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Introduction: Hepatocellular carcinoma is a highly aggressive and
heterogeneous malignancy with limited understanding of its heterogeneity.

Methods: In this study, we applied ten multi-omics classification algorithms to
identify three distinct molecular subtypes of HCC (C1–C3). To further explore the
immune microenvironment of these molecular subtypes, we leveraged single-
cell transcriptomic data and employed CIBERSORTx to deconvolute their
immune landscape.

Results: Among them, C3 exhibited theworst prognosis, whereas C1 andC2were
associated with relatively better clinical outcomes. Patients in the C3 group
exhibited a high burden of copy number variations, mutation load, and
methylation silencing. Our results revealed that compared to C1 and C2, C3
had a lower proportion of hepatocytes but a higher proportion of cholangiocytes
and macrophages. Through analyses of hepatocyte, cholangiocyte, and
macrophage subpopulations, we characterized their functional states, spatial
distribution preferences, evolutionary relationships, and transcriptional
regulatory networks, ultimately identifying cell subpopulations significantly
associated with patient survival. Furthermore, we identified key ligand-
receptor interactions, such as APOA1-TREM2 and APOA2-TREM2 in
hepatocyte-macrophage crosstalk, and VTN-PLAUR in cholangiocyte-
macrophage communication.

Discussion: Finally, we employed machine learning methods to construct a
prognostic model for HCC patients and identified novel potential compounds
for high risk patients. In summary, our novel multi-omics classification of HCC
provides valuable insights into tumor heterogeneity and prognosis, offering
potential clinical applications for precision oncology.
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1 Introduction

Hepatocellular carcinoma (HCC) is one of the most
aggressive and fatal malignancies worldwide, with a rising
incidence, particularly in the Asia-Pacific region where it is
commonly associated with chronic hepatitis B (Forner et al.,
2018; Bray et al., 2018; Yang et al., 2019). In recent years,
numerous novel therapeutic strategies targeting hepatocellular
carcinoma have been proposed and actively investigated (Wang
et al., 2024; Guo et al., 2023). Despite advances in early diagnosis
and treatment strategies, the prognosis remains poor, largely due
to the high recurrence rates and tumor heterogeneity inherent in
HCC (Yang et al., 2019). The complex biological and molecular
landscape of HCC leads to variable clinical outcomes, with
patients at the same clinical stage exhibiting vastly different
responses to therapy (Yang et al., 2019; Villanueva, 2019).
This heterogeneity complicates effective treatment strategies
and underscores the urgent need for improved classification
systems that can guide precision medicine.

Traditional approaches to HCC classification have largely relied
on histopathological features. These methods often fail to capture
the full complexity of HCC’s molecular landscape. Molecular
subtyping has emerged as a competent method with huge
potential in addressing tumor heterogeneity and determining the
applicability of precision treatment for patients with HCC. Over the
past decade, considerable research has been conducted to develop
molecular subtype systems based on RNA sequencing data. For
example, classifications have been proposed by Boyault et al.
(G1–G6) (Boyault et al., 2007), Chiang et al. (five subclasses)
(Chiang et al., 2008), Hoshida et al. (S1–S3) (Hoshida et al.,
2009), Désert et al. (four subclasses) (Désert et al., 2017), and
Yang et al. (C1–C3) (Yang et al., 2020). While these molecular
subtype systems have been proposed for HCC, most have been
developed using bulk tissue samples and do not fully account for the
spatial and cellular heterogeneity present within the tumor. The
combination of single-cell analysis with multi-omics profiling
presents a promising strategy to refine these subtyping systems,
enabling the identification of more precise molecular subtypes that
reflect the true complexity of HCC.

In this study, we constructed a comprehensive multi-omics
molecular classification system for HCC by integrating multi-
omics and scRNA-seq data. Through the analysis of molecular
and immune profiles of patients, we partially revealed the
differences in the tumor microenvironment (TME) among
different subtypes, which may help explain the prognostic
disparities among patients (Wu et al., 2023). This integrated
approach will provide a deeper understanding of the underlying
biology of HCC, with the potential to inform personalized treatment
strategies and improve patient outcomes.

2 Methods

2.1 Data collection

Gene expression data (raw counts), methylation data, copy
number variation (CNV) data, mutation data, clinical data, and
sample information of TCGA-LIHC cohort were downloaded from

The Cancer Genome Atlas (TCGA) website (https://portal.gdc.
cancer.gov/repository). Raw counts were transformed into TPM
values for subsequent analysis.

The raw data for single-cell sequencing of HCC (GSE156625)
(Sharma et al., 2020) were downloaded from SRA Run Selector
(https://www.ncbi.nlm.nih.gov/Traces/study/?acc=PRJNA658535&o=
acc_s%3Aa).

2.2 Multi-platform integrative clustering
using MOVICS

To identify the subtypes of HCC by integrating multi-omics data
from various molecular platforms, we utilized the MOVICS package
(version 0.99.17) (Lu et al., 2021) in R, which incorporates ten
machine learning based algorithms: Consensus Clustering,
iClusterBayes, iClusterPlus, Similarity Network Fusion, Non
negative Matrix Factorization, k-means clustering, Network based
Stratification, Multi-Omics Factor Analysis, PINSPlus, and CIMLR.
The mRNA expression (Transcripts per million, TPM) data, DNA
methylation data, CNV data, mutation data from TCGA-LIHC were
used as input.

For the mRNA data, probes with >75% missing values were
excluded. The mRNA data were log2 transformed. Genes with a
standard deviation <1.0 across all tumor samples were filtered out
from the mRNA datasets.

Methylation data were processed using the ChAMP package
(version 2.21.1) (Tian et al., 2017) in R. Methylation probes from
the Illumina Infinium 450k arrays with >20%missing values were
removed, along with probes corresponding to SNPs and sex
chromosomes. For the remaining methylation probes, NA
values were imputed using the champ.impute function, and
correction was performed using the champ.BMIQ function.
Finally, the median absolute deviation (MAD) of the
methylation values was calculated, and the top
1,000 methylation probes with the highest MAD values were
selected as input for MOVICS.

CNV data were analyzed using GISTIC 2.0 (Mermel et al., 2011).
We used the CN values of significantly amplified and deleted regions
from new_all_lesions.conf_99 as input for MOVICS.

For the mutation data, we used a mutation matrix of driver
mutations as input. The information on driver mutations in TCGA-
LIHC was obtained from the Broad Institute’s GDAC Firehose
platform (https://gdac.broadinstitute.org/runs/analyses__latest/
data/LIHC/20160128/) and was identified using the MutSig
algorithm (version 2.0) (Network, 2011).

It is widely acknowledged that the optimal number of
clusters should be sufficiently small to minimize noise, yet
large enough to preserve essential biological information.
Therefore, we utilized the “getClustNum” function from the
MOVICS package to estimate the number of subtypes. This
estimation was based on multiple criteria, including the
Clustering Prediction Index (CPI), Gap Statistics, and
Silhouette Score. We also considered the molecular
characteristics of the subgroups across different clustering
numbers. Based on these integrative evaluations, we
ultimately determined that the samples could be categorized
into three distinct subtypes.
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2.3 Molecular characteristics of multi-
omics subtypes

For the transcriptomic data, we applied the ssGSEA algorithm to
calculate the enrichment score of each pathway in each sample,
thereby assessing the activity level of each pathway in
individual samples.

To identify the molecular features of each multi-omics subtype,
we modified the source code of the clinicalEnrichment function in
the maftools package (Mayakonda et al., 2018), enabling its
application to copy number data and methylation data.

For the identification of subtype specific driver mutations, we
utilized the clinicalEnrichment function from the maftools package
and visualized the results using plotEnrichmentResults in the
maftools package.

For subtype specific CNV data, we used the discrete values from
the new_all_lesions.conf_99 file in the GISTIC results as input. First,
we converted these values into a matrix representing amplification/
deletion or no amplification/deletion, followed by analysis using the
modified clinicalEnrichment source code, and visualized the results
with plotEnrichmentResults in the maftools package. The burden of
copy number loss or gain was calculated as the total number of genes
with copy number changes at the focal and arm levels.

For the methylation data, we identified subtype specific
methylation silenced genes. We applied a previously published
method to identify methylation silenced genes (Network et al.,
2017). The complete workflow is shown in Supplementary Figure
S1. Initially, we excluded SNPs and DNA methylation probes
associated with the X or Y chromosomes. Then, we focused on
probes situated within the promoter region, defined as 1,500 bp
upstream and downstream of the transcription start site. Next, we
removed CpG sites that were methylated in normal tissues, with an
average β-value exceeding 0.2. Following this, we applied a β-value
threshold of >0.3 to classify the DNA methylation data, designating
sites as methylated, while excluding CpG sites methylated in fewer
than 5% of tumor samples. For each probe/gene pair, we
implemented the following procedure: 1) tumor samples were
categorized into methylated (β ≥ 0.3) and unmethylated (β < 0.3)
groups; 2) the mean expression levels for both groups were
computed; 3) the standard deviation of the expression values in
the unmethylated group was determined. Subsequently, we selected
probes where the mean expression in the methylated group was at
least 1.64 standard deviations lower than the mean expression in the
unmethylated group. A tumor sample was marked as epigenetically
silenced if: a) it belonged to the methylated group and b) the
expression of the corresponding gene was lower than the average
expression in the unmethylated group. When multiple probes were
linked to the same gene, samples that were labeled as epigenetically
silenced in more than half of the probes were also classified as
epigenetically silenced at the gene level. Finally, we quantified the
methylation silencing burden for each patient by calculating the
number of methylation silenced genes in each sample.

2.4 Single-cell RNA-Seq data processing

We utilized the humanHCC single-cell dataset fromGSE156337
(Sharma et al., 2020). A detailed overview of the entire single-cell

analysis workflow is provided in Supplementary Figure S2. We
processed the single-cell data using Scanpy (version 1.9.6) (Wolf
et al., 2018) in python and computed the proportions of counts for
mitochondrial genes for all cells using scanpy.pp.calculate_qc_
metrics. We applied the following filtering criteria (Forner et al.,
2018): cells with fewer than 200 expressed genes (Bray et al., 2018);
genes detected in fewer than 30 cells (Yang et al., 2019); cells with
more than 5% of their counts from mitochondrial genes (Wang
et al., 2024); cells with total counts per cell greater than 4000 (Guo
et al., 2023); doublet cells were filtered using Scrublet (version 0.2.3)
with default parameters, except that a fixed random seed (random_
state = 112) was set (Scrublet et al., 2019). The total expression levels
of each cell were normalized and log transformed using the
scanpy.pp.normalize_total and scanpy.pp.log1p functions. The
top 3,000 highly variable genes were selected using
scanpy.pp.highly_variable_genes, and the expression values were
scaled to a maximum of 10 using scanpy.pp.scale. The scVI (single-
cell Variational Inference) package (version 0.20.3) (Lopez et al.,
2018) was applied to correct for batch effects. Subsequently,
dimensionality reduction was performed on the cells’
representations in the latent space using scanpy.pp.neighbors and
scanpy.tl.umap, followed by visualization using UMAP (Uniform
Manifold Approximation and Projection). Cell subpopulations were
identified using scanpy.tl.leiden. First, we use PTPRC, CD3D,
CD8A, CD8B, CD4, FOXP3, NKG7, GNLY, MS4A1, and CD79A
to determine whether a cell subpopulation belongs to the lymphoid
lineage. CD14, FCGR3A, XCR1, LAMP3, C1QA, CD68, CD163, and
TPSAB1 are used to identify cells of the myeloid lineage. PECAM1 is
used to identify endothelial cells. COL1A1 and FAP are used to
identify fibroblasts. ACTA2 is used to identify hepatic stellate cells
(HSCs). We then performed scanpy.tl.leiden separately on each of
these groups and classified them into different cell subpopulations
based on distinct markers and functional scores. Subsequently, we
used the reticulate package (version 1.34.0) (Kevin et al., 2024) in R
to call the anndata package (version 0.10.5.post1) (Virshup et al.,
2024) in Python to read the h5ad file generated by Scanpy and
converted it into Seurat (version 5.0.1) (Hao et al., 2024) format. We
obtained the HALLMARK database using the.get_gmt function
from gseapy (version 1.1.3) (Fang et al., 2023) and performed
HALLMARK gene set scoring using the tl.score_genes function
from the scanpy package. Based on our identified cell subtypes,
we applied the FindAllMarkers function from the Seurat package to
identify the expression characteristics of each cell
subgroup. Subsequently, we calculated the average expression of
these markers across all cell types to generate the marker gene
matrix, which was then used as the input for CIBERSORTx (https://
cibersortx.stanford.edu/) (Newman et al., 2019).
Monocle3 R package (https://cole-trapnell-lab.github.io/
monocle3/) was used for pseudotime trajectory analysis (Qiu
et al., 2017). All pseudotime associated gene modules were
subjected to KEGG enrichment analysis using DAVID (Bt et al.,
2022) (https://davidbioinformatics.nih.gov/home.jsp) to elucidate
their functions. For functional analysis of each cell
subpopulation, we first identified cell markers using
FindAllMarkers, followed by KEGG pathway enrichment analysis
through GSEA using the ClusterProfiler (Xu et al., 2024) R package.
For survival analysis based on cell proportions from the
CIBERSORTx results, we used the survival package (Therneau,
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2024) in R. Samples were stratified into groups based on the median
value, and significance was assessed using the log-rank test.

