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Major depressive disorder (MDD) is a serious neuropsychiatric condition that
affects millions of people worldwide, causing significant psychological distress
and lifestyle deterioration. The serotonin transporter, which plays a critical role in
regulating the uptake of serotonin (5-HT) back into presynaptic cells, is a primary
target for antidepressants. Though selective serotonin reuptake inhibitors (SSRIs)
are still the pharmacologic treatment of choice, alternative methods remain in
demand to enhance the efficacy of treatment and offermore therapeutic options.
Drug repurposing provides an efficient solution to speed up antidepressant
research because it identifies existing FDA-approved medications that might
inhibit the serotonin transporter. A virtual screening method was integrated into
the study that examined 3620 FDA-approved drugs to discover new repurposed
serotonin transporter-inhibiting molecules. The binding affinity, structural
stability, and inhibitory potential were assessed using molecular docking and
molecular dynamics (MD) simulations. Among the screened compounds,
Flunarizine, a well-known calcium channel blocker, emerged as a promising
serotonin transporter inhibitor due to its strong and stable binding configuration
within the transporter’s active site. Detailed molecular docking studies revealed
that Flunarizine formed key interactions with critical residues of the serotonin
transporter, suggesting its potential as an effective modulator. Subsequent 500-
nanosecond MD simulations further confirmed the stability of the serotonin
transporter-Flunarizine complex, demonstrating minimal structural deviations
and maintaining crucial dynamic properties throughout the simulation
trajectory. These findings highlight Flunarizine’s potential for repurposing as a
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novel therapeutic agent targeting serotonin transport modulation. The study
provides a solid foundation for further preclinical and clinical investigations into
the antidepressant repurposing of Flunarizine.
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major depressive disorder, serotonin transporter, drug repurposing, virtual screening,
molecular dynamics simulation, flunarizine

1 Introduction

Major depressive disorder (MDD) is a serious, chronic
neuropsychiatric condition that impacts millions of people
worldwide by creating extensive emotional regulation problems,
cognitive deficits, and life quality deterioration (Cui et al., 2024). It is
a prevalent psychiatric condition that affects a significant portion of
the population. Its lifetime prevalence ranges between 5% and 17%,
with an average of approximately 12%. Notably, women are nearly
twice as likely to experience MDD compared to men (Pedersen et al.,
2014). The condition ranks among the significant disabilities that
create substantial worldwide health problems (Yan et al., 2024).
Recent epidemiological studies indicate that MDD affects over
280 million people globally, with treatment resistance rates rising
to 30%–50% in the past decade (Pasman et al., 2023). According to a
Global Burden of Disease (GBD) study, the COVID-19 pandemic
led to an additional 53.2 million cases of major depressive disorder
(MDD) worldwide, representing a 27.6% increase (Yan et al., 2024).

Patients with MDD experience ongoing depressive mood and no
interest in activities (anhedonia), sleep pattern changes, appetite
changes, tiredness, and persistent suicidal thoughts (Fekadu et al.,
2017). The disorder results in multiple severe physiological and
molecular changes because it causes alterations in neurotransmitter
levels, produces neuroinflammation, and results in structural brain
abnormalities (Pitsillou et al., 2020). The vague understanding of
MDD pathophysiology hinders the development of effective
therapeutic approaches despite researchers having studied this
condition for decades. MDD exists as a complex medical condition
because it develops from a combination of genetic elements,
environmental triggers, and neurobiological processes, leading to
the need for comprehensive treatment approaches (Marx et al., 2023).

The primary treatment approach for MDD relies on medications,
and selective serotonin reuptake inhibitors (SSRIs) function as the
leading prescribed antidepressants (Pehrson et al., 2015). The
serotonin transporter (SERT) faces inhibition from SSRIs, which
allows serotonin (5-hydroxytryptamine, 5-HT) to stay longer in
the synaptic cleft (Váchalová, 2020). Scientific evidence suggests
that elevated serotonin levels in the synaptic cleft through this
mechanism help patients feel better and reduce their depressive
symptoms (Kayabaşı et al., 2021). The medical community
adopted SSRIs in the late 20th century to replace tricyclic
antidepressants (TCAs) and monoamine oxidase inhibitors
(MAOIs) because of their superior safety characteristics combined
with lower severe side effect risks (Hengartner, 2022).

However, the widespread use of SSRIs is limited by essential
drawbacks that affect both their effectiveness and patient treatment
resistance (Santarsieri and Schwartz, 2015). The main disadvantage
of SSRIs treatment is that patients need to take them for four to
6 weeks before they start feeling better. The prolonged therapeutic

onset of SSRIs creates an essential challenge because it delays helping
people who face high suicide risks (Murphy et al., 2021). The
treatment resistance rate among patients who take SSRIs reaches
30%, because these medications do not provide sufficient relief for a
substantial portion of patients (Howes et al., 2022). The population
that shows a treatment response faces a significant risk of continued
depressive symptoms even when they stay on their medications. The
current treatment regime for depression requires immediate
improvement through more successful antidepressants with
improved treatment resistance levels.

