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Photothermal therapy (PTT) offers revolutionary breakthroughs in tumor
treatment due to its minimally invasive nature, high selectivity and efficiency.
Photothermal therapy is a method of using laser irradiation (near-infrared light) to
convert light energy into heat, reaching a relatively high temperature to kill tumor
cells. Efficient and stable photothermal conversionmaterials are the key factors in
PTT. There are inorganic and organic nanomaterials used in photothermal
therapy. Through chemical modification of them, the functions of targeted
drug delivery and combination therapy can be achieved. This work generalizes
the features, excellent performance and therapeutic effects of photothermal
conversion nanomaterials such as polydopamine (PDA), semiconductor
nanoparticles (SNPs), Au nanomaterials, palladium nanosheets (PdNs), and
carbon nanomaterials. Their functions and the advantages in photothermal
therapy, tumor targeting and inactivation, and the mechanisms of
nanophotothermal therapy are summarized. By continuously improving the
performance and treatment methods of nanomaterials, more efficient, safe
and minimally invasive solutions for tumor treatment are expected.
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1 Introduction

Many preparations and treatment methods are used to overcome cancer (Liu et al.,
2024; Yue et al., 2024). Nanophotothermal agents in photothermal therapy (PTT) convert
near-infrared (NIR) light into thermal energy (Liu et al., 2025), directly destroy tumor
tissues and efficiently kill them (Ma et al., 2023). Compared with traditional therapies, PTT
offers higher localized treatment efficiency (Cui et al., 2022a), targeting tumors more
precisely (Shi et al., 2024a). By targeting modification, nanophotothermal agents can
actively or passively accumulate in tumor sites (Shi et al., 2024b; Xiong et al., 2024; Ren
et al., 2024), enhancing treatment specificity. This specificity allows PTT to eradicate tumors
while minimizing damage to normal cells (Komedchikova et al., 2024). Moreover, PTT is a
non-invasive or minimally invasive method that avoids surgical incisions or large-scale
irradiation (Zhou et al., 2025), reducing discomfort and recovery time of patients (Zheng
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et al., 2024). So compared to chemotherapy and radiotherapy, PTT
has less side effects (Cui et al., 2022b). Additionally, PTT promotes
tumor vascular normalization, increasing the accumulation and
deep penetration of nanomedicines in tumor tissues (Feng et al.,
2024), allowing for synergistic effects when combined with
chemotherapy, radiotherapy, or immunotherapy (Xu et al., 2024).
Furthermore, PTT induces the local release of tumor-associated
antigens (TAAs), which activates the host immune response and
reduces the risk of tumor recurrence and metastasis. So combining
PTT with immunotherapy create the synergistic immune effect
(Fang et al., 2024; Liu et al., 2024). When tumor cells undergo
ICD (induced immunogenic cell death) under PTT, they release
damage-associated molecular patterns (DAMPs) acting as “danger
signals” to recruit dendritic cells (DCs), enhancing tumor antigen
presentation, and activating cytotoxic T lymphocytes (CTLs).
Furthermore, the localized inflammatory microenvironment
generated by PTT can reverse immunosuppressive tumor niches,
thereby sensitizing tumors to immune checkpoint inhibitors. This
multimodal synergy not only amplifies the direct tumor-killing
effects of PTT but also establishes systemic antitumor immunity
to suppress distant metastases (Shi et al., 2024). Additionally, by
surface modification, nanophotothermal agents can be equipped
with imaging function, facilitating tumor diagnosis (Zhang et al.,
2024). In summary, nanophotothermal tumor therapy exhibits
remarkable advantages such as efficiency, specificity, minimal
invasiveness, low adverse reactions, multifunctionality and
synergy (Lu et al., 2023; Lian et al., 2021; Wang et al., 2024).
Nonetheless, clinical application still faces critical issues to be
addressed. Approved experimental PTT nanosystem gold
nanoshell (AuroShell) NCT02648035 has demonstrated the
precision of local thermal ablation in clinical trials of head and
neck cancer, but the recurrence rate after a single treatment (−30%)
suggests the need for combination chemotherapy or
immunotherapy to improve long-term efficacy (Rastinehad et al.,
2019). Carbon based materials, such as graphene oxide, exhibit low
systemic toxicity in the treatment of melanoma (NCT04323020), but
are limited by the depth of light penetration (<2 cm), resulting in
insufficient efficacy for deep tumors (Zhao et al., 2023). The major
clinical application bottlenecks include (a) biosafety: some metal
based nanomaterials (such as CuS, Fe3O4) have not yet undergone
long-term toxicological evaluation by FDA/EMA due to their
potential toxicity caused by long-term retention; (b) lack of
standardized parameters: the clinical protocol for laser power
density (0.3–2 W/cm2) and irradiation time (1–10 min) lacks a
unified standard, resulting in significant fluctuations in therapeutic
efficacy. It is inferred that precise delivery, controllable release and
multimodal combination therapy are the keys for technological
optimization and future direction of nano PTT.

2 Nanomaterials for
photothermal therapy

The nanomaterials in PTT are mainly divided into two
categories: inorganic and organic nanomaterials. Inorganic
nanomaterials were studied earlier, mainly including noble metal
nanoparticles, metal chalcogenide nanomaterials, carbon based
nanomaterials, magnetic nanoparticles and quantum dots.

Precious metal nanoparticles such as gold, silver, platinum and
palladium, are commonly used in tumor PTT. Other kind of
inorganic nanomaterials such as tungsten nitride (WN)
nanoparticles and carbon nanospheres have also been used.
Compared to inorganic nanomaterials, the research on organic
nanomaterials is relatively limited. Organic nanomaterials
typically have good biocompatibility and degradability, but may
not be as efficient and stable in photothermal conversion as
inorganic nanomaterials. The followings provide detailed
introductions to photothermal conversion nanomaterials of
polydopamine (PDA), semiconductor nanoparticles (SPNPs),
AuNPs, palladium nanosheets and carbon nanomaterials. The
performance comparisons of different nanomaterials are listed in
Tables 1, 2 shows the applications of the nanomaterials discussed in
this review.