2.5 Single-cell RNA velocity analysis

To analyze RNA velocity, we utilized scVelo (version 0.3.3)
(Bergen et al., 2020) following a standardized workflow. First, we
used the output from CellRanger as input and processed the aligned
single-cell RNA sequencing data with velocyto.py (La Manno et al.,
2018) to generate a loom file for each sample. Each loom file
contained spliced and unspliced transcript counts, which were
subsequently integrated with the corresponding single-cell
sequencing data. Next, we processed these data using the default
pipeline of scVelo and employed the stochastic model to infer
transcriptional dynamics.

2.6 Gene regulatory network analysis

We performed Single-cell regulatory network inference and
clustering (SCENIC) analysis using pySCENIC (v0.12.1) to
reconstruct transcriptional regulatory networks. The relationships
between transcription factors (TFs) and their downstream target
genes were identified based on hg38_10kbp_up_10kbp_down_full_
tx_v10_clust.genes_vs._motifs.rankings.feather and motifs-v10nr_
clust-nr.hgnc-m0.001-o0.0.tbl, following the guidelines provided
in the pySCENIC documentation (https://github.com/aertslab/
pySCENIC). The analysis was conducted using the raw count
matrix as input, with default parameters. Initially, co-expression
modules were constructed, and the regulatory relationships between
TFs and their target genes were inferred using GRNBoost. Next,
RcisTarget was employed to identify regulons—TFs with direct
target genes—by integrating motif enrichment analysis. Finally,
the regulon activity in individual cells was quantified using
AUCell. For the analysis of transcription factor regulatory
patterns, we used the NMF package (version 0.26) (Gaujoux and
Seoighe, 2010) in R. Rank estimation for NMF was performed using
the nmfEstimateRank function with the Lee method (method =
“lee”) over a rank range of one–6, with 30 runs (nrun = 30) and a
fixed seed (seed = 10). The cophenetic correlation and silhouette
consensus scores were extracted to assess clustering stability. We
performed NMF using the nmf function from the NMF package
with the optimal rank determined based on cophenetic correlation
and silhouette consensus scores. We then extracted the basis matrix
to analyze TFs expression patterns.

2.7 Cell-cell communication analysis

We used the CellChat (Jin et al., 2025) algorithm (https://github.
com/jinworks/CellChat, version 2.1.2) to elucidate cell-cell interactions.
Following the standard workflow, we transferred the count data from
Seurat into CellChat for further analysis. Utilizing CellChat’s built-in
ligand-receptor database, we inferred potential intercellular
communications. The communication probabilities and associated
pathways were then computed using the “computeCommunProb”
and “computeCommunProbPathway” functions.

2.8 Construction of the prognostic
scoring system

To more accurately assess the prognosis of patients with
different subtypes and enhance its applicability in clinical
practice, we developed a prognostic scoring system. First, we
performed univariate Cox regression analysis to identify genes
significantly associated with prognosis (P < 0.01). Subsequently,
we split the TPM expression data of the TCGA-LIHC cohort into a
70% training set and a 30% test set. Then we applied least absolute
shrinkage and selection operator (LASSO) Cox regression analysis
with 10 fold cross validation using the “glmnet” package in R to
select the optimal prognostic gene signatures associated with HCC
(Friedman et al., 2010). The prognostic score was calculated based
on the relative expression levels of the selected gene signatures and
their corresponding Cox regression coefficients, using the
following formula:

risk score � ∑
n

i�1
Coef i × Expri( )

where Coefi represents the LASSO Cox coefficient of gene signature
i, and Expri denotes the expression level of the gene in patient i.
Based on the median prognostic score, patients were classified into
high risk and low risk groups. To further evaluate the predictive
capability of the prognostic score, we performed univariate and
multivariate Cox regression analyses incorporating several key
clinical features from the TCGA dataset.

2.9 Potential therapeutic sensitivity
assessment

To further evaluate the differences in therapeutic sensitivity
among different subtypes of HCC patients, we first collected several
therapy specific signatures, including immune inhibited oncogenic
pathways, signatures related to epidermal growth factor receptor
(EGFR) targeted therapy, and signatures associated with
radiotherapy, from a previous study (Hu et al., 2021)
(Supplementary Table S7).

We assessed their levels using the ssGSEA method in GSVA R
package (Sonja et al., 2013). Subsequently, we screened potential
sensitive drugs for patients with different risk levels. The expression
profile data of human cancer cell lines (CCLs) were downloaded
from the Broad Institute’s Cancer Cell Line Encyclopedia (CCLE)
(Ghandi et al., 2019). Drug sensitivity data for CCLs were obtained
from the Cancer Therapeutics Response Portal (CTRP) version 2.0
(https://portals.broadinstitute.org/ctrp) and the PRISM
Repurposing dataset (19Q4; https://depmap.org/portal/prism/).
This dataset provides area under the curve (AUC) values as a
measure of drug sensitivity, where lower AUC values indicate
increased sensitivity to treatment. Compounds with more than
20% missing AUC values were excluded. Next, K-nearest
neighbor imputation was applied to impute the missing AUC
values of the remaining compounds.We then used the
pRRophetic package (Geeleher et al., 2014) to construct a ridge
regression model between the CCLs expression profiles and drug
sensitivity AUC values, and subsequently performed drug sensitivity
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prediction on the TPM data from TCGA.We subsequently retrieved
the target information of potential sensitive drugs from DrugBank.
Using the TCGA-LIHC count data, we analyzed the differential
expression of these targets between tumor and normal tissues, as
well as between high risk and low risk groups.

3 Results

3.1 Multiomics consensus prognosis-related
molecular subtypes of HCC

The workflow of this research is shown in Figure 1. In this study,
by integrating multi-omics data, we selected a total of 352 patients
for further analysis (Supplementary Table S1). We try to identify
distinct multi-omics molecular subtypes (molecular expression data,
encompassing mRNA, methylation, CNV, and somatic mutations)
of HCC by integrating the results of ten different multi-omics
clustering algorithms. To determine the optimal number of
clusters, we evaluated the clustering stability and structural
quality across a range of cluster numbers (k = 2–8). The
getClustNum function from the MOVICS package suggested that
k = 2 was the optimal choice, supported by a high CPI, indicating
excellent clustering stability (Supplementary Figure S3A). However,
the corresponding Gap statistics was relatively low, suggesting
limited discriminatory power. To address this, we explored

solutions with higher cluster numbers. In the three cluster
solution, Cluster one exhibited expression patterns in both the
transcriptome and methylation profiles that were similar to, yet
distinct from those of the other two clusters (Figure 2A). This
suggests that Cluster 1 may represent a “transitional” state with
potential biological relevance. Notably, Silhouette analysis further
supported the three cluster model: while Cluster two exhibited
relatively low silhouette width, which may be attributed to
internal heterogeneity, Clusters one and three showed moderate
to high silhouette values, indicating that these groups are well
separated and internally coherent (Supplementary Figure S3B).
The average silhouette width across all samples also indicated a
reasonable clustering structure. Although increasing the number of
clusters could yield finer stratifications, it would also substantially
increase the complexity of downstream analyses, including
functional annotation, biological validation, and clinical
interpretation. Moreover, both the CPI and Gap statistics showed
no substantial improvement beyond three clusters (Supplementary
Figure S3A). Therefore, we selected the three cluster solution as it
provides a balanced trade off between biological separability,
clustering stability, and analytical feasibility for subsequent
investigations. By analyzing the results of consensus clustering,
we conclude that our classification outcomes are robust and
represent a consensus across multiple algorithms (Figure 2B).
Survival analysis revealed significantly different prognoses among
the molecular subtypes, with patients in the C3 subtype exhibiting

FIGURE 1
The workflow of this study.
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the worst prognosis (p = 0.007; Figure 2C). Patients in the
C3 subtype also exhibited a strong association with higher Stage
T, more advanced overall stage, higher AFP levels, and a higher
prevalence in females (Figure 2D).

3.2 Molecular characteristics of multi-
omics subtypes

First, by comparing the proportion of methylation silencing and
CNV, we found that the vast majority of methylation silenced genes
and CNV were significantly enriched in C3 patients, whereas no
subtype specific methylation silencing or CNV were observed in
C1 patients (Figures 3A, B). Next, we analyzed the subtype specific
mutations. C1 patients exhibited fewer subtype specific mutations
with relatively low frequencies. However, an interesting pattern
emerged: C2 patients had a significantly higher frequency of
CTNNB1 mutations, while C3 patients exhibited significantly
more TP53 mutations (Figure 3C).

We then calculated the copy number burden, mutation burden,
and methylation silencing burden for each subtype (Figure 3D). The
results showed that C3 patients had significantly elevated focal and
arm level CNV burdens, mutation burdens, and methylation
silencing burdens (P < 0.05).

Finally, we performed ssGSEA to obtain HALLMARK scores for all
patients. The results indicated that C1 patients exhibited the highest levels
of HALLMARK_COAGULATION, HALLMARK_UV_RESPONSE_
DN, HALLMARK_REACTIVE_OXYGEN_SPECIES_PATHWAY,
and HALLMARK_INTERFERON_ALPHA_RESPONSE. In
C2 patients, proliferation and immunity related pathways were
downregulated, while metabolism related pathways (e.g.,

HALLMARK_OXIDATIVE_PHOSPHORYLATION, HALLMARK_
BILE_ACID_METABOLISM, HALLMARK_PEROXISOME) were
significantly upregulated. In C3 patients, both proliferation related
(HALLMARK_MYC_TARGETS_V1, HALLMARK_MYC_
TARGETS_V2, HALLMARK_E2F_TARGETS) and immunity related
pathways (e.g., HALLMARK_NOTCH_SIGNALING, HALLMARK_
IL6_JAK_STAT3_SIGNALING, HALLMARK_ALLOGRAFT_
REJECTION) were highly activated, whereas metabolism related
pathways were downregulated (Figure 3E).