SERT is an important protein that controls serotonin
homeostasis regulation (Rudnick, 2006). The SERT protein brings
serotonin back into presynaptic neurons after synaptic release,
ending serotonergic signal transmission (Nichols and Nichols,
2008). The essential function of SERT in serotonin regulation
makes it the primary target for antidepressant drug development
(White et al., 2008). Most SSRIs function by locking onto the
outward-open shape of SERT, which stops serotonin from being
reabsorbed while boosting its presence outside cells (Gradisch et al.,
2022). Studies indicate that SERT enters several additional structural
states beyond its outward-open state, which actively controls
serotonin-signaling dynamics (Kuntz, 2015). Targeting these
conformations holds potential for developing new antidepressants
that would be more effective and demonstrate faster antidepressant
effects. The scientific community actively studies the exact
mechanisms through which SERT dysregulation leads to MDD
despite the prevalent use of SERT inhibitors.

Drug discovery based on conventional approaches takes a long
time and resources (Doytchinova, 2022). After more than 10 years of
study, developing newmedicines that reach the market costs billions
of dollars. Drug repurposing, also known as drug repositioning, has
proven to be a successful method for speeding up new treatment
development through the identification of available drugs for
alternative medical uses (Kulkarni et al., 2023). Drug
development costs decrease substantially when researchers use
already tested medications because these drugs have previously
demonstrated safety and human pharmacokinetic properties.
Molecular docking and molecular dynamics (MD) simulations
have become essential computational tools for drug repurposing
research (Naqvi et al., 2018). Molecular docking predicts small
molecules’ binding orientation and affinity to target proteins,
enabling rapid virtual screening of large compound libraries
(Naqvi et al., 2018). MD simulations extend these insights by
modeling atomic-level movements over time (Naqvi et al., 2018).

Complementary approaches like PASS (Prediction of Activity
Spectra for Substances) analysis forecast biological activities of
screened molecules (Lagunin et al., 2000). At the same time,
principal component analysis (PCA) and free energy landscape
(FEL) calculations quantify global conformational changes and
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identify low-energy states linked to functional stability (Yang et al.,
2009). Visualization tools like PyMOL DeLano (2002) and Discovery
Studio Visualizer (2005) further dissect interaction networks, bridging
computational predictions with mechanistic insights.

This study integrates molecular docking, which predicts ligand
binding modes and affinities, with MD simulations that model
atomic-level conformational changes over time. Together, these
methods streamline drug repurposing by integrating static
binding predictions, dynamic stability assessments, and
functional conformation mapping.

2 Materials and methods

2.1 Molecular docking screening

A total of 3,620 compounds approved by the FDA were obtained
from the DrugBank database (https://go.drugbank.com/) for the
docking study (Knox et al., 2024). DrugBank was prioritized for its
rigorously curated collection of FDA-approved drugs, which
includes detailed pharmacological, chemical, and clinical data.
The compounds were preprocessed for their structural
minimization, protonation, and appropriate atom assignment
types. We utilized Paroxetine as a reference molecule because it
is a well-studied SERT inhibitor (Davis et al., 2016).We obtained the
SERT crystal structure (PDB ID: 5I6X) from the Protein Data Bank
(http://www.rscb.org) at a resolution of 3.14 Å (Coleman et al.,
2016). The docking accuracy required standard protein preparation
procedures, which started with solvent molecule removal followed
by hydrogen atom addition and stereochemical optimization of the
structure. MGL AutoDock Tools (Goodsell et al., 2021) were used to
optimize the protein structure for additional optimization,
culminating in energy minimization to achieve structural
stability. The docking procedure was carried out using InstaDock
v1.2 (Mohammad et al., 2021) in a blind search space of 86 × 67 ×
83 Å grid system that concentrated at coordinates −36.109, −22.026,
and 2.803 along the X, Y, and Z-axes.

The docking protocol was validated through a retrospective
redocking study, in which co-crystallized Paroxetine was
redocked into the SERT binding site. The redocked Paroxetine
aligned closely with its original co-crystallized pose
(Supplementary Figure S1), demonstrating the accuracy and
reliability of the docking protocol in reproducing ligand binding
conformations within the SERT pocket. The redocked Paroxetine
aligned closely with its original co-crystallized pose, demonstrating
an RMSD of 1.286 Å, which confirms the reproducibility and
precision of the docking protocol. After the docking procedure,
the binding poses were analyzed to identify compounds that showed
favorable binding affinities and proper orientation and alignment
with the native ligand for further evaluation.

2.2 Biological potential and
interaction analysis

Bioinformatics technologies enable scientists to study drug-target
interactions at a detailed level, thus enabling the exploration of new
therapeutic ligands. The selected compounds from the molecular

docking screening underwent biological evaluation through PASS
(Prediction of Activity Spectra for Substances) analysis and drug
profiling (Lagunin et al., 2000). The PASS web server (https://www.
way2drug.com/passonline/) compares molecular structures with
millions of experimentally validated bioactive molecules to
determine compound biological activities. The analysis generates
two probability values, Pa and Pi, where higher Pa scores indicate
greater chances of biological effects occurring. A comprehensive
examination of the selected compounds’ binding conformations
and molecular interactions was carried out after PASS analysis.
The visualization of polar interactions, hydrogen bonding,
hydrophobic contacts, and π-π stacking interactions between
selected molecules and SERT was performed using PyMOL
(DeLano, 2002), followed by Discovery Studio Visualizer (2005)
for analyzing detailed binding site molecular interactions.