2.1 Polydopamine (PDA)

PDA possess a unique core-shell structure, and the surfaces are
enriched with active functional groups such as phenolic hydroxyl
and amino groups (Lu et al., 2021). These groups confer excellent
modification and multifunctionality to PDA (Balavigneswa et al.,
2024). PDA exhibits strong adhesion, similar to the foot threads of
natural mussels (Feng et al., 2024), allowing it to firmly adhere to
almost any material surface, forming a conformal layer (Jie et al.,
2023). In vivo, PDA demonstrates good biocompatibility and limited
biological toxicity, which makes it suitable for biomedical
applications (Xu et al., 2022). The photothermal effect of PDA
originates from the broadband optical absorption (300–900 nm) of
its polyphenol-quinone conjugated structure. Under NIR excitation,
electrons within the π-π stacking layers convert photon energy into
lattice vibrations (phonons) via non-radiative relaxation, releasing
thermal energy (Wang et al., 2022). The hydrogen-bonding network
further enhances photothermal conversion efficiency through
intermolecular vibrational coupling. Surface amino modification
(e.g. RGD peptides) enables targeted binding to integrin
receptors (e.g., αvβ3) overexpressed on tumor cells, facilitating
clathrin-mediated endocytosis. Following internalization, PDA
accumulates in lysosomes (pH 4.5–5.0), where its alkaline groups
induce lysosomal membrane permeabilization (LMP), releasing heat
shock protein 70 (HSP70) and activating apoptosis pathways. PDA
degradation products (e.g., dopamine monomers) suppress
M2 polarization of tumor-associated macrophages (TAMs),
synergistically enhancing antitumor immune responses (Xu et al.,
2023). The schematic diagram of the process of using DPA based
biomimetic nanomaterials for PTT and killing colon cancer is shown
in Figure 1 (Gong et al., 2022), which has a pH-responsive property
and can be degraded in a weakly acidic tumor microenvironment
(TME), leading to loaded drug release, and the released Apoptin
(AP) can work as a radiosensitizer to improve the RT and destroy
tumor cells by promoting apoptosis directly. Researchers have
constructed many PDA drug delivery systems that
simultaneously encapsulate photosensitizers and antitumor drugs
within, enabling targeted delivery (Zhang et al., 2022). Zeng
addressed the issue of tumor hypoxia by using MnO2

nanoparticles loaded with chlorin E6 (Ce6) and coated with folic
acid-functionalized PDA layer (MCPFNP) (Zeng et al., 2020). Due
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to the active targeting mediated by folic acid and the passive
transport of enhanced permeability and retention (EPR) effect,
MCPFNP significantly accumulated in the tumor sites of mice. In
the acidic tumor microenvironment, PDA disassembled and
released the photosensitizer Ce6, completing the precise tumor
targeting. Simultaneously, under 808 nm laser irradiation, the
system generated high temperatures and burned tumor cells,
which reduced MCP-7 cell viability to 11.74%. MCPFNP also
exhibited excellent biodegradability and low long-term toxicity.
Zhang and Wang synthesized a PDA nanomaterial (PTTPB) with
PDA and tributyl tetradecylphosphonium bromide (TTPB) (Li et al.,
2022), which similarly got precise tumor treatment. PTTPB can
recognize sialic acid (SA), which is underexpressed in normal cells
and overexpressed on the surface of tumor cells such as B16 F10,
thus it targets tumor cells. Upon irradiation, PTTPB elevated the
temperature through photothermal effect and ablate the tumor
tissue. Additionally, the donor-acceptor (D-A) electronic

structure of PTTPB generated singlet oxygen and other reactive
oxygen species (ROS) under light, further killing tumor cells,
achieving combined photothermal-photodynamic therapy, and
significantly improving therapeutic efficiency. Biocompatibility
tests showed that PTTPB exhibited low cytotoxicity and good
biosafety. Activating the interferon gene stimulating factor
(STING) pathway is a highly promising approach for tumor
treatment, but its clinical application is limited by the inability to
administer systemically and the immunosuppressive tumor
microenvironment (TME). Zeng constructed a PDA
multifunctional platform loaded with the STING agonist
methylated adenylate-2 (MAS-2) and chelated Mn2+ with
mesoporous PDA (Zeng et al., 2023). This system accumulated in
the tumor region through the EPR effect and performed PTT on
tumor under NIR irradiation, inducing apoptosis of tumor. During
the process, tumor cells released TAAs and pro-inflammatory
factors, alleviating the immunosuppressive TME. The platform

TABLE 1 Key performance metrics of nanomaterials in photothermal cancer therapy.

Material Morphology Absorption
peak (nm)

Photothermal
efficiency (%)

Advantages Challenges Targeted
applications

References

Polydopamine
(PDA)

Spherical
nanoparticles

700–850 (NIR-I) 35–50 Biodegradable
High drug-

loading capacity

Low
photostability
Weak NIR-II
response

Theranostic
platforms

Lu et al. (2021),
Balavigneswa et al.
(2024), Feng et al.
(2024b), Jie et al.
(2023), Xu et al.

(2022), Wang et al.
(2022a), Xu et al.

(2023)

Semiconductor
NPs (SNPs)

Quantum dots
Nanorods

800–1,300 (NIR-
I/II)

40–75 Tunable bandgap
ROS generation

capability

Potential heavy
metal toxicity

Image-guided
therapy

Terna et al. (2021),
Peng et al. (2019),
Lyu et al. (2018)

Gold NPs
(AuNPs)

Nanoshells
Nanorods

700–1,100 (NIR-
I/II)

25–60 Surface plasmon
resonance

Easy
functionalization

High cost
Limited

penetration
depth

Surface-
enhanced PTT

Ferreira-Gonçalves
et al. (2023), Yang
et al. (2023a), Kim

et al. (2022),
Camacho et al.

(2022), Yang et al.
(2024), Zhang et al.

(2020)

Palladium
Nanosheets

2D ultrathin sheets 1,000–1,350
(NIR-II)

60–85 Deep tissue
penetration

High
photostability

Complex
synthesis
Long-term
biosafety
concerns

NIR-II-driven
therapy

He et al. (2022), Yao
et al. (2022), Li et al.

(2022a)

Carbon
Nanomaterials

Graphene, CNTs
Nanodiamonds

600–1,200
(Broadband)

30–70 Multifunctional
(e.g. drug delivery

imaging)

Poor
dispersibility

Inhomogeneous
heating

Hyperthermia
Drug delivery

Sajja et al. (2021),
Afroze et al. (2021),
Farbod et al. (2024),

Mohanta et al.
(2019)

Silver NPs
(AgNPs)

Spherical
Triangular plates

Nanowires

400–800 (Visible-
NIR-I)

50–70 High plasmonic
activity

Antibacterial

Cytotoxicity
Oxidation
instability

Localized tumor
ablation

Zhao et al. (2022),
Moonshi et al.
(2023), Liu et al.

(2022a)

Tungsten
Nitride (WN)

Spherical
Porous

2D ultrathin sheets

900–1,100
(NIR-II)

40–60 High
photostability
Synergistic
PTT/PDT

Large-scale
synthesis
protocols

Limited in vivo
studies

Deep-tissue
penetration

Fernandes et al.
(2020), Xu et al.

(2019)

Platinum NPs
(PtNPs)

Spherical
Cubic/Octahedral

Porous

700–1,000
(NIR-I)

30–50 Catalytic activity
ROS generation

High cost
Low

biocompatibility

Combinational
therapy (PTT/

chemo)

Runzan et al. (2023),
Liu et al. (2024c),
Ying et al. (2025)
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released MAS-2 and Mn2+, activating the STING pathway,
ultimately triggered a strong immune response and showed high
anticancer effects. In summary, the innovative design of PDA
materials in PTT can significantly enhance their functionality.
The latest technologies include: Ⅰ. Multifunctional composite
carriers, such as gold nanorods or carbon dots wrapped in PDA,
to enhance photothermal conversion efficiency (up to 60% or more)
and integrate drug delivery/imaging functions; Ⅱ. Surface
engineering involves modifying targeted ligands (such as folate)
with amino or carboxyl groups to enhance tumor selectivity; Ⅲ.
Responsive release system utilizes the pH/ROS sensitivity of PDA to
achieve controlled drug release. The challenges lie in long-term
biosafety, large-scale synthesis stability, and limitations on deep
tissue penetration. Future development will focus on synergistic
therapies (such as PTT/chemotherapy/immunotherapy),
development of biodegradable PDA derivatives, and AI assisted
material design to promote clinical translation, optimize
performance balance, and address metabolic mechanism issues.

