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Triple-negative breast cancer (TNBC) remains a therapeutic challenge due to its
resistance to conventional therapies and poor prognosis. Shikonin, a natural
compound derived from Lithospermum erythrorhizon, has demonstrated
antitumor potential in TNBC, though its molecular mechanisms remain
unclear. In this study, shikonin's antitumor effects were systematically
evaluated using colony formation, wound-healing assays, transcriptomic
profiling, and molecular docking. Results demonstrated that shikonin markedly
inhibited TNBC cell proliferation and migration. Transcriptomic analysis identified
downregulation of key mTOR signaling pathway genes (MTOR, CCND1, CDK6)
post-treatment. Molecular docking confirmed direct binding between shikonin
and the mTOR protein, suggesting mTOR pathway inhibition as a critical
mechanism. Of note, the PIZK/AKT/mTOR axis is frequently hyperactivated in
TNBC to regulate tumor proliferation and survival, yet existing mTOR inhibitors
show limited efficacy in this subtype due to feedback activation of compensatory
pathways and off - target effects that reduce their specificity for TNBC. Our
findings highlight shikonin’s ability to target mTOR-related signaling, offering a
novel strategy for TNBC treatment. This study provides foundational insights into
shikonin’s molecular action, emphasizing its potential as a natural mTOR inhibitor
tailored for TNBC. Further exploration of shikonin’s therapeutic applications
could address the urgent need for targeted therapies against this aggressive
breast cancer subtype, bridging gaps in current clinical approaches.

KEYWORDS
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1 Introduction

Breast cancer is a complex and heterogeneous disease comprising four primary
molecular subtypes: luminal A, luminal B, human epidermal growth factor receptor 2
(HER2)-positive, and triple-negative breast cancer (TNBC). Notably, TNBC is uniquely
characterized by distinct biological traits and clinical behavior, making it the most difficult
to treat and associated with the poorest prognosis (Derakhshan and Reis-Filho, 2022; Li Y.
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etal., 2022). TNBC is specifically defined by the absence of estrogen
receptor (ER), progesterone receptor (PR), and HER-2, accounting
for approximately 15% of all breast cancer cases. Its distinct
activity,
significant metastatic potential, and aggressiveness, render current

pathological features, including high proliferative
standard breast cancer treatments less effective than those for other
TNBC subtypes. Given its high recurrence rate and poor prognosis,
the development of novel therapeutic strategies specifically targeting
TNBC is urgently required (Bi et al., 2022).

Shikonin, an active ingredient extracted from the roots of the plant
Lithospermum erythrorhizon, has shown tremendous potential for
cancer treatment, especially TNBC, in recent years (Guo et al,
2019). It has been reported that shikonin induces ferroptosis in
osteosarcoma by indirectly regulating the HIF-1a/HO-1 axis, thereby
inhibiting tumor progression (Lu et al., 2024). In addition, shikonin can
exhibit anti-cancer activity against non-small cell cancer cells that are
resistant to paclitaxel by inhibiting the transmission of NEAT1 and
AKT signals (Zang et al., 2020). In particular, there are some studies on
the inhibitory effect of shikonin on the progression of TNBC.
Specifically, shikonin inhibits epithelial-mesenchymal transition
(EMT) by suppressing the miR-17-5p/PTEN/Akt pathway, thereby
reducing the migration and invasion of TNBC cells (Bao et al,, 2021).
Additionally,
degradation of cIAP1 and cIAP2 to induce a decrease in the
ubiquitination of RIP1, thereby inhibiting the activation of the pro-

shikonin promotes the self-ubiquitination and

survival signaling pathway and accelerating the necrosis of MDA-MB-
231 cells (Liang et al, 2021). However, the specific molecular
mechanisms underlying the action of shikonin in TNBC remain
unclear. Therefore, further in-depth research on the mechanism of
action of shikonin is of great significance for the development of new
treatment strategies for TNBC.

