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The anaplastic lymphoma kinase (alk) gene on chromosome 2 encodes a
receptor tyrosine kinase protein essential for key signaling pathways regulating
cell proliferation and differentiation. Mutations in alk have been implicated in
multiple cancers, including non-small cell lung cancer (NSCLC) and anaplastic
large cell lymphoma. While ALK inhibitors have demonstrated efficacy in targeted
therapies, resistance due to specific amino acid substitutions requires the
development of novel therapeutic strategies. This study aims to identify ALK
tyrosine kinase domain mutations using data from the Cancer Genome Atlas and
to evaluate the potential of lorlatinib, a third-generation ALK inhibitor, in
overcoming these mutations. Using the SIFT and Polyphen-2 algorithms, we
identified 53 deleterious ALK mutations associated with different newly
recognized cancer types. These mutations were subjected to in silico
molecular docking with lorlatinib. Our results indicate strong binding affinities
(ranging from −9.4 to −10.8 kcal/mol) across all identifiedmutations, suggesting a
significant interaction between lorlatinib and mutated ALK variants. Furthermore,
protein-ligand interaction analysis revealed critical hydrophobic interactions,
hydrogen bonds, and essential halogen bonds reinforcing lorlatinib as a
potential utility in treating a broader spectrum of ALK-positive tumors beyond
NSCLC. This research underscores the importance of repurposing in silico drugs
and highlights the need for continued exploration of ALK mutations in cancer
therapeutics.
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Introduction

The anaplastic lymphoma kinase (alk) gene, located on the short arm of chromosome 2
(2p23), encodes a receptor tyrosine kinase that plays a critical role in regulating signaling
pathways involved in cell proliferation, survival, and differentiation, particularly during
nervous system development (Huret and Dessen, 2024; Yao et al., 2013).
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The ALK fusion gene was first identified in anaplastic large-cell
lymphoma (ALCL), and has since been implicated in several types of
cancer, including colorectal carcinoma (CRC), inflammatory
myofibroblastic tumor (IMT); B-cell lymphoma (BCL); non-
small-cell lung cancer (NSCLC); non-Hodgkin’s lymphoma
(NHL); neuroblastoma, and other less common malignancies
(Holla et al., 2017).

Targeted therapies using tyrosine kinase inhibitors (TKIs) have
shown efficacy against ALK-positive cancers, with crizotinib being
the first TKI approved by the U.S. Food and Drug Administration
(FDA) for NSCLC. However, resistance to crizotinib has emerged
due to point mutations or substitutions such as G1269A (Shaw et al.,
2011; Doebele et al., 2012). Second-generation TKIs, including
ceritinib, were developed to target mutations such as L1196M,
G1269A, I1171T, and S1206Y to overcome this resistance.
Despite these advancements, novel mutations continue to confer
resistance, necessitating the development of more effective
therapeutic options (Friboulet et al., 2014). Third-generation
TKIs, such as alectinib, brigatinib, and lorlatinib, have
demonstrated improved efficacy against resistant ALK variants,
with lorlatinib being the most recently TKI approved by the FDA
(Wang et al., 2022) (See Supplementary Figure 1).

A significant challenge in treating ALK-positive NSCLC is the
extensive mutational variability of the eml4-alk fusion gene and the
diversity of amino acid substitutions within the tyrosine kinase
domain of the ALK protein (Elshatlawy et al., 2023). However, these
mutations may also be present in other types of cancer. Importantly,
not all amino acid substitutions act as oncogenic drivers; some are
merely passenger mutations or variants of unknown significance (Li
et al., 2017). To predict the functional impact of these mutations,
computational algorithms such as SIFT (Sorting Intolerant From
Tolerant) and PolyPhen-2 (Polymorphism Phenotyping v2) have
been developed (Li et al., 2017; Flanagan et al., 2010). SIFT predicts
whether an amino acid substitution affects protein function, with
scores between 0 and 0.05 indicating deleterious mutations (Ng and
Henikoff, 2003). Similarly, PolyPhen-2 assesses the potential impact
of amino acid substitutions on protein structure and function, with
scores between 0.85 and 1 classified as damaging (Adzhubei
et al., 2013).

Given this context, this research aims to analyze data from the
Cancer Genome Atlas (TCGA) to identify novel amino acid
substitutions within the ALK tyrosine kinase domain that may
contribute to oncogenesis. Furthermore, we evaluate the in silico
binding potential of lorlatinib against these amino acid substitutions
to assess its pharmacological sensitivity and explore its possible
therapeutic repurpose in other types of cancer.