3.3 TME characteristics of multi-
omics subtypes

First, we compared the expression levels of MHC-I, MHC-II,
immunoinhibitory molecules, and immunostimulatory molecules
across different subtypes. We found that these molecules exhibited
the highest expression levels in C3 patients, followed by slightly
lower levels in C1 patients, and the lowest expression levels in
C2 patients (Figure 4A). To further investigate the differences in the
TME among different subtypes, we focused on the cellular level
variations across subtypes. We first performed batch effect
correction and cell type annotation on the human HCC single-
cell dataset GSE156337 (Figure 4B). The correspondence between
each cell type and its markers is shown in Supplementary Figure S4.
We used the FindAllMarkers function in Seurat to identify marker
genes for all cell subpopulations and applied them to CIBERSORTx
for deconvolution in the TCGA-LIHC dataset. (Supplementary
Table S2). Our analysis revealed that the predominant cell types
across all patients were macrophages, hepatocytes, and
cholangiocytes (Figure 4C; Supplementary Table S3). Notably,

FIGURE 2
The multi-omics integrative subtypes of TCGA-LIHC. (A) Comprehensive heatmap of consensus ensemble subtypes, incorporating mRNA
expression, DNA methylation, CNV, and mutations. (B) Consensus clustering matrix for the three novel prognostic subtypes based on 10 clustering
algorithms. (C) Kaplan-Meier survival analysis of the consensus ensemble subtypes. (D) Association between the three subtypes and clinical
characteristics.
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FIGURE 3
Molecular Characteristics of Multi-Omics Integrative Subtypes. (A) subtype specific methylation silenced genes: each row represents a gene that is
methylation silenced in a specific subgroup. (B) subtype specific CNV Regions: Each row represents a chromosomal region with significant copy number
alterations. The y-axis indicates whether the region underwent amplification or deletion, along with the chromosome number and coordinates. (C)
subtype specific Mutations: Each row represents a mutated gene. In (A), (B) and (C), the x-axis represents the proportion of samples exhibiting the
alteration. The right side colored sections indicate the proportion of methylation silenced genes, CNV alterations or mutations occurring in the given
subtype, while the left side gray section represents the proportion in patients outside this subtype. (D) Genomic and Epigenomic Alteration Burden: The
first row shows the burden of focal CNVs in each subtype, the second row represents the burden of arm level CNVs, and the third row displays the
mutation burden andmethylation silencing burden for each subtype. (E) subtype specific Significantly Upregulated HALLMARK Pathways: Each row in the
heatmap represents the average level of a specific HALLMARK pathway within a subtype, with red indicating high levels and blue indicating low levels. (ns,
not significant; *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001; ****, P ≤ 0.0001).
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compared to C1 and C2 patients, C3 patients exhibited a
significantly lower proportion of hepatocytes and a significantly
higher proportion of cholangiocytes and macrophages (Figures
4C,D). Additionally, CD4 T cells, B cells, regulatory T (Treg)
cells, HSCs, and mast cells were significantly enriched in
C3 patients. However, no significant differences in the proportion
of CD8 T cells were observed among the subtypes (Figure 4D).

3.4 Diversity and dynamics of macrophages
in the HCC TME

To delineate the heterogeneity of macrophages in HCC, we
extracted 2,615 macrophages from the single-cell dataset and
performed reclustering, ultimately identifying five distinct
macrophage subpopulations. Based on classical macrophage
markers and differentially expressed genes among the
subpopulations, we designated these clusters as Macro_0_CD63,
Macro_1_C1QA, Macro_2_SPP1, Macro_3_APOA2, and Macro_
4_TMSB10 (resolution = 0.4) (Figures 5A, B). RNA velocity analysis
suggested that Macro_4_TMSB10 serves as the differentiation origin

of all macrophages, with two major differentiation trajectories. In
the first trajectory, Macro_4_TMSB10 gradually evolves into
Macro_3_APOA2, then transitions into Macro_2_SPP1, and
ultimately differentiates into Macro_1_C1QA. The second
trajectory involves the differentiation of Macro_4_TMSB10 into
Macro_0_CD63 (Figure 5A).

The proportions of different macrophage subpopulations varied
across peritumoral tissue, the periphery of HCC, and the tumor core
(Figure 5C). Macro_4_TMSB10 was predominantly enriched in
peritumoral tissue, while Macro_3_APOA2 was enriched in both
peritumoral tissue and the tumor core. In contrast, Macro_2_
SPP1 was exclusively enriched in the tumor core, whereas
Macro_0_CD63 and Macro_1_C1QA were primarily enriched in
the tumor periphery. Functionally, Macro_2_SPP1 exhibited the
highest M2 polarization and angiogenesis scores, whereas Macro_0_
CD63 and Macro_1_C1QA displayed relatively higher phagocytic
activity scores (Figure 5D). To further investigate the distribution of
these macrophage subpopulations in the TCGA-LIHC cohort, we
analyzed CIBERSORTx results. Notably, C1 patients exhibited a
significantly higher proportion of Macro_2_SPP1, whereas
C3 patients had significantly higher proportions of Macro_0_

FIGURE 4
TME characteristics across multi-Omics Subtypes. (A) Heatmap showing the expression levels of MHC-I, MHC-II, immunoinhibitor, and
immunostimulator across different subtypes. (B) UMAP visualization of cell annotation results from the GSE156337 dataset. (C) Heatmap displaying the
deconvolution results of CIBERSORT based cell annotations fromGSE156337 applied to the TCGA-LIHC cohort, where red indicates a higher proportion
of a given cell type and blue indicates a lower proportion. (D) Box plots illustrating the deconvolution results from CIBERSORT along with statistical
analysis. (ns, not significant; *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001; ****, P ≤ 0.0001).
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CD63, Macro_2_SPP1, andMacro_4_TMSB10 (Figure 5E). Survival
analysis indicates that patients with high levels of Macro_1_C1QA
have a significantly better prognosis, whereas those with high levels
of Macro_2_SPP1 exhibit the opposite trend. (Figure 5F).

3.5 Diversity of hepatocyte heterogeneity in
the HCC TME

In this section, we focus on the heterogeneity and functionality
of hepatocytes within the HCC TME. We extracted a total of
4,653 hepatocytes from scRNA data for further analysis. We first
identified eight distinct hepatocyte subpopulations (resolution = 0.8)
along with their corresponding marker genes (Figure 6A;
Supplementary Figure S5A). Notably, these hepatocyte
subpopulations exhibited distinct spatial distribution preferences
within the tissue. Specifically, Hepato_4_PLOD1 was
predominantly localized in normal tissue, whereas Hepato_0_
FGL1, Hepato_3_HPD, and Hepato_5_CCNL1 were enriched in
the tumor periphery. In contrast, Hepato_2_EGR1, Hepato_7_
ABCB4, Hepato_1_F12, and Hepato_6_PLXNB1 were
preferentially distributed in the tumor core (Figure 6B). By
performing HALLMARK scoring on single cells from each
subpopulation, we found that Hepato_0_FGL1 and Hepato_3_

HPD exhibited the highest levels of REACTIVE_OXYGEN_
SPECIES_PATHWAY, OXIDATIVE_PHOSPHORYLATION,
DNA_REPAIR, and MYC_TARGETS_V1. Among them,
Hepato_0_FGL1 displayed the highest levels of COAGULATION,
ANGIOGENESIS, and COMPLEMENT. In contrast, cell
subpopulations predominantly located in the tumor core region
exhibited elevated levels of TNFA_SIGNALING_VIA_NFKB and
BILE_ACID_METABOLISM (Supplementary Figure S5B).

Next, we applied pySCENIC to identify potential TFs associated
with each hepatocyte subpopulation. We further employed NMF to
analyze the Regulon Specificity Score (RSS) profiles generated by
pySCENIC. Our findings revealed that hepatocytes located in the
tumor periphery exhibited a transcriptional regulatory pattern
distinct from those within the tumor core (Figure 6C).
Specifically, hepatocytes at the tumor periphery predominantly
expressed TFs such as ILF2, ATF7, and RFXANK, while those in
the tumor core were enriched for KLF4, EGR1, and
HES5 (Figure 6D).

To further investigate the evolutionary trajectory of hepatocytes
in HCC, we performed pseudotime trajectory analysis using
Monocle3. The inferred trajectory suggested that hepatocytes
originate from normal liver tissue and subsequently diverge into
two major branches: one leading to tumor periphery associated
hepatocytes, and the other giving rise to tumor core associated

FIGURE 5
Characteristics of Macrophages in HCC. (A) Macrophage subpopulations and RNA velocity trajectory. (B) Marker genes of different macrophage
subpopulations. (C) Enrichment of different macrophage subtypes across various tissue types. A higher odds ratio (OR) and more yellow coloration
indicate greater enrichment of a specific macrophage subtype in the corresponding tissue type, whereas a more blue coloration suggests the opposite.
(D) Functional scores of macrophages for M1 and M2 polarization, angiogenesis, and phagocytosis. (E) Proportions of different macrophage
subpopulations across distinct patient subtypes. (F) Survival analysis of single-cell CIBERSORTx deconvolution in TCGA-LIHC. (ns, not significant; *, P ≤
0.05; **, P ≤ 0.01; ***, P ≤ 0.001; ****, P ≤ 0.0001).
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FIGURE 6
Characteristics of hepatocytes in HCC. (A) UMAP plot of hepatocytes subpopulations. (B) Enrichment of different hepatocytes subtypes across
various tissue types. A higher OR and more yellow coloration indicate greater enrichment of a specific macrophage subtype in the corresponding tissue
type, whereas a more blue coloration suggests the opposite. (C)NMF analysis of SCENIC transcription factor expression patterns across different cellular
subpopulations. Each row represents a cellular subpopulation, and each column corresponds to a transcription factor expression pattern identified
by NMF. A redder color indicates a stronger tendency of the transcription factors in that subpopulation to adopt the corresponding expression pattern,
whereas a bluer color indicates the opposite tendency. (D) This dot plot illustrates the regulatory activity of TFs across different hepatocyte
subpopulations identified by pySCENIC. Each row represents a hepatocyte subpopulation, while each column corresponds to a specific TFs. The size of

(Continued )
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hepatocytes (Figure 6E). Importantly, hepatocytes located in the
tumor periphery appeared to be at earlier pseudotime compared to
those within the tumor core (Figures 6F, G), suggesting a progressive
evolution of hepatocyte states during tumor development.
Subsequently, we identified genes that exhibited significant
associations with pseudotime progression, revealing four distinct
expression clusters (GC1–GC4) (Figure 6H). GC1 genes were
predominantly highly expressed at the early stages of pseudotime,
whereas GC2 genes were primarily enriched at the midpoint of the
trajectory. In contrast, GC3 genes displayed high expression levels at
both the beginning and the end of pseudotime, while GC4 genes
were specifically upregulated at the terminal stages of pseudotime.
KEGG enrichment analysis revealed distinct functional signatures
for each pseudotime gene cluster. GC1 genes were significantly
enriched in proliferation and immunity related pathways, including
hsa04151: PI3K-Akt signaling pathway and hsa04060: Cytokine-
cytokine receptor interaction. GC2 genes were enriched in a broader
range of pathways associated with tumorigenesis, immunity, and
signal transduction. In contrast, GC3 genes were exclusively
enriched in hsa00830: Retinol metabolism and hsa04360: Axon
guidance, suggesting their involvement in metabolic and
developmental processes. GC4 genes were predominantly
associated with immune and extracellular matrix related
pathways, such as hsa04514: Cell adhesion molecules, hsa05332:
Graft versus host disease, and hsa04145: Phagosome. Notably,
GC4 genes were also significantly enriched in hsa04310: Wnt
signaling pathway, indicating a potential role in cellular
differentiation and tissue remodeling (Supplementary Figure S5C).

