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Ovarian cancer (OC) remains one of the most lethal malignancies affecting
women, largely due to its asymptomatic onset and the consequent challenges
in early detection and diagnosis. This often results in delayed treatment and poor
clinical outcomes. Among gynecological cancers, OC exhibits the highest
mortality rate. While current therapeutic approaches such as surgery and
chemotherapy provide initial clinical benefit, they are frequently undermined
by high rates of recurrence and metastasis. Moreover, the pronounced
heterogeneity of OC further complicates treatment, highlighting the urgent
need for novel therapeutic targets and more effective strategies. The forkhead
box (FOX) family of transcription factors comprises a large group of proteins
involved in regulating gene expression across various biological processes.
Dysregulation of FOX family members has been implicated in aberrant cellular
behaviors, including uncontrolled proliferation, resistance to apoptosis,
enhanced invasiveness, metastatic potential, and the development of drug
resistance. Importantly, the functional roles of individual FOX proteins vary
significantly depending on the tumor context, reflecting the functional
diversity of this family. This review aims to provide a comprehensive overview
of the emerging roles of FOX family members in the pathogenesis and
progression of OC, as well as recent advances in FOX-targeted therapeutic
strategies.
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Introduction

Ovarian cancer (OC), a primary malignancy of the female reproductive system, ranks
among the most aggressive and fatal gynecologic cancers worldwide. Its clinical course is
marked by rapid progression, high relapse rates, and limited survival outcomes,
contributing to a notably high mortality rate (Stewart et al., 2019). The deep anatomical
location of the ovaries within the pelvic cavity often results in vague or asymptomatic early-
stage disease, and currently, there are no reliable or widely available screening tools for early
detection. Consequently, most patients are diagnosed at an advanced stage, when
therapeutic options are less effective and the 5-year survival rate drops to
approximately 30%–40%. The pathogenesis of OC is multifactorial, involving a complex
interplay of genetic mutations, hormonal influences, and environmental exposures.
Compounding its clinical challenges, OC is highly invasive and prone to early
metastasis, frequently spreading throughout the peritoneal cavity and to distant sites,
thereby complicating disease control and treatment strategies.

The forkhead box (FOX) family of transcription factors represents an evolutionarily
conserved group of proteins that play essential roles in regulating a wide range of cellular
processes (Laissue, 2019). This family consists of numerous members classified into
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19 subfamilies—such as FOXA, FOXB, and FOXC—based on
similarities in structure and function. FOX proteins are central to
many physiological processes, including embryogenesis, cellular
differentiation, metabolism, and immune regulation, and are
increasingly recognized for their involvement in cancer
development and progression (Golson and Kaestner, 2016).
Notably, FOX family members exhibit diverse and sometimes
opposing functions: while the FOXO subfamily is generally
associated with tumor suppression and regulation of apoptosis,
FOXM1 has been implicated in promoting cell cycle progression
and oncogenic transformation. Each FOX protein contains a
conserved DNA-binding domain that enables it to recognize
specific DNA sequences, functioning as a molecular switch that
controls the expression of downstream genes. Through this
mechanism, FOX transcription factors exert precise control over
cellular behavior and fate decisions, with dysregulation often
contributing to oncogenesis.

FOXA1

The FOXA family includes FOXA1 (also known as hepatocyte
nuclear factor 3A [HNF3A]); FOXA2 (also known as HNF3B) and
FOXA3 (also known as HNF3G) (Bernardo and Keri, 2012).
FOXA1 was first isolated from the liver (Bernardo and Keri,
2012). FOXA1 is located on chromosome 14q21.1. FOXA1 is
expressed in various organ tissues, including the pancreas, breast,
prostate, liver, lungs, brain, gastrointestinal tract, and kidneys
(Golson and Kaestner, 2016). The FOXA expression is relatively
low in normal ovarian tissues, but significantly increased in ovarian
cancer tissues (Wang K. et al., 2018; Sheta et al., 2021; Zheng et al.,
2020), and high FOXA expression is positively correlated with poor
prognosis (Wang K. et al., 2018). However, it should be emphasized
that the high FOXA1 expression is most evident in mucinous
ovarian cancer (Sheta et al., 2021; Karpathiou et al., 2017). In
addition, this study demonstrated that in normal structures,
ciliated fallopian tube epithelial cells, Walthard nests, and
transitional metaplasia within the mesothelial lining of the
fallopian tube express high levels of FOXA1 (Karpathiou et al.,
2017). In addition to its role as a classical transcription factor,
FOXA1 protein functions as a pioneer factor by interacting closely
with chromatin so as to promote the binding of other transcription
regulator, such as estrogen receptor (ER) and androgen receptor
(AR). Therefore, in breast cancer and prostate cancer, the high
expression of ER and AR is often accompanied by the high
expression of FOXA1 (Wang K. et al., 2018; Lupien et al., 2008;
Wang et al., 2009). Although the ER expression is extremely low in
normal ovarian tissues, it is significantly increased in ovarian cancer.
Unfortunately, there is currently insufficient evidence to confirm the
correlation between FOXA1 and ER expressions in ovarian cancer
and it is unclear whether the high FOXA1 expression and poor
prognosis in ovarian cancer are influenced by ER expression.

