti-cancer effects

The creation of health products stands as a crucial application of
ESCM in daily life, offering transparent ingredients and proven
efficacy while being tailored to meet the needs of various health
scenarios. To explore how ESCM is used in daily health products, we
searched China’s State Administration for Market Regulation’s
Special Food Query Platform (http://ypzsx.gsxt.gov.cn/
specialfood/#/food) using “ESCM” as the search term. We found
that health products mainly made from ESCM combined with other
CMM ingredients have both nutritional and healthcare functions.
They also have cancer prevention potential by clearing cancer risk
factors (Table 4). The full details are in the Supplementary Material
(Supplementary Table S1). This is specifically evident in five aspects:
first, boosting immunity and strengthening immune system defenses
to avoid cellular carcinogenesis induced by chronic inflammatory
damage (Anbarasu and Anbarasu, 2023); Second, maintaining
healthy levels of serum lipid, and improving obesity, preventing
against types of cancer caused by hyperlipemia and obesity-induced
abnormal hormone levels (Boguszewski and Boguszewski, 2019;
Radišauskas et al., 2016); Third, maintaining healthy levels of
blood pressure, preventing against the kidney cancer, prostate
cancer, and colon and rectal cancer, that are highly associated
with hypertension (Duan et al., 2014); Fourth, maintaining

healthy levels of glucose, preventing against the apoptosis
resistance in cancer cells and hyper-inflammation highly
associated with hyperglycemia (Ghar et al., 2024; Han H. et al.,
2020); Fifth, decreasing chemical substance-induced liver damage,
and protecting against the hepatotoxicity of chemical products,
thereby reducing the incidence of liver cancer (Baell, 2010).

6 Conclusion

As a part of the primary prevention against cancer, the application
of ESCM is of great importance. This paper comprehensively analyzes
the research progress of ESCM in the field of anti-cancer applications,
and provides insights into the multiple anti-cancer mechanisms of the
active constituents in these herbs. The findings indicate that these
constituents have significant inhibitory effects on the growth, survival
and metastasis of cancer cells through various biological pathways.
Specifically, the active constituents were found to inhibit cancer cell
growth andmetastasis by affecting mitochondrial function, regulating
the expression of apoptosis-related proteins, and interfering with cell
signaling pathways such as PI3K/AKT, AMPK, MAPK, and EGFR.
They also induced cell cycle arrest bymodulating the expression of cell
cycle proteins and cell cycle-dependent kinases. Additionally, these
constituents reduced the invasiveness and metastatic ability of cancer
cells by down-regulating MMP expression and inhibiting the EMT
process. They decreased the vascular supply to tumors by reducing
VEGF expression and affecting VEGF-mediated signaling pathways.
Furthermore, the active constituents were shown to reduce
inflammatory responses and oxidative stress by inhibiting the
release of inflammatory factors, blocking the NF-κB signaling
pathway, and suppressing TGF-β expression. They also enhanced
the activity of amino acids and antioxidant enzymes to regulate
immune responses and inflammatory states. Beyond biological
experiments, clinical trials and the application of health products
have provided further evidence of ESCM’s anti-cancer effects.

Despite the broad-spectrum anti-cancer properties of the reviewed
ESCM constituents, it is noteworthy that certain constituents in
Figure 1 (e.g., quercetin, kaempferol, rutin) represent well-
documented pan-assay interference compounds (PAINS)
(Magkoufopoulou et al., 2011; Wang et al., 2017; Gao et al., 2021;
Jomova and Valko, 2011). These chemical scaffolds frequently yield

TABLE 3 Clinical trials of ESCM.

