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Background: Ethanol binge and obesity are the key risk factors for alcohol-
related liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD),
respectively. The human beings have a habit of drinking alcohol and
consuming high calorie foods, these two factors often coexist, and thus
contributing to the liver injury. However, the mechanisms of a short-term
consumption of high-fat diet (HFD) plus alcohol binge-induced acute liver
injury are unclear.

Methods:Male C57BL/6mice (aged 8–10 weeks) were fed a HFD or HFD Control
diet for 3 days. Then, they received a single dose of ethanol or the same volume of
distilled water by oral gavage. The liver damage was evaluated after 9 h of
ethanol gavage.

Results: Short-term (3 days) HFD feeding plus ethanol binge significantly
aggravated liver injury and steatosis in mice as indicated by the increased
serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and
triglyceride (TG) levels, the upregulated hepatic TG levels, and Oil Red O
staining and H&E staining. Mechanistically, short-term HFD feeding plus
ethanol binge disturbed hepatic redox homeostasis by increasing 3-
nitrotyrosine (3-NT), malondialdehyde (MDA) and myeloperoxidase (MPO)
levels, while decreasing glutathione (GSH) levels. HFD and alcohol co-
consumption also increased hepatic TNF-α, IL-1β and IL-18 via enhancing the
phosphorylation of MAPK (ERK1/2, p38 and JNK) and NF-κB. The canonical
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(Caspase-1 to GSDMD) and non-canonical pyroptosis signaling (Caspase-8/11 to
GSDMD, and Caspase-3 to GSDME) further contributed to the acute liver injury.

Conclusion: Short-term HFD feeding plus a single dose of ethanol gavage can
significantly exacerbate acute liver injury and hepatic fat deposition in mice by
enhancing oxidative stress, MAPK and NF-κB signaling, and Caspase-1/8/11-
GSDMD and Caspase-3-GSDME pyroptosis signaling.

KEYWORDS

high-fat diet feeding, acute ethanol binge, oxidative stress, caspase-1, caspase-8, caspase-
11, GSDMD, GSDME

1 Introduction

Alcohol-related liver disease (ALD) and nonalcoholic fatty liver
disease (NAFLD, currently known asmetabolic dysfunction-associated
steatotic liver disease, MASLD) are the leading causes of chronic liver
disease worldwide (Díaz et al., 2023; Matchett et al., 2024). ALD and
NAFLD share pathophysiological, histological, and genetic features
and both alcohol and metabolic dysfunction coexist as aetiological
factors in many patients with hepatic steatosis (Chao et al., 2023; Díaz
et al., 2023). Currently, approximately 2 billion people consume alcohol
worldwide and upwards of 75 million are diagnosed with alcohol-use
disorders and are at risk of ALD, moreover, about 2 billion adults are
obese or overweight and over 400 million have diabetes, both of which
are the risk factors for NAFLD and hepatocellular carcinoma (Asrani
et al., 2019). Although diagnosis of NAFLD requires the exclusion of
significant alcohol consumption and other causes of liver disease,
significant alcohol consumption is often under-reported in NAFLD
patients and that metabolic factors and alcohol interact to exacerbate
the progression of liver disease (Díaz et al., 2023).

In modern society, people often drink alcohol to relieve stress and
obtain entertainment. At the same time, alcohol culture is also a major
means of social interaction. Importantly, binge drinking and high-
calorie eating often coexist, these two factors synergistically cause and
aggravate the liver damage. Short-term high-fat diet (HFD) feeding
plus acute ethanol binge have a synergistic effect on the liver injury
(Chang et al., 2015). However, the potential molecular mechanisms of
acute liver injury caused by high-calorie eating and alcohol binge
consumption still need to be further explored. Here, we used an acute
liver injury model in mice fed with HFD for 3 days plus a single binge
of ethanol to investigate the synergistic mechanism of HFD plus
alcohol binge on acute liver injury.