2.2 Semiconductor nanoparticles (SNPs)

The core structure of SNPs determines their fundamental
properties (Terna et al., 2021), while the shell serves to protect
the core, enhance optical properties, and improve stability (Peng
et al., 2019). Unlike precious metal materials, the ion release
properties of SNPs endow them with the potential for
photothermal chemodynamic combined therapy (Zhang et al.,
2024). The photothermal effect of SNPs comes from bandgap

modulation and free carrier oscillation. Narrow bandgap design
allows NIR light to excite electrons from the valence band to the
conduction band, and then convert energy into heat through
“electron phonon scattering” (Li et al., 2023). Sulfur vacancies or
oxygen doping (such as MoS2-xOx) can form intermediate energy
levels, enhancing non radiative recombination pathways (carrier
lifetime<1ns). SNPs enter cells through caveolae mediated
endocytosis, and particles smaller than 50 nm in size can
penetrate the nuclear membrane. The local high temperature
(ΔT>10°C) generated by photothermal stimulation triggers the
release of metal ions from SNPs through Fenton reaction to
generate hydroxyl radicals (·OH), leading to mitochondrial DNA
damage (Li et al., 2021). Figure 2 shows a schematic diagram of
hollow structured CuS NPs composite with carbon dots (CuSCDs)
enhancing PTT through ubiquitin dependent proteasome
degradation pathway (Yu et al., 2020). SNPs remain stable in
biological systems, resist to aggregation or degradation, and
exhibit low biotoxicity, ensuring effective PTT with minimal side
effects (Zhao et al., 2022). The surface of SNPs have unsaturated
coordination, resulting in numerous surface defects and active sites
which are modifiable to achieve multifunctionality, such as targeted
delivery and biocompatibility (Peng et al., 2019). For instance, Yan
Lyu developed a water-soluble SNP (SPNV) through vinylene bonds
through simple chemical reactions and physical cross-linking
processes (Lyu et al., 2018). SPNV owns the mass absorption
coefficient (1.3-fold) and PCE (2.4-fold). The study revealed that
the vinylene bonds enhance the biodegradability and optical activity
of SNPs, while also improving their imaging and therapeutic
capabilities. Thus, appropriate chemical modifications can further

TABLE 2 The structure characteristics, treatment mechanism and clinical applications of PDA, SNPs, Au nanomaterials, PdNs and carbon nanomaterials.

Material Structure
Characteristics

Treatment
mechanism

Application cases Clinical
progress

References

Polydopamine
(PDA)

High biocompatibility, easy
surface functionalization, capable

of loading drugs/genes

Photothermal conversion
(moderate efficiency),

synergistic chemotherapy/
immunotherapy

Treatment of melanoma; Drug
delivery synergistic PTT (such

as doxorubicin)

Theranostic
platforms

Xu et al. (2022), Wang et al.
(2022a), Xu et al. (2023)

Semiconductor
NPs

Adjustable bandgap and strong
photoresponsiveness

Photothermal/Photodynamic
synergy (high photothermal

efficiency)

Breast cancer (NIR-II
challenge); Combination

radiotherapy/chemotherapy
for deep tumor treatment

Image-guided
therapy

Terna et al. (2021), Peng et al.
(2019), Lyu et al. (2018)
Li et al. (2023a), He et al.

(2020), Pan et al. (2022), Yao
et al. (2023), Alamdari et al.
(2022), Yuan et al. (2021),

Chen et al. (2020)

Gold NPs
(AuNPs)

Strong surface plasmon resonance
effect

Photothermal ablation (high
efficiency, >90%)

Local ablation of head and
neck cancer; Gold nano shell

for image-guided PTT

Surface-
enhanced PTT

Ferreira-Gonçalves et al.
(2023), Yang et al. (2023a),
Kim et al. (2022), Camacho et
al. (2022), Yang et al. (2024)
Zeng et al. (2025), Kim et al.
(2021a), Fan et al. (2023),

Guerrero-Florez et al. (2020)

Palladium
Nanosheets

Ultra thin two-dimensional
structure, high specific surface
area, surface plasmon resonance

Efficient photothermal
conversion (>80%), catalytic

activity

Drug resistant tumor
treatment; Combined catalytic
therapy (such as producing
reactive oxygen species)

NIR-II-driven
therapy

He et al. (2022), Yao et al.
(2022), Li et al. (2022a)
Sathiyaseelan et al. (2021),

Singh et al. (2023)

Carbon
Nanomaterials

High thermal conductivity,
chemically inert

Photothermal ablation
(efficient, >60%), assisted by

photoacoustic imaging

Local treatment of skin cancer;
Composite iron oxide

nanoparticles for combined
magnetic thermal PTT therapy

Hyperthermia
Drug delivery

Sajja et al. (2021), Afroze et
al. (2021), Farbod et al.

(2024), Mohanta et al. (2019)
Amaral et al. (2021), Shima

et al. (2023)
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expand the biomedical applications of SNPs (Kshatriya et al., 2024),
including drug delivery and PTT (Alghamri et al., 2022). In tumor
vascular disruption therapy, the off-target effects and repeated dose
toxicity of vascular disrupting agents (VDAs) limit overall
therapeutic efficacy. To solve this problem, Li constructed
biomimetic SNPs containing surface-modified platelet
membranes (Li et al., 2023). The SNPs are capable of precise
tumor vascular disruption via two-stage light manipulation.
During the first irradiation, the nanoparticles generated mild heat
to induce tumor vascular bleeding, activating the coagulation
cascade and recruiting more nanoparticles to the damaged
vessels. During the second irradiation, enhanced targeting of
tumor vasculature by the photothermal agents led to intense
hyperthermia effectively, destroying the tumor vasculature and
completely eradicating the tumor, while also inhibited metastasis.
He reported iron-chelated SPFeN composed of ferroptosis inducers
(Fe3+) and amphiphilic semiconductor copolymers (SPC) (He et al.,
2020). Upon NIR irradiation, localized heating occurred and these

particles accelerated the Fenton reaction to generate free radicals,
assisting tumor suppression and achieved combined PTT-
photodynamic therapy. In the acidic tumor microenvironment,
SPFeN generated hydroxyl radicals, leading to ferroptosis.
Compared to previous studies, SPFeN-mediated ferroptosis PTT
can minimize iron dosage and effectively inhibit tumor growth in
vivo. Additionally, Pan synthesized similar nanoparticles,
gadolinium-containing SPN-Gd which exhibited significant
inhibitory effects on oral squamous cell carcinoma (OSCC) (Pan
et al., 2022). In vivo, SPN-Gd as an MRI contrast agent and optical
imaging agent, showed a prolonged retention time and significantly
inhibited OSCC tumors in mouse models through PTT. The latest
technologies for enhancing the therapeutic effect of SNPs include: Ⅰ.
Band engineering, which enhances NIR absorption by adjusting the
bandgap (such as doping or heterostructure design); Ⅱ. Multi modal
collaboration, combined with PDT or chemodynamic therapy
(CDT), such as MoS2 loaded Fe2+ to achieve PTT/CDT (Zhang et al.,
2020); Ⅲ. Surface functionalization, such as polyethylene glycol