Constituent Indications Main ID Public title

Rutin Colon cancer NCT00003365 Sulindac and Plant Compounds in Preventing Colon Cancer

Luteolin Prostate cancer JPRN-
jRCTs041230029

Safety analysis of luteolin for prostate cancer

Ovarian cancer ChiCTR2200056567 Inhibition of ovarian cancer stem cells by luteolin targeting the KDM4C/PPP2CA/YAP
pathway: an in vitro observational clinical study

Quercetin Desmoplasia-resistant prostate
cancer

NCT06615752 Green Tea and Quercetin in Combination with Docetaxel Chemotherapy in Castration-
resistant Prostate Cancer Patients

Triple-negative breast cancer NCT06355037 Dasatinib Combined With Quercetin to Reverse Chemo Resistance in Triple Negative Breast
Cancer

Tongue squamous cell
carcinoma

NCT05456022 Therapeutic Efficacy of Quercetin Versus Its Encapsulated Nanoparticle on Tongue
Squamous Cell Carcinoma Cell Line
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TABLE 4 ESCM-related health products with anti-cancer effects.

Efficiency ESCM Product name Principal raw material License
number

Enhancement of immunity Biejia Tangyuan Brand Ginseng, Wolfberry and
Turtle Capsule

Lycii Frustus, Poria, Dioscoreae Rhizoma, Trionycis
Carapax, Ginseng Radix et Rhizoma extract

G20090465

Guijia Songyou Drink Brand Danqi Goujia
Granules

Lycii Frustus, Hawthorn, Testudinis Carapax Et Plastrum,
Astragali Radix, Salviae Miltiorrhizae Radix Et Rhizoma

G20070160

Leping Brand Kamehameha Boneset
Capsules

Astragali Radix extract, Eucommiae Cortex extract, Lycii
Frustus extract, Testudinis Carapax Et Plastrum extract,

Drynariae Rhizoma extract, Calcium carbonate,
Magnesium stearate

G20190045

Huiren Brand Rehmannia Glutinosa
Tablets

Rehmanniae Radix Praeparata, Testudinis Carapax Et
Plastrum, Ligustri Lucidi Fructus, Rhodiolae Crenulatae
Radix Et Rhizoma, Alpiniae Oxyphyllae Fructus, Fructus

Mori, Gardeniae Fructus

G20190386

Guijia,
Lurong

Suhang Brand Antler and Turtle Wine Cervi Cornu Pantotrichum, Testudinis Carapax Et
Plastrum, Astragali Radix, Poria, Lycii Frustus, White

spirits

G20030041

Yellow Gold Medal Deer Antler,
Kamehameha and American Ginseng

Wine

Cervi Cornu Pantotrichum, Testudinis Carapax Et
Plastrum, Panacis Quinquefolii Radix, Eucommiae
Cortex, Lycii Frustus, Honey, White spirits, Water

G20060057

Hongjitang Brand Ginseng, Deer Antler
and Turtle Wine

Morindae Officinalis Radix, Lycii Frustus, Fructus Mori,
Alpiniae Oxyphyllae Fructus, Ginseng Radix Et Rhizoma,

Testudinis Carapax Et Plastrum, Cervi Cornu
Pantotrichum, Cinnamomi Cortex

G20130530

Weixiong Brand Horse Deer Antler and
Western Ginseng Wine

Testudinis Carapax Et Plastrum, Acanthopanacis
Senticosi Radix Et Rhizoma Seu Caulis, Lycii Frustus,
Longan Arillus, Cervi Cornu Pantotrichum, Panacis

Quinquefolii Radix

G20220341

Haizao Foucauld’s Seaweed Oral Liquid Sargassum, Honey, Citric acid, Benzoic Acid, Stevioside,
Drinking water

J20060005

Bioscan Brand Chitosan Algae Yam
Capsules

Dioscoreae Rhizoma, Sargassum, Chitosan G20110403

Luronga Lutetan Chewable Antler and Western
Ginseng Tablets

Cervi Cornu Pantotrichum, Panacis Quinquefolii Radix,
Epimedii Folium, Ophiopogonis Radix, Mannitol,

Aspartame (with L-Phenylalanine), Chocolate-Ice cream
flavoring, Creamy flavoring

G20100153

FangZhongFang Brand Beef Knee and
Deer Antler Wine

Cervi Cornu Pantotrichum, Rehmanniae Radix, Morindae
Officinalis Radix, Achyranthis Bidentytae Radix, Lycii
Frustus, Poria, Hippophae Fructus, White spirits, Water