Currently, the regulation of the FOXA1 expression is affected by
diverse mechanisms such as acetylation (Lou et al., 2022) and
miRNA (Zheng et al., 2020) in ovarian cancer. Therefore,
targeting HDAC3 and LncRNA SNHG17 are the potential targets
for intervention in the FOXA1 expression. In addition, the loss of
expression of the transcription factor ID4 can increase the FOXA

expression, albeit the specific underlying mechanism remains
unclear (Table 1).

Pats studies have demonstrated that FOXA1, as a transcription
factor, affects ovarian cancer prognosis by upregulating gap junction
protein β-1 (GJB1) (Yang et al., 2021). The underlying mechanism
involves the “ECM receptor interaction” and “focal adhesion”
pathways. GJB1, a downstream signal of FOXA1, is a potential
therapeutic target. Wang et al. (Wang et al., 2017) reported that, in
FOXA1-silenced ovarian cancer cell lines, cell proliferation,
migration, and invasion are reduced. The apoptotic activity is
upregulated with the induction of the s-phase blockade. Silencing
of FOXA1 protein can reduce the expression of several factors,
including YAP, CDK1, CCND1, PI3K, E2F1, Bcl-2, and VEGFA
proteins. Past studies have also demonstrated that FOXA1 can
interact with the connective tissue growth factor (CTGF)
promoter, thereby influencing the development of drug resistance
in ovarian cancer (Wang et al., 2022) (Figure 1).

FOXC

The FOXC subfamily comprises FOXC1 and FOXC2, which are
predominantly expressed in the cardiovascular system (Tan et al.,
2024), lymphatic vasculature (Kurup et al., 2023), and ocular tissues
(Seifi and Walter, 2018). However, these transcription factors are
also present in other organs, including the reproductive, respiratory,
and digestive systems. Elevated levels of FOXC1 and FOXC2 have
been reported in various cancers, such as breast cancer,
hepatocellular carcinoma, and lymphoma (Wang T. et al., 2018;
Elian et al., 2018). These factors contribute to tumor progression by
promoting cell proliferation, metastasis, epithelial–mesenchymal
transition (EMT), angiogenesis, and lymphangiogenesis (Hollier
et al., 2013).

Wu et al. demonstrated that high FOXC1 expression may
facilitate EMT in OC cells, thereby accelerating tumor invasion
and metastasis (Wang L. Y. et al., 2016). This upregulation of
FOXC1 might be linked to increased levels of chromodomain
helicase DNA binding protein 1-like (CHD1L) in OC. Notably,
CHD1L overexpression enhances the production of circ-PTK2,
which acts as a molecular sponge for miR-639, ultimately resulting
in elevated FOXC1 expression. Lin et al. reported that
FOXC2 overexpression induces the expression of stanniocalcin,
which directly binds to integrin β6, activating the PI3K signaling
pathway. This activation upregulates lipid metabolism-related genes,
including UCP1, TOM20, and perilipin 1, thereby promoting lipid
metabolic processes. Furthermore, their study identified the FOXC2/
STC1/ITGB6 signaling axis as a contributor to cisplatin resistance
in vitro (LIN et al., 2022) (Figure 2).

Interestingly, high FOXC1 expression may serve as a marker for
benign ovarian tumors and correlate with a favorable prognosis in
OC (Wang L. Y. et al., 2016). This discrepancy indicates that the
precise role of FOXC proteins in OC remains to be fully elucidated.

FOXM1

FOXM1 is typically highly expressed in organs with rapid
cellular turnover, such as the small intestine, colon, and thyroid
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gland, but shows relatively low expression in normal ovarian tissue
(Wierstra and Alves, 2007). However, FOXM1 expression is
significantly upregulated in a wide range of cancers, including
OC (Golson and Kaestner, 2016; Wen et al., 2014). Data from
The Cancer Genome Atlas reveal that the FOXM1 gene locus is
amplified in approximately 12% of high-grade serous ovarian
carcinomas, a higher frequency than in any other tumor type.
This amplification correlates with increased FOXM1 expression
and poorer patient survival (Zhang et al., 2023). Among the
three known FOXM1 isoforms, FOXM1c is predominantly
expressed in epithelial OC. Moreover, the combined deletion of

tumor suppressors Rb1 and Tp53 synergistically induces
FOXM1 expression in mouse ovarian surface epithelial cells
(Barger et al., 2015). FOXM1 overexpression is observed not only
in serous OC (Zhang et al., 2023; Barger et al., 2021) but also in non-
serous subtypes such as clear cell carcinoma and endometrioid
carcinoma (Tassi et al., 2017).

High FOXM1 expression drives OC cell proliferation (Li et al.,
2020), invasion (Li et al., 2020), metastasis (Pratheeshkumar et al.,
2018; Zhang Z. et al., 2020; Parashar et al., 2020), and chemotherapy
resistance (Zhou Z. Y. et al., 2022; Nakagawa-Saito et al., 2023).
Additionally, FOXM1 supports the maintenance of OC stem cell

TABLE 1 Drug therapy targeting FOX family members in ovarian cancer.