2 Methods

2.1 Animal models

The male C57BL/6 mice were purchased from Guangdong
Medical Laboratory Animal Center (Foshan, China), they were
housed in a temperature-controlled animal facility with a 12-h
light–dark cycle and allowed to obtain rodent chow and water ad
libitum. All experimental procedures of animals in this study were
approved by the Institutional Animal Care and Use Committee of
Guangzhou University of Chinese Medicine.

The animal model was established according to Gao’s group
previously described with appropriate modifications (Chang et al.,

2015; Ding et al., 2010). In detail, the animals were fed a HFD (60%
kcal% fat; Cat# GD60, Guangdong Medical Laboratory Animal
Center, Foshan, China; Table 1) or a HFD Control diet (10% kcal
% fat; Cat# GD450B, GuangdongMedical Laboratory Animal Center,
Foshan, China; Table 1) for 3 days, followed by a single gavage of
ethanol (as a 31.25% solution in water) at a dose of 5 g/kg body weight
(as 0.20 mL per 10 g body weight) or the same volume of distilled
water (Chang et al., 2015). The food was not taken away after gavage.
After 9 h of ethanol gavage, the animals were deeply anesthetized
before blood collection from the orbital sinus for collecting serum and
euthanized via cervical dislocation (Mackowiak et al., 2022)
(Figure 1A). Then, the liver samples were harvested, and either
frozen in −80°C or put in 4% Paraformaldehyde Fix Solution
(Cat# G1101, Servicebio, Wuhan, China) before further analysis.

2.2 Biochemical analysis

Serum levels of alanine aminotransferase (ALT), aspartate
aminotransferase (AST), and triglycerides (TG) were examined
by an automatic biochemical analyzer as we had previously
descried (Xu et al., 2024). Hepatic TG, malondialdehyde (MDA),
myeloperoxidase (MPO) and the reduced glutathione (GSH) were
examined by the commercial assay kits (Cat# A110-1-1, Cat# A003-
1-2, Cat# A044-1-1, and Cat# A006-2-1, Nanjing Jiancheng
Bioengineering Institute, Nanjing, China) (Xu et al., 2024).

2.3 Histopathology analysis

The fixed liver samples were embedded by the Tissue-Tek®

optimum cutting temperature (O.C.T.) compound (Cat# 4583,
Sakura, Japan) to perform frozen liver sections for Oil Red O
(Cat# G1015, Servicebio, Wuhan, China) staining, or embedded in
paraffin to perform sections for staining with hematoxylin (Cat#
Ba4097, BaSo, Zhuhai, China) and eosin (Cat# Ba4099, BaSo, Zhuhai,
China) (H&E) as we previously described (Zhang et al., 2020; Xu et al.,
2024). H&E stainingwas used to evaluate themorphological change of
the liver tissue and lipid accumulation, and Oil Red O staining was
used to visualize fat content in the liver samples.

2.4 Immunoblot assay

The total proteins were extracted from the liver samples with
lysis buffer, and immunoblot assay was performed according to the
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standardized processes (Zhang et al., 2020). The antibodies used in
this study were described in Table 2. The gray value of protein bands
was quantified by the ImageJ software (National Institutes of Health,
Bethesda, MD, United States).

2.5 Immunofluorescence staining

Immunofluorescence staining was performed to detect 3-
nitrotyrosine (3-NT) in the liver. The frozen sections were

subjected to pre-washing treatments as follows: washing with
1 × PBS for 30 min, 1 × TBS for 10 min, and 1 × TBST for 20 min.
The liver sections were sealed with goat serum blocking
solution (Cat# ZLI-9056, ZSGB-BIO, Beijing, China) at room
temperature for 2 h. Then, the 3-NT antibody (Abcam, Cat#
ab110282, United Kingdom) was incubated overnight with the
liver sections at 4°C, followed by washing with 1 × TBS for 10 min
and 1 × TBST for 20 min. The liver sections were incubated with
Goat Anti-Mouse IgG (H + L) Fluor 594-conjugated antibody
(Cat# S0005, Affinity Biosciences, Beijing, China) under dark

TABLE 1 The diet formula.