2.3 Molecular dynamics simulations

MD simulation is a leading computational approach for
researching biological macromolecules through atomic-scale
modeling and conformational movement analysis (Ali et al., 2024).
The technique delivers essential details about protein-ligand bindings,
protein conformations, and molecular motion patterns, making it
vital for contemporary drug discovery operations and biomolecular
research (Mohammad et al., 2020). We utilized GROMACS 2022.3β
software (Van Der Spoel et al., 2005), operated from an Ubuntu
2024 LTS system. We developed a simulation environment with
precision to model molecular interactions correctly. The simulation
system was hydrated using TIP3P explicit water molecules (Mark and
Nilsson, 2001), without detergents or lipids. The systems were
neutralized by adding suitable Na+ and Cl− counterions. Both
protein and ligand structures utilized the CHARMM36-July2022
force field (Huang et al., 2017) for calculations, while the CGenFF
server (Zhu, 2019) was used to generate topology parameters for the
ligands to ensure accurate force field results.

The execution of MD followed a sequence of three distinct
protocols, which began with energy minimization, followed by
equilibration, and finished with production simulation. The
steepest descent algorithm ran for 5,000 steps to optimize the
initial molecular configuration by removing steric clashes. The
equilibration process occurred in two stages through NVT before
transitioning to the NPT ensemble simulation. A gradual heating
process from 0 K to 300 K was performed while applying weak
positional restraints on the protein backbone to stop sudden
structural distortions. The systems were equilibrated for 1 ns for
a stable production run. The 500 ns production MD simulations
enabled a complete structural dynamics analysis between free
protein and protein-ligand complexes. The simulation trajectories
were recorded every 10 ps to observe essential molecular interactions
and conformational changes throughout the simulation period.

2.4 Principal component and free energy
landscape analyses

Principal component analysis (PCA) is a statistical tool that
discovers major motion patterns in MD trajectory data (Moradi

Frontiers in Pharmacology frontiersin.org03

Elasbali et al. 10.3389/fphar.2025.1599297

https://go.drugbank.com/
http://www.rscb.org
https://www.way2drug.com/passonline/
https://www.way2drug.com/passonline/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1599297


et al., 2024). PCA of protein-ligand complexes helps to understand
and visualize the system’s collective motions by reducing the data’s
dimensionality (Yang et al., 2009). It helps identify key
conformational changes and visualize the dynamics in a lower-
dimensional space. PCA was used to investigate the atomic motion
and global conformational dynamics of SERT and its drug-bound
complexes. The methodology enabled the detection of necessary
protein movements, alongside detecting meaningful functional
protein conformations (Yang et al., 2009). The eigenvector
coordinates were determined using a positional covariance matrix
calculated from MD simulation data. The principal motions
emerged when the covariance matrix underwent an orthogonal
transformation for diagonalization to create an eigenvalue
diagonal matrix.

The principal components (PCs) obtained from eigenvalues and
eigenvectors represented the protein-ligand system’s most
significant large-scale atomic motions. PC1 and PC2 emerged as
the leading factors that explained atomic displacement. The system’s
conformational transitions received deeper analysis through free
energy landscape (FEL) generation. We can study protein stability
and conformational states through FEL analysis by exploring free
energy changes across principal components (Abdelsattar et al.,
2021). This method demonstrated the capability to show stable
conformational states as energy minima while identifying possible
transition states involved in ligand-induced
conformational changes.

3 Results and discussion

3.1 Molecular docking screening identifies
potential SERT binders

Molecular docking is a standard computational approach that
predicts how ligands orient and fit inside the target protein’s active
sites (Naqvi et al., 2018). This methodology reveals the assessment of

binding strength, interaction patterns, and modulating potential,
enhancing its utility for pharmaceutical research. We used a set of
3620 FDA-approved drug molecules from the DrugBank database
for virtual screening against SERT. We utilized Paroxetine, a well-
known SERT inhibitor and FDA-approved SSRI, to provide
reference standards for binding affinity and interaction profile
assessments. The docking analysis identified the top
10 compounds by evaluating their binding energy scores, which
indicate how strongly the compounds bind to SERT (Table 1). The
selected molecules showed appreciable binding affinities through
docking scores ranging from −10.5 to −11.2 kcal/mol, while
Paroxetine exhibited a binding affinity of −8.0 kcal/mol. The
strength of ligand-protein interactions during molecular docking
increases as the binding energy values decrease, indicating better
potential for effective inhibition (Sousa et al., 2006). These
compounds show significant potential to function as competitive
SERT inhibitors because they demonstrate stronger binding affinity
than Paroxetine.

3.2 PASS analysis and drug profiling predict
antidepressant potential

The PASS analysis represents a commonly utilized
computational method that uses structural properties to
forecast biological activity profiles of molecules (Lagunin
et al., 2000). The server evaluates molecular structures against
numerous bioactive compounds in databases to predict possible
pharmacological results. We utilized PASS analysis to determine
biological activity properties of the top 10 molecules selected
frommolecular docking screening against SERT. The study of ten
molecules made Flunarizine stand out as the best candidate based
on its drug profile associated with depression, migraine, and
neuroprotective activities. The PASS results showed that
Flunarizine possesses a strong potential for treating
neurodegenerative and psychiatric disorders, which supports

TABLE 1 List of screened hits against SERT and their docking parameters.