It is widely recognized that mutations in proto-oncogenes play a
pivotal role in the pathogenesis of tumors (Martinez-Jimenez et al.,
2020). Among these, abnormal activation of the proto-oncogene
mTOR has emerged as a hallmark of tumorigenesis (Hua et al.,
2019). In breast cancer, the PI3K/AKT/mTOR signaling pathway is
a critical signaling cascade that is highly susceptible to
hyperactivation. This aberrant hyperactivity is closely associated
with the excessive proliferation and uncontrolled growth of tumor
cells (Miller et al., 2011; Ero et al., 2012). mTOR serves as a central
regulator in this pathway, controlling downstream processes
intricately linked to cell proliferation, growth, development, and
mRNA transcription (Hua et al., 2019; Soulard and Hall, 2007).
Notably, downstream target genes regulated by MTOR, such as
CCNDI and CDK4/6, exhibited a strong correlation with expression

Abbreviations: TNBC, Triple-negative breast cancer; CCND1, Cyclin D1;
mTOR, mammalian target of rapamycin; CDK6, Cyclin-Dependent Kinase
6; TCM, Traditional Chinese medicine; HER2, Human Epidermal Growth
Factor Receptor 2; ER, expression of estrogen receptor; PR, progesterone
receptor; EMT, epithelial-mesenchymal transition; DMSO, Dimethyl sulfoxide;
PBS, Phosphate Buffered Saline; DMEM, Dulbecco’s Modified Eagle’s Medium;
RPMI, Roswell Park Memorial Institute; CCK8, Cell Counting Kit-8; RNA-seq,
RNA sequencing; RT-gPCR, Reverse Transcription Quantitative Real-time
polymerase chain reaction; TCGA, The Cancer Genome Atlas; Trp,
Tryptophan; Tyr, Tyrosine; Phe, Phenylalanine; Ile, Isoleucine; Val, Valine;
Cys, Cysteine; Arg, Arginine; RMSD, root mean square deviation; RMSF, root
mean square fluctuation; siTGF-B, tumor growth factor p small
interfering RNA.
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levels, cell cycle regulation, and cell proliferation status. Inhibiting
the activity of these targets can effectively arrest cell cycle
progression, thereby suppressing the proliferation and growth of
tumor cells. Multiple studies have consistently confirmed that
inhibiting the expression of mTOR and its downstream target
genes has a pronounced effect on halting the malignant
progression of breast cancer (Soulard and Hall, 2007; Goel et al.,
2022). Although mTOR inhibitors for breast cancer treatment are
currently at various stages of development, their therapeutic efficacy
in TNBC remains significantly lower than in other types (Li Y. et al.,
2022; Xu et al., 2021). This is mainly due to the unique biological
characteristics of TNBC, which can potentially trigger the feedback
activation of compensatory signaling routes and induce off - target
impacts when existing mTOR inhibitors are administered, thereby
diminishing their specificity and therapeutic efficacy (Browne et al.,
2024; Gough et al,, 2024). Therefore, the development of effective
mTOR inhibitors, specifically tailored for TNBC, has immense
clinical value and therapeutic significance.

Recent advancements in research on natural compounds have
provided evidence that certain natural medications can effectively
hinder tumor progression by inhibiting mTOR signaling (Wu et al.,
2021; Ganesan et al, 2024). Among these, shikonin has been
reported in various tumor models to exert antitumor effects by
modulating the mTOR pathway (Ni et al., 2018; Li J. et al., 2022).
However, whether shikonin influences the occurrence and
development of TNBC by regulating mTOR - related signaling
pathways remains unclear, and the underlying mechanisms
require further in - depth investigation. Given the urgent need
for effective TNBC treatments and the potential of mTOR - targeted
natural compounds, exploring shikonin’s role in TNBC could
provide novel insights to fill the existing treatment gap.

In this study, we aimed to investigate the potential of shikonin as
a therapeutic agent for TNBC. Given the urgent need for effective
treatments for this aggressive cancer subtype, we hypothesized that
shikonin could inhibit the malignant progression of TNBC by
targeting specific molecular pathways. To test this hypothesis, our
approach encompassed a combination of functional assays,
transcriptomics, and molecular docking. Initially, we planned to
use functional assays such as colony formation and wound - healing
assays to obtain preliminary evidence of shikonin’s inhibitory effect
on TNBC cells. Subsequently, we intended to employ mRNA - seq
high - throughput sequencing technology to analyze changes in gene
expression profiles before and after shikonin treatment. By
conducting Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analysis on the sequencing data, we aimed to identify
key signaling pathways involved in shikonin’s action. Finally, we
planned to validate the direct interaction between shikonin and
target proteins using molecular docking techniques. Through this
multi - faceted approach, we sought to elucidate the molecular
mechanism underlying shikonin’s antitumor effects in TNBC.

