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Introduction: Drug-induced liver injury (DILI) is a significant adverse drug
reaction, ranging from mild liver enzyme elevations to severe outcomes such
as liver failure, transplantation, or death. This condition is especially concerning in
older adults, who may exhibit increased susceptibility to adverse medication
effects. This study aimed to develop and compare eight machine learning (ML)
models using routine clinical, pharmacological, and laboratory data to predict
DILI in older hospitalized patients.

Methods:We conducted a retrospective analysis of older patients hospitalized in
2022 who exhibited abnormal liver function tests. A total of 421 clinical,
pharmacological, and laboratory variables were utilized for model
development, with missing data addressed through multiple imputation
techniques. The performance of 8 ML algorithms—XGBoost, LightGBM,
Random Forest, AdaBoost, CatBoost, Gradient Boosting Decision Trees,
Artificial Neural Network, and TabNet—was assessed. The dataset was
randomly partitioned into a training set (80%, n = 2,880) and an independent
testing set (20%, n = 720). Model performancewas evaluated using the area under
the receiver operating characteristic curve (AUC).

Results:Out of the 3,600 older patients with abnormal liver function, 654 patients
experienced DILI. The best-performing model, LightGBM combined with
Random Forest imputation, achieved an AUC of 0.9829. SHapley Additive
exPlanations (SHAP) analysis identified critical predictors for DILI, including the
timing of DILI relative to surgery, undergoing surgery, and maximum rate of
change (slope) in liver enzymes, albumin, lipoprotein cholesterol, total bilirubin,
proBNP, and total bile acids. Additional significant factors included administration
of liver-protective medications upon admission; use of diuretics, antibiotics, and
narcotic analgesics; and pre-existing liver or gallbladder diseases ormalignancies.

Discussion: The predictive model developed demonstrated excellent
performance in identifying DILI in older adults. Leveraging machine learning
techniques, this model holds significant potential for clinical implementation to
effectively warn clinicians of DILI risk among older hospitalized patients.
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Introduction

Drug-induced liver injury (DILI) is a significant adverse event
that can range frommild liver enzyme elevations to severe outcomes
such as liver failure, the need for transplantation, or even death
(Björnsson and Björnsson, 2022). DILI encompasses damage to the
liver or biliary system resulting from exposure to hepatotoxic drugs
(Björnsson and Björnsson, 2022). Most patients with DILI are
asymptomatic, with jaundice being the most common clinical
sign (Katarey and Verma, 2016). In cases of hepatocellular injury,
laboratory tests reveal elevated levels of aminotransferases, such as
alanine aminotransferase (ALT) and/or aspartate aminotransferase
(AST), while cholestatic injury is characterized by elevations in
gamma-glutamyl transferase (GGT), alkaline phosphatase (ALP),
and/or bilirubin (Katarey and Verma, 2016; Kuna et al., 2018). The
mechanisms of hepatotoxicity can be classified as either dose-
dependent or idiosyncratic (Katarey and Verma, 2016). A
substantial portion of the disease burden arises from dose-
dependent toxicity, which correlates with the amount of drug
exposure and is consistently reproducible, rendering liver injury
in such instances predictable (Björnsson and Björnsson, 2022).
Conversely, idiosyncratic liver injury is unpredictable, not directly
dose-dependent, and not easily reproducible in animal models. DILI
is a prevalent adverse event in clinical practice and has emerged as
the leading cause of acute liver failure in the Western world (Reuben
et al., 2010). Additionally, it is a primary reason for the withdrawal of
medications from the market and for the issuance of safety warnings
and modifications regarding drug usage (Katarey and Verma, 2016).

The aging population is characterized by the coexistence of
multiple comorbid conditions, frequently leading to polypharmacy.
Combined with age-related declines in physiological functions that
influence drug pharmacokinetics—such as receptor sensitivity,
cardiac reserve, renal function, immunological response, and
homeostatic mechanisms—this significantly increases the risk of
adverse drug reactions (ADRs) (Lucena et al., 2020). Consequently,
older adults are considered a highly susceptible group in terms of
medication safety. Prior research has identified older age as a notable
risk factor for DILI (Aithal and Day, 1999; Andrade et al., 2006). For
example, a Spanish study involving 882 DILI patients reported that
33% were aged 65 years or older (Weersink et al., 2021). Other
contributing predictors included female sex, dyslipidemia, and
diabetes (Aithal and Day, 1999; Andrade et al., 2006; Weersink
et al., 2021).

As a significant ADR, DILI is actively monitored in clinical
settings. Traditionally, voluntary reporting systems have been the
primary means of tracking ADRs; however, they capture only 10%–

20% of actual incidents, leaving the true incidence largely unknown
(Griffin and Resar, 2009). Furthermore, the probability of adverse
effects associated with specific drugs remains elusive, posing a
significant challenge to patient safety. While active surveillance
could address these limitations, it demands substantial manpower
and resources, making broad implementation challenging (Hu et al.,
2020). Therefore, there is an urgent need to develop innovative
methods for the early detection and warning of ADRs to enhance
patient safety and improve drug monitoring effectiveness.

Machine learning (ML) broadly refers to fitting models to data
or identifying informative patterns within datasets (Greener et al.,
2022). Essentially, ML aims to approximate human pattern

recognition capabilities through objective computational methods.
ML is particularly valuable when dealing with datasets that are too
large or complex for human analysis, containing numerous data
points or features. Furthermore, it is indispensable in automating
data analysis workflows, enabling reproducible and time-efficient
processes (Deo, 2015; Greener et al., 2022). Medical data often
exhibit these characteristics, making ML a potent tool for disease
diagnosis, detection, and prediction. Numerous studies have
explored the application of ML to predict ADRs, yielding
promising outcomes (Hu et al., 2024). Detecting ADRs early is
equally crucial, as timely identification enables interventions that
bolster patient safety and mitigate potential harm. By combining
effective detection methods with predictive modeling, healthcare
providers can better manage the risks associated with
pharmacotherapy.