S. No. Drug PubChem ID Binding affinity
(kcal/mol)

Ligand efficiency (kcal/mol/non-H
atom)

Torsional
energy

1 Lidoflazine 3926 −11.2 0.3111 2.8017

2 Fentonium 10347880 −11.2 0.3111 3.113

3 Darifenacin 444031 −11.1 0.3469 2.1791

4 Bagrosin 21893707 −10.9 0.4955 0.3113

5 Flunarizine 941361 −10.9 0.3633 1.8678

6 Carindacillin 93184 −10.7 0.3057 2.4904

7 Conivaptan 151171 −10.6 0.2789 1.2452

8 Florantyrone 10617 −10.6 0.4609 1.5565

9 Talampicillin 71447 −10.6 0.3118 2.1791

10 Dabrafenib 44462760 −10.5 0.3 2.1791

11 Paroxetine 43815 −8.0 0.3333 1.2452
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its development as an SERT inhibitor (Table 2). The PASS
predictive tool generates two probability values known as Pa
and Pi to assess activity potential. A compound demonstrates
promising biological effectiveness if its Pa score exceeds Pi. The
antidepressant and neurological disorder treatment capability of
Flunarizine was confirmed through Pa values spanning from
0.618 to 0.927. However, further experimental validation of
Flunarizine as a repurposed SERT inhibitor should be carried
out for MDD and related neuropsychiatric conditions. The
reference drug Paroxetine also showed antidepressant,
nootropic, and mood disorder treatment with considerably
high potential, which validated the results from the PASS
predictions.

3.3 Key interactions stabilize Flunarizine in
the SERT binding pocket

The interaction analysis of Flunarizine and the reference
inhibitor was carried out to understand their binding mechanism
with SERT (Figure 1A). The study demonstrated that Flunarizine
binds in the SERT active site, showing binding characteristics similar
to Paroxetine (Figure 1A). Flunarizine forms various stabilizing
chemical bonds with critical SERT binding pocket residues,
demonstrating its strong potential to act as a promising inhibitor
(Figure 1B). Similarly, Paroxetine also interacts with this binding site
of SERT, which showed various common interactions (Figure 1C).
The spatial orientation of Flunarizine alongside its binding

TABLE 2 PASS analysis of the selected molecules with their predicted activity. Pa, probability to be active, Pi. Probability of being inactive.

S. No. Drug molecule Chemical structure Pa Pi Activity

1 Flunarizine 0,927 0,004 Antieczematic

0,686 0,007 Antipsychotic

0,609 0,036 Acute neurologic disorders treatment

0,566 0,001 Raynaud’s phenomenon treatment

0,618 0,114 Phobic disorders treatment

2 Paroxetine 0,775 0,005 Neurotransmitter uptake inhibitor

0,710 0,007 Mood disorders treatment

0,667 0,009 Antidepressant

0,684 0,045 Nootropic

0,609 0,036 Acute neurologic disorders treatment

FIGURE 1
Molecular interactions of SERT with Flunarizine (green) and Paroxetine (yellow). (A) A 3D representation of the SERT binding pocket occupied by
Flunarizine and Paroxetine. (B) A magnified visualization of key molecular interactions between Flunarizine and SERT binding residues. (C) Magnified
visualization of key molecular interactions between Paroxetine and SERT binding residues. (D) Charged-surface illustration highlighting the electrostatic
environment of the SERT binding site, demonstrating how Flunarizine and Paroxetine interact within the cavity. The figures were generated through
PyMOL using the protein-ligand coordinates from the docking study.
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conformation showed that it binds with critical function-related
residues, including Thr439, a serotonin binding site (Yang and
Gouaux, 2021), like Paroxetine (Figure 1D). The Flunarizine
binding pattern indicates that this compound would function as
an effective serotonin-competitive inhibitor of SERT by analogously
inhibiting its binding site to current prescribed SSRIs.

Flunarizine establishes a promising complex with SERT through
multiple hydrogen bonds combined with π-stacking and
hydrophobic interactions, thus potentially increasing its
inhibitory effects. Flunarizine forms various other interactions
with critical residues more than Paroxetine does, demonstrating a
potentially superior binding affinity and more stable interaction
with SERT. The residues such as Tyr175, Ser438, Thr439, and
Phe341 play essential roles in the inhibitory process by forming
crucial bonding interactions that sustain SERT inhibition (Yang and
Gouaux, 2021). Flunarizine’s binding interactions surpass
Paroxetine’s because it establishes multiple additional
interactions. The additional molecular interactions increase the
binding energy, indicating that Flunarizine demonstrates a better
potential for inhibiting SERT. The wide usage of Paroxetine as an
SSRI reveals that Flunarizine reflects the potential to become a
repurposed antidepressant drug with new applications.

Further, a detailed analysis showed that the binding mechanism
of Flunarizine with critical residues in the SERT binding cavity
occurs through multiple interaction types, including hydrogen
bonds, halogen bonds, π-interactions, and van der Waals contacts
(Figure 2). Flunarizine establishes close interactions with the SERT
binding site (Figure 2A). The ligand stability was supported by two
interactions: hydrogen bonding with Tyr175 and halogen bonding
with Ser438. The π-sigma interaction occurred between Ile179 and
Flunarizine, while π-π stacking interactions formed with Tyr176,

Trp103, and Phe341. The SERT-Flunarizine complex received
stabilization from multiple hydrophobic interactions between
Leu99, Trp103, Ile172, Pro403, and Val501 as well as van der
Waals interactions that included Asp98, Arg104, Trp182, Phe334,
Phe335, Gly338, Phe407, Thr439, Gly442, Val489, Glu493, and
Thr497 (Table 3). At the same time, the reference compound
Paroxetine also showed a similar interaction profile as
Flunarizine (Figure 2B).