2 Methods and materials
2.1 Cells and reagents

The cell lines used in our study were the human breast cancer
cell lines MDA-MB-231 and MDA-MB-468, both purchased from
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TABLE 1 Reagent information.
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Reagent Producer Catalogue number
DMEM Gibco™ C11995500BT
FBS Excell Biotech 12B211
penicillin/streptomycin Sangon Biotech E607011
RPMI 1640 medium Cytiva AJ30752991
PBS Sangon Biotech E607008
Trypsin Sangon Biotech E607002
Mycoplasma detection kit MedChemExpress HY-K0552-100
Shikonin Meilunbio MB7082
CCKS8 kit Enogene E1CK- 000208
Trizol Sangon Biotech B511311
Reverse transcription kit TaKaRa Biotech RR047A
FastStart Essential DNA Green Master Mix Roche 6924204001

the Cell Bank of the Chinese Academy of Sciences (Shanghai,
China). MDA-MB-231 cells were cultured in Dulbecco’s Modified
Eagle’s Medium (DMEM, Gibco™, C11995500BT) supplemented
with 10% fetal bovine serum (FBS, Excell Biotech, 12B211,
Jiangsu, China) and 1% penicillin/streptomycin (Sangon
Biotech, E607011, Shanghai, China), while MDA-MB-468 cells
were maintained in Roswell Park Memorial Institute (RPMI)
1640 medium (Cytiva, AJ30752991, Shanghai, China)
containing 10% FBS (Excell Biotech, 12B211, Jiangsu, China)
and 1% penicillin/streptomycin. The cells were cultured under
conditions of 5% CO, at 37 °C. Phosphate Buffered Saline (PBS,
Sangon Biotech, E607008, Shanghai, China). Trypsin (Sangon
Biotech, E607002, Shanghai, China). The detailed information
of all reagents is listed in Table 1 as below. All cell lines were
authenticated by short - tandem repeat (STR) profiling to confirm
their identity. All cell lines were regularly tested for mycoplasma
contamination using a commercially available mycoplasma
detection kit (MedChemExpress, HY-K0552-100, Shanghai).
Only mycoplasma - free cell lines were used for the subsequent
experiments.

Shikonin (Meilunbio, MB7082; purity >98%, China) was
prepared as a 50 puM stock solution in DMSO and stored
at —20°C in the dark. When needed, it was diluted to the desired
concentration with the medium used for culturing the cells.

2.2 ICsq calculation

MDA-MB-231 (8,000 per well) and MDA-MB-468 (15,000 per
well) cells were cultured in a 96-well plate. After 24 h of incubation,
shikonin was added at various concentrations (for MDA-MB-231: 0,
0.125, 0.25, 0.5, 1.0, 2.0, 4.0 uM; for MDA-MB-468: 0, 0.16, 0.32,
0.64, 1.28, 2.56, 5.12 puM). The concentration gradients were
determined based on the results of the preliminary experiments.
After 24 h of exposure to shikonin, medium containing 10%
CCK8 reagent was added, and the cells were incubated for 1 h.
During the CCK8 experiment, we first removed the culture medium
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from the 96-well plate, then mixed CCK8 with DMEM, and finally
added 200 pL of the 10% (v/v) CCK8 solution to the 96-well plate.
The absorbance was measured using a microplate reader (Infinite
M200 PRO, TECAN, Switzerland) at 450 nm. Subsequently, the ICs,
(half maximal inhibitory concentration) value of shikonin was
calculated. ICs5, values by plotting a concentration - response
curve using non - linear regression with the four - parameter
logistic equation. The drug concentrations used in the subsequent
experiments in the article were all determined based on the ICs,
values obtained from the CCK8 experiment.

Inhibition ratio: [(Ac-As)/(Ac-Ab)]x100%. Ab: Absorbance of
the blank group; Ac: Absorbance of the control group; As:
Absorbance of the sample.

2.3 Cell proliferation assay

In a 96-well plate, MDA-MB-231 (2,000 per well) and MDA-
MB-468 cells (4,000 per well) were incubated for 24 h. Subsequently,
shikonin was added to the TNBC cells at specific concentrations
(MDA-MB-231: 0, 0.484 uM; MDA-MB-468: 0, 1.070 uM). Cells
were further incubated for 5 d, and cell viability was measured every
24 h using a Cell Counting Kit-8 (CCK8 kit, Enogene, E1CK-
000208, Jiangsu, China).