However, current DILI surveillance systems primarily rely on
crude categorization of suspected cases based on abnormal liver
function tests, lacking the granularity needed for definitive DILI
identification. To address this limitation, we propose enhancing
current systems by integrating ML algorithms trained on a cohort
of patients who developed in-hospital liver dysfunction. By
leveraging multimodal clinical data, our model aims to achieve
precise DILI differentiation, thereby improving diagnostic
accuracy and clinical decision-making. Thus, this study aimed
to develop an ML algorithm for the detection and early warning of
DILI, providing technical support to reduce DILI incidence. The
algorithm was designed to promptly identify DILI cases,
facilitating swift clinical interventions to mitigate the impact on
patient health.

Materials and methods

Research participants

This retrospective study analyzed demographic,
pharmacological, and clinical laboratory data from older patients
with liver function abnormalities who were admitted to West China
Hospital of Sichuan University between January 1 and December 31,
2022. Ethics approval was obtained from the Ethics Committee of
West China Hospital, Sichuan University, China (Approval
Number: 2022-1124). Due to the retrospective nature of the
study, the requirement for informed consent was waived, and all
data were fully anonymized to ensure patient confidentiality. As this
study did not involve a prospective clinical trial, a clinical trial
registration number was not applicable.

Eligible patients were identified according to the official Chinese
definition, which classifies older adults as individuals aged 60 years
and above with a minimum hospital stay of 24 h (Hu et al., 2020).
Considering that clinical interventions often precede the diagnosis
of DILI (Chalasani et al., 2021), patients with liver function
abnormalities were identified based on liver function tests
showing ALT, AST, ALP, or TBil levels exceeding 1.5 times the
upper limit of normal (ULN) (Alexandre et al., 2000). The hospital’s
standard ULN values for these tests were: ALT, 40 IU/L for women
and 50 IU/L for men; AST, 35 IU/L for women and 40 IU/L for men;
ALP, 135 IU/L for women and 160 IU/L for men; and TBil,
20.5 μmol/L for both sexes.
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TABLE 1 Characteristics of included patients.

Variables (n [%] or median [IQR]) Total (n = 3,600) Non-DILI (n = 2,946) DILI (n = 654) P

Age, years 69.00 [65.00.75.00] 69.00 [65.00.75.00] 69.00 [65.00.75.00] 0.759

Gender, n (%)

Male 2,105 (58.47%) 1718 (58.32%) 387 (59.17%) 0.693

Female 1,495 (41.53%) 1,228 (41.68%) 267 (40.83%)

Marital status, n (%)

Married 3,302 (91.72%) 2,703 (91.75%) 599 (91.59%) 0.534

Single/divorced/widowed 298 (8.28%) 243 (8.25%) 55 (8.41%)

Allergic history, n (%)

No 3,301 (91.69%) 2,706 (91.85%) 595 (90.98%) 0.481

Yes 299 (8.31%) 240 (8.15%) 59 (9.02%)

Ethnic groups, n (%)

Han nationality 3,402 (94.50%) 2,784 (94.50%) 618 (95.49%) 0.668

Zang nationality 117 (3.25%) 93 (3.16%) 24 (3.67%)

Yi nationality 26 (0.72%) 24 (0.81%) 2 (0.31%)

Hui nationality 21 (0.58%) 17 (0.58%) 4 (0.61%)

other nationality 34 (0.95%) 28 (0.95%) 6 (0.92%)

Smoking history, n (%)

No 2,663 (73.97%) 2,178 (73.93%) 485 (74.16%) 0.922

Yes 937 (26.03%) 768 (26.07%) 169 (25.84%)

Number of cigarettes among smoking patients, n 20.00 [10.00.20.00] 20.00 [10.00.20.00] 20.00 [10.00.20.00] 0.442

Drinking history, n (%)

No 2,835 (78.75%) 2,297 (77.97%) 538 (82.26%) 0.015

Yes 765 (21.25%) 649 (22.03%) 116 (17.74%)

Average alcohol consumption among patients with a history of
alcohol use, g

100 [100,250] 125 [95,250] 100 [100,212.5] 0.884

Surgery, n (%)

No 1,679 (46.64%) 1,352 (45.89%) 327 (50.00%) 0.031

Yes 1921 (53.36%) 1,594 (54.11%) 327 (50.00%)

Number of surgeries, n (%)

0 1,679 (46.64%) 1,352 (45.89%) 327 (50.00%) 0.119

1 1859 (51.64%) 1,547 (52.51%) 312 (47.71%)

2 58 (1.61%) 44 (1.50%) 14 (2.14%)

3 4 (0.11%) 3 (0.10%) 1 (0.15%)

Surgical organ, n (%)

Total 2,247 (100%) 1908 (100%) 339 (100%) <0.001

Heart/Aorta 422 (18.78%) 359 (18.81%) 63 (18.58%)

Brain 127 (5.65%) 58 (1.78%) 69 (10.36%)

Peripheral Vessels 15 (0.67%) 13 (0.40%) 2 (0.30%)

(Continued on following page)
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TABLE 1 (Continued) Characteristics of included patients.

Variables (n [%] or median [IQR]) Total (n = 3,600) Non-DILI (n = 2,946) DILI (n = 654) P

Liver 568 (25.28%) 567 (17.39%) 1 (0.15%)

Biliary, Pancreas or Spleen 431 (19.18%) 427 (13.98%) 4 (0.60%)

Chest (Lungs or Mediastinum) 118 (5.25%) 66 (2.02%) 52 (7.81%)

Digestive System, Abdominal Cavity (Other than Liver,
Biliary, Pancreas, Spleen)

271 (12.06%) 211 (6.47%) 60 (9.01%)

Skeleton (Limbs or Spine) 151 (6.72%) 105 (3.22%) 46 (6.91%)

Kidneys and Urinary System 72 (3.20%) 46 (1.41%) 26 (3.90%)

Others Organ 72 (3.20%) 56 (1.72%) 16 (2.40%)

Disease, n

Total 5,363 (100.00%) 4,849 (100.00%) 512 (100.00%) <0.001

Malignant tumors (excluding liver, pancreas, gallbladder) 790 (14.73%) 618 (12.74%) 172 (33.59%)

Liver cancer or liver metastatic cancer 676 (12.60%) 673 (13.88%) 3 (0.59%)

Pancreatic cancer or pancreatic metastatic cancer 141 (2.63%) 141 (2.91%) 0 (0.00%)