Materials and methods

Collection of alk gene somatic mutations

We retrieve primary data from the Cancer Genome Atlas
(TCGA) through its official portal https://www.cancer.gov/ccg/
research/genome-sequencing/tcga (Center for Cancer Genomics
at the National Cancer Institute, 2006). Using the search engine,
we queried the alk gene using the search engine and extracted all
relevant mutation data. The database was then filtered to include

only mutations classified as “deleterious” by SIFT and “damaging”
by PolyPhen-2. Additionally, we focused on amino acid positions
between 1,117 and 1,392, corresponding to the tyrosine kinase
domain of the ALK protein (Huang, 2018). As a result,
53 somatic mutations were identified.

ALK amino acid substitution structure
preparation

The structure of the ALK protein in PDB format was obtained
from AlphaFold (https://alphafold.ebi.ac.uk/) and identified as AF-
Q9UM73-F1-v4. This structure was refined using PyMOL
(academic version) (Rigsby and Parker, 2016), focusing on the
tyrosine kinase domain. The range of amino acid residues was
expanded (from 1,090 to 1,400 residues), and modifications
included removing water molecules, adding hydrogen atoms, and
incorporating each somatic mutation identified in the TCGA
database through mutagenesis. Finally, energy minimization was
performed using Swiss PDB Viewer, and all 53 resulting structures
were saved in PDB format.

Obtaining ALK inhibitor ligand

The lorlatinib ligand was retrieved from DrugBank (https://go.
drugbank.com/) in PDB format for molecular docking and SMILES
format for ADME (absorption, distribution, metabolism, and
excretion) analysis using SwisssADME (http://www.swissadme.ch/).

Molecular docking of ALK amino acid
substitution structures with lorlatinib

Each ALK amino acid substitution structure was uploaded into
PyRx - Virtual Screening Tool® (free version) to serve as the receptor
(Dallakyan and Olson, 2015). The lorlatinib ligand was imported
into PyRx using the Open Babel extension and underwent energy
minimization. Molecular docking simulations were performed using
the AutoDock Vina extension within PyRx, with the grid box
parameters set to X = −4.01, Y = −1.59, and Z = −24.75 in all
53 ALK-mutated receptors. Finally, wild-type (WT), C1156Y, and
L1196M ALK mutations docked with lorlatinib as a reference group
were validated by measuring the root mean square deviation
“RMSD” (rmsd reference: <2Å) (Mishra and Sharma, 2016),
against crystal structures available in the PDB-RSCB repository,
including 7R7R, 5A9U, and 4CLJ, respectively.

Binding energy measurements

Binding energy is a key parameter that reflects the affinity of a
ligand for its binding site on substrate, with more negative values
indicating stronger interactions. This study measured the binding
energy (in kilocalories per mol, kcal/mol) for the ligand lorlatinib
against each previously prepared ALK mutated structure. Binding
energies threshold (−6.8 kcal/mol) were calculated by molecular
docking of three PDB-RSCB repository: 7R7R, 5A9U, 4CLJ, and
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AlphaFold model with ATP ligand retrieved from pubchem (see
Supplementary Table 1) (NIH, 2025). Molecular interactions were
visualized using Discovery Studio Visualizer (free software) to
interpret better the binding behavior (Dassault Systemes, 2019).

Characterization of the protein-ligand
interaction profile

Each of the 53 ALK somatic mutation proteins complexed with
lorlatinib was saved in pdb format and submitted to the Protein-
Ligand Interaction Profiler (PLIP) tool (https://plip-tool.biotec.tu-
dresden.de/plip-web/plip/index) (Adasme et al., 2021). The
resulting interaction profiles, which classified hydrophobic,
hydrogen, and halogen bonds, were downloaded as. pse files,
analyzed, and visualized using Pymol.

Statistical analysis

All data were analyzed and charted in GraphPad Prism 10.03,
SRplot (https://www.bioinformatics.com.cn/en) (Tang et al., 2023),
PyMOL (Rigsby and Parker, 2016), and BIOVIA Discovery Studio
Visualizer software (Dassault Systemes, 2019). Binding energies
were performed using the AutoDock Vina parameters (Trott and
Olson, 2010). Normality testing and nonparametric analysis were
performed using the Kolmogorov-Smirnov test to identify
statistically significant changes. Finally, the predictive SIFT and
PolyPhen-2 scores were correlated with binding energy values
using the Spearman correlation test.

Results

Missense mutations in the anaplastic
lymphoma kinase (ALK) gene encodes for
heterogeneous amino acids substitutions
associated with different types of cancer

Given the diversity of point mutations in the ALK oncoprotein
that contribute to therapy resistance, we explore the TCGA database.
A total of 548 somatic mutations were identified, leading to
341 unique missense protein expressions. Of these,
137 mutations were predicted to be deleterious or damaging in
tumorigenesis based on SIFT and PolyPhen-2 scores. Specifically,
53 mutations were located within the tyrosine kinase domain
(residues 1,090–1,400) (See Supplementary Figure 2).