Ingredient HFD Control HFD

Weight ratio % Energy ratio % Weight ratio % Energy ratio %

Protein 19.2 20 26 20

Carbohydrate 67.3 70 26 20

Fat 4.3 10 35 60

Total 100 100

FIGURE 1
HFD feeding for 3 days plus one acute ethanol binge synergistically induced acute liver injury in mice. (A) Male C57BL/6 wild-type mice started
feeding a HFD diet or a Control diet at 9:00 p.m. before the first day, and lasted for 3 days. Then, a single dose of ethanol (5 g/kg body weight as a 31.25%
ethanol in water; 0.02 mL/g) was given to mice via gavage at 0:00 a.m. on day 4. The food was not taken away after gavage. The liver and blood were
collected at 9:00 a.m. on the fourth day. (B) SerumALT levels. (C) SerumAST levels. (D)Hepatic Oil RedO staining. All data were expressed asmean±
SD, n = 4 in each group, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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conditions for 2 h. The sections were washed with 1 × TBS
for 10 min followed by 1 × TBST for 20 min. Finally, the
fluorescence intensity of 3-NT was observed under a
fluorescence microscope after sealing the sections with anti-
fluorescence attenuation sealer (containing DAPI) (Cat#
S2110, Solarbio, Beijing, China).

2.6 Statistical analysis

The statistical analyses were performed by one-way
analysis of variance (ANOVA) followed by Bonferroni’s post
hoc analysis for data with normal distribution (by Shapiro-Wilk
test) and satisfying homogeneity of variance (by Brown-Forsythe
test), performed by Brown-Forsythe and Welch ANOVA tests
followed by Dunnett T 3 post hoc analysis for data with normal
distribution and heteroscedasticity, and performed by
Kruskal–Wallis test followed by Dunn’s post hoc analysis for
data with skewed distributions (by Shapiro-Wilk test). All data
were expressed as the mean ± SD or median ± interquartile
range, a value of P < 0.05 was considered as significantly
different. All histograms were performed using GraphPad

Prism 10.0 (GraphPad Software Inc., San Diego, CA,
United States).

3 Results

3.1 Short-term HFD feeding plus acute
ethanol binge induced acute liver injury
in mice

It has been reported that 3 days of HFD feeding plus acute
ethanol binge can induce liver damage in mice (Chang et al., 2015;
Babuta et al., 2024c). Here, we established the same animal models
(Figure 1A), and like the previous reports (Chang et al., 2015;
Babuta et al., 2024c), our data also indicated that HFD feeding for
3 days plus one time of acute ethanol binge on the third day
synergistically induced liver injury as indicated by increasing
serum levels of ALT and AST (Figures 1B,C) and increasing
hepatic fat deposition in mice as indicated by Oil Red O
staining (Figure 1D).

In order to further investigate the mechanisms of short-term
HFD feeding plus acute ethanol binge on acute liver injury, the

TABLE 2 The antibodies information.

The antibody The product number The manufactures

Phospho- NF-κB p65 antibody #3033S Cell Signaling Technology (Danvers, MA, United States)

NF-κB p65 antibody #8242S

JNK antibody #9252S

p38 MAPK antibody #8690S

Phospho-p38 MAPK antibody #4511S

Erk1/2 antibody #4695S

phospho-JNK antibody #9255S

Caspase-8 antibody #9746

TNF-α antibody #AF7014 Affinity Biosciences (Changzhou, Jiangsu, China)

Pro-IL1-β Antibody #AF5103

Cleaved-IL1-β Antibody #AF4006

Goat Anti-Rabbit IgG (H + L) HRP #S0001

Goat Anti-Mouse IgG (H + L) HRP #S0002

Caspase-3 antibody #sc-56053 Santa Cruz Biotechnology (Santa Cruz, CA, United States)

Caspase-11 antibody #sc-374615

Caspase-1 antibody #ab1872 Abcam (Cambridge, United Kingdom)