Gallbladder cancer or gallbladder metastatic cancer 118 (2.20%) 116 (2.39%) 2 (0.39%)

Bone tumors or metastatic tumors 75 (1.40%) 70 (1.44%) 5 (0.98%)

Viral/Alcoholic liver disease/Liver cirrhosis/Other liver
diseases

1,164 (21.70%) 1,128 (23.26%) 34 (6.64%)

Acute cerebral infarction or intracranial hemorrhage
(excluding malignant tumors)

189 (3.52%) 116 (2.92%) 73 (14.26%)

Gallbladder diseases (excluding malignant tumors) 535 (9.98%) 525 (10.83%) 10 (1.95%)

Pancreatic diseases (excluding malignant tumors) 143 (2.67%) 140 (2.89%) 3 (0.59%)

AECOPD/respiratory failure 281 (5.24%) 228 (4.70%) 53 (10.35%)

Chronic renal insufficiency or renal failure 148 (2.76%) 124 (2.56%) 24 (4.69%)

Bone diseases (excluding malignant tumors) 159 (2.96%) 136 (2.80%) 23 (4.49%)

Acute coronary syndrome or heart disease or heart failure or
cardiac arrest

266 (4.96%) 240 (4.95%) 26 (5.08%)

Heart valve disease (moderate/severe) 349 (6.51%) 310 (6.39%) 39 (7.62%)

Venous embolism 55 (1.02%) 41 (0.84%) 14 (2.73%)

Shock 94 (1.75%) 82 (1.69%) 12 (2.34%)

Aortic dissection or aneurysm 75 (1.40%) 64 (1.32%) 11 (2.15%)

Peritonitis/abdominal cavity infection 105 (1.96%) 97 (2.00%) 8 (1.56%)

Medical history in the 10 days prior to this hospitalization, n (%)

Yes 1,273 (35.36%) 1,046 (35.51%) 227 (34.71%) 0.700

No 2,327 (64.64%) 1900 (64.49%) 427 (65.29%)

Number of hospitalizations in this hospital in the past year, n (%)

0 2,756 (76.56%) 2,230 (75.70%) 526 (80.43%) 0.059

1–5 752 (20.89%) 641 (21.76%) 111 (16.97%)

6–10 75 (2.08%) 61 (2.07%) 14 (2.14%)

10- 17 (0.47%) 14 (0.47%) 3 (0.46%)

(Continued on following page)
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TABLE 1 (Continued) Characteristics of included patients.

Variables (n [%] or median [IQR]) Total (n = 3,600) Non-DILI (n = 2,946) DILI (n = 654) P

Level of nursing care upon admission, n (%)

Specialized nursing care 183 (5.09%) 148 (5.02%) 35 (5.35%) 0.303

Primary care 1933 (53.69%) 1,566 (53.16%) 367 (56.12%)

Secondary care 1,484 (41.22%) 1,232 (41.82%) 252 (38.53%)

Type of admission, n (%)

Emergent 1,573 (43.69%) 1,283 (43.55%) 290 (44.34%) 0.712

Elective 2027 (56.31%) 1,663 (56.45%) 364 (55.66%)

Method of admission, n (%)

On foot 2,167 (60.19%) 1783 (60.52%) 384 (58.72%) 0.660

Wheel chair 140 (3.89%) 115 (3.9%) 25 (3.82%)

Gurney 1,293 (35.92%) 1,048 (35.57%) 245 (37.46%)

Initial Laboratory Test Results at Admission

Pro-BNP (ng/L) 632.5 [163.75,2345.75] 695 [163,2636.75] 474 [167.75,1456.5] 0.005

Mb (ng/mL) 48.49 [28.19,150.00] 48.01 [27.87,161.50] 49.54 [28.88,127.20] 0.640

CK-MB (ng/mL) 1.73 [0.98.3.35] 1.74 [0.99.3.46] 1.69 [0.97.3.02] 0.094

TnT (ng/L) 17.60 [10.50.46.50] 18.10 [10.60.51.60] 16.20 [10.10.30.68] <0.001

ALT (IU/L) 37.00 [19.00.78.00] 42.00 [20.00.56.00] 24.00 [15.00.46.00] <0.001

AST (IU/L) 43.00 [24.00.79.00] 50.00 [27.00.87.00] 19.00 [26.00.40.00] <0.001

Alb (g/L) 37.65 [32.60.37.65] 37.60 [32.50.42.20] 37.90 [33.00.42.10] 0.519

ALP (IU/L) 107.00 [76.00,196.00] 117.00 [80.00,224.00] 81.00 [65.00,106.25] <0.001

GGT (IU/L) 61.00 [26.00,175.00] 74.00 [30.00,204.00] 33.00 [18.00.68.00] <0.001

HDL-C (mmol/L) 1.06 [0.78.1.36] 1.06 [0.76.1.36] 1.07 [0.82.1.37] 0.176

LDL-C (mmol/L) 2.09 [1.42.2.78] 2.08 [1.41, 2.76] 2.13 [1.48.2.83] 0.161

TG (mmol/L) 1.23 [0.91.1.73] 1.75 [1.24, 2.53] 1.21 [1.21.2.35] 0.097

CHO (mmol/L) 3.86 [3.05.4.77] 3.86 [3.05.4.78] 3.85 [3.05.4.76] 0.389

TBA (umol/L) 5.95 [2.90.14.22] 6.70 [3.30.17.00] 3.50 [2.10.6.70] <0.001

TBil (umol/L) 13.60 [9.20.23.17] 14.40 [9.50.26.13] 11.20 [8.00.15.90] <0.001

DBil (umol/L) 5.00 [3.20.10.00] 5.40 [3.40.11.83] 3.70 [2.60.5.60] <0.001

IBil (umol/L) 8.10 [5.40.12.30] 8.30 [5.50.13.00] 7.15 [4.97.10.00] <0.001

AFP (ng/mL) 2.86 [1.85.4.37] 2.91 [1.90, 4.53] 2.43 [1.67.3.75] <0.001

Viral hepatitis laboratory test results

HAV-IgG (S/CO) 0.02 [0.01.0.08] 0.02 [0.01.0.08] 0.04 [0.01.0.13] 0.445

HBsAb semi-quant (IU/L) 23.52 [2.00,128.75] 20.10 [2.00,120.00] 41.40 [3.77,195.00] <0.001