FIGURE 1
Schematic illustration of biomimetic nanoplatform AVPt@HP@M for colon cancer radiotherapy sensitization through hypoxia relief (Pt-doped ZIF-
8), apoptin-enhanced apoptosis (AP), and VP-mediated X-PDT, with cancer cell membrane camouflage for targeted delivery (reprinted with permission
from Gong et al., 2022. Copyright 2022 Wiley - VCH GmbH).
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(PEG) modification to enhance biocompatibility, or coupling
antibodies to enhance targeting. The challenges of SNPs lie in
long-term toxicity, photothermal stability and deep tissue
penetration efficiency. Developing new narrow bandgap
semiconductors (such as organic-inorganic hybrid perovskites),
intelligent responsive nanosystems (such as photo/thermal dual
controlled release drugs) and clinical translational research can
promote precise PTT tumor treatment.

2.3 Au nanoparticles and nanorods

Au nanomaterials exhibit strong light absorption ability, and their
photothermal effect originates from localized surface plasmon
resonance (LSPR). When the frequency of incident light matches
the oscillation frequency of free electrons on the material surface, a
strong electromagnetic field is generated, and energy is converted into
hot electrons through Landau damping, followed by the release of
thermal energy through electron phonon scattering. Due to the
influence of the specific surface area, size and shape of Au
nanomaterials on their PTT performance, different shapes of Au
nanomaterials have been developed, such as Au nanoparticles

(AuNPs) and Au nanorods (AuNRs) (Zhao et al., 2022). The
longitudinal LSPR of AuNRs can be adjusted to the NIR-II region
(1,000–1,350 nm), and the larger the aspect ratio (AR), the deeper the
penetration depth. The surface charge of Au nanomaterials (such as
CTAB modified positive charges) can disrupt the lipid bilayer
structure of tumor cell membranes, leading to increased membrane
permeability and calcium ion influx. Accumulation of gold
nanomaterials in lysosomes inhibit the mTOR pathway, promote
autophagosome formation, and antagonize photothermal induced
apoptosis. It is necessary to combine autophagy inhibitors (such as
chloroquine) to enhance therapeutic efficacy (Wei et al., 2022).

2.3.1 Au nanoparticles (AuNPs)
AuNPs demonstrate good PCE (Ferreira-Gonçalves et al., 2023),

localized surface plasmon resonance (LSPR) absorption (Yang et al.,
2023), high transport efficiency and supramolecular recognition
ability (Kim et al., 2022), enabling them to precisely adsorb
proteins and target macromolecules within cells or on cell surfaces
(Camacho et al., 2022). However, for the reason that working
temperature during photothermal therapy is often high (>50°C),
surrounding tissues near the tumor are frequently burned, limiting
the further application of chemotherapy-photothermal combination

FIGURE 2
Schematic illustration of the generation of proteasome inhibitor-encapsulated CuS/carbondots nanocomposites for enhanced photothermal
therapy viaheat-stabilization of varioussubstrates in the ubiquitin-dependent proteasomal degradation pathway (reprinted with permission from Yu et al.,
2020. Copyright 2020 American Chemical Society).
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therapies (Yang et al., 2024). For that, Yu designed a mild AuNPs
photothermal agent (ADHM), composed of dopamine (DA) and
hyaluronic acid (HA)-coated AuNPs, assembled with metformin
(MET) via electrostatic interactions (Figure 3) (Yang et al., 2023).
As shown in Figure 3, ADHM selectively accumulates in tumors via
HA-mediated active targeting and the EPR effect, followed by pH-
responsive dispersion. The 808 nm NIR-induced mild hyperthermia
then synergizes with MET therapy for enhanced antitumor efficacy.
This system achieved 94.6% inhibition rate for chemotherapy-
photothermal combination therapy of 4T1 tumors in mice at a
mild temperature (43°C) while effectively preventing tumor
metastasis. The chemical interactions within ADHM exhibit a high
degree of synergy, bringing the system excellent targeting ability and
biocompatibility. ADHM provides a potential candidate for mild
chemotherapy-photothermal combination therapy of tumors. To
extend drug accumulation and retention within tumor cells, and
enhance the therapeutic efficacy of tumor photothermal therapy,
the modifications of surface ligand types, charge, chemical polarity,
chemical reactivity, and hydrophobicity of AuNPs photothermal
agents (PTAs) are usually used. Wang prepared a mixed-charge
zwitterionic surface Au nanoparticle (Au-MUA-TMA) with
chemical modification and altered the shape and size of the AuNP
to shift the light absorption to the near-infrared (NIR) region (Kong

et al., 2023). Under 808 nm laser irradiation, Au-MUA5-
TMA5 targeted and accumulated at the U87MG tumor site in
mice, causing a significant increase in local temperature and
leading to complete tumor disappearance within 14 days of treatment.

2.3.2 Au nanorods (AuNRs)
In contrast to the spherical structure of AuNPs, AuNRs are

elongated and rod-like, which makes AuNRs more prone to absorb
and scatter light in the long-wavelength region (Roach et al., 2021).
Similar to AuNPs, AuNRs also exhibit excellent optical absorption
and scattering cross-sections, PCE, LSPR and their surface is easy to
be functionalized (Dong et al., 2024). Compared to zero- and one-
dimensional nanomaterials, two-dimensional nanomaterials offer
significant advantages in PTT-based tumor therapies, such as ultra-
thin structures, high specific surface areas and unique optical
properties (Wu et al., 2022). For example, Kong combined 2D
peptide nanosheets (PNS) with AuNRs to form PNS-AuNRs
(Cheong et al., 2021). Upon irradiation, MTT assays on human
breast cancer cells and MCF-7 cells showed more than 75%
inhibition rates. PNS-AuNRs were also tested in vivo for PTT on
mice bearing MCF-7 tumors. Within 10 min of irradiation, the tumor
cells underwent apoptosis. After 14 days, tumor disappeared
completely. Meanwhile, the mice exhibited good health, which

FIGURE 3
Scheme of mild chemo-photothermal synergistic therapy based on gold nanopaticles coupled with metformin (reprinted with permission from
Yang et al., 2023. Copyright 2023 American Chemical Society).
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demonstrates the low toxicity and general anticancer effects of AuNRs.
AuNRs show two characteristic light absorption peaks due to the SPR
effects on transverse and longitudinal surfaces. Cheong adjusted the
aspect ratio of AuNRs to shift the light absorption peak to NIR region
and achieved effective PTT (Figures 4A–C) (Zhao et al., 2024a). The
anti-angiogenic effects of BCP50-2-AuNRs were evaluated in Tg (fli1:
EGFP) zebrafish. BCP50-2-AuNRs suppressed angiogenesis in a dose-
dependentmanner (14.6% at 5 μg/mL, 21.5% at 10 μg/mL, and 31.2% at
20 μg/mL) (Figures 4D,E). Some nanomaterials are unstable in
physiological environments and tend to aggregate and form
precipitates. To improve the stability and antitumor activity, Zhao
extracted a homogeneous polysaccharide (BCP50-2) from Belamcanda
(a plant) and conjugated it with AuNRs to produce BCP50-2-AuNRs
(Kong et al., 2024). BCP50-2-AuNRs exhibited good stability and PCE.
Under NIR irradiation, the local temperature of HepG2 tumors
increased significantly with BCP50-2-AuNRs and the tumor cell
growth were inhibited efficiently. Moreover, the biological models
showed good growth without much side effect.