GSDMD antibody #ab219800

GSDME antibody #ab215191

GAPDH antibody #MB001 Bioworld, Technology (Qixia District, Nanjing, China)

IL-18 antibody #D046-3 Medical & Biological Laboratories Co., Ltd (Tokyo, Japan)

p-ERK1/2 antibody #bs-3016R Bioss Antibodies (Beijing, China)
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other animals were randomly divided into three groups: Control
group, HFD group, and short-term HFD feeding plus acute
ethanol binge group. Similar to the previous reports that short-
term HFD feeding, e.g., for 3–4 days, is sufficient to induce liver
steatosis and impair glucose tolerance and hepatic insulin
sensitivity (Lee et al., 2011; Ji et al., 2012; Wiedemann et al.,
2013; Chang et al., 2015), our data of hepatic H&E staining showed
that a small amount of fat vacuoles accumulated in the liver of mice
fed a HFD (Figure 2A), hepatic Oil red O staining and hepatic TG
levels showed that HFD feeding induced fat deposition in the liver
(Figures 2B,C). HFD feeding also increased serum TG levels, and only
slightly increase serum ALT and AST levels with no statistical
significance (Figures 2D–F). Compared with HFD group, hepatic
fat deposition, serum TG, ALT and AST levels were further enhanced
inHFD+Al group (Figure 2). Therefore, short termHFD feeding plus

ethanol binge synergistically induces acute liver injury and hepatic
steatosis in mice.

3.2 HFD plus ethanol binge synergistically
induced oxidative stress in the liver

HFD or excessive ethanol intake has been shown to promote the
production of reactive oxygen species (ROS), thus, increase
oxidative stress in the liver (Ma et al., 2022; Zhu et al., 2022;
Park et al., 2023). The high levels of ROS can induce lipid
peroxidation. 3-nitrotyrosine (3-NT), a product of reactive-
nitrogen species (RNS) with the activated aromatic ring of
tyrosine, is another classical biomarker of oxidative stress
(Bandookwala and Sengupta, 2020). The immunofluorescence

FIGURE 2
Short-termHFD feeding plus acute ethanol gavage induced acute hepatic steatosis in mice. (A) The H&E staining of the liver sample. (B) The Oil Red
O staining of the liver sample. (C) Hepatic TG levels in mice. (D) The serum TG levels. (E) The serum ALT levels. (F) The serum AST levels. All data were
expressed as mean ± SD, n = 8 in each group, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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FIGURE 3
Short-term HFD feeding plus acute ethanol binge induced hepatic oxidative stress in mice. (A) The immunofluorescence staining of 3-NT, 10 ×. (B)
The average fluorescence intensity of 3-NT, n = 3 in each group. (C)Hepatic MDA levels; (D)Hepatic MPO levels; (E)Hepatic GSH levels. The data of MPO
andGSHwere expressed asmedian ± interquartile range, and the other data were expressed asmean± SD, n = 8 in each group in C to E, **p < 0.01, ***p <
0.001, ****p < 0.0001.
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results indicated that hepatic 3-NT levels in HFD group and HFD +
Al group were increased when compared with Control group, and
hepatic 3-NT levels in HFD + Al group were higher than those in
HFD group (Figures 3A,B). MDA, which is a biomarker of lipid

peroxidation, has been examined to reflect oxidative stress (Ayala
et al., 2014). HFD, and HFD plus ethanol binge increased MDA
levels in the liver, and HFD plus ethanol binge upregulated more
MDA levels in the liver (Figure 3C). MPO, which is the member of

FIGURE 4
Short-term HFD feeding plus acute ethanol binge enhanced the phosphorylation of MAPK and NF-κB p65 in the liver of mice. Western blotting and
quantification of p-ERK/total ERK (A), p-p38/total p38 (B), p-JNK/total JNK (C), and p-NF-κB p65/total NF-κB p65 (D). All data were expressed asmean ±
SD, n = 4 in each group, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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heme peroxidase family in immune cells, can contribute to ROS
production (Hawkins and Davies, 2021), and thus, MPO levels also
reflects the degree of oxidative stress and inflammation in the organ
or tissue. Our data indicated that hepatic MPO levels were increased
(Figure 3D), in contrast, GSH (an indicator of antioxidant capacity)
levels were decreased in HFD + Al group compared with Control
group (Figure 3E). Therefore, HFD plus ethanol binge
synergistically contributed to hepatic oxidative stress in mice.