Drug Target Target effect Biological effects References

DFOG FOXM1 Downregulation Inhibit the activity of stem cells Ning et al. (2014)

ATRA FOXM1 Downregulation Inhibit the activity of stem cells Young et al. (2015)

JQ1 FOXM1 Downregulation Pro-apoptosis Zhang et al. (2016), Chen et al.
(2025)

domatinostat FOXM1 HDAC inhibition anti-proliferation Nakagawa-Saito et al. (2023)

FDI-6 FOXM1 Suppress transcriptional activity Inhibit cell activity Lee et al. (2021)

Myricetin FOXM1 Ubiquitination degradation by downregulated
CD147

Inhibit cell vitality Chen L. et al. (2024)

NB-73 、NB-115 FOXM1 Ubiquitination degradation Pro-apoptosis Liu et al. (2024)

thiostrepton FOXM1 Downregulation Anti-resistance Westhoff et al. (2017)

apigenin FOXO3 Phosphorylation by AKT Oxidative stress and cell apoptosis Castrillon et al. (2003)

selinexor
(KPT-330)

FOXO1 Nuclear localization by inhibition of XPO-1 Inhibit cell vitality Corno et al. (2018)

Casticin FOXO3 Upregulation pro-apoptosis Jiang et al. (2013)

10,058-F4 FOXO Upregulation Anti-proliferation, pro-apoptosis, pro- autophagic
cell death

Ghaffarnia et al. (2021)

Melatonin FOXO3a Nuclear localization Prevention of cisplatin-induced loss of primordial
follicles

Jang et al. (2016)

Quercetin FOXO3a Nuclear localization by Inhibition of PTEN Reduced apoptosis of the growing follicles Li M. et al. (2021)

niraparib FOXQ Ubiquitination degradation Wu et al. (2024)

FIGURE 1
FOXA/FOXP/FOXQ1/FOXR2 and ovarian cancer.

Frontiers in Pharmacology frontiersin.org03

Zhang et al. 10.3389/fphar.2025.1604998

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1604998


properties (Ning et al., 2014; Young et al., 2015; Sher et al., 2022) and
contributes to metabolic reprogramming within the tumor
microenvironment (Wang Y. et al., 2016). Its downstream targets
include keratins KRT5 and KRT7 (Zhang Z. et al., 2020); glucose
transporters GLUT1 and hexokinase 2 involved in glycolysis (Wang
Y. et al., 2016); β-catenin, a key regulator of cell adhesion and Wnt
signaling (Pratheeshkumar et al., 2018; Chiu et al., 2015); survivin,
which inhibits apoptosis (Nakagawa-Saito et al., 2023); and cell cycle
regulators cyclin F and KIF20A (Li et al., 2020), as well as CDCA5
(Zhang et al., 2023). FOXM1 also regulates stemness markers such
as CD133, CD44, and ALDH1 (Ning et al., 2014).

Regulation of FOXM1 expression in OC

Upstream transcription factor regulation: The transcription
factor ETV5 is markedly overexpressed in OC and functions as a
key activator of FOXM1 transcription. By enhancing
FOXM1 expression, ETV5 promotes the upregulation of cell
adhesion molecules critical for tumor cell attachment, invasion,
and peritoneal dissemination (Llauradó et al., 2012). Notably,
FOXO3 also acts as a transcriptional activator of FOXM1, adding
another layer to FOXM1 gene regulation (Jiang et al., 2013).

Gene amplification and chromosome remodeling: According to
The Cancer Genome Atlas data, approximately 12% of high-grade
OCs exhibit amplification of the FOXM1 locus. Additionally,
epigenetic modifications such as histone deacetylation can alter
chromatin structure to increase FOXM1 transcriptional activity,
facilitating a more open chromatin conformation conducive to gene
expression.

Post-transcriptional regulation: Several non-coding RNAs
regulate FOXM1 expression by interacting with its mRNA,
primarily targeting 3′UTR. Circular RNAs such as circ_
0025033 promote FOXM1 upregulation in paclitaxel (PTX)-
resistant OC cells by sequestering miR-532-3p, thereby relieving

its inhibitory effect on FOXM1 and enhancing malignancy (Huang
et al., 2022). Similarly, circPVT1 binds miR-149-5p to increase
FOXM1 expression, influencing OC cell viability and migration
(Li M. et al., 2021). Long non-coding RNAs like lncRNA PVT1 act as
“molecular sponges” by binding miR-370, leading to the
derepression of FOXM1 and subsequent promotion of cell
proliferation, migration, and invasion (Yi et al., 2020).
Furthermore, microRNAs including miR-532-3p, miR-149-5p,
miR-370, and miR-877 directly target the 3′UTR of
FOXM1 mRNA, inhibiting translation or inducing degradation.
For instance, miR-877 overexpression suppresses OC cell
migration and invasion by downregulating FOXM1 (Fang
et al., 2021).

Post-translational modifications: FOXM1 protein function is
tightly controlled by various PTMs, such as phosphorylation,
ubiquitination, SUMOylation, and acetylation. Phosphorylation is
a pivotal mechanism regulating FOXM1’s nuclear localization and
transcriptional activity. Kinases involved include those in the PI3K/
AKT/mTOR, GSK-3β, and ERK pathways, which phosphorylate
FOXM1 to enhance its nuclear import and activation. Additionally,
ubiquitination, SUMOylation, and acetylation modulate
FOXM1 stability and activity, thereby fine-tuning its oncogenic
functions (Figure 3).