HBsAg semi-quant (COI) 0.43 [0.39.0.50] 0.43 [0.39.0.51] 0.42 [0.38.0.47] <0.001

HBeAb semi-quant (COI) 1.18 [0.68.1.45] 1.16 [0.61.1.44] 1.24 [0.97.1.48] <0.001

HBeAg semi-quant (COI) 0.09 [0.08.0.10] 0.09 [0.08.0.10] 0.09 [0.08.0.10] 0.607

HBcAb semi-quant (COI) 0.01 [0.01.0.75] 0.01 [0.01.0.72] 0.02 [0.01.1.03] 0.032

HP-HBV VL (IU/mL) 0.00 [0.00,192.75] 0.00 [0.00,182.75] 27.35 [0.00,17,116.50] 0.293

(Continued on following page)

Frontiers in Pharmacology frontiersin.org05

Hu et al. 10.3389/fphar.2025.1603089

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1603089


Eligible older patients were extracted and sorted according to
their admission dates. A stratified sampling method was applied,
with 150 patients randomly selected from the eligible pool every
2 weeks, ultimately yielding a total of 3,600 cases for analysis.

Data collection and definitions

Based on previous research, the risk factors for DILI include
drug exposure, individual characteristics, and genetic
predispositions (Li et al., 2022). Considering these findings and
the data available for collection, information was categorized into six
distinct groups: demographic information, surgical data, diagnostic
classification, admission status, drug details, and laboratory
parameters. Demographic information, drug details, and
laboratory parameters upon admission were extracted directly
from the electronic medical record system.

Demographic data encompassed factors such as age, sex, marital
status, allergy history, surgical history, ethnic background, smoking
history, and alcohol consumption history. Given the extensive range
of medications, drug information was categorized based on
pharmacological effects (Wen et al., 2021). For patients without
DILI, all medications administered during hospitalization were
recorded. For patients with DILI, only medications administered
prior to the onset of DILI were considered.

Laboratory parameters were classified into two types. The first
type included stable indicators, such as viral hepatitis markers,
which remain relatively constant during hospitalization and assist
in identifying underlying causes of abnormal liver function. The
second type comprised dynamic indicators, including liver enzymes,
blood lipid levels, and cardiac function markers, which were
measured multiple times during hospitalization. For these
dynamic indicators, the maximum slope (i.e., the greatest rate of
change) during the hospital stay was calculated and used as a feature
for model development.

Surgical data, admission status, and diagnostic classification
were obtained through manual review of the electronic medical
records. Surgical data included whether surgery was performed, the
number of surgeries, the organ(s) involved, the type of surgery, and

the relationship between the timing of surgery and the onset of DILI.
Admission status encompassed factors such as the method of
admission, the admitting department, the nursing care level upon
admission, and the number of hospitalizations in the previous year.

The diagnosis of DILI required careful manual adjudication.
Hepatotoxicity was defined as elevations of ALT, AST, ALP, or TBil
exceeding 1.5 times ULN, in conjunction with outcomes such as
liver failure, fibrosis, cirrhosis, or death (Alexandre et al., 2000).
Evaluation principles for identifying ADRs included: (1)
consideration of the temporal relationship, (2) assessment of the
dose-response relationship, (3) emphasis on reproducibility, (4)
exclusion of alternative etiologies, and (5) recognition of known
ADRs (Chapal et al., 2004; National Medical Products
Administration, 2011). In this study, all principles except
reproducibility were considered necessary criteria for determining
the occurrence of DILI. The drug(s) most strongly implicated in
causing DILI were documented.

Data preprocessing

For demographic information, surgical data, diagnostic
classification, admission status, and drug details, missing values
were handled using mean imputation and random forest (RF)
imputation for variables with less than 15% missingness. For the
first category of laboratory parameters—those typically assessed in
patients suspected of specific conditions—it was assumed that
patients without corresponding test results had values within the
normal range.

In contrast, for the second category of laboratory parameters,
involving dynamic measures such as liver enzymes and cardiac
markers, any variable with more than 30% missing data was
excluded from the analysis. After preprocessing, patients were
randomly stratified into a training set (80%) for model
development and a testing set (20%) for model evaluation.

To further optimize model performance and address class
imbalance, resampling techniques such as Random Oversampling
(ROS) and the Synthetic Minority Over-sampling Technique
(SMOTE) were applied.

TABLE 1 (Continued) Characteristics of included patients.

Variables (n [%] or median [IQR]) Total (n = 3,600) Non-DILI (n = 2,946) DILI (n = 654) P

anti-HCV (COI) 0.04 [0.04.0.04] 0.04 [0.04.0.05] 0.04 [0.04.0.04] 0.006

HP-HCV VL (IU/mL) 0.00 [0.00,940,500.00] 0.00 [0.00,968,250] 0.00 [0.00,940,500.00] 0.552

HDV-IgM (S/CO) 0.05 [0.03.0.08] 0.05 [0.03.0.07] 0.08 [0.06, 0.08] 0.200

HEV-IgG (S/CO) 0.68 [0.07.8.75] 0.51 [0.04.7.60] 3.09 [0.09, 12.77] 0.501

HEV-IgM (S/CO) 0.03 [0.02.0.13] 0.03 [0.02.0.13] 0.04 [0.02, 0.11] 0.859

Abbreviations: AECOPD, acute exacerbation of chronic obstructive pulmonary disease; Pro-BNP, Pro-Brain Natriuretic Peptide; Mb, Myoglobin; CK-MB, Creatine Kinase-MB; TnT, Troponin

T; ALT, alanine aminotransferase; AST, aspartate aminotransferase; Alb, Albumin; ALP, alkaline phosphatase; GGT, Gamma-Glutamyl transferase; HDL-C, High-Density Lipoprotein

Cholesterol; LDL-C, Low-Density Lipoprotein Cholesterol; TG, triglycerides; CHO, cholesterol; TBA, total bile acids; TBil, Total Bilirubin; DBil, Direct Bilirubin; IBil, Indirect Bilirubin; AFP,