Finally, based on the results of CIBERSORTx, we compared the
distribution proportions of different cellular subpopulations among
patients with different multi-omics subtypes. The results showed
that Hepato_0_FGL1 and Hepato_1_F12 were significantly
enriched in patients from the C1 and C2 groups. Additionally,
Hepato_4_PLOD1 and Hepato_6_PLXNB1 exhibited significantly
higher proportions in C2 patients, while Hepato_2_EGR1 and
Hepato_3_HPD were significantly more abundant in C3 patients
(Figure 6I). Survival analysis indicated that a higher level of Hepato_
2_EGR1 was significantly associated with poorer
prognosis (Figure 6J).

3.6 Diversity of cholangiocyte heterogeneity
in the HCC TME

Previous CIBERSORTx results indicated that C3 patients
exhibited higher levels of cholangiocytes, which piqued our

interest. Therefore, we conducted a more in depth analysis of
cholangiocytes in this section. First, we extracted
2,468 cholangiocytes from the single-cell dataset and classified
them into five subpopulations using resolution = 0.8. Each
subpopulation was named based on its marker genes (Figure 7A;
Supplementary Figure S6). Tissue distribution preference analysis
revealed that Cholangio_2_KRT19 was predominantly located in
peritumoral tissues, Cholangio_1_AGXT and Cholangio_4_S100P
were mainly found in the tumor periphery, Cholangio_0_TCF4 was
concentrated in the tumor core, while Cholangio_3_TK1 was
distributed across both the core and periphery (Figure 7B).

TFs analysis of cholangiocyte subpopulations revealed distinct
regulatory patterns across different subgroups (Figure 7C).
Specifically, Cholangio_4_S100P exhibited high expression of
GLI3, ZNF200, and HOXB4, while Cholangio_3_TK1 specifically
expressed E2F8, ZNF480, and E2F1. In Cholangio_1_AGXT, HLF,
NR1I3, and IRF7 were significantly enriched, whereas ILF2 and EHF
were highly expressed in Cholangio_0_TCF4. Additionally,
Cholangio_2_KRT19 showed strong expression of NFATC1,
ETS1, and LEF1.

To further investigate the functional characteristics of
different cholangiocyte subpopulations, we identified
subpopulation specific markers using Seurat and performed
GSEA based KEGG pathway enrichment analysis (Figure 7D).
Notably, Cholangio_0_TCF4 and Cholangio_2_KRT19 did not
exhibit significant pathway enrichment. However, Cholangio_1_
AGXT was strongly associated with metabolism and complement
related pathways, while Cholangio_3_TK1 was highly enriched
in DNA synthesis, repair, and cell cycle pathways. In contrast,
Cholangio_4_S100P was significantly linked to proteasome and
immune related pathways.

CIBERSORTx analysis further examined the distribution of
cholangiocyte subpopulations across patient groups (Figure 7E).
Cholangio_0_TCF4, Cholangio_2_KRT19, and Cholangio_4_
S100P were most abundant in C3 patients, whereas
Cholangio_1_AGXT was significantly enriched in C1 patients.
Survival analysis revealed that higher levels of Cholangio_1_
AGXT were associated with better prognosis, whereas higher
levels of Cholangio_4_S100P correlated with poorer
prognosis (Figure 7F).

3.7 Cell-cell communication analysis

To further investigate the TME of HCC, we conducted cell-cell
communication analysis using CellChat. First, we analyzed the

FIGURE 6 (Continued)

each dot indicates the RSS, reflecting the specificity of a transcription factor in a given subpopulation. Larger dots represent higher RSS values,
signifying stronger regulatory specificity. The color gradient represents the Z score of transcription factor activity, whichmeasures the relative expression
level of each TF. Yellow green indicates stronger TF activity. Darker colors indicate weaker TF activity. (E) Pseudotime Trajectory Analysis with Monocle3.
This UMAP plot visualizes the pseudotime trajectory of cells inferred by Monocle3. Cells are colored by pseudotime, from purple (early state) to
yellow (late state).The black line represents the inferred differentiation trajectory. Circular nodes indicate key branching points. (F) Pseudotime levels across
different tissue types. (G)Pseudotime of different cellular subpopulations. (H)Pseudotime ordered gene expression patterns. This heatmap illustrates the dynamic
expression of genes across pseudotime, clustered into four modules (GC1–GC4) based on similar expression trends. The heatmap colors represent Z score
normalized expression levels, with blue indicating low expression and yellow indicating high expression. The right panels display smoothed expression curves
along pseudotime for each module, highlighting distinct transcriptional dynamics. The gene size denotes the number of genes in each module, revealing key
patterns of gene regulation during cellular transitions.(I) Single-cell CIBERSORTx deconvolution results of TCGA-LIHC. (J) Survival analysis of single-cell
CIBERSORTx deconvolution in TCGA-LIHC. (ns, not significant; *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001; ****, P ≤ 0.0001).
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number of incoming and outgoing signaling interactions in each cell
cluster. Our results showed that in terms of outgoing signals,
hepatocytes were primarily involved in the ApoA signaling
pathway, while cholangiocytes exhibited higher levels of VTN,
CypA, and MHC-I signaling pathways. Macrophages displayed

elevated activity in both MHC-I and MHC-II pathways
(Figure 8A). Regarding incoming signals, hepatocytes exhibited
minimal incoming signaling activity. In contrast, cholangiocytes
showed high levels of CypA, GALECTIN, and COLLAGEN
signaling pathways. Notably, among macrophage subsets,

FIGURE 7
Characteristics of cholangiocytes in HCC. (A) UMAP plot of cholangiocytes subpopulations. (B) Enrichment of different cholangiocytes subtypes
across various tissue types. A higher OR and more yellow coloration indicate greater enrichment of a specific macrophage subtype in the corresponding
tissue type, whereas a more blue coloration suggests the opposite. (C) This dot plot illustrates the regulatory activity of TFs across different hepatocyte
subpopulations identified by pySCENIC. Each row represents a hepatocyte subpopulation, while each column corresponds to a specific TFs. The
size of each dot indicates the RSS, reflecting the specificity of a transcription factor in a given subpopulation. Larger dots represent higher RSS values,
signifying stronger regulatory specificity. The color gradient represents the Z score of transcription factor activity, whichmeasures the relative expression
level of each TF. Yellow green indicates stronger TF activity. Darker colors indicate weaker TF activity. (D) GSEA Enrichment Analysis of Cholangiocyte
Subpopulations. The x-axis represents cholangiocyte subpopulations (Cholangio_1, Cholangio_3, Cholangio_4), while the y-axis lists enriched KEGG
pathways. Bubble size corresponds to -log10 (p.adjust), indicating statistical significance, and bubble color represents the Normalized Enrichment Score
(NES), with red indicating positive enrichment and purple indicating negative enrichment. (E) Single-cell CIBERSORTx deconvolution results of TCGA-
LIHC. (F) Survival analysis of single-cell CIBERSORTx deconvolution in TCGA-LIHC. (ns, not significant; *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001; ****,
P ≤ 0.0001).
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Macrophage_0 and Macrophage_2 displayed highly similar
incoming signaling patterns, with both exhibiting elevated levels
of MHC-II, ApoA, VTN, SPP1, and APP signaling pathways.

We found that the majority of ApoA signals originating
from hepatocytes and VTN signals from cholangiocytes were
primarily received by Macrophage_0_CD63 and Macrophage_
2_SPP1 (Figure 8B). To further investigate the contribution of

different ligand-receptor pairs within these signaling
pathways, we analyzed their relative contributions. Our
results revealed that in the ApoA pathway,
APOA1–TREM2 and APOA2–TREM2 were the two ligand-
receptor pairs with the highest contributions (Figure 8C). In
the VTN pathway, VTN–PLAUR exhibited the highest
contribution (Figure 8D).

FIGURE 8
Cell communications among hepatocytes, cholangiocytes and macrophages. (A) Outgoing and incoming signaling patterns of ligand-receptor
interactions across different cell subpopulations. The heatmap represents the relative strength of signaling interactions, with darker green indicating
higher interaction strength. Bar plots at the top indicate the number of interactions for each subpopulation. Cell types are annotated at the bottom. (B)
Comparison of the ApoA and VTN signaling pathway networks across different cell subpopulations. The heatmaps represent the importance of each
cell type as a sender, receiver, mediator, or influencer in the signaling network. Darker green indicates higher importance. Cell types are annotated at the
bottom. (C, D) Relative contributions of ligand-receptor (L–R) pairs in ApoA (C) and VTN (D) signaling pathways. Bar lengths represent the relative
contribution of each L-R interaction. ApoA-TREM2 and VTN-PLAUR exhibit the highest contributions in their respective pathways. (E) Ligand-receptor
interactions between cholangiocyte and macrophage subpopulations. Each dot represents an interaction, with size and color indicating interaction
strength. The x-axis denotes cholangiocyte tomacrophage signaling, while the y-axis lists specific ligand-receptor pairs. (F) Ligand-receptor interactions
between hepatocyte and macrophage subpopulations. Each dot represents an interaction, with size and color indicating interaction strength. The x-axis
denotes cholangiocyte to macrophage signaling, while the y-axis lists specific ligand-receptor pairs.
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To further elucidate the role of VTN-PLAUR, we analyzed
the ligand-receptor interactions between cholangiocyte
subpopulations and macrophage subpopulations. Our findings
revealed significantly elevated interaction levels from Cholangio_
0_TCF4, Cholangio_1_AGXT, Cholangio_3_TK1 and
Cholangio_4_S100P to Macro_0_CD63 and Macro_2_SPP1
(Figure 8E). Regarding APOA1-TREM2 and APOA2-TREM2,
we examined the ligand-receptor interactions between
hepatocyte subpopulations and macrophage subpopulations.
The results demonstrated that all hepatocyte subpopulations
exhibited significantly high levels of interaction with Macro_
0_CD63 and Macro_2_SPP1 (Figure 8F).

3.8 Construction the prognostic
score system

To more accurately assess the prognosis of patients with
different subtypes and enhance its applicability in clinical
practice, we developed a prognostic scoring system. First, we
performed univariate Cox analysis to identify genes significantly
associated with prognosis (P < 0.01), resulting in the selection of
7,187 prognostically significant genes. Subsequently, we applied the
LASSO method to calculate the prognostic risk score based on the
expression profiles and survival data of these survival associated
genes. Ultimately, the LASSO method identified 18 survival

FIGURE 9
Prognostic risk assessment in HCC patients. (A) Survival analysis of high and low risk patients in the training set. (B) Survival analysis of high and low
risk patients in the test set. (C) Heatmap of the expression of 18 LASSO selected prognostic genes in TCGA-LIHC samples. Samples are ordered by
increasing risk score, with survival status annotated above (red: death, white: alive). Gene expression is scaled and color coded (yellow: high, blue: low),
with most genes highly expressed in high risk cases. (D) The time dependent ROC curves of prognostic classifier of train set. AUCs at 1, 3, and 5 years
were used to assess prognostic accuracy. (E) The time dependent ROC curves of prognostic classifier of test set. AUCs at 1, 3, and 5 years were used to
assess prognostic accuracy. (F) Comparison of risk scores among the three multi-omics subtypes. (ns, not significant; *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤
0.001; ****, P ≤ 0.0001; AUC, area under the curve; n.censor, number censored).
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associated genes with the strongest predictive power. Detailed
information on these 18 survival associated genes and their
regression coefficients is provided in Supplementary Table S4.
The prognostic risk score was calculated by integrating the
expression levels of the LASSO selected signature genes with
their corresponding LASSO regression coefficients. Patients were
then stratified into high risk and low risk groups based on the
median prognostic score. Kaplan-Meier survival analysis
demonstrated that patients in the high risk group had
significantly worse survival outcomes than those in the low risk
group in both the training and test sets (Figures 9A,B). We found
that most of the deceased cases were concentrated in the high risk
group (Figure 9C). Moreover, the majority of the 18 LASSO derived
markers were highly expressed in the high risk population
(Figure 9C). Additionally, we performed receiver operating
characteristic (ROC) analysis on the prognostic risk score, which
indicated that our prognostic scoring model exhibited excellent
predictive performance for both short term and long term
survival (Figures 9D, E). We compared the survival risk among

patients with different subtypes and found that the C3 group had the
highest survival risk (Figure 9F). Univariate and multivariate Cox
regression analyses further confirmed that the prognostic risk score
was an independent prognostic predictor in the TCGA-LIHC cohort
(Supplementary Tables S5, 6).