Current strategies to target FOXM1 in OC encompass multiple
approaches, including modulation of FOXM1 gene expression,
interference with post-transcriptional mechanisms, and direct
inhibition of FOXM1 protein function to block its binding to
downstream promoters.

The transcription factor ETV5 is significantly upregulated in
ovarian tumor samples and transcriptionally activates FOXM1.
Downregulation of ETV5 reduces FOXM1 expression,
highlighting a direct regulatory relationship. Moreover, increased
ETV5 expression correlates with elevated FOXM1 transcript levels
in ovarian tumor samples. ETV5 also modulates the expression of
cell adhesion molecules and improves the survival of OC cells under

FIGURE 2
FOXC and ovarian cancer.
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anchorage-independent conditions, suggesting a key role in
promoting tumor cell dissemination and peritoneal metastasis
(Llauradó et al., 2012).

Casticin, a natural multi-methoxy flavonoid, has demonstrated
anticancer activity in OC. Its pro-apoptotic effects are likely
mediated through activation of FOXO3a, which in turn inhibits
FOXM1 expression, thereby reducing cancer cell proliferation and
survival (Jiang et al., 2013).

CD147 contributes to cisplatin resistance in OC via a unique
mechanism involving proteasome-mediated degradation of
FOXM1. This regulation is closely linked to DNA damage repair
processes in OC cells. Licartin, an antibody drug approved by the
China National Medical Products Administration, targets
CD147 and may have therapeutic potential in enhancing cisplatin
sensitivity in OC (Wang M. et al., 2024). Additionally, myricetin, a
natural CD147 inhibitor, increases cisplatin sensitivity by indirectly
promoting FOXM1 degradation (Chen L. et al., 2024).

NB compounds exhibit selective inhibitory activity against
FOXM1, with minimal off-target effects on other FOX family
members. These compounds promote proteasome-mediated
degradation of the FOXM1 protein, resulting in decreased
expression at both the mRNA and protein levels and suppressing
the transcription of FOXM1-regulated oncogenic targets (Liu
et al., 2024).

Bromodomain and extraterminal (BET) proteins, which act as
epigenetic readers by recognizing acetylated lysine residues on
histones, regulate the transcription of oncogenes including
FOXM1. Inhibition of BET proteins suppresses the proliferation
and metastatic capacity of OC cells. Importantly, BET inhibitors can
restore drug sensitivity in resistant OC cells, including cisplatin and
PARP inhibitors (Andrikopoulou et al., 2021).

Domatinostat, a selective class I HDAC inhibitor currently in
clinical development, has shown promising activity in OC.

Moreover, domatinostat reduces both protein and mRNA levels
of FOXM1 and survivin, thereby impairing cell viability (Nakagawa-
Saito et al., 2023) (Table 1).

Both circ_0025033 and FOXM1 are highly expressed in OC
tissues and cell lines, while miR-532-3p is significantly
downregulated, especially in PTX-resistant OC cells. Knockdown
of circ_0025033 leads to reduced PTX resistance, diminished
migration and invasion capacity, and enhanced apoptosis in
PTX-resistant cells. Mechanistically, circ_0025033 functions as a
competing endogenous RNA by sponging miR-532-3p, thereby
upregulating FOXM1 expression. Silencing circ_0025033 relieves
this repression, increasing miR-532-3p availability and consequently
downregulating FOXM1, ultimately inhibiting the malignant
phenotype of PTX-resistant OC cells (Huang et al., 2022) (Table 2).

PVT1 is an ovarian-specific gene that is overexpressed in
multiple cancers, including OC. High PVT1 expression is
positively associated with poor prognosis in patients with OC.
Circular PVT1 enhances FOXM1 expression by binding to miR-
149-5p, thereby promoting the viability and migration of OC cells
(Li M. et al., 2021).

PVT1 also acts as a competing endogenous RNA by sponging
miR-370 through two binding sites. This interaction facilitates
malignant behaviors such as cell proliferation, migration, and
invasion. Notably, the introduction of miR-370 mimics reverses
these oncogenic effects, further confirming the regulatory axis of
PVT1 and miR-370 in OC (Yi et al., 2020). MiR-877 is expressed at
low levels in OC tissues and cell lines. Its overexpression significantly
inhibits cell migration and invasion. FOXM1 has been identified as a
direct target of miR-877, and miR-877 exerts its tumor-suppressive
function by downregulating FOXM1 expression in OC cells (Fang
et al., 2021).

Lysophosphatidic acid (LPA) upregulates the expression of
FOXM1 splicing variants in epithelial OC cell lines—OVCA433,

FIGURE 3
FOXM1 and ovarian cancer.
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CAOV3, and OVCAR5—in a time- and dose-dependent manner.
This upregulation is mediated through the LPA1–3 receptors and
involves both Gi–PI3K–AKT and G12/13–Rho–YAP signaling
pathways. Silencing FOXM1 significantly impairs tumor
formation and metastasis and downregulates FOXM1 target
genes involved in proliferation, migration, and invasion,
suggesting FOXM1 is a key effector in LPA-induced
tumorigenicity and ascites formation (Fan et al., 2015).