3.3 HFD plus ethanol binge upregulated
MAPK andNF-κBphosphorylation in the liver

The increased ROS can further cause acute liver injury after
short-term ethanol feeding by activating innate immune signals and
inducing sterile inflammation (Tsutsumi et al., 2003; Gao et al.,
2024). Here, the phosphorylation of MAPK and NF-κB p65 in the
liver were evaluated by Western blotting. Our results showed that
the phosphorylation of hepatic ERK, JNK, and NF-κB p65 were
elevated in HFD group when compared with Control group, and the
phosphorylated hepatic MAPK (p38 and JNK) were further
increased in the mice subjected to HFD plus ethanol binge, and
ERK and NF-κB p65 also showed increasing trends, however, it was
not statistically significant (Figure 4). Therefore, HFD plus ethanol
binge significantly increased the phosphorylation levels of MAPK
and NF-κB in the liver.

3.4 HFD plus ethanol binge aggravated
inflammatory cytokines expression in
the liver

The phosphorylation of MAPK and NF-κB p65 in the liver can
induce the expression of inflammatory cytokines, and thus
amplifying inflammation (Zhang et al., 2019; Zhang et al., 2023;
Lan et al., 2024). Therefore, TNF-α, IL-1β, and IL-18 levels in the
liver were determined by Western blotting. Our results showed that
the hepatic protein levels of TNF-α, pro-IL-1β and the cleaved-IL-1β
(thematuration form of IL-1β), and pro-IL-18 and the cleaved-IL-18
(the maturation form of IL-18) were increased in HFD + Al group
compared with HFD group (IL-18 levels only show upward trends
but has no statistical significance) (Figure 5). Therefore, HFD plus
ethanol binge induced and amplified hepatic inflammation by
aggravating both the expression and maturation of inflammatory
cytokines in mice.

3.5 HFD plus ethanol binge synergistically
induced hepatic pyroptosis

The pro-IL-1β and pro-IL-18 need to be processed and cleaved
by the activated Caspase-1 (the cleaved Caspase-1) to convert into
their mature forms (He et al., 2016). Therefore, to investigate
whether the effect of HFD plus ethanol binge on the maturation
of IL-1β and IL-18 was related to the activation of Caspase-1, we
examined the protein levels of Caspase-1. Our results showed that
both pro-Caspase-1 and cleaved-Caspase-1 were upregulated in
HFD group when compared with Control group, and HFD plus

ethanol binge further increased the expression and the activation of
Caspase-1 (Figure 6A). Besides the cleavage of IL-1β and IL-18,
Caspase-1 can also specifically cleave the linker between the amino-
terminal gasdermin-N and carboxy-terminal gasdermin-C domains
in gasdermin D (GSDMD), which is required and sufficient for
pyroptosis (Shi et al., 2015). To further investigate whether HFD
plus ethanol binge-induced acute liver injury is involved in
pyroptosis, we examined hepatic GSDMD levels in the liver. Our
results showed that both pro-GSDMD and cleaved-GSDMD levels
were increased in HFD group and HFD + Al group, and HFD plus
ethanol binge facilitated more expression and maturation of
GSDMD than HFD alone (Figure 6B).