It forms hydrogen bonds with Ala96, Ala169, and Ser336 and a
single π-sigma interaction with Ile172. Additionally, Phe341 and
Ser438 formed π-π stacking interactions, and Tyr95, Ala169, Ile172,
and Ala173 formed alkyl/Pi-alkyl interactions. The binding of
Paroxetine with SERT formed various van der Waals contacts to
Asp98, Tyr176, Phe335, Gly338, Ser439, Gly442, Thr497, and
Val501. Flunarizine forms a hydrogen bond with Tyr175 (2.8 Å)
and a halogen bond with Ser438 (3.1 Å), residues critical for SERT’s
conformational transitions. In contrast, Paroxetine interacts weakly
with Ala96 (3.2 Å) and lacks halogen bonding, explaining its lower
binding affinity. The analysis revealed that Flunarizine formed
various common and more contact points with the serotonin
binding site residues of SERT than Paroxetine, thus indicating a
potentially more substantial inhibitory potential (Yang and
Gouaux, 2021).

3.4 MD simulations confirm
structural stability

TheMD simulationmethod delivers essential information about
protein and protein-ligand complexes while demonstrating
structural shifts and helping to evaluate binding persistence

FIGURE 2
Binding site analysis of SERT-ligand interactions. (A) Binding residues involved in interactions with Flunarizine. (B) Binding residues interacting with
Paroxetine. The figures showed various interactions between the protein-ligand complexes, such as hydrogen bonding, hydrophobic, and electrostatic
interactions. Discovery Studio Visualizer was utilized to categorize interactions based on atomic distances (<4.0 Å for van der Waals, <3.5 Å for
hydrophobic, and <3.2 Å for hydrogen bonds).
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throughout time (Xue et al., 2022).We performed an all-atom 500 ns
MD simulation through GROMACS to analyze SERT and its
complexes with SERT-Flunarizine and SERT-Paroxetine. The
results of energy calculations showed that SERT potential energy
decreased from −1,717,590 kJ/mol for SERT to −1,190,080 kJ/mol
for SERT-Flunarizine and −1,190,630 kJ/mol for SERT-Paroxetine.
The protein-ligand complex stability improved compared to
unbound SERT, as shown by total energy values
of −1,380,460, −948,548 kJ/mol, and −949,102 for SERT, SERT-
Flunarizine, and SERT-Paroxetine, respectively. The binding
stability of Flunarizine indicates it to be higher than Paroxetine’s,
thus indicating its potential to act as a competitive SERT inhibitor.
The analysis demonstrates how Flunarizine forms a solid complex
with SERT, which supports its potential application as a treatment
drug for MDD. Various structural deviations and flexibility
parameters were analyzed from the MD simulations trajectories,
as discussed in the ensuing sections.

3.4.1 Stability assessment and structural dynamics
The structural stability of macromolecules during MD

simulations can be calculated through the root mean square
deviation (RMSD) measurements as an essential evaluation
parameter (Kuzmanic and Zagrovic, 2010). The analysis of SERT,
SERT-Flunarizine, and SERT-Paroxetine complex trajectories
through RMSD evaluated their conformational changes during
the simulation period (Figure 3A). The average RMSD results

showed 0.27 nm, 0.28 nm, and 0.28 nm for SERT, SERT-
Flunarizine, and SERT-Paroxetine, respectively. The results
indicate that SERT complexes with bound ligands showed
slightly higher deviations than the unbound SERT structure,
indicating minor structural changes from ligand binding. The
SERT-Paroxetine complex initially showed large initial deviations
during the first 200 ns but stabilized afterward, whereas the SERT-
Flunarizine complex exhibited constant stability without significant
variations. Analysis using distribution plots showed that Flunarizine
maintains SERT stability like Paroxetine during the entire
simulation period (Figure 3A, lower panel). Stable ligand-protein
interaction and strong binding affinity emerge from the overall
lower fluctuations observed in the SERT-Flunarizine complex,
which indicates its potential as a promising binder.

The root mean square fluctuation (RMSF) analysis is widely
used to determine the flexibility of a protein molecule at the amino
acid residue level (Khan et al., 2022). We performed RMSF analysis
in SERT and its ligand-bound complexes from the simulated
trajectories. The average RMSF results showed 0.11 nm, 0.13 nm,
and 0.16 nm for SERT, SERT-Flunarizine, and SERT-Paroxetine,
respectively. The results indicated that SERT-Flunarizine binding
contributed to the stable pattern in residual fluctuations with some
minor flexibility, most pronounced in the flexible loop areas
(Figure 3B). The SERT-Flunarizine complex showed minimal
motions during analysis, with specific stability occurring at
residues 340–350 and 490–500. The similar RMSF pattern shown

TABLE 3 Protein ligand interactions formed by Flunarizine and Paroxetine with SERT.