In summary, innovative strategies to enhance the efficacy of AuNPs
and AuNRs include the following: Ⅰ. Morphology optimization:
adjusting the aspect ratio of Au NRs (such as 50–70 nm length) to
match the near-infrared (NIR) window and improve photothermal

conversion efficiency (>90%); Ⅱ. Surface plasmon coupling:
constructing core-shell structures (such as Au@SiO2) or polymer
enhanced local thermal field; Ⅲ. Multi functional integration:
combining drug loading (such as doxorubicin), immune regulation
(PD-L1 inhibitors), or photoacoustic imaging to achieve integrated
diagnosis and treatment. The latest technologies currently include
intelligent responsive Au NRs (such as pH/GSH triggered drug
release) and improved tumor penetration and renal clearance
through ultra small Au NPs (<5 nm). The future challenges also
face long-term retention toxicity, uniformity in large-scale
preparation, and limitations in tissue penetration depth. The key
points for future development lie in accelerating clinical translation
(such as combination immunotherapy), developing biodegradable Au
based materials and optimizing photothermal performance with AI
assisted morphology design.

2.4 Palladium nanosheets (PdNSs)

PdNSs are thin and possess large specific surface area and planar
size (Li et al., 2024). The planar surface allows for better absorption
of light, as a unique advantage in PTT (He et al., 2022). The NIR-II

FIGURE 4
In vivo antitumor activity of BCP50-2-AuNRs. (A) Confocal images of HepG2-xenografted zebrafish treated with BCP50-2-AuNRs (vs. Lentinan,
400 μg/mL). (B,C) Quantification of tumor fluorescence intensity and foci (n = 20 in each group). (D) Intersegmental vessels development in transgenic
zebrafish (vs. sunitinib malate, 1 μg/mL). (E) Angiogenesis inhibition rate (n = 20 in each group) (reprinted with permission from Zhao et al., 2024a.
Copyright 2024 Elsevier B.V.).
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response characteristics of Pd NSs are derived from their two-
dimensional electronic confinement effect. The ultra-thin
structure (thickness<2 nm) causes electrons to move freely in the
plane, forming a wideband LSPR (1,000–1,350 nm), with a
significantly higher photothermal efficiency (~60%) than bulk Pd
(<10%). The hot electrons generated by photoexcitation transition
from d-band to sp band, and then release energy through electron
phonon coupling. Unlike spherical NPs, the planar structure of Pd
NSs endows them with unique membrane interaction modes (Li
et al., 2022). The sharp edges of Pd NSs can physically damage the
cell membrane and enter the cytoplasm directly through non
endocytic pathways, avoiding lysosomal degradation. Pd NSs can
inhibit key enzymes involved in tumor cell glycolysis, such as
HK2 and LDHA, reduce ATP production, and enhance
hyperthermia sensitivity (Chen et al., 2017). Figure 5 shows a
schematic diagram of a bimetallic palladium nanocapsule (Pd
Ncap) targetting the breast cancer cell line SK-BR-3 (Singh et al.,
2023). Pd Ncap owns a rattle like morphology because of a solid gold
bead as a core located inside a porous thin Pd shell. These
nanostructures possess broad absorbance in the NIR biological
windows (600–1,300 nm), thus enhancing their applicability in
PPTT. PdNSs remain stable in vivo without aggregation or
degradation, and they exhibit low biotoxicity (Yao et al., 2022).
Additionally, PdNSs can be used in combination with other
therapies, such as chemotherapy and immunotherapy (Li et al.,
2022). For example, Jiang developed PdNSs Pd (5)-CpG (PS), which
significantly enhanced the absorption of cytosine polyguanine
(CpG) by immune cells and boosts the immune-stimulatory
activity of CpG (Ming et al., 2020). Combined with Pd (5)-CpG
(PS)-mediated PTT and immunotherapy, using safe NIR radiation
(808 nm laser, 0.15 W cm−2), highly effective tumor inhibition and a
significant increase in the survival rate of tumor-bearing mice were

achieved. By surface modification, PdNSs can target tumor tissues
(Yang et al., 2021). They cause local high temperature which
disrupts the structure of diseased cells and interferes with their
metabolism. Singh reported a bimetallic palladium nanocapsule
(Pd Ncap) with a solid gold core and a thin, perforated palladium
shell that demonstrated excellent photothermal stability (Singh et al.,
2023). At a very low laser power density of 0.5 W cm−2, the PCE in
1,064 nm region reached 49%. The nanocapsules were further
functionalized with Herceptin (Pd Ncap-Her) to target the breast
cancer cell line SK-BR-3. In vitro PTT applications with NIR light, at a
concentration of 50 μg/mL and a laser power density of 0.5 W cm−2

with an output power of only 100 mW, more than 98% of the cells
were killed. Innovative designs and strategies for developing Pd NSs
include: Ⅰ. Ultra thin structure optimization: regulating thickness
(2–5 nm) and lateral size (50–200 nm) to enhance surface
plasmon resonance (SPR) and improve photothermal conversion
efficiency (>80%). Ⅱ. Multi functional composite: such as drug
loaded composite catalytic function, utilizing the catalytic ability of
Pd to decompose H2O2 and enhance CDT. Ⅲ. Heterogeneous
structures (such as Pd@Au) improve photothermal stability and
biocompatibility. Ⅳ. Surface modification: PEGylation or targeted
molecule (such as RGD peptide) modification enhances tumor
enrichment ability. The latest developed technologies currently
include dual-mode therapy combining PTT/CDT or photothermal
immunotherapy, and responsive drug release systems that utilize the
tumor microenvironment (such as low pH/high GSH) to trigger drug
release. The challenges of the material development still lie in the lack
of long-term biosafety data and the control of size uniformity in large-
scale synthesis. Future development can be achieved through the
study of ultra-thin degradable Pd based nanosheets, combinedwithAI
prediction of optimal morphology parameters to promote clinical
translation.