2.4 Colony formation assay

In a six-well plate, 2,000 MDA-MB-231 and MDA-MB-468 cells
were seeded per well. After 24 h of incubation, shikonin was added at
specified concentrations (0, 0.484, 0.968 uM for MDA-MB-231; 0,
1.070, 2.140 uM for MDA-MB-468). After an additional 24 h of
incubation, the medium containing shikonin was removed and the
cells were cultured for 14 days with standard growth medium as
above mentioned in Cells and Reagends section. Visible cell colonies
were formed, at which point the culture medium was discarded, and
the wells were washed once with PBS. The colonies were then stained
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TABLE 2 The information of the gene primers.
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Gene Forward primer Reverse primer
GAPDH 5'-TGAGTACGTCGTGGAGTC-3' 5'-GGAGGCATTGCTGATGATC-3'
BIRC3 5'-GTTCATCCGTCAAGTTCAAGC-3' 5'-GGCAGCATTAATCACAGGAGT-3'
GIL3 5'-CATAGTGAAGTGCTCCACTC-3' 5'-CACTCGATGTTGAAGGTTCC-3'
TPR 5'-CAGAGGATGTTAAACGTC-4' 5'-CAGCCATGTATTCTGACT-4'
MTOR 5'-TCCGAGAGATGAGTCAAGAGG-5' 5'-CACCTTCCACTCCTATGAGGC-5'
CCNDI 5'-TGAACTACCTGGACCGCTTC-6' 5'-TTGTTCACCAGGAGCAGCT-6'
E2F3 5'-ACAAGGCAGCAGAAGTGC-7’ 5'-GACTGAGCTCGGTCACTT-7'
CDK6 5'-GTCGATCAAGACTTGACCAC-8' 5'-CTGGTCACCAGAATGTTCTG-8'

with crystal violet containing 2% paraformaldehyde for 15 min, after
which the crystal violet was aspirated, and the wells were washed
twice with PBS. The plate was allowed to air-dry before images
(Images were captured using a standard mobile camera under
consistent lighting conditions for all groups) were captured.
Finally, the number of colonies was counted, and the cell colony
formation rate was calculated. Image] was used to analyze the images
and count the number of colonies formed in each group of 6-
well plates.

Coloning efficiency (%) = the number of colonies/the number of
cells inoculated. When using Image]J for analysis, all the parameter
settings of the images were kept consistent to minimize the errors
caused during the data analysis process.

2.5 Wound-healing assay

MDA-MB-231 and MDA-MB-468 TNBC cells were seeded in
six-well plates at a density of 0.8 x 10° and 1.5 x 10° cells/well,
respectively. When the cell density reached 70%-80%, a straight line
was scratched in the middle of the cells using a 10 pL pipette tip, and
the cells were incubated with medium containing shikonin for 24 h
at different concentrations (MDA-MB-231: 0, 0.484, and 0.968 uM,
MDA-MB-468: 0, 1.070, and 2.140 uM). Photographs (Cytation™1,
Bio Tek, United States) were taken 0 and 24 h after shikonin addition
to record and calculate the scratch area.

Migration rate (%) = [(wound areag,-wound area,)/wound
areag,] x100%. When using Image] for analysis, all the parameter
settings of the images were kept consistent to minimize the errors
caused during the data analysis process. Image] was used to analyze
and set three independent results.

2.6 RNA extraction

Cells were seeded in 6-well plates at a density of 3 x 10 cells per
well. After 24 h of incubation, shikonin was added (MDA-MB-231:
0, 0.484 uM, MDA-MB-468: 0, 1.070 uM). The cells were incubated
for another 24 h. Then, the medium was discarded, and the cells
were washed once with pre-cooled PBS. Next, 1 mL of Total RNA
Extractor (Trizol) reagent (Sangon Biotech, B511311, Shanghai,
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China) was added to each well, and the lysate was collected into
a sterile, RNase-free 1.5 mL Eppendorf tube. Total RNA was
extracted according to the reagent instructions.

2.7 mRNA high-throughput sequencing

RNA concentration and quality were measured using a
Nanodrop 2000 (Thermo Scientific). Paired-end sequencing was
performed using the Ilumina HiSeq2500. RNA-seq analysis was
conducted using Tophat2 (http://ccb.jhu.edu/software/tophat) in
comparison to the human reference genome hg38. Transcript
read counts were calculated using featureCounts (http://subread.
Differential (fold
change >1.5, P < 0.05) was performed using DESeq2 (version 3.

sourceforge.net). expression gene analysis
12) in RStudio 4.0. Heatmap visualization was performed using with
Pearson correlation coefficient as the distance metric for different
expressed genes (DEGs).