Alpha-Fetoprotein; HAV-IgG, Hepatitis A Virus Immunoglobulin G; HBsAb semi-quant, Hepatitis B Surface Antibody semi-quantitative; HBsAg semi-quant, Hepatitis B Surface Antigen

semi-quantitative; HBeAb semi-quant, Hepatitis B e Antibody semi-quantitative; HBeAg semi-quant, Hepatitis B e Antigen semi-quantitative; HBcAb semi-quant, Hepatitis B Core Antibody

semi-quantitative; HP-HBVVL, High Precision Hepatitis B Virus Viral Load; anti-HCV, Antibody to Hepatitis C Virus; HP-HCVVL, High Precision Hepatitis C Virus Viral Load; HDV-IgM,

Hepatitis D Virus Immunoglobulin M; HEV-IgG, Hepatitis E Virus Immunoglobulin G; HEV-IgM, Hepatitis E Virus Immunoglobulin M. note, For categorical variables, frequencies and

percentages are reported. For continuous variables, data are presented as median and interquartile range [IQR] for non-normally distributed data. P values <0.05 were considered statistically

significant.
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TABLE 2 Training and testing set results of the machine-learning models.

Model Missing value
imputation and
resampling

Accuracy Sensitivity Specificity Precision F1 score Brier
score

AUC
(test
set)

AUC
(train
set)

AdaBoost Mean Imputation-no
resampling

0.9431 0.7091 0.9852 0.8965 0.7919 0.1829 0.9752 0.9863

CatBoost 0.9431 0.7364 0.9803 0.8710 0.7980 0.0397 0.9757 0.9994

GDBT 0.9492 0.7879 0.9754 0.83871 0.8125 0.0444 0.9706 0.9992

LightGBM 0.9556 0.8000 0.9836 0.8980 0.8461 0.0363 0.9819 1.0000

XGBoost 0.9514 0.8182 0.9754 0.8571 0.8372 0.0387 0.9788 1.0000

RF 0.9319 0.5636 0.9984 0.9841 0.7168 0.0609 0.9534 1.0000

ANN 0.8625 0.4636 0.9344 0.5604 0.5075 0.1016 0.8593 0.9898

TabNet 0.8472 0.0000 1.0000 0.0000 0.0000 0.1286 0.7578 0.7878

AdaBoost RF Imputation-no
resampling

0.9361 0.8273 0.9557 0.7712 0.7982 0.2258 0.9786 0.9998

CatBoost 0.9389 0.6818 0.9852 0.8929 0.7732 0.0413 0.9747 0.9975

GDBT 0.9417 0.7364 0.9787 0.8617 0.7941 0.0417 0.9732 1.0000

LightGBM 0.9542 0.8000 0.9820 0.8889 0.8421 0.0381 0.9829 1.0000

XGBoost 0.9458 0.7636 0.9787 0.8660 0.8116 0.0397 0.9775 1.0000

RF 0.9319 0.5636 0.9984 0.9841 0.7168 0.0630 0.9527 1.0000

ANN 0.8583 0.4727 0.9279 0.5417 0.5048 0.1077 0.8529 0.9905

TabNet 0.9167 0.4545 1.0000 1.0000 0.6250 0.0728 0.8905 0.8746

AdaBoost Mean Imputation-ROS 0.9542 0.9847 0.4219 0.9674 0.9760 0.2358 0.8431 0.9934

CatBoost 0.9712 0.9991 0.4844 0.9712 0.9850 0.0264 0.9030 0.9998

GDBT 0.9661 0.9910 0.5312 0.9736 0.9822 0.0309 0.8712 1.0000

LightGBM 0.9720 1.0000 0.4844 0.9712 0.9854 0.0260 0.8907 1.0000

XGBoost 0.9737 1.0000 0.5156 0.9729 0.9863 0.0254 0.8752 1.0000

RF 0.9720 1.0000 0.4844 0.9712 0.9854 0.0265 0.9024 1.0000

ANN 0.9627 0.9928 0.4375 0.9685 0.9805 0.0338 0.8078 0.9763

TabNet 0.9576 0.9928 0.3437 0.9634 0.9779 0.0407 0.7712 0.8732

AdaBoost RF Imputation-ROS 0.9567 0.9839 0.4844 0.9708 0.9773 0.2354 0.8387 0.9934

CatBoost 0.9729 1.0000 0.5000 0.9721 0.9858 0.0255 0.8905 0.9999

GDBT 0.9644 0.9901 0.5156 0.9727 0.9813 0.0320 0.8631 1.0000

LightGBM 0.9737 1.0000 0.5156 0.9729 0.9863 0.0256 0.8945 1.0000

XGBoost 0.9737 1.0000 0.5156 0.9729 0.9863 0.0257 0.8957 1.0000

RF 0.9720 1.0000 0.4844 0.9712 0.9854 0.0264 0.9022 1.0000

ANN 0.9678 0.9964 0.4687 0.9703 0.9832 0.0297 0.8004 0.9837

TabNet 0.9457 1.0000 0.0000 0.9457 0.9721 0.0511 0.5953 0.5972

AdaBoost Mean Imputation-SMOTE 0.9347 0.9864 0.2152 0.9459 0.9657 0.2370 0.7972 0.9754

CatBoost 0.9533 1.0000 0.3038 0.9524 0.9756 0.0398 0.8362 0.9997

GDBT 0.9516 0.9964 0.3291 0.9539 0.9746 0.0419 0.8213 1.0000

LightGBM 0.9593 0.9991 0.4051 0.9590 0.9786 0.0388 0.8572 1.0000

XGBoost 0.9559 0.9982 0.3671 0.9564 0.9769 0.0393 0.8599 1.0000

(Continued on following page)
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Construction and evaluation of
multiple models

Following data preprocessing and variable selection, we
developed seven machine learning models and one deep
learning model: XGBoost, LightGBM, Random Forest (RF),
AdaBoost, CatBoost, Gradient Boosting Decision Trees
(GBDT), Artificial Neural Network (ANN), and TabNet.
Hyperparameter tuning was performed using grid search, and
each model was trained with 5-fold cross-validation, utilizing
20% of the training set as an internal validation set. The primary
metric for evaluating and comparing model performance was the
area under the receiver operating characteristic curve (AUC),
which served as the principal indicator of the models’
classification capabilities.