FIGURE 5
Schematic representation of the targeted plasmonic photothermal therapy of breast cancer cells using bimetallic herceptin-conjugated palladium
nanocapsules (reprinted with permission from Singh et al., 2023. Copyright 2023 American Chemical Society).
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2.5 Carbon nanomaterials

Carbon nanotubes (CNTs), carbon dots (CDs) and quantum
dots (QDs) (Figure 6A) (Hong et al., 2015) achieve photothermal
conversion through different molecular mechanisms. CNTs are
plasmonic resonances excited by conjugated π electrons in NIR
light, generating heat through electron phonon coupling (Liu
et al., 2015). Their efficiency is regulated by diameter, chirality,
and surface modification. CDs generate heat mainly through non
radiative transitions between surface defect states and functional
groups (such as amino groups), and doping can extend
absorption to the NIR-II region (1000–1350 nm). QDs are
controlled by quantum confinement effects to regulate their
bandgap, electron hole pairs generate heat through Auger

relaxation, and carbon based QDs combine with surface state
effects to reduce toxicity (Sun et al., 2019). CNTs rely on clathrin
endocytosis to disrupt lysosomes. CDs/QDs regulate endocytosis
efficiency through size and charge regulation, while utilizing
targeted modifications (such as folate) to target mitochondria,
enhancing tumor specificity. CNTs/CDs/QDs can interfere with
DNA repair in tumor cells and induce protein denaturation, ROS
burst, and apoptosis/necrosis through local temperature rise
(42°C–48°C). The PTT performance of carbon materials is
highly dependent on their defect density - moderate oxidation
treatment (C/O ratio≈8:1) can optimize absorption spectra while
maintaining stability. Figures 6B,C shows the typical schematic
diagrams of using CDs and QDs for PTT (Li J. et al., 2021; Cao
et al., 2024).

FIGURE 6
(A) The structures of carbon nanomaterials including carbon nanotube, graphene, fullerene and carbon dot (reprinted with permission from Hong
et al., 2015. Copyright 2015 American Chemical Society). (B) Schematic illustration of ACDs synthesis from asphaltenes precursor and subsequent
application in cancer photothermal therapy (reprinted with permission from Akakuru et al., 2025, licensed under CC BY). (C) Schematic image of
fabrication and application of a QD-based nano-transformer (GQDNT) for diagnosis and treatment of cancer (reprinted with permission from Cao
et al., 2024. Copyright 2024 American Chemical Society).
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2.5.1 Carbon nanotubes (CNTs)
Depending on the number of graphene layers, CNTs are classified

into single-walled carbon nanotubes (SWCNTs) and multi-walled
carbon nanotubes (MWCNTs) (Sajja et al., 2021). SWCNTs consist of
sp-hybridized carbon atoms arranged in a hexagonal honeycomb
lattice, forming a hollow tubular structure (Afroze et al., 2021), while
MWCNTs are composed of multiple concentric tubes nested within
each other. CNTs exhibit strong absorption in the near-infrared (NIR)
spectrum and PCE (Farbod et al., 2024). In addition, functionalization
of the CNT surface with targeting ligands can reduce the toxicity and
immunogenicity (Mohanta et al., 2019), which makes CNTs highly
suitable for PTT and PDT. The high aspect ratio and specific surface
area enable CNTs to adsorb a variety of drug molecules (Zhao et al.,
2022). Their needle-like structure facilitates internalization into target
cells, which could be an advantage for drug delivery (Naief et al.,
2024). The PTT with CNTs has primarily focused on relatively small
primary tumors, but the approach has limitations in preventing tumor
metastasis. To overcome this, Mc Kernan developed SWCNT-
ANXA5 by modifying SWCNTs with annexin A5 (ANXA5)
(McKernan et al., 2021). Under NIR irradiation, this bioconjugate
selectively ablated primary orthotopic EMT6 breast tumors in mice,
synergistically enhancing the T lymphocyte-associated protein-
dependent abscopal response, thus inhibiting tumor metastasis. As
a result, the survival rate of mice treated with PTT was significantly

extended, with survival persisting up to 100 days after tumor
inoculation. Guo prepared an optically and thermally stable multi-
walled CNT-hyaluronic acid composite (MWCNT-HA) (Guo et al.,
2023). MWCNT-HA upregulates the expression of the apoptotic
factor Caspase-3, which in turn affects the expression of the
downstream anti-apoptotic factor Bcl-2, leading to apoptosis in
CNE-1 cells, thereby inhibiting tumor cell proliferation and
promoting apoptosis. Additionally, this material significantly raises
the surrounding temperature under laser irradiation. When applied
MWCNT-HA to tumor cells inmice, assisted byNIR laser irradiation,
cell viability decreased by over 80% within 3 days. MWCNT-HA also
greatly enhances the biosafety and compatibility of the drug,
improving the therapeutic efficacy. Lee synthesized MWCNTs
conjugated with thyroid-stimulating hormone receptor antibodies
(TSHR), which selectively accumulate in tumor sites and remain
for extended time (Figures 7C,D) (Lee et al., 2023). In BCPAP
xenograft mice, αTSHR-Cy5.5-MWCNT (1 mg/kg, i.v.) showed
predominant tumor accumulation at 24 h, with significantly
enhanced targeting (p = 0.038 vs. IgG-Cy5.5-MWCNT) (Figures
7A,B). This tumor-specific distribution guided subsequent laser
treatment timing. Upon laser irradiation, the conjugates induced
tumor cell ablation, minimizing non-specific damage, which
demonstrates a strong cytotoxic effect on thyroid tumor cells,
inhibiting their regeneration and delaying tumor recurrence.

FIGURE 7
In vivo biodistribution of αTSHR-Cy5.5-MWCNT. (A) IVIS images of major organs (T = tumor, L = liver, K = kidney, S = spleen, H = heart, Lu = lung)
24 h post-injection. (B) Tumor accumulation showed 1.22-fold increase for αTSHR-Cy5.5-MWCNT vs. IgG-Cy5.5-MWCNT (p = 0.0376), with no
significant changes in other organs. (C) Weekly tumor accumulation profile. (D) Time-course showing enhanced tumor targeting by αTSHR-Cy5.5-
MWCNT (p = 0.046, 0.049, 0.019, and 0.043 at 24, 48, 72, and 144 h, respectively) (reprinted with permission from Lee et al., 2023, licensed under
CC BY 4.0).
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2.5.2 Carbon dots (CDs)
CDs possess a large π-conjugated system with a core composed

primarily of graphitized sp2 carbon (Huo et al., 2021). Their shell
contains abundant functional groups, such as carboxyl, hydroxyl
and amine groups, which bring excellent water solubility and
facilitate the combination of CDs with therapeutic agents (Lagos
et al., 2023). Wang synthesized copper-doped Cu-CDs using urea
and ethylene glycol as carbon sources and copper sulfate as an active
dopant, employing one-step hydrothermal method (Wang et al.,
2024). Cu-CDs effectively inhibited the proliferation of breast cancer
cells (MDA-MB-231) by disrupting their malignant behavior.
CDs can convert NIR photons into heat and promote the
production of reactive oxygen species (ROS) in the surrounding
environment, leading to cell apoptosis and achieving tumor
treatment. Kim synthesized sulfur-doped CDs (S-CDs) with
strong NIR absorption, achieving a photothermal conversion
efficiency of 55.4% (Kim et al., 2021). When injected at a low
dose (45 μg/mL) and combined with moderate laser irradiation
(808 nm, 1.1 W cm−2), S-CDs could completely ablate cancer cells
with minimal side effects. CDs possess tunable size and structural
units, small volume, modifiability, good biocompatibility and low
toxicity. For example, Bao designed PEG-modified Cu-CD cross-
linked nanosheets, which effectively killed MCF-7 cells without
exhibiting toxicity towards healthy cells (Bao et al., 2018).
Additionally, Phuong developed a highly selective and sensitive
PTT using CDs for mitochondrial-targeted cellular imaging
(Phuong et al., 2020). The CDs were combined with TiO2

(C-CD/TiO2) to create a pH-responsive system that precisely
targeted the cell membranes and nuclei of acidic cancer cells,
effectively ablating the cancer cells and upregulating pro-
apoptotic markers within them. This system demonstrated
excellent targeting abilities for both bio-imaging and therapy.
These advantages enable functional CDs to serve as drug carriers.