In addition to the Caspase-1 to GSDMD canonical pyroptosis
signaling, Caspase-8 and Caspase-11 can also induce the non-
canonical pyroptosis signaling by cleaving GSDMD, and Caspase-
3 can induce the non-canonical pyroptosis signaling by cleaving
gasdermin E (GSDME) (Shi et al., 2015; Wang Y. et al., 2017).
Therefore, we further examined the non-canonical pyroptosis
signals. Our results showed that both HFD and HFD plus
ethanol binge can increased the hepatic levels of pro-Caspase-
11 and cleaved-Caspase-11 (Figure 7A), pro-Caspase-8 and
cleaved-Caspase-8 (Figure 7B), pro-Caspase-3 and cleaved-
Caspase-3 (Figure 7C), and pro-GSDME and cleaved-GSDME
(Figure 7D). Except for the levels of pro-Caspase-8, which has no
statistical significance, other non-canonical pyroptosis signals in
HFD + Al group were higher than these in HFD group (Figure 7).
Therefore, HFD plus ethanol binge synergistically induced hepatic
pyroptosis by excessively activating pyroptosis signals.

4 Discussion

The increased adoption of a Western diet, sedentary habits, and
alcohol consumption, lead to a rapid increase in the global
prevalence of MASLD and ALD (Babuta et al., 2024b). It has
been reported that long-term or short-term HFD feeding plus
acute ethanol binge synergistically induced liver injury and
hepatic steatosis in mice (Chang et al., 2015; Wang W. et al.,
2017). In this study, we confirmed that mice received a single
dose of ethanol on the 3rd day of HFD feeding enhanced liver
injury when compared with the mice only feeding with a HFD for
3 days. Similar to our study, a recent study also showed that short-
term feeding of a metabolic-dysfunction-associated steatohepatitis
(MASH) diet (high fat (33 gm%), high cholesterol (10 gm%), and
high sucrose (208.4 gm%)) plus daily 5 g/kg alcohol gavage for 3 days
can induce liver injury in mice (Babuta et al., 2024c). Male mice
feeding the same MASH diet combined with receiving 10% alcohol
in drinking water ad libitum and 5 g/kg alcohol gavage weekly for
3 months displayed the key features of severe alcohol-associated
hepatitis (Babuta et al., 2024b). Only weekly alcohol binges (5 g/kg)
can also exacerbate liver injury in mice model of MASH received the
same MASH diet for 3 months (Babuta et al., 2024a). Moreover,
Western diet and alcohol consumption coexist as synergistic insults
in a substantial proportion of liver disease patient population
(Babuta et al., 2024b). Therefore, HFD combined with habitual
alcohol consumption can synergistically cause liver damage.

The synergistic effects of short-term HFD feeding plus acute
ethanol binge-induced acute liver injury were involved in hepatic
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FIGURE 5
Short-term HFD plus acute ethanol binge enhanced the expression and maturation of hepatic TNF-α, IL-1β and IL-18 in mice. Western blotting and
quantification of TNF-α/GAPDH (A), pro-IL-1β/GAPDH and cleaved-IL-1β/GAPDH (B), and pro-IL-18/GAPDH and cleaved-IL-18/GAPDH (C). All data
were expressed as mean ± SD, n = 4 in each group, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

FIGURE 6
Short-term HFD feeding plus acute ethanol binge activated the canonical Caspase-1 to GSDMD pyroptosis signaling in the liver of mice. Western
blotting and quantification of pro-Caspase-1/GAPDH and cleaved-Caspase-1/GAPDH (A), and pro-GSDMD/GAPDH and cleaved-GSDMD/GAPDH (B).
All data were expressed as mean ± SD, n = 4 in each group, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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oxidative stress, as that hepatic 3-NT and MDA, which are essential
biomarkers of oxidative injury, were enhanced in HFD + Al group
when compared with HFD group. In contrast, the antioxidant
reduced GSH was downregulated by HFD, or HFD plus acute
ethanol binge, and the GSH levels was slightly low in HFD + Al
group than HFD group with no statistical significance. These data
indicated that short-term HFD feeding plus acute ethanol binge
enhanced oxidative stress but decreased the antioxidant capacity in
the liver. MPO, which is a member of heme peroxidase family in
neutrophils, can generate powerful oxidizing species including
hypochlorous acid (HOCl) (Hawkins and Davies, 2021), which
also reflects the degree of oxidative stress and inflammation in
the organ or tissue. We found that hepatic MPO levels increased in

HFD group and HFD + Al group, and there was statistical
significance between HFD + Al group and Control group. This
was consistent with a previous report that MPO+ neutrophils were
diffused in the parenchymal regions at 9 h post ethanol gavage in 3d-
HFD-fed mice (Chang et al., 2015). Therefore, short-term HFD
feeding plus acute ethanol binge may synergistically contribute to
liver oxidative stress and inflammation.