In addition to AUC, several supplementary metrics were
computed to provide a comprehensive evaluation of model
performance, including accuracy, precision, sensitivity,
specificity, recall, Brier score, F1 score, and average precision
derived from the precision-recall curve (PRC). Calibration
curves and clinical decision curve analysis (DCA) were also
employed to further assess the clinical utility and calibration of
the models.

To interpret the outputs of the best-performing model,
SHapley Additive exPlanations (SHAP) analysis was conducted,
identifying the top 50 contributing variables. In the SHAP
beeswarm plot, blue points represent negative impacts (lower
feature values), whereas red points represent positive impacts
(higher feature values), illustrating how each feature influences
the model’s predictions. SHAP waterfall plots were also used to
visualize the individual contributions of variables to model
outputs. Additionally, feature importance scores were calculated
and presented in a dedicated figure ranking the most influential
risk factors.

Statistical analysis

Categorical variables are summarized using frequency counts
and percentages, while continuous variables are presented as
medians with interquartile ranges (IQRs). Comparisons between
the no-DILI and DILI groups, as well as between the training and
testing sets, were conducted using the nonparametric Mann-
Whitney U test for continuous variables and the chi-squared (χ2)
test for categorical variables. Statistical significance was defined as a
p-value of less than 0.05. All statistical analyses were performed
using SPSS version 27.0 software (IBM Corporation, Armonk, NY,
United States).

Results

Study population

A total of 11,156 older patients met the inclusion criteria, and
3,600 patients were selected for analysis following a stratified
sampling method (Figure 1). Within this cohort of patients with
liver function impairment, the median age was 69.00 years (IQR:
65.00–75.00), with 2,105 (58.47%) being male. Overall, 654 patients
(18.17%) were diagnosed with DILI. The majority of patients were of
Han nationality; 937 (26.03%) had a history of smoking, and 765
(21.25%) had a history of alcohol consumption.

Some patients were admitted primarily for liver, biliary, or
pancreatic diseases, and their liver function impairment was not
drug related. Consequently, there were notable differences in
admission diagnoses between the DILI and non-DILI groups.
Additionally, several laboratory test results were analyzed,
revealing no statistically significant differences between the
groups for myoglobin (Mb), creatine kinase-MB (CK-MB),
albumin (ALB), high-density lipoprotein cholesterol (HDL-C),

TABLE 2 (Continued) Training and testing set results of the machine-learning models.

Model Missing value
imputation and
resampling

Accuracy Sensitivity Specificity Precision F1 score Brier
score

AUC
(test
set)

AUC
(train
set)

RF 0.9491 0.9991 0.2532 0.9490 0.9734 0.0440 0.8296 1.0000

ANN 0.9491 0.9845 0.4557 0.9618 0.9730 0.0443 0.7717 0.9878

TabNet 0.9313 0.9982 0.0000 0.9329 0.9644 0.0636 0.6164 0.5650

AdaBoost RF Imputation-SMOTE 0.9279 0.9782 0.2278 0.9463 0.9620 0.2313 0.7982 0.9423

CatBoost 0.9550 1.0000 0.3291 0.9540 0.9765 0.0385 0.8463 0.9995

GDBT 0.9516 0.9927 0.3797 0.9570 0.9746 0.0440 0.7955 1.0000

LightGBM 0.9584 0.9973 0.4177 0.9597 0.9781 0.0374 0.8814 1.0000

XGBoost 0.9576 0.9991 0.3797 0.9573 0.9778 0.0378 0.8832 1.0000

RF 0.9500 0.9991 0.2658 0.9499 0.9739 0.0425 0.8594 1.0000

ANN 0.9584 0.9936 0.4683 0.9630 0.9781 0.0387 0.8046 0.9876

TabNet 0.9296 0.9936 0.0380 0.9350 0.9634 0.0613 0.7542 0.7290

Abbreviations: AdaBoost, Adaptive Boosting; CatBoost, Categorical Boosting; GDBT, gradient boosting decision tree; LightGBM, light gradient boosting machine; XGBoost, eXtreme Gradient

Boosting; RF, random forest; ANN, artificial neural network; ROS, Random Over-Sampling; SMOTE, Synthetic Minority Over-sampling Technique.

Bold values indicate that the model’s results represent the optimal outcomes within their respective categories of missing value imputation methods and resampling techniques.
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low-density lipoprotein cholesterol (LDL-C), triglycerides (TG), and
cholesterol (CHO) (all P > 0.05). Detailed demographic and clinical
characteristics of the two groups are presented in Table 1.

The patients were randomly stratified into a training set (80%) and a
testing set (20%). A comprehensive comparison of demographic and
clinical laboratory characteristics between the training and testing sets is
provided in Supplementary Table S1. No statistically significant differences
were observed in most demographic and clinical characteristics between
the two groups (all P > 0.05), indicating that the random stratification
achieved a well-balanced distribution. Minor observed differences were
considered within an acceptable tolerance threshold.

DILI-related drugs

Among the 654 patients who developed DILI, a total of
1,036 drugs from 38 different classes were identified as potential
causative agents. Notably, some cases of DILI involvedmultiple drugs,
complicating the attribution to a single causative agent. Antibiotics
were the most frequently implicated class, associated with DILI in

380 patients. Following antibiotics, anticoagulants (136 patients),
antineoplastic agents (39 patients), and antipyretic, analgesic, and
anti-inflammatory drugs (65 patients) were also commonly involved.

Other frequently implicated drug classes included medications
for peptic ulcers and gastroesophageal reflux disease, antifungal
agents, lipid-regulating and anti-atherosclerotic agents,
gastrointestinal motility drugs, antiemetics, and antiepileptic
agents. Among hospitalized patients with liver function
impairment, the highest DILI incidence rates were observed for
antidepressants (15.38%), antituberculosis drugs (14.63%),
antimicrobial agents (14.55%), antifungal agents (12.33%), and
antiepileptic agents (10.04%). Detailed information on DILI-
related drugs is presented in Supplementary Table S2.