G20110596

Shurentang Brand Sanqi Xiyangshen Ma
Deer Antler Wine

Cervi Cornu Pantotrichum, Notoginseng Radix Et
Rhizoma, Panacis Quinquefolii Radix, Ganoderma,

Polygonati Rhizoma, Lycii Frustus, Hippophae Fructus,
Fructus Mori

G20110717

Zhangzisong Brand Antler Maidenhair
Wine

Cervi Cornu Pantotrichum, Angelicae Sinensis Radix,
Lycii Frustus, Ligustri Lucidi Fructus, Crystal sugar,White

spirits, Purified water

G20130403

Tongrentang Brand Horsetail Antler and
Western Ginseng Capsules

Cervi Cornu Pantotrichum, Lycii Frustus extract,
Ophiopogonis Radix extract, Ganoderma extract, Panacis

Quinquefolii Radix extract

G20140691

President Brand Ganoderma Lucidum
Antler Tablets

Cervi Cornu Pantotrichum (irradiated), Lycii Frustus
extract, Ophiopogonis Radix extract, Ganoderma extract,

Panacis Quinquefolii Radix extract

G20141048

Aoqi Long Brand Xiyangshen Deer Antler
Wine

Astragali Radix, Hippophae Fructus, Lycii Frustus,
Polygonati Rhizoma, Panacis Quinquefolii Radix, Cervi

Cornu Pantotrichum

G20141109

Luyuanchun Brand Horse Deer Antler
Soft Capsules

Cervi Cornu Pantotrichum powder (irradiated) G20160063

(Continued on following page)
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TABLE 4 (Continued) ESCM-related health products with anti-cancer effects.

Efficiency ESCM Product name Principal raw material License
number

Overseas Brand Ma Deer Antler and
Western Ginseng Soft Capsules

Cervi Cornu Pantotrichum powder, Panacis Quinquefolii
Radix extract, Soybean oil, Beeswax, Gelatin, Glycerol,

purified water, Titanium dioxide

G20160427

Ausflex Brand Ginseng and Antler
Capsules

Cervi Cornu Pantotrichum powder (irradiated), Ginseng
Radix Et Rhizoma extract

G20220183

Zhonghe Hongye Brand Horse Deer
Antler and Western Ginseng Tablets

Cervi Cornu Pantotrichum powder (irradiated), Panacis
Quinquefolii Radix extract

G20220217

Healthy Deer Sang Brand Ma Deer Antler
Tablets

Cervi Cornu Pantotrichum (irradiated) G20230116

Royal Shop Brand Xiyangshen Ma Deer
Antler Wine

Cervi Cornu Pantotrichum, Panacis Quinquefolii Radix,
White spirits, purified water

G20230151

Ruiyuan Brand Cistanche Antler Capsules Cervi Cornu Pantotrichum powder, Cordyceps militaris
mycelium powder, Cistanches Herba extract, Magnesium

stearate, Magnesium stearate

G20230177

Jiyun Brand Antler Powder Capsules Cervi Cornu Pantotrichum powder G20230557

Herbal Essence Zhengyuantang Brand
Horse Deer Antler and American Ginseng

Tablets

Cervi Cornu Pantotrichum powder (irradiated), Panacis
Quinquefolii Radix extract, Microcrystalline cellulose,
Maltodextrin, Carboxymethylstach sodium, Magnesium

stearate

G20230717

Muli Haiwang Brand Golden Oyster Capsules Ostreae Concha powder, Amylum G20040491

Hongyangshen Brand Chitosan Oyster
Tablets

Chitosan, Ostreae Concha extract G20141320

Golden Olive Brand Oyster Taurine
Vitamin C Capsules

Ostreae Concha extract, Taurine, Vitamin C G20150237

Kemper Brand Sea Cucumber Oyster
Capsules

Sea cucumber extract, Ostreae Concha extract G20160459

Chinese Salamander Brand Marine Fish
Oligopeptide Oyster Oral Liquid

Marine fish oligopeptide powder, Ostreae Concha extract,
Blueberry extract, Citric acid, Pectin, Sucralose, Ethyl