2.5.3 Quantum dots (QDs)
QDs are constrained in three spatial directions. QDs exhibit

excellent optical stability and biocompatibility (Tade and More,
2025). The surface of QDs contains oxygen-rich functional groups
such as hydroxyl and carboxyl, which are soluble in water and
facilitate the application of QDs in biological systems. QDs also
possess NIR absorption properties, allowing them to generate
photothermal effect (Zhan et al., 2022). During localized
hyperthermia, QDs promote the generation of ROS, so QDs are
suitable for synergistic PTT and PDT. Tian synthesized DOX-ZIF-8/
GQD, which showed significant temperature increases under NIR
radiation (Iannazzo et al., 2017). The nanoparticles deeply penetrate
biological tissues and be absorbed by tumor tissues, where they
generate localized hyperthermia to kill tumor cells. QDs have a high
surface area-to-volume ratio, providing more active interactions
with the surrounding environment, which is also crucial for their
adsorption ability (Yang et al., 2023). By linking specific ligands or
antibodies to the surface of QDs, they can bind specific receptors to
tumor cells, achieving active targeting. For instance, Zhong
developed highly water-soluble (104 μg mL−1 at 25°C), highly
luminescent (quantum yields of 77%) graphene QD with folate
receptor targeting using folic acid as a precursor (Khodadadei et al.,
2017). These QDs demonstrated excellent fluorescence labeling and
targeted binding to breast and ovarian cancer cells expressing

different levels of folate receptors, without exhibiting cytotoxicity.
Interestingly, although the targeting mechanism is mediated by
folate receptor endocytosis, the QDs do not bind through the
pterin-folate receptor interaction. Instead, after thermal
decomposition of the pterin ring on the folate molecules, residues
remain on the surface of the QDs, interacting with organic
functional groups and promoting specific binding to folate
receptors on tumor cells, achieving targeted selectivity.
Additionally, the structure of QDs allows them to own higher
drug loads, making them more efficient in delivering
chemotherapeutic agents. The π-orbitals in the sp2-hybridized
QD lattice can also stack with aromatic rings in
chemotherapeutic drugs and enhance drug delivery without
covalent conjugation (Zhao et al., 2024b).

The above indicates that the functional efficiency of carbon
nanomaterials is usually improved through structural optimization,
doping with heteroatoms and multifunctional composites. Such as
reducing graphene oxide (GO) to regulate the sp2/s3 carbon ratio and
enhance the photothermal conversion efficiency (>40%), hollow
carbon spheres or mesoporous carbon enhance drug loading
capacity, nitrogen/sulfur doped carbon dots (N-CDs) enhance
NIR absorption and catalytic activity, achieving PTT/CDT
synergistic therapy, carbon based carrier loaded metal
nanoparticles (such as Au@C) enhance photothermal effect,
surface modify targeted molecules (such as folate) to improve
tumor selectivity and so on. The latest emerging technologies
include carbon nano intelligent response systems, such as pH/
photothermal dual controlled drug release and ultra small carbon
based quantum dots (<10 nm) to improve tumor penetration. The
development bottleneck is the unclear long-term metabolic
mechanism in the body and the batch stability of large-scale
preparation of carbon nanomaterials. Developing biodegradable
carbon based materials in the future and combining them with
AI to optimize the band structure will promote clinical translation.

3 Low-temperature-driven
multidimensional antitumor paradigm

The key to low-temperature PTT lies in how it is carried out at
relatively low temperatures (usually less than 42°C). Its advantage
lies in the ability to inhibit the synthesis of heat shock proteins,
reduce the heat resistance of tumor cells, thereby improving the
effectiveness of PTT and reducing the temperature required for
treatment. This has important value for the future clinical
translation of cancer PTT (Yan et al., 2024). Mild thermal stress
(42°C–45°C) can selectively lead ICD in tumor cells, release DAMPs
(such as CRT, HMGB1, ATP), promote DCs maturation and initiate
CTLs responses. Taking PDA as an example, its low-temperature
photothermal effect (ΔT ≈ 8°C–10°C) not only avoids upregulation
of HSP70, but also activates the cGAS STING pathway through
LMP, driving type I interferon secretion and transforming “immune
cold tumors” into T cell enriched phenotypes. This “heat immune
synergy” effect breaks through the local limitations of traditional
PTT and can significantly prolong survival when combined with
immune checkpoint inhibitors such as anti-PD-1. Abnormal
metabolism of tumor cells, such as the Warburg effect, leads to
microenvironmental acidification and immune suppression, and
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low-temperature PTT can break this vicious cycle throughmetabolic
intervention. For example, under NIR-II irradiation, Pd NSs block
the glycolytic pathway by inhibiting hexokinase 2 (HK2), reduce
lactate production, reverse M2 polarization of TAMs, and reduce the
expression of heat tolerant proteins, thereby increasing the
sensitivity of tumor cells to sublethal temperature rise by
3–5 times. This dual targeted strategy of “metabolism
hyperthermia” provides a new approach to overcome tumor
heterogeneity (Uson et al., 2022).

To achieve precise low-temperature PTT, a new generation of
intelligent materials (such as pH/ROS dual responsive
semiconductor nanoparticles) are activated specifically by the
lesion microenvironment, strictly limiting thermal effects to the
tumor area (spatial accuracy<200 μm) to avoid off target damage.
For example, CuS@MnO The core-shell structure generates heat in
situ under acidic and high H2O2 conditions, resulting in a
temperature gradient of 6°C–8°C between tumor and normal
tissue (Jin et al., 2024). However, clinical application still faces
the following challenges: lack of material biodegradability and
long-term toxicity assessment system; The dose-response
relationship between the low-temperature effect and immune
response is unclear; The establishment of scientific standards for
large-scale preparation processes and supervision is urgently
needed. This review calls for the establishment of three-level
evaluation indicators to replace traditional tumor inhibition rates:
(1) immunogenicity index (such as CD8+T cell infiltration rate); (2)
Depth of metabolic regulation (such as changes in lactate/ATP
ratio); (3) Induction rate of remote effect. In addition, exploring
the cross fusion of low-temperature PTT with epigenetic regulation
(such as HDAC inhibitors) or microbial therapy may open up a new
dimension of “photothermal microbiome immune”
multidimensional therapy. This paradigm shift not only drives
PTT from “rough thermal ablation” to “precise immune
metabolism regulation,” but also offers a multi-scale mode for
personalized tumor treatment.