Construction and comparison of multiple
ML models

A total of 421 variables were utilized for model development
(Supplementary Table S3). Several variables required imputation for

FIGURE 1
Overall flowchart of the participant selection and model development process ALT, Alanine aminotransferase; AST, Aspartate aminotransferase;
ALP, Alkaline phosphatase; TBil, Total bilirubin.
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missing values, including height, weight, the number of cigarettes
smoked by patients who smoke, the duration of smoking among
smokers, average alcohol consumption among drinkers, the
duration of drinking among drinkers, and glycated hemoglobin
(HbA1c) levels. Supplementary Table S4 provides a comparison of
data before and after imputation.

Seven machine learning (ML) models and one deep learning
model were employed: XGBoost, LightGBM, RF, AdaBoost,
CatBoost, GBDT, ANN, and TabNet. To ensure accuracy and
model stability, 5-fold cross-validation (CV) and grid search were
used for hyperparameter tuning. The optimal hyperparameters for
each model are detailed in Supplementary Table S5.

The AUC was the primary metric used to evaluate model
performance. After imputing missing values using the RF
method, the LightGBM model demonstrated the best
performance, achieving an AUC of 0.9829 in the testing set.

Attempts to further improve model performance through
resampling techniques were unsuccessful, with resampling
yielding suboptimal results. Additional evaluation metrics,
including accuracy, sensitivity, specificity, precision, Brier score,
and F1 score for the testing set, are summarized in Table 2. The
detailed performance results of the ML models are presented in
Supplementary Figures S1–S6.

Development and assessment of the best-
performing model

The LightGBM model utilizing RF imputation emerged as the
best-performing model for early warning of DILI in older patients.
The model underwent 5-fold CV on the training set using the same
hyperparameters and input variables and was subsequently
evaluated on an independent testing set. Receiver operating
characteristic (ROC) curve analysis demonstrated outstanding
performance, with a mean AUC of 1.0000 (1.0000, 1.0000) for
the training set and 0.9829 (0.9737, 0.9904) for the testing set.
The results of the 5-fold CV further validated the robustness of
the model.

The LightGBM model achieved a mean accuracy of 0.9451 ±
0.0037, indicating a high degree of consistency across the cross-
validation folds. Detailed cross-validation accuracy metrics are
provided in Supplementary Table S6. The AUC values and mean
accuracy were notably consistent between the training and
testing sets, demonstrating the model’s robustness and
generalizability.

DCA showed that the LightGBM model provided a superior
mean net benefit across most threshold probability ranges
(Supplementary Figure S2D). With a Brier score of 0.0381 and
calibration plots closely aligning with the observed outcomes, the
model’s reliability and calibration were further affirmed.

SHAP and importance score of variables

To provide an intuitive interpretation of the LightGBM model,
we leveraged the SHAP algorithm and variable importance scores to
gain insights into the contributions of different variables toward
DILI warning. The results of the SHAP value analysis and the
importance score ranking were consistent, identifying
200 variables as significant contributors to DILI warning
(Supplementary Table S7).

To visualize these findings, a SHAP beeswarm plot (Figure 2)
was generated, illustrating the directional impacts of the top
50 most influential variables in the testing set. Additionally, a
SHAP bar plot (Figure 3A) ranked these top 50 variables based on
their importance. Key contributing factors included the timing of
DILI relative to surgery, whether surgery was performed, and the
maximum slopes of ALT, AST, ALP, GGT, ALB, LDL-C, HDL-C,
TBil, pro-brain natriuretic peptide (Pro-BNP), total bile acids
(TBA), and CHO. Additional significant variables included
HBeAg semi-quantitative levels, the administration of liver-
protecting medications upon admission, use of diuretics,
antibiotics, narcotic analgesics, and the presence of liver or
gallbladder diseases or cancers.

FIGURE 2
The SHAP beeswarm plot of the top 50 most important variables
in the LightGBM model with RF imputation.
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The variable importance scores, presented in Figure 3B,
corroborated the rankings observed in the SHAP bar plot, further
validating the robustness of these key predictors.

To explore feature contributions at the individual patient level,
we analyzed two randomly selected cases from the testing set using
SHAP waterfall plots (Figure 4). Both scenarios—with and without
resampling—were considered. In the case predicting a negative
outcome, the primary influencing factors included surgery
(−2.9%), the timing of DILI relative to surgery (−2.12%), and
liver cancer or metastatic liver cancer (2%), resulting in a
forecast value (f(x)) of −14.982 (< E [f(x)]). Conversely, for a
case predicting a positive outcome, the major contributors were
the timing of DILI relative to surgery (19.11%), the maximum slope
of ALT (1.11%), and surgery (−1.04%), yielding a forecast value
(f(x)) of 10.239 (> E [f(x)]). As variable names could not be
annotated directly in Figures 2–4, the specific names of the
variables should be referenced in Supplementary Table S3.

Discussion

DILI represents a significant ADR among older patients, where
delayed detection and inadequate management can markedly
increase the risk of acute liver failure and fatal complications
(Reuben et al., 2010). Initial manifestations of DILI often involve
abnormal elevations in liver enzymes or bile acids. Early
identification of risk factors in this vulnerable population is
crucial for enabling timely interventions, thereby improving
patient outcomes and quality of life.

Traditionally, scholars have relied primarily on monitoring
abnormalities in liver enzyme or bilirubin levels to detect DILI

(Kong et al., 2021). However, such biomarkers can also be influenced
by other diseases or surgical procedures, reducing the specificity and
efficiency of detection systems based solely on these indicators
(Kong et al., 2021). Although prior studies have applied ML
techniques to detect ADRs, including cardiovascular events
caused by analgesics or concurrent adverse reactions (Liu et al.,
2018; Bagattini et al., 2019), there remains a notable gap in literature
regarding the development of early warning models
specifically for DILI.

In the present study, we successfully developed and validated
multiple ML models to warn of DILI using routine clinical,
pharmacological, and laboratory data. Among the models,
LightGBM demonstrated exceptional performance, achieving an
AUC of 0.9829 in the testing set. The minimal difference
between training and testing AUCs indicated the model’s strong
stability and generalizability. Although resampling techniques such
as ROS and SMOTE were applied to address class imbalance, they
did not yield significant performance improvements. These findings
provide compelling evidence for the further development of tailored
DILI warning systems, which could be expanded to ADR warnings
more broadly in older populations. An early warning system based
on our findings has the potential to enhance physician decision-
making, improve ADR detection and intervention rates, and
substantially strengthen medication safety, particularly in both
tertiary and community healthcare settings.