Maltol, Purified water

G20200193

Xuelong Brand Oyster Capsules with Sea
Cucumber

Ostreae Concha extract, Sea cucumber powder, Lycii
Frustus extract

G20230110

Xuanshen Ruinian Brand Xuan Ginseng and
Western Ginseng Amino Acid Capsules

Silkworm pupa composite amino acid powder,
Scrophulariae Radix extract, Panacis Quinquefolii Radix

extract

G20141001

Hop Fai Brand Xiyangshen Xuan Shen
Sheng Di Huang Granules

Scrophulariae Radix extract, Rehmanniae Radix extract,
Ophiopogonis Radix extract, Panacis Quinquefolii Radix

extract, Dextrin, Stevia sugar

G20230352

Xinzhu Nutritional Brand Di Huang Xuan
Shen Tablets

Rehmanniae Radix, Scrophulariae Radix, Fritillariae
Thunbergii Bulbus, Moutan Cortex, Menthae

Haplocalycis Herba, Ophiopogonis Radix, Glycyrrhizae
Radix Et Rhizoma, White granulated sugar, Povidone K
30, Carboxymethylstach Sodium, Magnesium stearate

G20230698

Hop Fai Brand Xiyangshen Xuan Ginseng
Sheng Di Huang Tablet

Scrophulariae Radix extract, Rehmanniae Radix extract,
Ophiopogonis Radix extract, Panacis Quinquefolii Radix
extract, Microcrystalline Cellulose, Magnesium stearate

G20230703

Hop Fai Brand Xiyangshen Xuan Ginseng
Sheng Di Huang Capsules

Scrophulariae Radix extract, Rehmanniae Radix extract,
Ophiopogonis Radix extract, Panacis Quinquefolii Radix

extract, Microcrystalline Cellulose

G20230704

Maintaining healthy levels of
serum lipid, and improving

obesity

Juemingzia Baibang Brand Lotus Leaf Cassia Seed
Capsules

Cassiae Semen, Tea polyphenols, Ginkgo Folium,
Nelumbinis Folium, Amylum

G20040410

Zhongyantong Brand Cassia Seed
Gynostemma Tablets

Cassiae Semen, Gynostemma pentaphyllum Makino G20050050

(Continued on following page)
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TABLE 4 (Continued) ESCM-related health products with anti-cancer effects.

Efficiency ESCM Product name Principal raw material License
number

Green Slim Brand Cassia Seed and Lotus
Leaf Capsules

Cassiae Semen, Coicis Semen, Alismatis Rhizoma, Poria,
Nelumbinis Folium, Puerariae Lobatae Radix

G20050898

Kangjiafu Brand Cassia Seed Ginkgo
Biloba L-Carnitine Capsules

Cassiae Semen, Nelumbinis Folium, Poria, Alismatis
Rhizoma, Ginkgo Folium, Wheat germ powder,

L-carnitine

G20060376

Qianquan Brand Cassia Seed Zelda Lotus
Leaf Tea

Cassiae Semen, Alismatis Rhizoma, Oolong tea
(irradiated), Nelumbinis Folium (irradiated),

Gynostemma pentaphyllum Makino

G20120004

Viridian Brand Cassia Seed and Lotus Leaf
Capsules

Cassiae Semen, Ginkgo Folium, Alismatis Rhizoma,
Gynostemma pentaphyllum Makino, Nelumbinis Folium

G20130046

Fuzhen Brand L-Carnitine Tea
Polyphenol Cassia Seed and Lotus Leaf

Capsules

Cassiae Semen extract, Nelumbinis Folium extract, Tea
polyphenols, L-carnitine, Magnesium stearate

G20141178

Hongyangshen Brand Lotus Leaf Zelda
Cassia Seed Extract Tablets

Cassiae Semen extract, Nelumbinis Folium extract,
Alismatis Rhizoma extract, Oolong tea extract