2.8 RT-qPCR

After treating with shikonin for 24 h, cells in the six-well plate
were collected and washed once with PBS pre-cooled at 4 °C. Next,
1 mL of TRIzol was added to each well. Total RNA was extracted
according to the manufacturer’s instructions, using sterile and
enzyme-free consumables throughout the process. The RNA
concentration was measured, and reverse transcription was
performed using a reverse transcription kit (TaKaRa Biotech,
RR047A, Beijing, China) to synthesize c¢DNA. Subsequently,
cDNA was used as a template for fluorescence quantification
using FastStart Essential DNA Green Master Mix (Roche,
06924204001, Shanghai, China). The mRNA expression was
analyzed using the 272" method during data processing. The
primers used for RT-qPCR are listed in Table 2.

2.9 Molecular docking

Molecular docking and dynamic simulation analyses were
conducted using BIOVIA Discovery Studio 2021 with the
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FIGURE 1

Shikonin inhibited the cell viability of MDA-MB-231 and MDA-MB-468 cells in a dose-dependent manner. (A,B) ICsq of shikonin inhibition in breast
cancer cells. (C,D) MDA-MB-231 and MDA-MB-468 cell numbers and morphological changes were positively correlated with shikonin concentrations.

CHARM force field. The structure of shikonin was obtained from
the PubChem database and prepared using the “Prepare Ligands”
module, obtaining 10 conformations. For docking, the structures of
the mTOR kinase domain with X6K (PDB code: 4]JT6) and the FRB
domain with rapamycin (PDB code: 4DR]) were used. The proteins
were adjusted using the “Protein Preparation” module, including the
addition of hydrogens, the removal of water molecules, and the
optimization of energy. Ligand-binding sites were defined based on
the original ligand (X6K or rapamycin). CDOCKER energy was used
to evaluate the binding affinities of the different conformations. The
spatial structures and binding sites were analyzed using Discovery
Studio and PyMOL 3.7.

To further validate the docking results, 200 ps molecular dynamics
(MD) simulation was performed. After solvation and two-step
minimization, the system was heated from 50 K to 300 K.
Equilibration was done for a simulation time of 20 ps. Then, 200 ps
MD simulations were being run under the NPT ensemble at 300 K.
Timestep of 2 fs and CHARMM36 m force field were applied. The
stabilities of the complexes were assessed by root mean square deviation
(RMSD) and root mean squared fluctuation (RMSF) time profiles.

Frontiers in Pharmacology

2.10 Statistical analysis

All experiments were performed in triplicate (n = 3), and the
results are reported as the mean + SEM. Statistical analyses were
conducted using GraphPad Prism 10.0 (GraphPad Software, San
Diego, CA, United States). For comparisons between two groups,
Student’s t-test was employed (data were tested for normality and
equal variance before applying Student’s t-test), also with a
p-value <0.05 indicating statistical significance.

3 Results

3.1 Shikonin inhibits the proliferation,
growth, and migration of TNBC cell lines
MDA-MB-231 and MDA-MB-468

To investigate the inhibitory effects of shikonin on the TNBC
cell lines MDA-MB-231 and MDA-MB-468, we conducted cellular
experiments for verification. Initially, MDA-MB-231 and MDA-
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Shikonin inhibited the proliferation and migration abilities of MDA-MB-231 and MDA-MB-468 cells in a time-dependent manner. (A) The cell viability
of shikonin was measured by CCK8 at 24 h, 48h, 72h, 96h and 120h, respectively. The viability of MDA-MB-231 and MDA-MB-468 cells decreased in a
time-dependent manner with shikonin. (B,C) In the colony formation assay, 0.484 uM and 0.968 puM shikonin acted on MDA-MB-231 cells, while 1.070uM
and 2.140 pM shikonin acted on MDA-MB-468 cells significantly reduced the number of clones (D,E). Shikonin significantly inhibited the migratory
viability of MDA-MB-231 and MDA-MB-468 cells at 24 h. The cell migration pictures were gained by 200 times magnification under the microscope. ****
represents p < 0.0001, *** represents p < 0.001, ** represents p < 0.01.
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MB-468 cells were treated with different concentrations of shikonin.
Cell viability was assessed using a CCKS8 kit, revealing ICs, values of
0.484 uM for MDA-MB-231 and 1.070 uM for MDA-MB-468
(Figures 1A,B). Notably, as the concentration of shikonin
increased, cell viability decreased (Figures 1C,D), indicating a
concentration-dependent inhibitory effect of shikonin on TNBC
cell viability.