4 Loading strategy and application of
photothermal agents on nanocarriers

Various integrated nanoplatforms have been developed by
loading photothermal agents onto multifunctional nanocarriers
or combining them with other therapeutic molecules, effectively
overcoming the limitations of single PTT (such as insufficient
penetration depth, drug resistance, off target damage). This
section focuses on the strategies and application progress of
PDA, SNPs, AuNPs, palladium nanosheets and carbon materials
as nanocarriers for loading photothermal agents or constructing
composite systems. Based on the physical and chemical properties
such as surface functional groups, porosity and plasma resonance
effects, different nanocarriers can adopt the following strategies to
achieve efficient loading and functional synergy of photothermal
agents: Ⅰ. Physical adsorption: Utilizing π - π stacking, hydrophobic
interactions, or electrostatic adsorption to load small molecule
photothermal agents (such as indocyanine green ICG) or drugs.
For example, PDA nanoparticles load doxorubicin (DOX) through
π-π interactions, achieving photothermal triggered drug release
(pH/NIR dual response) (Wang et al., 2022). Ⅱ. Chemical
coupling: Fixing targeted ligands or photosensitizers on the
surface of a carrier through covalent bonds (such as thiol gold
bonds, amino carboxyl condensation). For instance, surface
modification of AuNPs with HA targets tumor cells
overexpressing CD44, and covalently Ce6 to achieve
photothermal/photodynamic synergistic therapy (Liu et al., 2022).
Ⅲ. Encapsulation: Co-loading of photothermal agents and drugs is
achieved through mesoporous structure, core-shell design or
liposome encapsulation. Such as mesoporous CuS@SiO NPs
coated with DOX utilize NIR-II to trigger drug release and
enhance deep tumor killing (Li et al., 2022). Ⅳ. Composite
hybridization: Combining with other nanomaterials such as metal
organic frameworks (MOFs) and graphene to enhance
photothermal conversion efficiency or introduce catalytic

TABLE 3 The loading strategies, synergistic therapeutic mechanisms and application cases of five types of nanomaterials.

Nanocarriers Loading strategies Composite systems Synergy mechanisms Application cases

Polydopamine (PDA) Physical adsorption (drug/ICG)
Chemical coupling (targeting

peptide)

PDA@DOX-ICG (Ferreira et al.,
2021)

PDA-RGD-Ce6 (Li et al., 2023c)

pH/NIR dual responsive drug
release; Photothermal enhancement

of tumor permeability and
immunogenicity

Triple negative breast cancer
(DOX/PTT under NIR-I

excitation, inhibit lung metastasis)

Semiconductor NPs
(SNPs)

Chemical coupling (targeting
peptide)

Surface modification (antibody)

P@GMT-R (Li et al., 2022e)
SPN-PT (Yuan et al., 2022)

NIR-II photothermal triggered drug
release; Reversal of
immunosuppressive
microenvironment

Orthotopic osteosarcoma(NIR-II
penetrating the blood-brain
barrier, combined with

immunotherapy)

Au Nanomaterials Gold sulfur bond coupling
(photosensitizer)

Core-shell coating (drug)

AuNRs-Ce6 (Chuang et al., 2020)
AuNR@PAMAM-GX1 (Ye et al.,

2021)

Plasma resonance enhances ROS
generation; Photothermal/

chemotherapy/photodynamic three
mode treatment

Head and neck squamous cell
carcinoma (gold nanorods

combined with Ce6 to achieve in
situ ablation and distal effect)

Palladium nanosheets Surface adsorption (small
molecule drug)

Composite catalytic material

Pd@Gemcitabine (Wang et al.,
2020a)

CuGQD/PdNPs@PSi (Zhao et al.,
2023b)

Photothermal enhanced drug
internalization; Catalytic

decomposition of H2O2 to produce
oxygen to alleviate tumor

Hypoxia pancreatic cancer
(gemcitabine loading combined

with catalytic therapy)

Carbon Nanomaterials Covalently modified (targeted
molecules)

Composite magnetic particles

Graphene-QDs/DOX (Wang et
al., 2020b)

DOX @GQDs-PAMAM-β-CD
(Pooresmaeil et al., 2020)

Photothermal/magnetocaloric
synergistic heating; Carbon based
carrier enhances drug loading

stability

Melanoma (graphene quantum
dots combined with

magnetocaloric therapy to achieve
bimodal imaging guided PTT)
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functions. Table 3 summarizes the loading strategies, synergistic
therapeutic mechanisms and application cases of five types of
nanomaterials. Although loaded nanocarriers have shown great
potential, some key issues still need to be addressed, such as
loading efficiency and stability, penetration depth limitations,
metabolism and toxicity, and clinical translation bottlenecks. In
the future, intelligent responsive carriers will be developed to
achieve precise drug release. Build an integrated PTT
immunotherapy platform by combining mRNA vaccines or
CAR-T cell therapy. Using AI assisted design of nanocarrier
structures to optimize photothermal conversion efficiency and
biological distribution.

5 Conclusion and outlook

In recent years, functional nanomaterials havemade progress in the
field of tumor PTT, providing strategies to break through the limitations
of traditional cancer treatment. By combining efficient photothermal
materials with functional modification, researchers have successfully
developed nanodelivery system with targeted delivery, multimodal
imaging, synergistic therapy and so on. The materials can achieve
local high-temperature killing tumor cells under NIR light excitation,
while significantly improving tumor enrichment efficiency and
reducing damage to normal tissues through surface functionalization
(such as antibody and peptidemodification). In addition, the synergistic
application of nanomaterials with chemotherapy, radiotherapy and
immunotherapy further amplifies the anti-tumor effect, such as
activating the systemic anti-tumor immune response through
photothermal induced immunogenic cell death (ICD), providing the
possibility to inhibit metastasis and recurrence. Preclinical studies have
confirmed that some nanosystems exhibit significant advantages in
penetration depth, photothermal stability and biosafety, laying the
foundation for translational medicine. However, the clinical
translation of functional nanomaterials still faces multiple challenges.
Firstly, the long-term biocompatibility and metabolic pathways of
nanomaterials are not yet clear, and some metal based materials
have potential toxicity risks, which urgently require the development
of degradable or biologically inert carriers. Secondly, tumor
heterogeneity and complex microenvironments (such as hypoxia
and acidic pH) may weaken PTT therapy, requiring the design of
intelligent responsive nanomaterials to achieve on-demand release of
energy or drugs. Again, existing research has mostly focused on small
animal models, and the depth of light penetration, thermal diffusion
effect and large-scale preparation process of human tissues still need to
be systematically optimized. In addition, the targeting efficiency of
nanomaterials is limited by the accuracy of tumor vascular permeability
and surface modification, and real-time treatment monitoring needs to
be achieved by combining molecular imaging technology. Future
research directions include the followings: Ⅰ. Material innovation,
developing ultra efficient photothermal agents with NIR-II response
and utilizing theoretical calculation to accelerate material design; Ⅱ.
System integration, building an integrated diagnosis and treatment
platform, integrating photoacoustic imaging, photothermal/
photodynamic/immunotherapy synergistic therapy functions; Ⅲ.
Clinical adaptation, evaluating individualized treatment plans
through organoid or patient derived xenograft (PDX) models; Ⅳ.
Deepen the mechanism and analyze the molecular correlation

between tumor cell death and immune microenvironment
remodeling under photothermal stress. With the integration of
interdisciplinary technologies and the improvement of translational
medicine systems, functional nanomaterials are expected to promote
tumor PTT from the laboratory to clinical practice, opening up new
paths for precision oncology.
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