Molecule Hydrogen
bonds

Alkyl/Pi-alkyl Van der waals interactions Other interactions

Flunarizine Tyr175 Leu99, Trp103, Ile172,
Pro403, Val501

Asp98, Arg104, Trp182, Phe334, Phe335, Gly338, Phe407, Thr439,
Gly442, Val489, Glu493, Thr497

Ser438, Ile179, Tyr176,
Trp103, Phe341

Paroxetine Ala96, Ala169, Ser336 Tyr95, Ala169, Ile172,
Ala173

Asp98, Tyr176, Phe335, Gly338, Ser439, Gly442, Thr497, Val501 Ile172, Phe341, Ser438

FIGURE 3
Structural stability assessment of SERT-ligand complexes. (A) Root mean square deviation (RMSD) plot representing the structural deviations of
SERT, SERT-Flunarizine, and SERT-Paroxetine complexes over 500 ns. (B) Root mean square fluctuation (RMSF) plot showing residue-wise flexibility of
each system. The lower panels display the distribution profiles of RMSD and RMSF values.
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in the distribution plot supports the theory that Flunarizine
strengthens SERT stability, which might result in prolonged
inhibitory activity (Figure 3B, lower panel). Previous studies have
shown that effective SERT inhibitors produce stable interactions
with the protein structure (Nguyen et al., 2024). The stable nature of
the SERT-Flunarizine complex indicates that Flunarizine maintains
a long-lasting binding at the receptor site, which benefits
antidepressant action. Further exploration of Flunarizine as a
potential antidepressant drug candidate should focus on its
functional impact on serotonergic neurotransmission.

3.4.2 Compactness and folding mechanism
examination

The radius of gyration (Rg) is an essential measure to assess
protein and protein-drug complex folding characteristics and their
compactness properties (Lobanov et al., 2008). The Rg value changes
expose structural binding information because an Rg increase shows
protein flexibility, while a decrease indicates stable, tight packing.
We measured Rg values for SERT along with SERT-Flunarizine and
SERT-Paroxetine complexes through 500 ns of simulation to
evaluate protein-ligand complex compactness. The average Rg
results showed 2.4 nm for each system, SERT, SERT-Flunarizine,
and SERT-Paroxetine. All three systems showed almost similar
average Rg values in the plot presented in Figure 4A. The Rg

values of the SERT-Flunarizine complex showed lower
measurements than the SERT-Paroxetine complex, with a single
exception at 400–450 ns, where the values were briefly higher. This
indicates that Flunarizine promotes SERT to adopt a more compact
structural arrangement. The distribution plot analysis verified that
Flunarizine binding produces stable protein structures by restricting
protein expansion (Figure 4A, lower panel).

Protein and ligand complex structural stability and solvent
exposure were examined using solvent-accessible surface area
(SASA) analysis. The values of SASA directly correlate to how
much protein surface area remains exposed to solvent molecules,
as higher values show increased solvent contact, but lower values

indicate structure compaction (Chingin and Barylyuk, 2018). The
average SASA results showed 250.6 nm2, 253.1 nm2, and 253.7 nm2

for SERT, SERT-Flunarizine, and SERT-Paroxetine. The SASA plot
indicated that the SERT-Paroxetine complex had elevated solvent
accessibility at 253.7 nm2. In comparison, the SERT-Flunarizine
complex consistently displayed reduced SASA values with an
average of 253.1 nm2, which pointed to a compact conformation
(Figure 4B). The SERT-Flunarizine trajectory showed brief solvent
accessibility increases at times 410 ns and 450 ns, but immediately
returned to a steady state of lower accessibility during the simulation
period. The binding of Flunarizine to SERT produces a more
compact receptor state that improves its stability while lowering
its flexibility according to simulation results. The lower solvent
exposure observed for the SERT-Flunarizine complex further
supports the hypothesis that Flunarizine establishes a stable
binding interaction that reduces unnecessary protein fluctuations,
a desirable characteristic for effective SERT inhibition (Figure 4B,
lower panel). This structural stability may contribute to prolonged
receptor occupancy and improved pharmacological efficacy,
reinforcing Flunarizine’s potential as a repurposed
antidepressant candidate.

3.4.3 Stability assessment by hydrogen
bonds analysis

Intramolecular hydrogen bonds are essential for protein
structure, structural stability, and functional conformation
(Williams and Ladbury, 2003). The intramolecular hydrogen
bonds of SERT were examined before and after the ligands
binding (Figure 5). The hydrogen bond numbers for SERT,
SERT-Flunarizine, and SERT-Paroxetine complexes were 409,
399, and 404, respectively (Figure 5A). The intramolecular
hydrogen bond trajectory proved the SERT-Flunarizine complex
followed the SERT-Paroxetine pattern up to 200 ns, with the same
level of stability. Beyond 200 ns, the SERT-Flunarizine complex
showed a slight decrease in intramolecular hydrogen bonds, likely
due to the initial structural adaptation upon drug binding

FIGURE 4
Compactness and folding behavior assessment. (A) Radius of gyration (Rg) plot, demonstrating SERT’s compactness and structural integrity before
and after ligand binding. (B) Solvent-accessible surface area (SASA) plot, analyzing the degree of solvent exposure for SERT, SERT-Flunarizine, and SERT-
Paroxetine complexes. The lower panel illustrates the distribution profiles of Rg and SASA values.
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(Supplementary Figure S2). Intramolecular hydrogen bonds
decreased marginally (399 vs. 409 in apo-SERT), reflecting local
flexibility adjustments without global destabilization. Nevertheless,
overall stability was preserved as the complex stayed with the native
conformation throughout the simulation. The distribution plot also
detected differences in hydrogen bond numbers, confirming the role
of ligand binding as a stabilizer (Figure 5B). The observed reduction
in intramolecular hydrogen bonding within SERT upon ligand
binding may be attributed to the ligand’s occupancy of the
binding pocket, which disrupts pre-existing hydrogen bonds. This
disruption likely results from the ligand’s steric and electronic
effects, which reorient local residues and alter hydrogen bond
networks. The overall stability remained intact, as the complex
retained its native conformation throughout the simulation.