DFOG suppresses the stem cell-like characteristics of OC stem-
like cells by downregulating FOXM1 expression (Ning et al., 2014).
Aldehyde dehydrogenase 1 (ALDH1) activity is positively correlated
with OC cell stemness and regulates FOXM1 and
Notch1 expression. All-trans retinoic acid inhibits
ALDH1 expression, thereby impairing tumor formation, sphere
formation, cell migration, and invasion. Thus, all-trans retinoic
acid exerts antitumor effects by suppressing the ALDH1/FOXM1/
Notch1 signaling pathway (Young et al., 2015).

The synthetic compound XST-20 targets the DNA-binding
domain of FOXM1, effectively inhibiting its transcriptional
activity. Treatment of A2780 and SKOV3 OC cells with XST-20
results in decreased cyclin D expression and increased levels of
p21 and p27, leading to enhanced apoptosis and reduced cell
proliferation (Zhang et al., 2022). Thiostrepton, another FOXM1-
targeting agent, inhibits the expression of FOXM1 and its
downstream effectors CCNB1 and CDC25B, ultimately inducing
cancer cell death. However, the precise mechanisms underlying this
inhibition remain to be elucidated (Westhoff et al., 2017).

FOXO

The four subtypes of FOXO proteins—FOXO1, FOXO3,
FOXO4, and FOXO6—share high sequence homology and are
confirmed to be expressed in mammalian cells (Santos et al.,
2023). As critical transcription factors, FOXO proteins
translocate from the cytoplasm to the nucleus, where they
regulate the transcription of numerous target genes. In addition
to their role in transcriptional control, FOXO proteins also interact
with other cellular proteins to modulate their function and activity
(Liu et al., 2015).

FOXO3a is essential for ovarian follicle development
(Meerschaut et al., 2017). Female mice lacking Foxo3a exhibit a
distinctive ovarian phenotype characterized by widespread follicular
activation, leading to premature oocyte depletion, early loss of
follicular function, and secondary infertility. These findings

establish FOXO3a as a key inhibitory regulator of early follicular
activation during ovarian development (Castrillon et al., 2003).
FOXO1 is expressed in granulosa cells during fetal, prepubertal,
and adult stages in rhesus monkeys (Ting and Zelinski, 2017). In
contrast, FOXO3 expression is sparsely distributed in germ cells
undergoing active mitosis, and its expression markedly declines
following follicle formation in fetal macaque ovaries.
FOXO3 exhibits minimal inter-individual variability in
prepubertal ovaries and is generally absent in adult ovaries;
however, it remains detectable in specific follicular and stromal
cells within both prepubertal and adult ovaries.

FOXO3a expression is absent in serous tubal intraepithelial
carcinomas and high-grade serous carcinomas, whereas it is
present in normal fallopian tube epithelium (Van Der Ploeg
et al., 2022; Lu et al., 2012). A reduction in FOXO expression
has also been linked to the development of drug resistance in OC
(Shi et al., 2021).

FOXO activity is primarily regulated through post-translational
modifications, including phosphorylation, acetylation,
ubiquitination, methylation, glycosylation, and nitrosation
(Santos et al., 2023). Among these, phosphorylation plays a
central role in modulating FOXO function, with outcomes that
depend on the specific phosphorylation sites involved. The PI3K/
AKT signaling pathway is a major regulator of FOXO
phosphorylation, promoting its export from the nucleus to the
cytoplasm and thereby decreasing its transcriptional activity
(brown and Webb, 2018). Conversely, stress-activated kinases
such as JNK, MST1, and AMPK phosphorylate FOXO in a way
that enhances its nuclear retention and transcriptional activity.
Phosphorylated FOXO proteins are also more prone to
degradation via the ubiquitin–proteasome pathway, resulting in
reduced protein levels (Zeng et al., 2025). FOXO expression can
also be transcriptionally regulated. For instance, deprivation of
growth factors leads to a reduction in the mRNA levels of
FOXO1, FOXO3, and FOXO4 (Essaghir et al., 2009) (Figure 4).

Conversely, increased levels of reactive oxygen species, nutrient
deprivation, and DNA damage can activate FOXO to restore cellular
homeostasis (Wang Z. et al., 2016).

The following are the current strategies to therapeutically target
FOXO: (1) modulating upstream signaling pathways, such as PI3K/
AKT or AMPK, to influence FOXO activity; (2) acting directly on
FOXO proteins; (3) disrupting interactions between FOXO and its
binding partners; and (4) targeting FOXO downstream effectors.

4-Vinylcyclohexene diepoxide induces loss of follicular cells at
all developmental stages, contributing to ovarian dysfunction—an

TABLE 2 Effect of RNA interference on Fox members in ovarian cancer.

Type Target Target effect Biological effects References

LncRNA SNHG17 FOXA1 Upregulation proliferation, migration and invasion Zheng et al. (2020)

Circ_0025033 FOXM1 Upregulation PTX Chemosensitivity Huang et al. (2022)

Circular PVT1 FOXM1 Upregulation Promote cell vitality and migration Li J. et al. (2021)

LncRNA PVT1 FOXM1 Upregulation proliferation, migration and invasion Yi et al. (2020)

MiR-877 FOXM1 Downregulation Inhibit cell migration and invasion Fang et al. (2021)

circCELSR1 FOXR 2 Upregulation PTX Chemosensitivity Liang et al. (2023)
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effect potentially mediated by reactive oxygen species
overproduction and oxidative stress. Natural compounds such
as apigenin (Castrillon et al., 2003) and quercetin (Li J. et al.,
2021), which are active components of traditional Chinese
medicine, inhibit oxidative stress and apoptosis via the AKT/
FOXO3a signaling pathway, thereby alleviating ovarian
dysfunction.