Based on these findings, we conducted cell proliferation, colony
formation, and wound-healing assays to examine the effects of
shikonin on the proliferation, growth, and migration of human
breast cancer cell lines MDA-MB-231 and MDA-MB-468.
According to the results of the cell proliferation experiments
(Figures 2A,B), we observed a significant decrease in the viability
of MDA-MB-231 and MDA-MB-468 cells following treatment with
shikonin, and this trend became more pronounced over time.
Furthermore, the results of the clonogenic assay (Figures 2C,D)
revealed that for MDA-MB-231 cells, the colony formation rate in
the normal group was 1.6%, while in the treatment group with
0.484 pM shikonin, it decreased to 0.158%, and complete inhibition
of colony formation was observed in the 0.968 uM shikonin
group. Similarly, for MDA-MB-468 cells, the colony formation
rate in the normal group was 2.89%, which was reduced to
0.241% upon treatment with 1.070 puM shikonin, and further
decreased to 0.133% in the 2.140 uM shikonin group. These
findings strongly demonstrate that shikonin exerts a significant
inhibitory effect on the proliferation of the human breast cancer
cell lines MDA-MB-231 and MDA-MB-468.

To further investigate whether shikonin affected the migration
ability of MDA-MB-231 and MDA-MB-468 cells, we performed
wound-healing assays (Figures 2E,F). The results showed that the
migration rate of the normal MDA-MB-231 cell group was 66.7%,
which decreased to 59% in the treatment group with 0.484 M shikonin,
and further reduced to 50% in the 0.968 uM shikonin group. For MDA-
MB-468 cells, the migration rate of the normal group was 35.9%, which
dropped to 20.9% upon treatment with 1.070 uM shikonin, and was
only 10.5% in the 2.140 uM shikonin group. These data indicate that
shikonin effectively inhibits the migration of the human breast cancer
cell lines MDA-MB-231 and MDA-MB-468.

3.2 Systematic bioinformatics analysis
identified oncogenes regulated by shikonin
in TNBC

To explore the molecular mechanisms underlying the inhibitory
effects of shikonin on breast cancer cell proliferation, growth, and
migration, high-throughput sequencing was performed. The results
revealed that 48 oncogenes were downregulated upon shikonin
treatment, including EGFR, MTOR, NOTCHI, and STAT3
(Figures 3A,B). KEGG enrichment analysis further revealed that
shikonin suppressed key tumorigenesis-related pathways, including
the mTOR signaling pathway and pathways implicated in cancer
and breast cancer (Figure 3C).

Oncogenes can cause cancer when mutated or abnormally
expressed. By targeting these oncogenes, shikonin exerts anticancer
effects by inhibiting cell proliferation, inducing apoptosis, and
suppressing tumor progression. Using the ONGene database, which
includes 803 oncogenes annotated in human tumors, we cross-
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KEGG profiling.

referenced the genes downregulated by shikonin with this list to
identify potential oncogenes regulated by shikonin in TNBC. This
analysis revealed 48 such genes (Figure 4A), including CDK6, CCND1,
and MTOR. Subsequent KEGG and GO analyses of these
48 downregulated oncogenes revealed that the mTOR signaling
pathway may be involved in the inhibition of the malignant
progression of TNBC by shikonin (https://bioinfo-minzhao.org/
ongene/) (Figures 4B,C). The PI3K/AKT/mTOR signaling pathway
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231 and MDA-MB-468 cells after shikonin treatment as verified by gPCR. (B) Panoncogene expression profiles of CCND1. **** represents p < 0.0001, **

represents p < 0.01, * represents p < 0.05.

is one of the most frequently activated pathways in breast cancer,
regulating the proliferation and growth of tumor cells (Miller et al,
2011). After integrating the results from the cellular experiments, high-
throughput sequencing, and KEGG analysis, we hypothesized that
alterations in the mTOR-related pathway are crucial for the
regulatory effects of shikonin on breast cancer progression.