The hydrogen bonding between the protein and the ligand is
essential for drug selectivity, binding affinity, and functional efficacy
(Williams and Ladbury, 2003). For the assessment of protein-ligand
interaction, the intermolecular hydrogen bonds were also examined
(Figure 6). It was revealed that SERT-Flunarizine and SERT-
Paroxetine complexes formed one to five hydrogen bonds,
respectively (Figure 6A). The distribution plot within the lower
panel revealed that a minimum of one hydrogen bond was
maintained through the simulation within each complex, yielding
protein-ligand interaction stability (Figure 6B). The findings reveal
that while Flunarizine formed fewer intermolecular hydrogen bonds
than Paroxetine, it could nonetheless interact with SERT stably, with
the protein not losing its original conformation upon binding. The

minor loss of intermolecular hydrogen bonds for SERT-Flunarizine
reflects structural adaptation upon ligand binding, common with
high-affinity inhibitors (Mitra and Dash, 2018). The ligand-bound
complexes of SERT were structurally stable, supporting their
potential as promising binders with a well-preserved binding
conformation.

3.4.4 Secondary structure evaluation
The secondary structure elements of SERTwere tracked to assess

the structural effect of ligand binding during the simulation.
Secondary structure trajectories were obtained using the DSSP
(Define Secondary Structure of Proteins) program (Zacharias and
Knapp, 2014) and were visualized using the XMGRACE tool
(https://plasma-gate.weizmann.ac.il/Grace/). The secondary
structure plot showed different structural elements represented by
different colors (Supplementary Figure S3). The results showed that
the SERT-Flunarizine complex had a minimal decrease in the
residues in forming secondary structure elements. In contrast, the
SERT and SERT-Paroxetine complexes had the same number of
structured residues. Notably, the residues involved in α-helices
increased minimally upon binding with Flunarizine. A minimal
decrease in the number of residues involved in bends, turns, and
coils was observed, which can be attributed to the introduction of
local structural flexibility by Flunarizine and Paroxetine. Although
these changes were minimal, SERT’s global secondary structure
integrity remained unaffected after binding with Flunarizine,
reflecting that the ligand does not induce significant protein

FIGURE 5
Intramolecular hydrogen bond analysis, evaluating the number of internal hydrogen bonds formed within SERT alone and SERT-Flunarizine and
SERT-Paroxetine complexes. (A) Intramolecular hydrogen bonds formed within SERT before and after Flunarizine and Paroxetine binding. (B) The PDF
panel represents the probability distribution function of intramolecular hydrogen bond formation over the simulation trajectory. This analysis reflects
changes in protein stability upon ligand binding.

FIGURE 6
Intermolecular hydrogen bonding analysis between SERT and its bound ligands. (A) Hydrogen bonds formed between SERT and Flunarizine and
Paroxetine. (B) The PDF panel represents the probability distribution function of hydrogen bond formation over the simulation trajectory.
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destabilization. The results indicate that Flunarizine binds with
SERT without perturbing the global structural conformation,
which further indicates its potential as a stable and potent
SERT binder.

3.5 Principal components analysis reveals
conformational restrictions

PCA was employed to analyze SERT’s molecular motion,
conformation flexibility, and ligand complexes (Figure 7). PCA
can identify dominant motion patterns by reducing the
complexity of molecular dynamics trajectories into principal
components (PCs). During the simulation, the first principal
components (PC1 and PC2) were employed to plot the vibration
space traversed by SERT, SERT-Flunarizine, and SERT-

Paroxetine complexes. The 2D subspace PCA plot illustrated
the unbound SERT protein traversing a more expansive
conformation space, significantly along PC2, reflecting
enhanced flexibility and dynamic motion (Figure 7A). The
SERT-Flunarizine and SERT-Paroxetine complexes
demonstrated more constrained motion distributions along
PC1, reflecting reduced conformation flexibility upon ligand
binding. The motion ranges observed were PC1: −6.6–2.5 nm
and PC2: −2.9–3.8 nm for SERT, PC1: −2.8–4.1 nm and PC2:
−4.2–3.9 nm for SERT-Flunarizine, and PC1: −4.8–4.9 nm and
PC2: −4.0–3.4 nm for SERT-Paroxetine. To further analyze the
conformational state stability, eigenvector plots against time
were made for the three systems (Figure 7B). The observation
demonstrated SERT with prominent structural fluctuations,
while SERT-Flunarizine and SERT-Paroxetine complexes
assumed different and stable conformations with time. The

FIGURE 7
Principal component analysis (PCA) of SERT-ligand complexes. (A) PCA plots representing the conformational space explored by SERT, SERT-
Flunarizine, and SERT-Paroxetine complexes, derived from PC1 and PC2. (B) Eigenvector representation, illustrating principal component fluctuations
over time, provides insights into structural transitions and stabilization patterns.