3.9 Assessing the treatment sensitivity of
patients in different groups

We analyzed the therapeutic opportunities for patients with
different subtypes. The results showed that patients in the high
C3 group exhibited the highest levels of cell cycle activity, DNA
replication, hypoxia, and EGFR ligands compared to other
subgroups (Figure 10A; Supplementary Table S7). This suggests
that patients in the C3 group may be more sensitive to radiotherapy
and EGFR-targeted therapy. In contrast, patients in the C2 group
appeared to be less responsive to radiotherapy and EGFR-targeted
therapy. However, we observed that the C2 group exhibited the

FIGURE 10
Prognostic risk scores accurately predicted therapeutic opportunities. (A) Differences in therapeutic signatures related to radiotherapy, EGFR
signaling, and immune inhibited oncogenic pathways among different molecular subtypes. (B) A Venn diagram of compounds from the CTRP and PRISM
datasets. (C) The workflow of identifying potential therapeutic compounds. (D, E) The left panel shows the Spearman correlation between the prognostic
risk scores and compounds responses predicted by the PRISM (D) and CTRP (E) database, with point size inversely proportional to the p-value. The
right panel compares the predicted drug responses between the high score and low score groups based on PRISM (D) and CTRP (E) database. (F)
Comparison of predicted compound sensitivities across multi-omics subtypes. (G) Identification of most promising therapeutic compounds for patients
with high risk scores according to the evidence from multiple sources. (ns, not significant; *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001; ****, P ≤ 0.0001).
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highest levels of IDH1 pathway activity, while patients in the
C1 group had the lowest levels of vascular endothelial growth
factor A (VEGFA). This evidence indicates that different
subtypes may involve distinct immunosuppressive mechanisms.
Therefore, targeting these oncogenic pathways may provide
promising therapeutic strategies for HCC patients.

For the estimation of drug response in patients with HCC, we
constructed a drug response prediction model using the PRISM and
CTRP dataset, which contains gene expression profiles and drug
sensitivity data for hundreds of CCLs. The dataset includes a total of
1752 compounds (Figure 10B). We excluded compounds with NAs
in more than 20% of the samples, as well as cell lines derived from
hematopoietic and lymphoid tissues. Ultimately, 680 CCLs for
354 compounds in the CTRP dataset and 480 CCLs for
1,285 compounds in the PRISM dataset for subsequent analyses.
The specific screening process is shown in Figure 10C. To identify
drugs that are more effective in the high risk score group, we
performed differential drug response analysis between the high
risk score group (top 10%) and the low risk score group (bottom
10%) to identify compounds with lower estimated AUC values in
patients with high risk scores. Subsequently, we conducted
Spearman correlation analysis between AUC values and risk
scores to select compounds with negative correlation coefficients
(Spearman’s r < −0.35). Through these analyses, we identified four
compounds (mitoxantrone, navitoclax, sirolimus, and volasertib)
from the PRISM dataset and two compounds (fluvastatin and
birinapant) from the CTRP dataset (Figures 10D, E). All of these
compounds exhibited lower estimated AUC values in the high risk
score group compared to the low risk score group and showed a
negative correlation with the risk score (Figures 10D, E). These
findings suggest that patients with high risk scores are more sensitive
to these three candidate compounds than those with low risk scores.
We further compared the potential drug sensitivity across different
molecular subtypes. All candidate compounds exhibited the highest
predicted sensitivity in patients from the C3 subgroup, followed by
the C1 subgroup, while patients in the C2 subgroup consistently
showed the lowest sensitivity to all compounds (Figure 10F).

To strengthen our findings, we conducted a series of analyses
from multiple perspectives to further explore the therapeutic
potential of the identified compounds in HCC. First, we
systematically reviewed literature and databases including
PubMed and DrugTarget to gather supporting experimental data
and information on FDA approval status for the shortlisted
compounds. The findings summarized in Figure 10G and
Supplementary Table S8. We found that all the compounds had
been reported to exhibit cytotoxic or inhibitory effects on HCC cells.
Among them, sirolimus, mitoxantrone, and fluvastatin have been
approved by the FDA for clinical use. Second, we evaluated the fold
change in expression of drug target genes between tumor tissues and
adjacent normal tissues, as well as between high risk and low risk
patient groups. For each drug, the highest fold change among all its
targets was selected as the representative value. A greater fold change
was considered indicative of a higher therapeutic potential of the
corresponding compound in HCC treatment. Notably, the targets of
volasertib and mitoxantrone exhibited significantly elevated
expression in tumor tissues, with especially high levels observed
in high risk patient subgroups. Finally, we examined whether the
shortlisted compounds have been clinically used for the treatment of

HCC. We found that sirolimus and mitoxantrone have already been
applied in the treatment of HCC patients.

4 Discussion

HCC is a highly heterogeneous disease, making it challenging to
achieve a comprehensive understanding based solely on gene
expression (Yang et al., 2019). Moreover, gene expression is
finely regulated by multiple processes, including methylation,
CNVs, and mutations (Oh et al., 2021). Integrative analysis of
multi-omics data in HCC patients can provide deeper insights
into tumor heterogeneity and its underlying regulatory
mechanisms. However, most studies to date have primarily
focused on single-omics approaches. Additionally, different
clustering methods for multi-omics data are based on distinct
principles, which further exacerbate the limitations of specific
algorithms when applied in practice. To bridge this gap, our
study incorporates ten state of the art clustering algorithms to
identify three multi-omics subtypes with distinct prognostic,
molecular, and TME characteristics. These newly defined
subtypes may have important implications for the precision
stratification and treatment of HCC patients.

In this study, we first focused on the multi-omics characteristics
of the identified subtypes. We found that most methylation silencing
events and large scale copy number variations occurred in
C3 patients, while both C2 and C3 patients exhibited a high
mutation burden. Notably, C2 patients were primarily
characterized by CTNNB1 mutations, whereas C3 patients
predominantly harbored TP53 mutations. This is consistent with
previous reports that CTNNB1 and TP53 mutations exhibit a
mutually exclusive pattern in HCC (Liang et al., 2021). Previous
studies have shown that CTNNB1 mutations are characteristic
alterations associated with the immune excluded phenotype
(Pinyol et al., 2019), linked to WNT/β-catenin pathway
activation (Xu et al., 2022) and a low response rate to
immunotherapy (Harding et al., 2018). Our results also
confirmed this observation. Compared to C1 and C3 patients,
C2 patients exhibited significantly lower levels of MHC-I, MHC-
II, immunosuppressive factors and immunostimulatory factors,
indicating a less active immune response in this group. Studies
have shown that TP53 mutations in HCC patients are significantly
associated with elevated serum alpha fetoprotein (AFP) levels
(>300 ng/mL), larger tumor size (>5 cm), higher tumor grade
(III/IV), and an increased risk of mortality (Woo et al., 2010a).
Our results also corroborated this finding, as the C3 group,
predominantly characterized by TP53 mutations, was
significantly associated with advanced stage, higher T stage,
elevated AFP levels, female gender, and poorer prognosis.
Compared to C2 and C3 patients, C1 patients exhibited fewer
significant CNV and methylation silencing events, with only a
few notable mutations occurring at very low frequencies.
However, their MHC-I, MHC-II, and immunostimulatory factors
indicated a more active immune system, while their levels of
immunosuppressive factors were relatively lower than those in
C3. Additionally, C1 patients had the lowest CNV burden,
methylation burden, and mutation burden, which may suggest
that C1 tumors have lower heterogeneity and invasiveness. These
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factors may contribute to the relatively favorable prognosis observed
in C1 patients. These immune related characteristics may contribute
to the relatively favorable prognosis observed in C1 patients. Overall,
our multi-omics classification system effectively distinguishes the
multi-omics characteristics of HCC patients and shows significant
associations with clinical features. This classification may facilitate
clinical application and patient stratification, highlighting its
potential clinical utility.

Beyond clinical and molecular characteristics, we also focused
on TME features. Our results showed that, compared to C1 and
C2 patients, C3 patients exhibited a significantly lower proportion of
hepatocytes and a higher proportion of cholangiocytes and
macrophages. This is a particularly intriguing finding, suggesting
that molecular characteristics identified through multi-omics
analysis not only influence clinical features and prognosis but
also shape the spatial composition and structure of the TME.

First, we further performed a subgroup analysis of macrophages
and found that Macro_2_SPP1 exhibited the highest
M2 polarization score and angiogenesis score, along with a lower
phagocytosis score, and was significantly associated with poor
prognosis. Previous studies have shown that SPP1 expressing
Tumor Associated Macrophages (TAMs) are primarily enriched
in AFP positive HCC and are characterized by reduced phagocytic
function but enhanced pro-angiogenic capacity, which aligns with
our findings (He et al., 2023). Although Macro_2_SPP1 did not
show a statistically significant difference in distribution among C1,
C2, and C3 patients, there was a noticeable trend toward higher
levels in the C3 group, which also represents the AFP-high subtype.
Additionally, studies have demonstrated that SPP1 macrophages
can bind to CD44 on the surface of T cells, thereby suppressing their
anti-tumor function. Targeting and blocking the SPP1/
CD44 pathway has been shown to restore T cell function and
inhibit tumor growth, suggesting that this pathway may serve as
a promising therapeutic target for HCC (He et al., 2023).
Additionally, our study identified a macrophage subset
characterized by high C1QA expression, which exhibited the
highest phagocytosis score and was significantly less abundant in
C3 patients, yet strongly associated with better prognosis. Recent
study has shown that this macrophage subset is linked to gene
signatures associated with a favorable response to immune
checkpoint therapy and primarily functions in phagocytosis and
antigen presentation (Liu et al., 2022). Moreover, Macro_1_C1QA
was predominantly located at the tumor periphery, whereas Macro_
2_SPP1 was enriched in the tumor core, suggesting that these two
macrophage subsets may be involved in shaping distinct tumor
ecological niches.

Regarding cholangiocytes, we observed a striking phenomenon
in which their proportion was significantly elevated in the
C3 group. Study has shown that approximately 28% of HCC
cases express cholangiocytic markers CK7 and/or CK19 (Durnez
et al., 2006).Woo et al. found that approximately 20% of HCCs share
gene expression characteristics with cholangiocarcinoma and
exhibit stem cell-like features (Woo et al., 2010b). Kim et al.
reported that CK19 expression in HCC was significantly
associated with microvascular invasion, fibrous stroma, and poor
clinical outcomes (Kim et al., 2011). Collectively, these studies
suggest that a proportion of HCCs display cholangiocytic
characteristics, which are linked to worse clinical outcomes.

Therefore, we conducted a detailed analysis of cholangiocyte
subpopulations and found that Cholangio_0_TCF4, Cholangio_
2_KRT19, and Cholangio_4_S100P were significantly enriched in
C3 patients, whereas Cholangio_1_AGXT was more likely to be
enriched in C1 and C2 patients. Thus, the increased proportion of
cholangiocytes observed in C3 is likely attributable to the
enrichment of Cholangio_0_TCF4, Cholangio_2_KRT19, and
Cholangio_4_S100P. Our findings suggest that high levels of
Cholangio_1_AGXT are associated with better prognosis, while
Cholangio_4_S100P is linked to worse prognosis. Studies have
demonstrated that cholangiocytes possess a high proliferative
capacity and commonly proliferate in response to liver injury
and inflammation (Alvaro et al., 2007). During this process,
proliferating cholangiocytes secrete a range of cytokines,
neuropeptides, and growth factors, contributing to cross-talk with
other cell types within the microenvironment. We hypothesize that
the S100P+ cholangiocytes observed in HCC may represent an
aberrantly proliferative and activated population induced by
tumor microenvironmental stimuli. Overall, by analyzing single-
cell sequencing data, we characterized the heterogeneity of
cholangiocytes in HCC and evaluated their prognostic
significance. Importantly, we successfully identified a
subpopulation of S100P+ cholangiocytes associated with poor
prognosis in HCC, which may represent a novel and biologically
relevant cell subset worthy of further investigation.