Aulosirazoles B and C are compounds that activate FOXO,
promoting the nuclear accumulation of FOXO3a in OVCAR3 cells
(Davis et al., 2022). Exportin 1 (XPO1), also known as chromosome
region maintenance 1, is a nuclear export protein responsible for
transporting leucine-rich proteins from the nucleus to the
cytoplasm. XPO1 is also involved in the nuclear export of FOXO.
Studies have shown that the XPO1 inhibitor selinexor (KPT-330)
significantly enhances FOXO nuclear localization in OC cells,
inhibits cell proliferation, and increases tumor cell sensitivity to
platinum-based chemotherapy (Corno et al., 2018). However, it is
important to note that not all XPO1 inhibitors exert FOXO-
dependent inhibitory effects in OC.

FOXP

The FOXP family comprises four members: FOXP1, FOXP2,
FOXP3, and FOXP4. These transcription factors play critical roles
in regulating genes involved in immune responses, carcinogenesis,
development, differentiation, and angiogenesis (Zhou Y. et al.,
2022; Kim et al., 2019). FOXP1, FOXP2, and FOXP4 are highly
expressed in the nervous system, where they contribute to the
regulation of brain development and function (Co et al., 2020;
Hickey et al., 2019). FOXP3, although structurally similar to other
FOXP members, primarily functions in the development and
maintenance of regulatory T cells (Tregs), thereby sustaining

immunosuppressive activity (Chen S. et al., 2024). Notably,
FOXP proteins exhibit dual roles in tumorigenesis, acting either
as oncogenes or tumor suppressors depending on the cancer type,
and their expression is variably associated with patient survival
outcomes (Kamal et al., 2024; Akimova et al., 2024).

FOXP1 may exhibit functions similar to those of FOXA1, which,
as previously discussed, is closely associated with steroid hormone
receptors and may influence the progression of hormone-dependent
tumors. In breast cancer, FOXP1 expression is positively correlated
with estrogen receptor alpha (ERα) levels. Patients lacking both ERα
and FOXP1 exhibit significantly shorter progression-free survival
(Rayoo et al., 2009). Estrogen also induces FOXP1 expression
(Shigekawa et al., 2011).

In normal ovarian tissue, ERα expression is generally absent or
minimal, but it becomes markedly upregulated in OC. Higher ERα
expression correlates with increased malignancy. Conversely, ERβ is
highly expressed in normal ovarian tissue but significantly
downregulated in OC. The relative overexpression of ERα
compared to ERβ is considered a hallmark of OC. A study by
Zhang et al. (Hu et al., 2015) reported a progressive increase in
FOXP1 expression across normal ovarian tissue, benign tumors,
borderline tumors, and malignant OCs, while ERα expression
exhibited a decreasing trend. Interestingly, the expression pattern
of ERβ closely mirrored that of FOXP1. Furthermore, the study
observed a shift in FOXP1 localization from the nucleus to the
cytoplasm with increasing tumor malignancy, suggesting reduced
nuclear FOXP1 expression and increased cytoplasmic staining. This
pattern opposes that of ERα and aligns with ERβ expression. The
authors speculated that hypermethylation of the promoter regions of
FOXP1 and ERβ contributes to their downregulation in OC.
Estrogens appear to play a central role in modulating the
expression and activity of FOXP1 and ERβ, exerting inhibitory
effects on tumor proliferation and invasion. These findings

FIGURE 4
FOXO and ovarian cancer.
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suggest that targeting estrogen signaling pathways may offer novel
therapeutic strategies for OC (Figure 1).

Bioinformatics analyses demonstrated that FOXP4 mRNA
expression is significantly elevated in OC tissues compared to
normal ovarian tissue. Moreover, FOXP4 expression is higher in
patients with late-stage OC than in those with early-stage OC.
Inhibition of FOXP4 expression significantly suppresses cell
proliferation, although it has little effect on apoptosis.
Additionally, FOXP4 knockout markedly reduces the invasive
and metastatic potential of OC cells (Ji et al., 2024).

The expression of FOXP4 appears to be regulated by the Wnt/β-
catenin signaling pathway. Activation of this pathway using Wnt
agonists or β-catenin overexpression upregulates FOXP4 expression
in OC cells. FOXP4 itself acts as a positive regulator of Wnt/β-
catenin signaling. Silencing FOXP4 leads to reduced expression of
key downstream targets, including TCF/LEF1, CCND1, GSK3B, and
c-Myc. The mechanism by which FOXP4 enhances Wnt/β-catenin
pathway activity may involve PTK7 (Ji et al., 2024).

FOXP3 serves as a definitive marker of Tregs, which play amajor
immunosuppressive role in the tumor microenvironment of OC.
Tregs inhibit the activation and proliferation of immune effector
cells such as CD4+ and CD8+ T cells through the secretion of
immunosuppressive cytokines, including interleukin-10 and
transforming growth factor-beta. This suppressive activity
facilitates immune evasion by tumor cells, allowing OC to
progress and proliferate within the host (Shi et al., 2024).