FIGURE 8
Free energy landscape (FEL) analysis of SERT conformational states. (A) Three-dimensional Gibbs free energy map of unbound SERT, showing its
native state energy basin. (B) FEL map of SERT-Flunarizine complex. (C) FEL map of SERT-Paroxetine complex. Areas represented as a dark blue basin
correspond to low-energy conformations near the native state.
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stabilization of PC1 and PC2 fluctuations with time reflects the
inhibition of excessive protein motion upon ligand binding and
the stabilization of SERT into a structured conformation. The
results confirm the orientation of a stable conformational state by
Flunarizine comparable with Paroxetine, further establishing its
potential as a SERT inhibitor.

3.6 Free energy landscape analysis reveals
conformational folding

FEL analysis was performed to investigate further the
thermodynamic stability and conformation transitions of SERT
and its ligand-bound complexes. FEL maps were obtained from
PC1 and PC2 from PCA trajectory data and yielded insights into
transition states from metastable towards the native
conformation. The 3D Gibbs FEL maps depict changes in
energy across conformation states. The areas represented in
red correspond to high-energy unstable states, and the regions
described in dark blue correspond to low-energy conformations
(Figure 8). The unbound SERT protein displayed a broad dark
blue basin corresponding to a dynamic and flexible native
conformation (Figure 8A). The SERT-Flunarizine complex
displayed tighter single dark blue basins corresponding to the
constraining of the conformation space by the ligand and
stabilization of SERT into singular low-energy conformations
(Figure 8B). The SERT-Paroxetine displayed a wider low-
energy state confined within multiple basins (Figure 8C). Here,
metastable states were also observed in both ligand-bound
complexes, corresponding to minor conformation adjustments
upon the binding of the ligand. Taken together, the ligand-bound
SERT in the presence of Flunarizine exhibited stability in MD
simulations and essential dynamics. These findings suggest that
Flunarizine can be further explored experimentally as a potential
repurposed drug targeting SERT inhibitors for therapeutic
development against MDD.

Overall, the results of this study demonstrate that a calcium
channel blocker, Flunarizine, showed promise as an antidepressant
drug that can be repurposed to target SERT. SERT regulates synaptic
serotonin levels, and its dysregulation is implicated in MDD’s
emotional and cognitive deficits. Flunarizine is a selective channel
entry blocker with calmodulin binding properties and histamine
H1 blocking activity (Stubberud et al., 2019). It is well-established
that calcium channel blockers have been explored for their potential
antidepressant effects (Harrison et al., 2020; Bozorgi et al., 2020). By
competitively inhibiting SERT, Flunarizine prolongs serotonin
availability, mirroring SSRIs’ mechanism but with enhanced
binding stability. The research uses computational screening
technology to show how existing FDA-approved drugs can be
evaluated for new pharmacological purposes, shortening the drug
discovery timeline. While docking identifies initial hits, MD
simulations validate their dynamic stability, a critical step absent
in standalone docking studies. This synergy mitigates false positives
and confirms Flunarizine’s binding persistence. Recent studies
corroborate the utility of integrated computational approaches in
small-molecule inhibitor discovery (Vikhar Danish Ahmad et al.,
2024). Further experimental evaluations on Flunarizine must be
performed to verify computational results and assess the drug’s

effectiveness for MDD treatment. Future work should prioritize
in vitro assays (e.g., serotonin uptake inhibition in neuronal cell
lines) and in vivo behavioral studies in rodent models of depression
to validate Flunarizine’s antidepressant effects. Additionally,
pharmacokinetic studies and safety profiling are essential to
assess its suitability for repurposing in MDD. These steps will
bridge the gap between computational insights and clinical
application.

4 Conclusion

This study utilized an integrated computational approach to
identify FDA-approved drugs as potential SERT inhibitors for
repurposing in MDD. Virtual screening of 3,620 FDA-approved
drugs from the DrugBank library ranked Flunarizine ahead of other
drugs based on its higher binding affinity (−10.9 kcal/mol) towards
SERT, surpassing the comparative reference SSRI Paroxetine (−8.0 kcal/
mol). Molecular docking disclosed key stabilizing contacts of
Flunarizine with SERT’s active site, such as hydrogen bonds, π-π
stacking, and hydrophobic contacts with residues critical for
serotonin uptake. All-atom MD simulations for 500 ns proved the
structural stability of SERT-Flunarizine, as indicated by minimal
fluctuations in RMSD values (0.28 nm), decreased residual flexibility
(RMSF = 0.13 nm), and compact folding (Rg = 2.4 nm). PCA and FEL
calculations further verified that Flunarizine limits SERT to a low-
energy conformational state, effectively replicating the inhibitory action
of SSRIs but with better dynamic stability. Flunarizine’s dual action as a
calcium channel blocker and SERT inhibitor can make it a multi-target
drug candidate for MDD, consistent with new evidence on the
involvement of calcium signaling in neuropsychiatric illness. These
computational predictions indicate repurposing possibility,
confirmation of SERT inhibition efficacy and tolerability by
preclinical validation using cellular and animal models is essential.
While our findings highlight Flunarizine’s promise, translational
validation through preclinical and clinical studies remains imperative
to establish its efficacy and safety for MDD treatment.
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