Through single-cell interaction analysis, we identified that
APOA1-TREM2 and APOA2-TREM2 play critical roles in the
crosstalk between hepatocytes and macrophages. TREM2 has
attracted increasing attention in recent years, as emerging
evidence suggests its close association with immunosuppressive
macrophage phenotypes (Molgora et al., 2023). TREM2+ TAMs
have been shown to suppress T cell activity (Katzenelenbogen et al.,
2020). Moreover, the enrichment of TREM2+ macrophages has been
correlated with poor response to anti-PD-1 therapy, indicating that
this cell subset may contribute to immunotherapy resistance
(Molgora et al., 2020). Targeting TREM2 may therefore represent
a promising strategy to enhance the efficacy of anti-PD-1 treatment.
Studies on ApoA1 and ApoA2 in HCC remain limited. Existing
evidence indicates that APOA1 expression is downregulated during
HCC progression and is significantly positively associated with the
prognosis of HCC patients (Xu et al., 2025). In contrast, high
APOA2 expression in HCC may sustain or promote PD-L1
expression, thereby enhancing tumor immune evasion (Qi et al.,
2024). However, studies investigating the interaction between
APOA1/2 and TREM2 are currently lacking. Nevertheless, this
represents a highly promising avenue for future research.

We also observed that the VTN-PLAUR axis plays an important
role in the interaction between cholangiocytes and macrophages.
Studies have shown that PLAUR can promote tumor metastasis by
mediating plasminogen activation and extracellular matrix
degradation (Laurenzana et al., 2017). High expression of
PLAUR has been reported in various cancers and is generally
associated with poor survival and prognosis (Gilder et al., 2018;
Hildenbrand and Schaaf, 2009; Boonstra et al., 2011). Aberrant
expression of PLAUR in tumors may also contribute to increased
infiltration of TAM (Lindsten et al., 2017). However, the role of
PLAUR in HCC and macrophages remains relatively
underexplored. Research on VTN remains limited. Existing
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studies have identified VTN as a candidate biomarker for the
development of HCC in patients with HCV related cirrhosis
(Ferrín et al., 2014). However, the relationship between VTN and
macrophages in the context of HCC has not been well investigated.
Overall, we identified ligand–receptor pairs that play key roles in the
interactions among hepatocytes, cholangiocytes, and macrophages.
Although there is currently insufficient research to fully elucidate
their roles in HCC, existing evidence suggests that these molecules
may have important potential significance.

Using machine learning methods, we successfully identified six
potentially effective drugs (mitoxantrone, navitoclax, sirolimus,
volasertib, fluvastatin and birinapant) for high risk HCC patients.
Among these, we found that the molecular targets of mitoxantrone
and volasertib were significantly overexpressed in high risk patients.
In addition, both mitoxantrone and sirolimus have already been
used in the clinical management of HCC. Therefore, we focused our
subsequent analyses on mitoxantrone, sirolimus, and volasertib.

Mitoxantrone, a synthetic anthracenedione derivative, has been
shown to exhibit antitumor activity against various cancer cell types
both in vitro and in vivo. Its antitumor effects may involve multiple
mechanisms, such as stabilizing topoisomerase II-DNA cleavage
complexes, thereby preventing the religation of DNA strand breaks,
and generating free radicals, among others (Wiseman and Spencer,
1997). Mitoxantrone has demonstrated efficacy comparable to
standard induction and salvage therapy regimens in the
treatment of advanced breast cancer, non-Hodgkin’s lymphoma,
and acute non-lymphocytic leukemia (Wiseman and Spencer, 1997).
A few clinical studies and retrospective reports have explored the use
of mitoxantrone as part of combination chemotherapy regimens
(often in conjunction with cisplatin, 5-fluorouracil (5-FU), or
doxorubicin) for the treatment of advanced HCC (Liang et al.,
2011; Yang et al., 2004; Ikeda et al., 2005). However, given that many
HCC patients suffer from impaired liver function, the use of
mitoxantrone poses a relatively high risk of hepatotoxicity, which
has limited its widespread clinical application. To overcome these
challenges, recent studies have attempted to encapsulate
mitoxantrone in nanoparticle formulations, liposomes, or
targeted delivery systems to enhance tumor specific accumulation
in HCC and reduce systemic toxicity (Lam et al., 2018).

Sirolimus, also known as Rapamycin, is a macrolide
immunosuppressant that primarily inhibits the mTOR signaling
pathway to block the activation of T cells and B cells. It was initially
approved for the prevention of organ rejection in kidney transplant
patients (Nguyen et al., 2019). Multiple studies have since
demonstrated that the use of sirolimus after liver transplantation
in patients with HCC is associated with reduced recurrence rates and
recurrence related mortality, as well as prolonged recurrence free
survival and overall survival (Grigg et al., 2019; Menon et al., 2013).

Volasertib is a Polo-like kinase one inhibitor primarily used to
disrupt cell division. It has been evaluated in clinical trials for
cancers such as acute myeloid leukemia (Hao and Kota, 2015).
Our results showed that the mRNA expression level of PLK1, the
molecular target of Volasertib, was elevated in tumor tissues,
particularly in high risk HCC patients. This suggests that
Volasertib may represent a promising therapeutic compound for
this patient subgroup. Moreover, a recent study combining deep
learning approaches with cellular experiments has provided further
evidence supporting the antitumor efficacy of Volasertib in HCC

(Zhang et al., 2025). Overall, these novel potential compounds may
provide new research directions for the treatment of HCC.

5 Conclusion

In this study, we identified three distinct molecular subtypes in
HCC patients using multi-omics consensus clustering analysis.
These subtypes exhibited significant prognostic differences and
distinct clinical and molecular characteristics, potentially refining
the molecular classification of HCC. Additionally, we thoroughly
investigated the TME differences among these subtypes, revealing a
lower proportion of hepatocytes and a higher proportion of
macrophages and cholangiocytes in patients classified as subtype
C3. Furthermore, we employed machine learning methods to
construct a prognostic model for HCC patients and identified
novel potential compounds for high risk patients. By integrating
multi-omics datasets with advanced computational approaches, this
study provides a theoretical foundation for improving early
diagnosis and enabling precision treatment strategies for
HCC patients.

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found in the article/supplementary material.

Author contributions

XZ: Conceptualization, Data curation, Formal Analysis,
Investigation, Methodology, Software, Validation, Writing – original
draft, Writing – review and editing. YW: Conceptualization, Formal
Analysis, Funding acquisition, Investigation, Methodology, Project
administration, Resources, Writing – original draft, Writing – review
and editing. ML: Conceptualization, Data curation, Formal Analysis,
Funding acquisition, Investigation, Methodology, Project
administration, Resources, Software, Validation, Visualization,
Writing – original draft, Writing – review and editing. YZ: Project
administration, Resources, Supervision, Writing – review and editing,
Writing – original draft.

Funding

The author(s) declare that financial support was received for the
research and/or publication of this article. This study was funded by
the National Natural Science Foundation of China (grant
no. 82303815).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Frontiers in Pharmacology frontiersin.org18

Zou et al. 10.3389/fphar.2025.1605162

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1605162


Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors and
do not necessarily represent those of their affiliated organizations, or

those of the publisher, the editors and the reviewers. Any product that
may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fphar.2025.1605162/
full#supplementary-material

References

Alvaro, D., Mancino, M. G., Glaser, S., Gaudio, E., Marzioni, M., Francis, H., et al.
(2007). Proliferating cholangiocytes: a neuroendocrine compartment in the diseased
liver. Gastroenterology 132, 415–431. doi:10.1053/j.gastro.2006.07.023

Bergen, V., Lange, M., Peidli, S., Wolf, F. A., and Theis, F. J. (2020). Generalizing RNA
velocity to transient cell states through dynamical modeling. Nat. Biotechnol. 38,
1408–1414. doi:10.1038/s41587-020-0591-3

Boonstra, M. C., Verspaget, H. W., Ganesh, S., Kubben, FJGM, Vahrmeijer, A. L., van
de Velde, C. J. H., et al. (2011). Clinical applications of the urokinase receptor (uPAR)
for cancer patients. Curr. Pharm. Des. 17, 1890–1910. doi:10.2174/
138161211796718233

Boyault, S., Rickman, D. S., de Reyniès, A., Balabaud, C., Rebouissou, S., Jeannot, E.,
et al. (2007). Transcriptome classification of HCC is related to gene alterations and to
new therapeutic targets. Hepatology 45, 42–52. doi:10.1002/hep.21467

Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., and Jemal, A. (2018).
Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality
worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424. doi:10.
3322/caac.21492

Bt, S., M, H., J, Q., X, J., Mw, B., Hc, L., et al. (2022). A web server for functional
enrichment analysis and functional annotation of gene lists (2021 update).Nucleic Acids
Res., 50. doi:10.1093/nar/gkac194

Chiang, D. Y., Villanueva, A., Hoshida, Y., Peix, J., Newell, P., Minguez, B., et al.
(2008). Focal gains of VEGFA and molecular classification of hepatocellular carcinoma.
Cancer Res. 68, 6779–6788. doi:10.1158/0008-5472.CAN-08-0742

Désert, R., Rohart, F., Canal, F., Sicard, M., Desille, M., Renaud, S., et al. (2017).
Human hepatocellular carcinomas with a periportal phenotype have the lowest
potential for early recurrence after curative resection. Hepatol. Balt. Md 66,
1502–1518. doi:10.1002/hep.29254

Durnez, A., Verslype, C., Nevens, F., Fevery, J., Aerts, R., Pirenne, J., et al. (2006). The
clinicopathological and prognostic relevance of cytokeratin 7 and 19 expression in
hepatocellular carcinoma. A possible progenitor cell origin.Histopathology 49, 138–151.
doi:10.1111/j.1365-2559.2006.02468.x

Fang, Z., Liu, X., and Peltz, G. (2023). GSEApy: a comprehensive package for
performing gene set enrichment analysis in Python. Bioinforma. Oxf Engl. 39,
btac757. doi:10.1093/bioinformatics/btac757

Ferrín, G., Ranchal, I., Llamoza, C., Rodríguez-Perálvarez, M. L., Romero-Ruiz, A.,
Aguilar-Melero, P., et al. (2014). Identification of candidate biomarkers for
hepatocellular carcinoma in plasma of HCV-infected cirrhotic patients by 2-D
DIGE. Liver Int. Off. J. Int. Assoc. Study Liver 34, 438–446. doi:10.1111/liv.12277

Forner, A., Reig, M., and Bruix, J. (2018). Hepatocellular carcinoma. Lancet 391,
1301–1314. doi:10.1016/S0140-6736(18)30010-2

Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization paths for
generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22. doi:10.
18637/jss.v033.i01

Gaujoux, R., and Seoighe, C. (2010). A flexible R package for nonnegative matrix
factorization. BMC Bioinforma. 11, 367. doi:10.1186/1471-2105-11-367

Geeleher, P., Cox, N., and Huang, R. S. (2014). pRRophetic: an R package for
prediction of clinical chemotherapeutic response from tumor gene expression levels.
PloS One 9, e107468. doi:10.1371/journal.pone.0107468