3.3 Shikonin inhibits MTOR expression and
key genes in related signaling pathways

We performed RT-qPCR to assess the mRNA expression levels
of oncogenes that were significantly downregulated following
shikonin treatment (Figure 5A). Notably, the expression of
MTOR and its downstream gene, CCNDI, markedly decreased.
Data analysis from TCGA (accessed through the UNLCAN
database) that CCNDI
significantly elevated in breast cancer cells compared with normal

online revealed expression  was

breast cells (Figure 5B). Consistently, another study demonstrated
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that mTOR pathway blockade can suppress the translation of a
subset of mRNAs in the 5'-untranslated region that are crucial for
cell cycle proliferation and the transition from the G1 phase to the S
phase (Dutcher, 2004). These mRNAs encode proteins such as
¢-MYC and CCND1. CCND1 binds to CDK4/CDK6 to promote
RB phosphorylation, thereby facilitating cell cycle progression and
DNA replication. Inhibition of CCNDI1 expression impedes cell
cycle that
downregulates CCNDI expression by inhibiting the activity of the

progression. Therefore, we propose shikonin
mTOR pathway, thereby suppressing the proliferation and growth

of TNBC cells, and inhibiting the malignant progression of TNBC.

3.4 Molecular docking confirmed the
interaction between shikonin and
MTOR protein

To further determine whether shikonin interacts with mTOR,
we used molecular docking to analyze its affinity. Studies have
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Shikonin could bind to mTOR. (A) Shikonin occupied the mTOR kinase domain with X6K and FRB domain with rapamycin. mTOR (grey), Shikonin

(blue), rapamycin (pink), and X6K (yellow). (B) Interaction of Shikonin with mTOR at the rapamycin-binding site. (C) Diagram of Shikonin interactions in the
rapamycin-binding site. (D) Interaction of Shikonin with mTOR at the catalytic activity site. (E) Diagram of Shikonin interactions in the catalytic activity site.
The hydrogen bond was depicted in a green line, and the hydrophobic interaction was shown as a purple line. (F) The heatmap of hydrogen bond

interactions. (G) RMSD analyses the stability of mTOR-shikonin and mTOR-X6K complexes during a 200-ps MD simulations. (H) RMSF fluctuations of

mMTOR-shikonin and mMTOR-X6K complexes over amino acid residues. RMSD: root mean square deviation; RMSF: root mean square fluctuation.

shown that mTOR function is regulated by the catalytic activity and
allosteric sites of rapamycin (Stary et al., 2022; Yang H. et al., 2013).
Therefore, shikonin was docked with different mTOR protein
structures to explore its affinity and specificity. Our results
showed that shikonin could bind to both the catalytic and
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rapamycin sites (Figure 6A). At the rapamycin-binding site,
shikonin primarily interacted through hydrophobic interactions
with Tryptophan (Trp) 2101 and Tyrosine (Tyr) 2105, along
with m-m stacking interactions with Phenylalanine (Phe) 2039.
The hydrophobic interactions with Trp 2101 and Tyr 2105 were
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progression of TNBC in the cytoplasm.

all within 5.0 A (Figures 6B,C), suggesting stable binding between
shikonin and mTOR.

In the case of the catalytic activity site, the residues analysis
demonstrated that shikonin formed hydrogen bonds with Val 2240,
Cys 2243, and Arg 2348, with hydrogen bond distances of 2.2, 2.0,
and 2.3 A, respectively (Figures 6D,E). A strong hydrophobic
interaction was also formed between the naphthalene ring of
shikonin and Tyr2239 through n-m stacking. Additionally,
shikonin adopted hydrophobic interactions with Leu2185,
Try2225, 1le2237, and Isoleucine (Ile)2356 (Figures 6D,E), which
further enhanced the stability of the shikonin-binding mode.

Molecular dynamics simulations were performed to further
validate the stability and binding patterns of mTOR-shikonin.
Specifically, we investigated the stability of the mTOR-shikonin
complex in the kinase domain, a crucial active site for mTOR. The
heat map of the hydrogen bond interactions revealed that shikonin
consistently formed hydrogen bonds with key mTOR residues,
including Valine (Val) 2240, Cysteine (Cys) 2243, and Arginine
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(Arg) 2348 (Figure 6F), suggesting these bonds were durable and
stable. The RMSD of the mTOR-shikonin and mTOR-X6K
complexes fluctuated by 2.1144-2.7644 and 2.2198-3.0255 A
respectively, after 200 ps of simulation time (Figure 6G). The
average the root mean square deviation (RMSD) value of the
mTOR-shikonin complex was 2.4299 A, which was slightly lower
than the average value of 2.7227 A for the mTOR-X6K complex,
indicating that both complexes were in a stable state. Furthermore,
root mean square fluctuation (RMSF) values for core residues in
both complexes remained under 1 A, especially for Val 2240, Cys
2243, and Arg 2348 (Figure 6H). Taken together, these results
suggest that shikonin has high binding affinity for mTOR.