The excessive ROS can contribute to the activation of innate
immune signals, such asMAPK and NF-κB (Ryan et al., 2004; Tsung
et al., 2007; Zhang et al., 2017). Our results showed that short-term
HFD feeding plus acute ethanol binge can increase the
phosphorylation of ERK, p38, JNK and NF-κB-p65 in the liver.
The phosphorylation of MAPK and NF-κB may initiate the

FIGURE 7
Short-termHFD feeding plus acute ethanol binge increased both the expression and activation of Caspase-11, Caspase-8, Caspase-3 and GSDME in
the liver of mice. Western blotting and quantification of pro-Caspase-11/GAPDH and cleaved-Caspase-11/GAPDH (A), pro-Caspase-8/GAPDH and
cleaved-Caspase-8/GAPDH (B), pro-Caspase-3/GAPDH and cleaved-Caspase-3/GAPDH (C), and pro-GSDME/GAPDH and cleaved-GSDME/GAPDH
(D). All data were expressed as mean ± SD, n = 4 in each group, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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production of inflammatory cytokines (Zhang et al., 2017). Our
results demonstrated that 3 days HFD feeding plus acute ethanol
binge significantly enhanced the protein levels of TNF-α, IL-1β, and
IL-18 in the liver of mice. Similar to this, the increased hepatic free
fatty acids (FFAs) may contribute to the elevation of Cxcl1mRNA in
hepatocytes (and to a lesser extent in hepatic stellate cells and
sinusoidal endothelial cells) via activating ERK1/2, JNK or NF-κB
in mice with 3-day HFD-plus-ethanol binge feeding (Chang et al.,
2015). Therefore, the inflammatory cytokines TNF-α, IL-1β, and IL-
18 may combine with CXCL1 to synergistically induce liver injury
and steatosis.

The inactive precursors of IL-1β and IL-18 should undergo
cleavage and activation by the cleaved-Caspase-1, resulting in the
formation of mature cleaved forms—cleaved-IL-1β and cleaved-IL-
18, which subsequently release from cells to trigger an inflammatory
response (Zhang et al., 2017). Our data showed that both the full
length of IL-1β and IL-18 (pro-IL-1β and pro-IL-18) and the cleaved
IL-1β and IL-18 were increased by HFD plus acute ethanol binge.
Szabo et al. found that 3 days combined insult of a MASH-inducing
diet and alcohol binges activated hepatic NLRP3 inflammasome, as
indicated by a significant increase in the levels of cleaved-Caspase-1
and cleaved-IL-Iβ in the liver (Babuta et al., 2024c). Here, we showed
that a short-term HFD feeding with acute ethanol binge markedly
elevated the protein levels of both precursor and mature forms of
Caspase-1 in the liver of mice. In addition, the activated Caspase-1
may also cleave GSDMD, which is the common effector for cytokine
secretion and the typical pyroptosis trigger that follows the
activation of inflammasomes (Du et al., 2024). Both GSDMD and
GSDMD-N were upregulated in the liver tissues of human MASLD/
MASH, and GSDMD plays a key role in the pathogenesis of
steatohepatitis, by controlling cytokine secretion, NF-κB
activation, and lipogenesis (Xu et al., 2018). Here, we showed
that both short-term HFD feeding and short-term HFD feeding
plus acute ethanol binge can increase the precursor and maturation
of GSDMD in the liver of mice. However, a recent study showed that
3 days MASH diet feeding (which was composed of high fat (33 gm
%), high cholesterol (10 gm%), and high sucrose (208.4 gm%)) plus
daily acute alcohol binges for 3 days fail to activate GSDMD (Babuta
et al., 2024c). This difference may be related to the composition of
diet, frequency of alcohol consumption, and even the living
environment of mice.