The most frequently affected position was 1,174, where
phenylalanine was substituted by leucine, cysteine, or isoleucine
(n = 4; 7.55%). Other recurrent mutations included position 1,202
(n = 2; 3.77%), where glycine was replaced by glutamic acid or
arginine, position 1,209 (n = 2; 3.77%), where arginine was
substituted by proline or glutamine, and position 1,212, where
arginine was replaced by histidine or cysteine. The remaining
point mutations were observed only once (n = 1; 1.89%).

These 53 ALK variants were identified in 77 patients (40 males,
37 females), with the highest frequency in corpus uteri (15.58%),
followed by adrenal gland (11.69%), skin (10.39%), lung (9.09%),

and colon cancer (9.09%). Some mutations were associated with
multiple cancer types, such as P1357H (uterus and stomach),
R1120W (uterus and colon), R1181H (colon and cervix),
G1121D (colon and breast), R1275Q (lymph node and adrenal
gland), F1174L (peritoneum, adrenal gland, and others), and
F1174C (kidney and adrenal gland) (See Supplementary Tables 2, 3).

In general, these ALK variants are associated with multiple
cancer types. All 53 ALK amino acid substitutions had tumor
mutant allele frequency (MAF) values ranging from 0.034 to
0.568, classifying them as rare or less frequent alleles in the
population, in the context of TCGA data, MAF or also known as
“variant allele frequency” (VAF) refers to the proportion of reads at
a specific genomic location that carry a somatic mutation, indicating
the percentage of tumour cells harbouring that mutation. Despite
their low frequency, all 53 ALK variants were predicted to be
deleterious or damaging according to SIFT and PolyPhen-2
scores (Figure 1A). These findings suggest that ALK could be a
therapeutic target for cancers beyond non-small cell lung cancer
(NSCLC). Notably, lorlatinib, the latest FDA-approved ALK
inhibitor for NSCLC (The Asco Post, 2018), has demonstrated
favorable pharmacokinetics properties, including ADME
(absorption, distribution, metabolism, and excretion) parameters.
These properties support its potential repurpose as a therapeutic
option for other ALK-driven malignancies (See Figures 1B,C;
Supplementary Table 4).

Novel somatic variants of the ALK structure
exhibit strong binding energy to lorlatinib

Lorlatinib is the latest FDA-approved ALK inhibitor designed to
overcome resistance in non-small cell lung cancer (NSCLC). It
effectively targets mutations such as C1156Y, I1171 N/S/T,
L1196M, and G1202R, which confer resistance to earlier-
generation ALK inhibitors (Trott and Olson, 2010). We selected
key ALK mutations sensitive to lorlatinib to establish a reference
group, such as wild-type (WT), C1156Y, L1196M, and G1202R. This
group, termed the “ALK protein group sensitive to lorlatinib,” was
used for comparative analysis. Structural data for three of them were
obtained from the Protein Data Bank (PDB-RSCB, https://www.
rcsb.org/), including: 7R7R (ALK-WT-lorlatinib complex), 5A9U
(C1156Y-lorlatinib complex), and 4CLJ (L1196M-lorlatinib
complex) (Figure 2A).

Given that lorlatinib binds effectively to the ALK protein, we
hypothesized that it could also interact with all 53 newly identified
ALK variants. However, its efficacy against these novel mutations
remained unknown. To address this, we performed molecular
docking experiments using ALK protein structures obtained from
AlphaFold, introducing the 53 somatic mutations as well as the
reference mutations, followed by lorlatinib binding
simulations (Figure 2B).

Our results demonstrated that the binding energy of lorlatinib
for the ALK-sensitive reference group was: −9.6 kcal/mol
(L1196M), −9.7 kcal/mol (ALK wild-type and C1156Y),
and −9.9 kcal/mol (G1202R). Additionally, validation against
available crystal structures (RSCB-PDB IDs: 7R7R, 5A9U, and
4CLJ) resulted in RMSD values of 0.462, 0.399, and 0.370,
respectively, confirming that the docking models closely resemble
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FIGURE 1
ALK amino acid substitutions are involved in different cancer types. (A) Each ALK amino acid substitution is associated with known and newly
identified cancer types. Some variants, such as P1357H, G1121D, R1275Q, and F1174 L/C, are implicated in multiple cancer types. The mutant allele
frequency (MAF) ratio ranges from 0.034 to 0.568, indicating that these substitutions are rare alleles in the population, (B) The Lorlatinib molecule meets
the criteria for six key ADME (absorption, distribution, metabolism, and excretion) parameters, supporting its pharmacokinetic suitability, (C) Table
summarizing the specific values for the six ADME parameters of lorlatinib.
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experimentally determined structures. These findings suggest that
strong binding energy correlates with sensitivity to lorlatinib
(Figure 2C). Surprisingly, all 53 ALK variants also exhibited
strong binding energy, ranging from −9.4 kcal/mol (P1355L)
to −10.8 kcal/mol (A1252V) (AutoDock Vina analysis),
indicating that lorlatinib maintains a high affinity for these
mutations. Moreover, a nonparametric T-test comparison
between the 53 ALK variants and the ALK-sensitive reference
group showed no significant differences in binding
energy (Figure 2D).