4 Discussion

Breast cancer is the most commonly diagnosed malignancy
worldwide, with an estimated 2.3 million new cases in 2020. In
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women, breast cancer accounts for 25% of cancer cases and 16%
of cancer-related deaths (Sung et al., 2021). TNBC accounts for
10%-15% of all breast cancers and is characterized by the absence
of ER, PR, and HER2 receptor expression. TNBC has the worst
prognosis of any breast cancer type because
chemotherapy response, lower survival, and higher recurrence

of poor

rate. Chemotherapy, radiotherapy, targeted therapy, and
immunotherapy are the main methods currently employed for
treating TNBC (Derakhshan and Reis-Filho, 2022). However,
they still face great challenges in terms of adverse drug reactions,
multidrug resistance, and treatment effectiveness, necessitating
the development of alternative treatment options (Iranzadeh
2024).
medicine offer distinct advantages, such as multi-target effects

and minimal side effects, making them promising

et al, Traditional Chinese medicine and natural

complementary and alternative therapies in breast cancer
treatment (Yang et al., 2021). In particular, Chinese herbal
medicine-derived phytochemicals, such as shikonin, have
demonstrated significant antitumor effects in various types of
cancer (Liang et al, 2024). Our prior studies have shown
shikonin’s inhibitory effects on lung and colon cancers, along
with its underlying molecular mechanisms (Liu et al., 2024; Zhao
et al., 2024). In addition, it has also been reported that shikonin
exerts anti-cancer activity in thyroid cancer, non-small cell
cancer, bladder cancer and other cancers (Li et al., 2017; Yang
Q. etal, 2013; Wang et al., 2018). Among these reports, there are
some that focus on the anti-cancer mechanism of TNBC. For
example, some researchers have discovered that shikonin inhibits
the progression of TNBC by suppressing IMPDH2 (Wang et al.,
2021). It is well known that mutations in proto-oncogenes are key
to tumor formation (Martinez-Jimenez et al., 2020). However, it
remains unclear whether shikonin exerts its antitumor effects by
suppressing oncogenes in breast cancer.

This study provides compelling evidence that shikonin exerts
antitumor activity in breast cancer cell lines by targeting the
mTOR signaling pathway. Our mRNA-seq analysis revealed
significant downregulation of 3,505 genes in shikonin-treated
MDA231 cells, with 37 oncogenes in the mTOR pathway being
notably suppressed. These findings suggest that shikonin exerts
its anticancer effects by inhibiting the mTOR signaling pathway,
which is frequently activated in various cancers, including breast
cancer. The downregulation of MTOR and its downstream gene,
CCNDI, further RT-qPCR, thereby
strengthening our hypothesis that shikonin targets the mTOR

was confirmed via
pathway (Glaviano et al., 2023). The molecular docking study
also provided valuable insights into the interaction between
shikonin and mTOR protein, revealing that shikonin primarily
with  mTOR through hydrophobic bonds
ni-7t stacking.

interacts and

Despite these promising results, our study has several
limitations. First, our findings are based on in vitro experiments
using a single breast cancer cell line. To fully elucidate the anticancer
effects of shikonin, further studies are required to investigate its
activity in other cancer cell lines and animal models. In addition, the
mechanisms underlying the inhibition of the mTOR pathway by
shikonin remain unclear. Future studies should explore the
upstream and downstream signaling events involved in shikonin-
induced mTOR inhibition.
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5 Conclusion

Our study revealed the underlying mechanism of action of
shikonin in the treatment of breast cancer. As a natural

bioactive compound, shikonin specifically inhibits the
overactivation of the mTOR signaling pathway and
effectively downregulates the expression of its key

downstream effector gene, CCNDI. Reduced expression of
CCND1, a critical regulator of the cell cycle, leads to a
significant decrease in breast cancer cell proliferation
(Figure 7). This series of actions collectively forms the
molecular basis for the anti-breast cancer effects of shikonin,
offering new strategies and targets for breast cancer treatment.
In summary, shikonin and its derivatives hold promise as
potential drug candidates for inhibiting breast cancer
progression and improving patient

prognosis, meriting

further investigation and development.
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