FOXQ

FOXQ1 is upregulated in various malignancies, including
hepatocellular carcinoma, non–small-cell lung cancer, colorectal
cancer, and breast cancer. It plays a pivotal role in regulating
EMT, contributing to tumor invasion, metastasis, and poor
prognosis. FOXQ1 is not expressed in normal ovarian
epithelium, whereas its expression is significantly elevated in OC
tissues (Xiang et al., 2020; Luo et al., 2021). High FOXQ1 expression
is associated with reduced overall survival and progression-free
survival. In a study involving 10 OC cell lines, FOXQ1 was
found to be highly expressed in TOV-21G and OVCA-429 cells,
while its expression was relatively low in OVCA-R3 and TOV112D
cells. Both in vitro and in vivo experiments demonstrated that
FOXQ1 knockdown significantly impairs the invasive and
metastatic capabilities of OC cells (Wu et al., 2024).

Aberrant FOXQ1 expression influences several key signaling
pathways, including the Wnt, MAPK, and Hippo pathways. Among
these, the Wnt signaling pathway appears to be a primary mediator
of FOXQ1-induced invasion and metastasis in OC. Modulation of
FOXQ1 expression directly affects levels of β-catenin, c-Myc, and
cyclin D1, aligning with the downstream targets of other FOX family
members implicated in ovarian tumorigenesis. Notably, FOXQ1-
driven activation of the Wnt pathway is linked to LAMB3, a key
component in this signaling cascade.

The regulatory mechanisms of FOXQ1 expression involve both
transcriptional and post-transcriptional controls. Nucleus
accumbens-associated protein 1 (NAC1), a member of the bric-a-
brac-tramtrack-broad protein family, forms higher-order
transcriptional complexes by interacting with DNA-binding

cofactors. In OC, NAC1 overexpression is associated with
increased invasiveness, chemoresistance, and tumor recurrence.
NAC1 enhances cancer cell migration, promotes autophagy via
the high-mobility group box 1 pathway under cisplatin exposure,
supports cell survival, and suppresses senescence. NAC1 and
FOXQ1 are co-expressed in high-grade serous OC, and
FOXQ1 knockdown significantly diminishes the oncogenic effects
driven by NAC1 (Gao et al., 2014). Furthermore, Gao et al. reported
that BCL6 induces FOXQ1 transcription in OC cells via a
mechanism that depends on the transcriptional cofactor NAC1.
Several BCL6-binding sites have been identified in the
FOXQ1 promoter, with at least one being essential for
FOXQ1 activation (Gao et al., 2020). NAC1 is both necessary
and sufficient for maintaining FOXQ1 expression (Gao et al.,
2014), suggesting that disruption of NAC1 dimerization offers a
therapeutic strategy to downregulate FOXQ1.

FOXQ1 promotes OC progression through the LAMB3/Wnt/β-
catenin signaling axis. Poly (ADP-ribose) polymerase 1 (PARP1)
stabilizes FOXQ1 by inhibiting its proteasomal degradation via
suppression of the E3 ubiquitin ligase HSC70-interacting protein
(CHIP). In vivo combination therapy studies and clinical prognostic
analyses have shown that PARP1 facilitates OC progression by
stabilizing FOXQ1 and activating the LAMB3/Wnt/β-catenin
pathway (Luo et al., 2021). The PARP inhibitor niraparib
significantly suppressed tumor growth in a mouse xenograft
model of FOXQ1-expressing OC, suggesting that PARP
inhibition may offer therapeutic benefit by targeting FOXQ1 (Wu
et al., 2024). Mechanistically, FOXQ1 is a substrate of CHIP, and
PARP1 disrupts the FOXQ1-CHIP interaction, thereby preventing
proteasomal degradation and increasing FOXQ1 protein levels (Wu
et al., 2024). In addition to PARP1 inhibitors, other molecules such
as ubiquitin-specific peptidases, which regulate protein degradation,
may influence FOXQ1 expression. Although some ubiquitin-specific
peptidases promote FOXQ1 stability and expression (Wang J. et al.,
2024), further validation of their role in OC is warranted (Figure 1).

FOXR

The FOXR subgroup consists of FOXR1 and FOXR2, which
share 57.7% genetic similarity. FOXR1 is expressed in multiple
organs, including the nervous and reproductive systems (Cheung
et al., 2018). FOXR1 expression in ovarian granulosa cells is
significantly elevated in women aged 30–39 years (Liu et al.,
2023). The FOXR1 fusion gene has been implicated as an
oncogene in various malignancies, including neuroblastoma
(Katoh et al., 2013) and lymphoma (Pommerenke et al., 2016).
FOXR2, located on the X chromosome at Xp11.21, is considered a
testis-specific gene, as it is normally expressed only in the testes.
However, FOXR2 is also recognized as an oncogenic factor that,
when mutated or overexpressed, can contribute to tumorigenesis
(Laissue, 2019).