Using SHAP values and importance score analyses, we further
identified key factors contributing to DILI warning. Surgery
emerged as a critical risk factor. Surgical-related
features—including the surgical procedure itself, the timing of
DILI onset relative to surgery, and the type of surgery—were
highlighted by negative mean SHAP values, suggesting that

FIGURE 3
The mean SHAP values (A) and variable importance ranking (B) in the LightGBM model using RF imputation.
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postoperative liver enzyme or bilirubin abnormalities should not
immediately be attributed to DILI without considering surgical
impacts. This was particularly evident following surgeries
involving the liver, gallbladder, pancreas, or other digestive
organs. Previous studies have demonstrated that surgeries
involving these systems can lead to elevated liver enzymes and
bilirubin levels due to trauma, hemolysis, or impaired
gastrointestinal function (Guo et al., 2016; Sano et al., 2021; He
et al., 2023; Soneda et al., 2024). Similarly, brain surgeries, cardiac
surgeries, and musculoskeletal surgeries have been associated with
postoperative enzyme elevations, while surgeries involving the

urinary system or peripheral vasculature appeared less impactful
(Kim et al., 2019; Oh et al., 2020; Lott and Landesman, 1984).

Peak slopes of laboratory indicators, particularly ALT, AST,
ALP, GGT, ALB, LDL-C, HDL-C, TBil, Pro-BNP, TBA, and CHO,
were identified as strong warning factors for DILI. Since all patients
exhibited abnormal liver function during hospitalization, neither
peak values nor average levels alone were sufficient predictors.
Instead, patients who developed sudden dynamic changes in
these indicators during hospitalization, particularly those without
pre-existing hepatobiliary disease—were more likely to
experience DILI.

FIGURE 4
The SHAP waterfall plots for 2 patients: (A)Without DILI and (B)With DILI Using the LightGBM Model with RF Imputation. The E [f(x)] represents the
averagewarning value of themodel without any feature input. The arrows indicate the contributions of each feature, pointing towards the direction of the
warning result, with their length representing its importance. The f(x) denotes the actual forecast value of the model for specific individuals.
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Interestingly, myocardial markers such as Pro-BNP, Mb, and
troponin T were associated with negative mean SHAP values,
indicating a potential protective effect against DILI warnings.
This finding may reflect the contribution of cardiac injury to
elevated AST levels, a marker shared between cardiac muscle,
skeletal muscle, and the liver (Panteghini, 1990). Given that a
substantial proportion of the cohort had cardiovascular or renal
diseases and underwent related surgeries, elevated myocardial
enzymes may confound liver enzyme interpretation, necessitating
cautious evaluation of AST elevations in the clinical context.

Drug exposures played a major role in the warning model, with
18 out of the top 50 factors being drug related. Notably,
hepatoprotective drugs appeared as protective factors,
characterized by negative SHAP values. This contrasts with prior
predictive models that did not emphasize hepatoprotective therapies
(Hu et al., 2020; Hu et al., 2023; Sano et al., 2021; Han et al., 2022;
Asai et al., 2023). In our study, hepatoprotective agents were
typically administered prophylactically upon admission for
patients with pre-existing liver abnormalities, but not
immediately for DILI patients until after injury onset. Therefore,
the use of hepatoprotective medications before the occurrence of
DILI was considered a protective factor in our model.

Other perioperative drugs, such as opioid analgesics and
electrolyte modulators, were also classified as risk indicators,
likely reflecting surgery complexity and perioperative
management rather than direct hepatotoxicity (Xia et al., 2024).

Antibiotics emerged prominently among the DILI-associated
drugs. Given their frequent use among older adults for treating
infections and preventing postoperative complications (Millett
et al., 2013; Hayward et al., 2019; Tuddenham et al., 2022),
antibiotic exposure was a substantial contributor to DILI risk.
Our findings are consistent with prior reports indicating that up
to 64% of DILI cases are attributable to antibiotics (Park et al.,
2021). In our study, 72.5% of patients received antibiotics, with a
DILI incidence of 14.55%. β-Lactamase inhibitors, carbapenems,
and cephalosporins were among the most frequently implicated
agents, highlighting the need for judicious antibiotic use in this
vulnerable population.

Despite its strengths, this study has several limitations. First, the
model was developed using retrospective data and lacked external
validation; future prospective cohort studies are warranted to
confirm its predictive accuracy and stability. Second, reliance on
routine clinical data may limit model robustness. Third, the perfect
AUC (1.000) observed in the training set raises concerns about
potential overfitting, possibly due to the retrospective design or
suboptimal feature selection. Fourth, missing data on hepatitis
markers—important for early DILI detection—necessitated
imputation strategies, which may have introduced bias. Finally,
while the model incorporated dynamic laboratory indicators, it
did not account for temporal associations between laboratory
changes and drug administration patterns.

Future research should focus on prioritizing clinically relevant
features, conducting external validation using independent datasets,
and refining the model to better identify high-risk drugs contributing

to liver injury. Addressing these gaps will be critical to ensuring the
broader applicability and clinical utility of early warning systems forDILI.

Conclusion

This study successfully developed and validated ML models using
routine clinical data to provide early warnings for DILI in older
patients. Among the models, the LightGBM model demonstrated
superior performance, and its interpretability was enhanced through
SHAP analysis. This model can be integrated into hospital
information systems to enable automated alerts and tracking of
DILI cases, supporting earlier clinical interventions. Our
methodological framework not only addresses DILI but also offers
a foundation adaptable to detecting other ADRs, such as renal and
hematological toxicities, by rapidly identifying drug-related safety
issues and aiding clinical decision-making. The proposed ADR
early warning system, based on this approach, holds promise for
improving ADR detection and intervention rates, thereby enhancing
medication safety for older patients across various healthcare settings.
Future research should focus on validating these models in larger,
multicenter cohorts and incorporating additional data sources,
including temporal relationships between drug administration and
laboratory results, imaging findings, and detailed clinicopathological
information, to further enhance predictive accuracy. Ultimately,
integrating such warning models into routine clinical practice
could enable real-time decision-making, support personalized
patient management, and contribute to improved patient outcomes.
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