Ghandi, M., Huang, F. W., Jané-Valbuena, J., Kryukov, G. V., Lo, C. C., McDonald, E.
R., et al. (2019). Next-generation characterization of the cancer cell line Encyclopedia.
Nature 569, 503–508. doi:10.1038/s41586-019-1186-3

Gilder, A. S., Natali, L., Van Dyk, D. M., Zalfa, C., Banki, M. A., Pizzo, D. P., et al.
(2018). The urokinase receptor induces a mesenchymal gene expression signature in
glioblastoma cells and promotes tumor cell survival in neurospheres. Sci. Rep. 8, 2982.
doi:10.1038/s41598-018-21358-1

Grigg, S. E., Sarri, G. L., Gow, P. J., and Yeomans, N. D. (2019). Systematic review with
meta-analysis: sirolimus- or everolimus-based immunosuppression following liver

transplantation for hepatocellular carcinoma. Aliment. Pharmacol. Ther. 49,
1260–1273. doi:10.1111/apt.15253

Guo, B.-J., Ruan, Y., Wang, Y.-J., Xiao, C.-L., Zhong, Z.-P., Cheng, B.-B., et al. (2023).
Jiedu Recipe, a compound Chinese herbal medicine, inhibits cancer stemness in
hepatocellular carcinoma via Wnt/β-catenin pathway under hypoxia. J. Integr. Med.
21, 474–486. doi:10.1016/j.joim.2023.06.008

Hao, Y., Stuart, T., Kowalski, M. H., Choudhary, S., Hoffman, P., Hartman, A., et al.
(2024). Dictionary learning for integrative, multimodal and scalable single-cell analysis.
Nat. Biotechnol. 42, 293–304. doi:10.1038/s41587-023-01767-y

Hao, Z., and Kota, V. (2015). Volasertib for AML: clinical use and patient
consideration. OncoTargets Ther. 8, 1761–1771. doi:10.2147/OTT.S60762

Harding, J. J., Nandakumar, S., Armenia, J., Khalil, D. N., Albano, M., Ly, M., et al.
(2018). Prospective genotyping of hepatocellular carcinoma: clinical implications of
next-generation sequencing for matching patients to targeted and immune therapies.
Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 25, 2116–2126. doi:10.1158/1078-0432.
CCR-18-2293

He, H., Chen, S., Fan, Z., Dong, Y., Wang, Y., Li, S., et al. (2023). Multi-dimensional
single-cell characterization revealed suppressive immune microenvironment in AFP-
positive hepatocellular carcinoma. Cell Discov. 9, 60. doi:10.1038/s41421-023-00563-x

Hildenbrand, R., and Schaaf, A. (2009). The urokinase-system in tumor tissue stroma
of the breast and breast cancer cell invasion. Int. J. Oncol. 34, 15–23. doi:10.3892/ijo_
00000124

Hoshida, Y., Nijman, S. M. B., Kobayashi, M., Chan, J. A., Brunet, J.-P., Chiang, D. Y.,
et al. (2009). Integrative transcriptome analysis reveals commonmolecular subclasses of
human hepatocellular carcinoma. Cancer Res. 69, 7385–7392. doi:10.1158/0008-5472.
CAN-09-1089

Hu, J., Othmane, B., Yu, A., Li, H., Cai, Z., Chen, X., et al. (2021). 5mC regulator-
mediated molecular subtypes depict the hallmarks of the tumor microenvironment and
guide precision medicine in bladder cancer. BMC Med. 19, 289. doi:10.1186/s12916-
021-02163-6

Ikeda, M., Okusaka, T., Ueno, H., Takezako, Y., and Morizane, C. (2005). A phase II
trial of continuous infusion of 5-fluorouracil, mitoxantrone, and cisplatin for metastatic
hepatocellular carcinoma. Cancer 103, 756–762. doi:10.1002/cncr.20841

Jin, S., Plikus, M. V., and Nie, Q. (2025). CellChat for systematic analysis of cell–cell
communication from single-cell transcriptomics. Nat. Protoc. 20, 180–219. doi:10.1038/
s41596-024-01045-4

Katzenelenbogen, Y., Sheban, F., Yalin, A., Yofe, I., Svetlichnyy, D., Jaitin, D. A., et al.
(2020). Coupled scRNA-seq and intracellular protein activity reveal an
immunosuppressive role of TREM2 in cancer. Cell 182, 872–885.e19. doi:10.1016/j.
cell.2020.06.032

Kevin, U., Jj, A., and Yuan, T. (2024). reticulate: interface to “Python.”. Available
online at: https://rstudio.github.io/reticulate/.

Kim, H., Choi, G. H., Na, D. C., Ahn, E. Y., Kim, G. I., Lee, J. E., et al. (2011). Human
hepatocellular carcinomas with “Stemness”-related marker expression: keratin 19 expression
and a poor prognosis. Hepatol. Balt. Md 54, 1707–1717. doi:10.1002/hep.24559

Lam, P., Lin, R., and Steinmetz, N. F. (2018). Delivery of mitoxantrone using a plant
virus-based nanoparticle for the treatment of glioblastomas. J. Mater Chem. B 6,
5888–5895. doi:10.1039/C8TB01191E

La Manno, G., Soldatov, R., Zeisel, A., Braun, E., Hochgerner, H., Petukhov, V., et al.
(2018). RNA velocity of single cells. Nature 560, 494–498. doi:10.1038/s41586-018-
0414-6

Laurenzana, A., Chillà, A., Luciani, C., Peppicelli, S., Biagioni, A., Bianchini, F., et al.
(2017). uPA/uPAR system activation drives a glycolytic phenotype in melanoma cells.
Int. J. Cancer 141, 1190–1200. doi:10.1002/ijc.30817

Liang, B., Zhou, Y., Qian, M., Xu, M., Wang, J., Zhang, Y., et al. (2021).
TBX3 functions as a tumor suppressor downstream of activated CTNNB1 mutants
during hepatocarcinogenesis. J. Hepatol. 75, 120–131. doi:10.1016/j.jhep.2021.01.044

Frontiers in Pharmacology frontiersin.org19

Zou et al. 10.3389/fphar.2025.1605162

https://www.frontiersin.org/articles/10.3389/fphar.2025.1605162/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphar.2025.1605162/full#supplementary-material
https://doi.org/10.1053/j.gastro.2006.07.023
https://doi.org/10.1038/s41587-020-0591-3
https://doi.org/10.2174/138161211796718233
https://doi.org/10.2174/138161211796718233
https://doi.org/10.1002/hep.21467
https://doi.org/10.3322/caac.21492
https://doi.org/10.3322/caac.21492
https://doi.org/10.1093/nar/gkac194
https://doi.org/10.1158/0008-5472.CAN-08-0742
https://doi.org/10.1002/hep.29254
https://doi.org/10.1111/j.1365-2559.2006.02468.x
https://doi.org/10.1093/bioinformatics/btac757
https://doi.org/10.1111/liv.12277
https://doi.org/10.1016/S0140-6736(18)30010-2
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.1186/1471-2105-11-367
https://doi.org/10.1371/journal.pone.0107468
https://doi.org/10.1038/s41586-019-1186-3
https://doi.org/10.1038/s41598-018-21358-1
https://doi.org/10.1111/apt.15253
https://doi.org/10.1016/j.joim.2023.06.008
https://doi.org/10.1038/s41587-023-01767-y
https://doi.org/10.2147/OTT.S60762
https://doi.org/10.1158/1078-0432.CCR-18-2293
https://doi.org/10.1158/1078-0432.CCR-18-2293
https://doi.org/10.1038/s41421-023-00563-x
https://doi.org/10.3892/ijo_00000124
https://doi.org/10.3892/ijo_00000124
https://doi.org/10.1158/0008-5472.CAN-09-1089
https://doi.org/10.1158/0008-5472.CAN-09-1089
https://doi.org/10.1186/s12916-021-02163-6
https://doi.org/10.1186/s12916-021-02163-6
https://doi.org/10.1002/cncr.20841
https://doi.org/10.1038/s41596-024-01045-4
https://doi.org/10.1038/s41596-024-01045-4
https://doi.org/10.1016/j.cell.2020.06.032
https://doi.org/10.1016/j.cell.2020.06.032
https://rstudio.github.io/reticulate/
https://doi.org/10.1002/hep.24559
https://doi.org/10.1039/C8TB01191E
https://doi.org/10.1038/s41586-018-0414-6
https://doi.org/10.1038/s41586-018-0414-6
https://doi.org/10.1002/ijc.30817
https://doi.org/10.1016/j.jhep.2021.01.044
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1605162


Liang, K.-H., Lin, C.-C., and Yeh, C.-T. (2011). GALNT14 SNP as a potential
predictor of response to combination chemotherapy using 5-FU, mitoxantrone and
cisplatin in advanced HCC. Pharmacogenomics 12, 1061–1073. doi:10.2217/pgs.11.43

Lindsten, T., Hedbrant, A., Ramberg, A., Wijkander, J., Solterbeck, A., Eriksson, M.,
et al. (2017). Effect of macrophages on breast cancer cell proliferation, and on
expression of hormone receptors, uPAR and HER-2. Int. J. Oncol. 51, 104–114.
doi:10.3892/ijo.2017.3996

Liu, Y., Zhang, Q., Xing, B., Luo, N., Gao, R., Yu, K., et al. (2022). Immune phenotypic
linkage between colorectal cancer and liver metastasis. Cancer Cell 40, 424–437.e5.
doi:10.1016/j.ccell.2022.02.013

Lopez, R., Regier, J., Cole, M. B., Jordan, M. I., and Yosef, N. (2018). Deep generative
modeling for single-cell transcriptomics. Nat. Methods 15, 1053–1058. doi:10.1038/
s41592-018-0229-2

Lu, X., Meng, J., Zhou, Y., Jiang, L., and Yan, F. (2021). MOVICS: an R package for
multi-omics integration and visualization in cancer subtyping. Bioinforma. Oxf Engl. 36,
5539–5541. doi:10.1093/bioinformatics/btaa1018

Mayakonda, A., Lin, D.-C., Assenov, Y., Plass, C., and Koeffler, H. P. (2018). Maftools:
efficient and comprehensive analysis of somatic variants in cancer. Genome Res. 28,
1747–1756. doi:10.1101/gr.239244.118

Menon, K. V., Hakeem, A. R., and Heaton, N. D. (2013). Meta-analysis: recurrence
and survival following the use of sirolimus in liver transplantation for hepatocellular
carcinoma. Aliment. Pharmacol. Ther. 37, 411–419. doi:10.1111/apt.12185

Mermel, C. H., Schumacher, S. E., Hill, B., Meyerson, M. L., Beroukhim, R., and Getz,
G. (2011). GISTIC2.0 facilitates sensitive and confident localization of the targets of
focal somatic copy-number alteration in human cancers. Genome Biol. 12, R41. doi:10.
1186/gb-2011-12-4-r41

Molgora, M., Esaulova, E., Vermi, W., Hou, J., Chen, Y., Luo, J., et al. (2020).
TREM2 modulation remodels the tumor myeloid landscape enhancing anti-PD-
1 immunotherapy. Cell 182, 886–900.e17. doi:10.1016/j.cell.2020.07.013

Molgora, M., Liu, Y. A., Colonna, M., and Cella, M. (2023). TREM2: a new player in
the tumor microenvironment. Semin. Immunol. 67, 101739. doi:10.1016/j.smim.2023.
101739

Network, TCGAR (2011). Integrated genomic analyses of ovarian carcinoma. Nature
474, 609–615. doi:10.1038/nature10166

Network, TCGAR, Wheeler, D. A., and Roberts, L. R. (2017). Comprehensive and
integrative genomic characterization of hepatocellular carcinoma. Cell 169,
1327–1341.e23. doi:10.1016/j.cell.2017.05.046