FOXR2 is frequently upregulated in OC, with this
overexpression correlating with poorer histological grades and
reduced survival rates (Li et al., 2018). Elevated
FOXR2 expression is associated with increased cell proliferation,
migration, EMT, and drug resistance. Silencing FOXR2 suppresses
these malignant phenotypes. Moreover, FOXR2 overexpression
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promotes angiogenesis by upregulating vascular endothelial growth
factor. This oncogenic effect may be mediated through the activation
of the Hedgehog signaling pathway, which is known to drive
angiogenesis, metastasis, and progression in OC. Inhibition of
this pathway using sonidegib reduces FOXR2-induced cell
migration and lung metastasis. Interestingly, the Hedgehog
pathway also regulates FOXR2 activity, suggesting a reciprocal
regulatory relationship in which FOXR2 functions as both an
upstream modulator and downstream effector of Hedgehog
signaling (Li et al., 2018). Additionally, FOXR2 parallels the
oncogenic activity of MYC. FOXR2 can directly bind to the
promoter region of the MYC gene, enhancing its transcriptional
activity. As a result, increased FOXR2 expression is often
accompanied by elevated MYC levels (Li et al., 2016; schmitt-
Hoffner et al., 2021). Given this relationship, the combined use
of FOXR2 inhibitors and BET inhibitors such as JQ1—which
suppress MYC transcription—may offer enhanced therapeutic
efficacy. However, direct evidence supporting this combination
strategy in OC is currently lacking (Figure 1) Small regulatory
RNAs also modulate FOXR2 expression in OC.

Zhang et al. identified FOXR2 as a novel target of miR-1252
(Zhang S. et al., 2020). In PTX-resistant OC cells, the circular RNA
circCELSR1 was found to upregulate FOXR2 by sponging miR-
1252. Furthermore, another circular RNA, circANKRD17 (also
known as circ0007883), stabilizes FOXR2 by binding to FUS, an
RNA-binding protein. CircCELSR1 is significantly overexpressed
in OC samples and is associated with PTX resistance (Liang et al.,
2023). Silencing circCELSR1 enhances the cytotoxic effect of PTX
in OC cells, induces G0/G1 cell cycle arrest, and
increases apoptosis.

Discussion

The FOX protein family comprises numerous members, and
current strategies for targeting FOX proteins primarily focus on
transcriptional regulation, translation, post-translational
modifications, and downstream signaling pathways. Although the
mechanisms governing transcription, translation, and post-
translational modifications are partially shared across FOX family
members, they also exhibit notable differences. For example,
phosphorylation, acetylation, ubiquitination, and proteasomal
degradation can modulate the expression and activity of various
FOX proteins. Therefore, manipulating post-translational
modifications may upregulate specific FOX proteins, but it could
also inadvertently alter the expression of other members, given the
overlapping regulatory mechanisms. The functional roles of FOX
proteins in tumors are diverse and context-dependent. In OC,
members such as FOXA1, FOXM1, FOXP4, FOXQ1, and
FOXR2 primarily exhibit oncogenic functions, whereas others
like FOXO and FOXP1 are associated with tumor-suppressive
effects. Combination therapies targeting downstream effectors of
FOX proteins represent a promising approach; however, the high
degree of heterogeneity in OC complicates the identification of
consistent downstream targets across different patients. This
heterogeneity may be a key factor contributing to the limited
clinical success of current FOX-targeted therapies. Given the
large number of FOX family members, existing research has

largely focused on elucidating the role of individual FOX proteins
in OC, resulting in a lack of comprehensive insight into the broader
functional landscape of the entire family. Future studies should aim
to evaluate the systemic effects of pharmacological interventions on
multiple FOX proteins, with particular emphasis on post-
translational regulatory mechanisms. Additionally, further
investigation is needed to identify and develop more specific
therapeutic agents that account for subgroup-specific differences
among FOX proteins.

Prospects

Despite significant advances in FOX-targeted therapies for OC,
several challenges remain: 1. Overlapping regulatory mechanisms
and functional divergence: Although many FOX proteins share
regulatory pathways, such as phosphorylation and deacetylation,
their functional outcomes can vary markedly. For instance,
phosphorylation of FOXO by AKT inhibits its nuclear
translocation and reduces its transcriptional activity, thereby
diminishing its tumor-suppressive function. In contrast,
phosphorylation of FOXM1 by AKT promotes its nuclear
localization and enhances its oncogenic activity. Thus, the PI3K/
AKT signaling pathway accelerates OC progression by
simultaneously suppressing FOXO and activating FOXM1.
However, it remains unclear whether this pathway similarly
influences other FOX family members, highlighting a significant
gap in our understanding. Comprehensive investigations into how
various signaling pathways and treatments affect all FOX proteins
are essential. 2. Limited clinical application of gene editing: Gene
editing technologies such as CRISPR/Cas9 have been widely
employed in basic research. For example, a knockout
FOXR1 zebrafish model has been established to study its
biological function (Cheung et al., 2018), and CRISPR/Cas9 has
been used to investigate the binding properties of FOXM1 to gene
promoters (Chen et al., 2025). However, the clinical translation of
such gene-editing approaches remains limited. 3. Challenges in drug
design and specificity: While computer-aided drug design has
yielded promising results in developing FOX-targeted therapies
(Zhou Z. Y. et al., 2022), few related clinical studies have been
conducted to date. Moreover, the structural similarity among FOX
family members presents a significant obstacle in identifying highly
specific inhibitors. Future efforts should focus on designing more
selective therapeutic agents to minimize off-target effects and
improve treatment efficacy.
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