G20150208

St. Neve’s Cassia Seed and Lotus Leaf Tea Cassiae Semen, Nelumbinis Folium, Puer tea, Alismatis
Rhizoma, Gynostemma pentaphyllum Makino, Siraitiae

Fructus

G20160083

Tianzhiyuan Brand Cassia Seed
Gynostemma Oral Liquid

Cassiae Semen, Puerariae Lobatae Radix, Hawthorn,
Gynostemma pentaphyllum Makino, Nelumbinis Folium,

Alismatis Rhizoma

G20210065

River Rain Brand Cassia Seed Poria
Beverage

Cassiae Semen extract (irradiated), Poria extract
(irradiated), Alismatis Rhizoma extract (irradiated),
Nelumbinis Folium extract (irradiated), Apple cider
vinegar, Concentrated apple juice, Concentrated

hawthorn juice, Honey, Sucralose, Edible flavorings,
Purified water

G20230886

Yishuitan Brand L-Carnitine Cassia Seed
Capsules

Cassiae Semen, Gynostemma pentaphyllum Makino,
L-Carnitine-L-Tartrate, Nelumbinis Folium,

Microcrystalline cellulose, Magnesium stearate

G20240313

Runxintang Carnitine Cassia Seed Tablets Cassiae Semen extract, L-Carnitine-L-Tartrate, Alismatis
Rhizoma extract, Nelumbinis Folium extract, Astragali

Radix extract, Dextrin, Magnesium stearate

G20240320

Green Slim Brand Cassia Seed Lotus Leaf
Zelda Drink

Cassiae Semen, Nelumbinis Folium, Alismatis Rhizoma,
Potato extract, Citric acid, Citrus reticulata Blanco extract,

orange flavoring, Sucralose, Purified water

G20240361

Kunbu,
Juemingzi

Haiku Brand Cassia L-Carnitine Capsules Cassiae Semen, Poria, Laminariae Thallus, Chitosan,
L-carnitine, Amorphophallus konjac powder, Spirulina

powder, Margarita

G20070249

Jinjiaoli Brand Lotus Leaf Cassia Seed and
Polygonum Multiflorum Capsules

Polygoni Multiflori Radix extract, Nelumbinis Folium
extract, Cassiae Semen extract, Alismatis Rhizoma extract,

Laminariae Thallus extract

G20100283

Huanghong Brand Perilla Seed Cassia
Seed Angelica Dahurica Capsules

Perillae Fructus, Cassiae Semen, Angelicae Dahuricae
Radix, Laminariae Thallus, Coicis Semen

G20100547

Lurong Zhangzisong Brand Antler and Ginseng
Oral Liquid

Ginkgo Folium, Hawthorn, Alismatis Rhizoma, Ginseng
Radix Et Rhizoma, Cervi Cornu Pantotrichum

G20140455

Maintaining healthy levels of
blood pressure

Juemingzi Jinnuo Tong Brand Astragalus Danshen
Cassia Seed Capsules

Astragali Radix, Salviae Miltiorrhizae Radix Et Rhizoma,
Ginkgo Folium, Puerariae Lobatae Radix, Cassiae Semen,

Chrysanthemi Flos, Hippophae Fructus

G20100311

Tian Keng Brand Rhizoma Pinelliae
Cassiae Cortex Eucommiae Capsules

Apocyni Veneti Folium, Eucommiae Cortex, Cassiae
Semen, Hawthorn

G20120667

Jinnuo Tong Brand Astragalus Danshen
Cassia Seed Capsules

Astragali Radix, Salviae Miltiorrhizae Radix Et Rhizoma,
Ginkgo Folium, Puerariae Lobatae Radix, Cassiae Semen,

Chrysanthemi Flos, Hippophae Fructus

G20240224

(Continued on following page)

Frontiers in Pharmacology frontiersin.org15

Shen et al. 10.3389/fphar.2025.1598978

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1598978


screening hits due to nonspecific interferingmechanisms such as redox
cycling that can generate reactive oxygen species or covalent adducts
and metal chelation that can disrupt metalloenzyme function, leading
to false-positive results across diverse assay formats (Hermann et al.,
2012; Xie et al., 2011). Additionally, small molecules often exhibit
multiple unintended biological targets and such off-target effects may
lead to preclinical and even clinical toxicities (Gobet et al., 2014).While
the presence of such constituents does not inherently invalidate the
academic findings, additional rigorous orthogonal validation is
essential to confirm their biological relevance (Brown and
Koropatkin, 2023).