Newman, A. M., Steen, C. B., Liu, C. L., Gentles, A. J., Chaudhuri, A. A., Scherer, F.,
et al. (2019). Determining cell type abundance and expression from bulk tissues with
digital cytometry. Nat. Biotechnol. 37, 773–782. doi:10.1038/s41587-019-0114-2

Nguyen, L. S., Vautier, M., Allenbach, Y., Zahr, N., Benveniste, O., Funck-Brentano,
C., et al. (2019). Sirolimus and mTOR inhibitors: a review of side effects and specific
management in solid organ transplantation.Drug Saf. 42, 813–825. doi:10.1007/s40264-
019-00810-9

Oh, M., Park, S., Kim, S., and Chae, H. (2021). Machine learning-based analysis of
multi-omics data on the cloud for investigating gene regulations. Brief. Bioinform 22,
66–76. doi:10.1093/bib/bbaa032

Pinyol, R., Sia, D., and Llovet, J. M. (2019). Immune exclusion-wnt/CTNNB1 class
predicts resistance to immunotherapies in HCC. Clin. Cancer Res. Off. J. Am. Assoc.
Cancer Res. 25, 2021–2023. doi:10.1158/1078-0432.CCR-18-3778

Qi, F., Zhang, J., Li, J., Li, D., Gao, N., Qi, Z., et al. (2024). Synergistic
immunochemotherapy targeted SAMD4B-APOA2-PD-L1 axis potentiates antitumor
immunity in hepatocellular carcinoma. Cell Death Dis. 15, 421. doi:10.1038/s41419-
024-06699-2

Qiu, X., Mao, Q., Tang, Y., Wang, L., Chawla, R., Pliner, H. A., et al. (2017). Reversed
graph embedding resolves complex single-cell trajectories. Nat. Methods 14, 979–982.
doi:10.1038/nmeth.4402

Scrublet,Lopez, R., and Klein, A. M. (2019). Scrublet: computational identification of
cell doublets in single-cell transcriptomic data. Cell Syst. 8, 281–291.e9. doi:10.1016/j.
cels.2018.11.005

Sonja, H., Robert, C., and Justin, G. (2013). GSVA: gene set variation analysis for
microarray and RNA-seq data. BMC Bioinforma., 14. doi:10.1186/1471-2105-14-7

Sharma, A., Seow, J. J. W., Dutertre, C.-A., Pai, R., Blériot, C., Mishra, A., et al. (2020).
Onco-fetal reprogramming of endothelial cells drives immunosuppressive macrophages
in hepatocellular carcinoma. Cell 183, 377–394.e21. doi:10.1016/j.cell.2020.08.040

Therneau, T. M. (2024). Until 2009 TL original S-R port and R maintainer, Elizabeth
A, Cynthia C. survival: survival Analysis. Available online at: https://cran.r-project.org/
web/packages/survival/index.html (Accessed March 18, 2025).

Tian, Y., Morris, T. J., Webster, A. P., Yang, Z., Beck, S., Feber, A., et al. (2017).
ChAMP: updated methylation analysis pipeline for Illumina BeadChips. Bioinforma.
Oxf Engl. 33, 3982–3984. doi:10.1093/bioinformatics/btx513

Villanueva, A. (2019). Hepatocellular carcinoma. N. Engl. J. Med. 380, 1450–1462.
doi:10.1056/NEJMra1713263

Virshup, I., Rybakov, S., Theis, F. J., Angerer, P., and Wolf, F. A. (2024). anndata:
access and store annotated data matrices. J. Open Source Softw. 9, 4371. doi:10.21105/
joss.04371

Wang, X.-H., Fu, Y.-L., Xu, Y.-N., Zhang, P.-C., Zheng, T.-X., Ling, C.-Q., et al.
(2024). Ginsenoside Rh1 regulates the immune microenvironment of hepatocellular
carcinoma via the glucocorticoid receptor. J. Integr. Med. 22, 709–718. doi:10.1016/j.
joim.2024.09.004

Wiseman, L. R., and Spencer, C. M. (1997). Mitoxantrone. A review of its
pharmacology and clinical efficacy in the management of hormone-resistant
advanced prostate cancer. Drugs Aging 10, 473–485. doi:10.2165/00002512-
199710060-00007

Wolf, F. A., Angerer, P., and Theis, F. J. (2018). SCANPY: large-scale single-cell gene
expression data analysis. Genome Biol. 19, 15. doi:10.1186/s13059-017-1382-0

Woo, H. G., Lee, J.-H., Yoon, J.-H., Kim, C. Y., Lee, H.-S., Jang, J. J., et al. (2010b).
Identification of a cholangiocarcinoma-like gene expression trait in hepatocellular
carcinoma. Cancer Res. 70, 3034–3041. doi:10.1158/0008-5472.CAN-09-2823

Woo, H. G., Wang, X. W., Budhu, A., Kim, Y. H., Kwon, S. M., Tang, Z.-Y., et al.
(2010a). Association of TP53 mutations with stem cell-like gene expression and survival
of patients with hepatocellular carcinoma. Gastroenterology 140, 1063–1070. doi:10.
1053/j.gastro.2010.11.034

Wu, J., Liu, W., Qiu, X., Li, J., Song, K., Shen, S., et al. (2023). A noninvasive approach
to evaluate tumor immune microenvironment and predict outcomes in hepatocellular
carcinoma. Phenomics 3, 549–564. doi:10.1007/s43657-023-00136-8

Xu, C., Xu, Z., Zhang, Y., Evert, M., Calvisi, D. F., and Chen, X. (2022). β-Catenin
signaling in hepatocellular carcinoma. J. Clin. Invest 132, e154515. doi:10.1172/
JCI154515

Xu, S., Hu, E., Cai, Y., Xie, Z., Luo, X., Zhan, L., et al. (2024). Using clusterProfiler to
characterize multiomics data. Nat. Protoc. 19, 3292–3320. doi:10.1038/s41596-024-
01020-z

Xu, T., Yu, L., Cao, Y., Li, B., Li, Y., Zhang, L., et al. (2025). Apolipoprotein A1-
encoding recombinant adenovirus remodels cholesterol metabolism in tumors and the
tumor microenvironment to inhibit hepatocellular carcinoma. Transl. Res. J. Lab. Clin.
Med. 275, 18–31. doi:10.1016/j.trsl.2024.10.003

Yang, C., Huang, X., Liu, Z., Qin, W., and Wang, C. (2020). Metabolism-associated
molecular classification of hepatocellular carcinoma. Mol. Oncol. 14, 896–913. doi:10.
1002/1878-0261.12639

Yang, J. D., Hainaut, P., Gores, G. J., Amadou, A., Plymoth, A., and Roberts, L. R.
(2019). A global view of hepatocellular carcinoma: trends, risk, prevention and
management. Nat. Rev. Gastroenterol. Hepatol. 16, 589–604. doi:10.1038/s41575-
019-0186-y

Yang, T.-S., Chang, H.-K., Chen, J.-S., Lin, Y.-C., Liau, C.-T., and Chang, W.-C.
(2004). Chemotherapy using 5-fluorouracil, mitoxantrone, and cisplatin for patients
with advanced hepatocellular carcinoma: an analysis of 63 cases. J. Gastroenterol. 39,
362–369. doi:10.1007/s00535-003-1303-8

Zhang, P., Wang, X., Cen, X., Zhang, Q., Fu, Y., Mei, Y., et al. (2025). A deep learning
framework for in silico screening of anticancer drugs at the single-cell level. Natl. Sci.
Rev. 12, nwae451. doi:10.1093/nsr/nwae451

Frontiers in Pharmacology frontiersin.org20

Zou et al. 10.3389/fphar.2025.1605162

https://doi.org/10.2217/pgs.11.43
https://doi.org/10.3892/ijo.2017.3996
https://doi.org/10.1016/j.ccell.2022.02.013
https://doi.org/10.1038/s41592-018-0229-2
https://doi.org/10.1038/s41592-018-0229-2
https://doi.org/10.1093/bioinformatics/btaa1018
https://doi.org/10.1101/gr.239244.118
https://doi.org/10.1111/apt.12185
https://doi.org/10.1186/gb-2011-12-4-r41
https://doi.org/10.1186/gb-2011-12-4-r41
https://doi.org/10.1016/j.cell.2020.07.013
https://doi.org/10.1016/j.smim.2023.101739
https://doi.org/10.1016/j.smim.2023.101739
https://doi.org/10.1038/nature10166
https://doi.org/10.1016/j.cell.2017.05.046
https://doi.org/10.1038/s41587-019-0114-2
https://doi.org/10.1007/s40264-019-00810-9
https://doi.org/10.1007/s40264-019-00810-9
https://doi.org/10.1093/bib/bbaa032
https://doi.org/10.1158/1078-0432.CCR-18-3778
https://doi.org/10.1038/s41419-024-06699-2
https://doi.org/10.1038/s41419-024-06699-2
https://doi.org/10.1038/nmeth.4402
https://doi.org/10.1016/j.cels.2018.11.005
https://doi.org/10.1016/j.cels.2018.11.005
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1016/j.cell.2020.08.040
https://cran.r-project.org/web/packages/survival/index.html
https://cran.r-project.org/web/packages/survival/index.html
https://doi.org/10.1093/bioinformatics/btx513
https://doi.org/10.1056/NEJMra1713263
https://doi.org/10.21105/joss.04371
https://doi.org/10.21105/joss.04371
https://doi.org/10.1016/j.joim.2024.09.004
https://doi.org/10.1016/j.joim.2024.09.004
https://doi.org/10.2165/00002512-199710060-00007
https://doi.org/10.2165/00002512-199710060-00007
https://doi.org/10.1186/s13059-017-1382-0
https://doi.org/10.1158/0008-5472.CAN-09-2823
https://doi.org/10.1053/j.gastro.2010.11.034
https://doi.org/10.1053/j.gastro.2010.11.034
https://doi.org/10.1007/s43657-023-00136-8
https://doi.org/10.1172/JCI154515
https://doi.org/10.1172/JCI154515
https://doi.org/10.1038/s41596-024-01020-z
https://doi.org/10.1038/s41596-024-01020-z
https://doi.org/10.1016/j.trsl.2024.10.003
https://doi.org/10.1002/1878-0261.12639
https://doi.org/10.1002/1878-0261.12639
https://doi.org/10.1038/s41575-019-0186-y
https://doi.org/10.1038/s41575-019-0186-y
https://doi.org/10.1007/s00535-003-1303-8
https://doi.org/10.1093/nsr/nwae451
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1605162

	Multi-omics and single-cell approaches reveal molecular subtypes and key cell interactions in hepatocellular carcinoma
	1 Introduction
	2 Methods
	2.1 Data collection
	2.2 Multi-platform integrative clustering using MOVICS
	2.3 Molecular characteristics of multi-omics subtypes
	2.4 Single-cell RNA-Seq data processing
	2.5 Single-cell RNA velocity analysis
	2.6 Gene regulatory network analysis
	2.7 Cell-cell communication analysis
	2.8 Construction of the prognostic scoring system
	2.9 Potential therapeutic sensitivity assessment

	3 Results
	3.1 Multiomics consensus prognosis-related molecular subtypes of HCC
	3.2 Molecular characteristics of multi-omics subtypes
	3.3 TME characteristics of multi-omics subtypes
	3.4 Diversity and dynamics of macrophages in the HCC TME
	3.5 Diversity of hepatocyte heterogeneity in the HCC TME
	3.6 Diversity of cholangiocyte heterogeneity in the HCC TME
	3.7 Cell-cell communication analysis
	3.8 Construction the prognostic score system
	3.9 Assessing the treatment sensitivity of patients in different groups

	4 Discussion
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