It is well-known that Caspase-1 is activated after various typical
inflammasome recognizing ligands, moreover, human Caspase-4
and the mouse homologue Caspase-11 and human Caspase-5 can
directly recognize bacterial lipopolysaccharide (LPS), both of which
trigger pyroptosis via GSDMD (Shi et al., 2015; Liu et al., 2016).
Caspase-11-GSDMD pathway in the liver was activated in a hybrid
feeding mouse model of alcoholic hepatitis and patients (Khanova
et al., 2018; Wang et al., 2018). Caspase-11 promotes 12 weeks HFD
feeding induced NAFLD in mice by increasing glycolysis, oxidative
phosphorylation, and pyroptosis in macrophages (Drummer et al.,
2023). Our results indicated that both the full-length and cleaved
forms of Caspase-11 was enhanced by short-term HFD feeding and
short-term HFD feeding plus acute ethanol binge. Caspase-8
activation during TAK1 inhibition results in cleavage of both
GSDMD and GSDME (Sarhan et al., 2018). Moreover, GSDME
can also be cleaved by Caspase-3 in its linker, generating a GSDME-
N fragment that perforates membranes and thereby induces

pyroptosis (Wang Y. et al., 2017). Both the precursors and
mature forms of Caspase-8, Caspase-3 and GSDME were
increased by short-term HFD feeding or short-term HFD feeding
plus acute ethanol binge. Moreover, short-term HFD feeding plus
acute ethanol binge enhanced more hepatic cleaved-Caspase-8, pro-
and cleaved-Caspase-3 and pro- and cleaved-GSDME than only
short-term HFD feeding in mice. Thus, both the canonical and non-
canonical pyroptosis signaling may be an important mechanism for
acute liver injury induced by short-term HFD feeding plus acute
alcohol binge.

Our study indicated that short-term HFD feeding plus acute
ethanol binge induced acute liver injury in mice through increasing
oxidative stress, inflammation, and the canonical and non-canonical
pyroptosis signaling. In addition to the well-known of oxidative
stress and inflammation, pyroptosis may act as a novel therapeutic
target for treating liver damage induced by high calorie diet with
excessive alcohol consumption in human beings. ROS can activate
MAPK and NF-κB, thereby inducing inflammatory cytokines
expression, and the maturation of inflammatory cytokines, such
IL-1β and IL-18, requires Caspase-1 (Averill-Bates, 2024; Yang et al.,
2024). Classically, Caspase-1 can also induce pyroptosis by cleavage
of GSDMD (Shi et al., 2015). GSDMD is a member of gasdermins
(GSDMs) family, which consist of GSDMA, GSDMB, GSDMC,
GSDMD, GSDME and DFNB 59 (also known as pejvakin
(PJVK)) in humans (Zheng et al., 2020). Until now, it has been
shown that these GSDMs, except DFNB 59, are inducers of
pyroptosis (Wang Y. et al., 2017; Hou et al., 2020; Zheng et al.,
2020; Zhou et al., 2020; Deng et al., 2022; Privitera et al., 2023; Zhou
et al., 2024). However, it is unclear the roles of GSDMA, GSDMB,
and GSDMC in acute liver injury induced by short-term HFD
feeding plus acute alcohol binge. Moreover, it is currently
uncertain which of these three mechanisms, including oxidative
stress, inflammation, and pyroptosis, is more important. It should be
noted that MAPK and NF-κB can also be activated independently of
ROS, such as by the increased LPS (Carpino et al., 2020). Therefore,
it is still uncertain which of these three mechanisms is the main one?
More likely, they have both upstream-downstream relationships and
can independently play a role in liver damage.
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