To mitigate the risk of false positives in preclinical drug
discovery, several practices are recommended. These include
biophysical assays such as surface plasmon resonance and
isothermal titration calorimetry to differentiate specific binding
from nonspecific aggregation (Cheng and Lai, 2003); dose-
response analyses to establish correlations between compound
activity and biological relevance (Kenakin, 2019); and
structure–activity relationship studies to ensure logical and
consistent activity trends (Rasmussen et al., 2011; Stork et al.,
2019). Apart from these experimental strategies, deep/machine
learning based computational framework have been developed to
predict the PAINS-like behavior and off-target interactions (Ja et al.,
2018; Sherkatghanad et al., 2023; Rao et al., 2023; Hu et al., 2023).
While these tools are effective for early screening, over-reliance on
these filters risks discarding potentially valid leads. In the context of
ESCM extract, the therapeutic effect may result from the synergistic

activity of the constituents, rather than from a single highly bioactive
compound (Escandón-Rivera et al., 2020; Bray et al., 2024). This
highlights the importance of evaluating such extracts within a
systems pharmacology framework rather than applying
conventional single-compound screening paradigms. Together, an
integrative strategy that combines rigorous orthogonal validation,
advanced computational prediction, and systems pharmacology is
essential for minimizing false-positive results and accurately
evaluating the therapeutic relevance of both small molecules and
complex botanical extracts of ESCM.

Given that the vast majority of the evidence in this study is
from in vitro or in vivo experiments, limitations are unavoidable.
Firstly, in vitro models lack the complexity of the human tumor
microenvironment and may not fully recapitulate human
cancer biology, limiting the predictive value of preclinical
outcomes; secondly, many of the studies were administered at
supraphysiological concentrations or via non-oral routes, which
may not reflect achievable human plasma levels or feasible
methods of administration, and is also a test for drug safety; and
thirdlyly, most of the studies targeted isolated pathway (e.g., PI3K/
Akt), whereas cancer progression involves dynamic crosstalk
between multiple signaling pathway networks, and single-target
interventions may lack clinical relevance. As research into the
anti-cancer mechanisms of ESCM advances, our comprehension
of their potential in cancer prevention and therapy continues to
expand. The future research and application prospects can be
envisioned in the following aspects.

TABLE 4 (Continued) ESCM-related health products with anti-cancer effects.

Efficiency ESCM Product name Principal raw material License
number

Maintaining healthy levels of
glucose

Haizao Fumitra Brand Sodium Alginate
Chromium Yeast Powder

Sodium alginate, Calcium chloride, Chromium yeast,
Sodium citrate, Silicon dioxide

G20240134

Juemingzi Hong Kong Sang Brand Ginseng Cassia
Seed Yellow Essence Oral Liquid

Ginseng Radix Et Rhizoma, Schisandrae Chinensis
Fructus, Cassiae Semen, Ligustri Lucidi Fructus, Salviae
Miltiorrhizae Radix Et Rhizoma, Polygonati Rhizoma,
Lycii Frustus, Puerariae Lobatae Radix, Jujubae Fructus

G20080612

Lurong Camphor Pine Brand Deer Antler Maitake
Oral Liquid

Astragali Radix, Rehmanniae Radix Praeparata,
Ophiopogonis Radix, Dioscoreae Rhizoma, Cervi Cornu

Pantotrichum

G20140566

Xuanshen Tongrentang Brand Astragalus and
Ginseng Tea

Mori Cortex, Fructus Mori, Astragali Radix, Mori Folium,
Natrii Sulfas Exsiccatus, Chromium Picolinate

G20130058

Auxiliary protection from
chemical liver injury

Haizao Blue Key Brand Sodium Alginate Taurine
Capsules

Sodium alginate (irradiated), Taurine (irradiated) G20070380

Juemingzi Herbalife Brand Cassia Seed Panax
ginseng and Fructus Schisandrae chinensis

Capsules

Cassiae Semen extract, Notoginseng Radix Et Rhizoma
extract, Panacis Quinquefolii Radix extract, Schisandrae

Chinensis Fructus extract

G20110448

Yipintang Brand Cassia Seed, Green Peel
and Pericarp Tea

Cassiae Semen, Citri Reticulatae Pericarpium, Citri
Reticulatae Pericarpium Viride

G20240309

Muli Haiwang Jintu Brand Oyster Soy Peptide
Carnitine Oral Liquid

Purified water, Ostreae Concha extract, Soybean peptide
powder, L-carnitine, Taurine, Zinc gluconate, Vitamin B6,
Vitamin C, Fructose syrup, Honey, Soluble dietary fiber,

Beta-cyclodextrin, Peppermint flavoring

G20110347

Shanggong Qiangshengtang Brand Oyster,
Pueraria dulcis and Hovenia dulcis

Capsules

Puerariae Lobatae Radix extract, Auranth Fructus
Immaturus extract, Schisandrae Chinensis Fructus
extract, Ostreae Concha powder, Tea polyphenols,

Microcrystalline cellulose

G20190159

aThe number of healthy products in this column exceeds 30, thereby, only products with the ESCM, as the top one of the ingredient list are retained.
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1. Mechanistic exploration: Although current studies have
extensively explored the anti-tumor potential of ESCM,
most research remains limited to preliminary observations.
Future investigations should integrate cutting-edge approaches
(e.g., single-cell RNA sequencing, spatial transcriptomics) with
dynamic molecular mechanism analyses to systematically
unravel the molecular interaction networks and signaling
pathways underlying ESCM efficacy. The in-depth
exploration of mechanisms would not only facilitate the
understanding of synergic effects of components in ESCM
and but also enable the guidance to precision clinical
applications. These advancements would ultimately bridge
traditional Chinese theories with complex herbal medicine,
creating a conceptual continuum between empirical knowledge
and evidence-based therapeutic innovation.

2. Clinical safety and efficacy validation: Clinical safety and
efficacy verification is the primary measure for the clinical
translation of ESCM. To achieve this objective, critical research
priorities in subsequent clinical trials include: standardization
of ESCM extracts, determination of safe dosage ranges, the
differences in bioavailability of each constituent and their
corresponding combination methods, as well as the
development of personalized therapeutic regimens stratified
by cancer subtypes.

3. Combination therapy, preventive therapy and personalization:
After the clinical safety and efficacy validation, the extensive
clinical application of ESCM can be actualized in steps. Firstly,
combination therapy: The synergistic effects of combining these
ESCM with conventional treatments (e.g., chemotherapy,
radiotherapy, immunotherapy) should be investigated to
enhance therapeutic efficacy and mitigate side effects. Secondly,
preventive treatment: Using technological means to identify high-
risk cancer patients, selecting appropriate ESCM for preventive
medication based on pathological changes and indications.
Thirdly, personalization: Given that individuals may respond
differently to the same treatment, future studies should explore
how to tailor the use of ESCM for prevention and treatment based
on individual genetic backgrounds and lifestyle habits.

4. Long-term studies: Long-term follow-up studies are essential
to evaluate the sustained impact of ESCM use on human health
and to identify any potential long-term side effects or toxicity.

5. Multidisciplinary collaboration: Dietary prevention strategies
require collaborative efforts across various disciplines.
Encouraging cooperation among experts in biology,
pharmacy, nutrition, and modern medicine will accelerate the
research and application of these ESCM in cancer prevention.

In summary, ESCM holds significant promise in the field of
cancer prevention and treatment. Future research must be

conducted across these multiple dimensions to fully harness the
potential of these natural resources in the fight against cancer.
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