These results suggest that lorlatinib could effectively bind to and
inhibit these 53 novel ALK somatic mutations, potentially regulating
ALK signaling in multiple cancer types beyond NSCLC. The key
amino acid residues mediating lorlatinib interactions will be
described in the following section (Figures 2D–G).

Lorlatinib binds to ALK variants through
strong hydrophobic, hydrogen, and halogen
bond interactions

Molecular docking analysis revealed that eachALK variant exhibited
a specific interaction pattern with lorlatinib, categorized into three main

types: hydrophobic interactions, hydrogen bonds, and halogen bonds.
These interactions play a crucial role in stabilizing the ligand within the
protein’s active site and may contribute to the drug’s efficacy against
novel ALK mutations (Figures 3A,B).

Hydrophobic interactions were the most prevalent type of
interaction observed across the analyzed variants. Notably, valine
at position 1,130 was involved in hydrophobic interactions in all
ALK variants (100%), followed by leucine at positions 1,122 and
1,256, which were present in 98% and 84.9% of cases, respectively.
Additionally, alanine at position 1,148 contributed to these
interactions in 81.1% of the variants, while leucine at position
1,196 was involved in 54.7% of cases. Interesting, two
substitutions at position 1,202 (glutamic acid and arginine) also
maintained hydrophobic interactions with lorlatinib, suggesting that
the overall binding environment of this region remains favorable for
drug engagement despite the presence of mutations.

Hydrogen bonds, another key interaction type, were primarily
observed at methionine 1,199, which formed hydrogen bonds in
62.3% of the variants. Additionally, leucine 1,122 participated in
hydrogen bonding in 54.7% of cases, reinforcing its critical role in
lorlatinib binding. Less frequently observed hydrogen bond
interactions included histidine 1,124 (six cases), aspartate 1,270
(two cases), aspartate 1,203 (one case), serine 1,206 (one case),

FIGURE 2
ALK structure variants exhibit strong binding energy to lorlatinib comparable to the know sensitive group (A) We can see the validation structure
obtained from AlphaFold with crystallized structure available in RSCB-PDB, here we can corroborate that alphaFold structure displays RMSD values close
to zero (reference <2 Å). (B) List of ALK amino acids substitutions, highlighting in red boxes containing their respective binding energy values calculated by
AutoDock Vina in kcal/mol, (C) List of reference ALK protein group: WT, C1156Y, L1196M, and G1202R sensitive to lorlatinib, biding energy values
(contained in red boxes) calculated by AutoDock Vina are used as control binding energy, (D) Nonparametric T-test analysis comparing the binding
energies of the 53 ALK variants versus the ALK-sensitive reference group, showing no significant differences (ns), (E) Tridimensional structure of the
S1324Y-lorlatinib interaction, highlighting key binding residues, (F) Zoom-in viewof the S1324Y-lorlatinib interaction, highlighting key binding residue, (G)
2D schematic representation of the S1324Y-lorlatinib binding interactions.
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and arginine 1,253 (one case). These interactions suggest that
lorlatinib maintains a stable binding conformation across a broad
range of ALK variants, which could explain the strong binding
affinity observed in molecular docking simulations.

In addition to hydrophobic and hydrogen bond interactions,
sole ALK variants could also form halogen bonds with lorlatinib due
to its fluorine atom. These halogen bonds were primarily established
with glutamine at position 1,197, detected in variants A1234T,
E1242K, F1245I, K1352N, and P1112Q. Additionally, aspartate at
position 1,270 was involved in halogen bonding interactions in
A1252V, R1212H, and V1338A. The ability of lorlatinib to form
these halogen bonds may further contribute to its binding stability
and potential inhibitory effects on mutated ALK proteins.

Taken together, these findings suggest that lorlatinib establishes
a robust binding network across the analyzed ALK variants. In
particular, leucine at position 1,122 appears to be a key residue,
participating in both hydrophobic and hydrogen-bond interactions
in most ALK variants.

This could play a critical role in maintaining drug sensitivity,
even in the presence of somatic mutations classified as deleterious or
damaging by tumor predictor algorithms such as SIFT and
PolyPhen-2. These results provide valuable insights into the
molecular basis of lorlatinib’s interaction with novel ALK
mutations and support its potential therapeutic relevance in a
broader range of cancer types beyond non-small cell lung
cancer (NSCLC).

The discrepancy between binding affinity
scores of ALK variants and somatic mutation
predictor scores

All 53 ALK variants were manually generated using PyMOL
academic software, following the methodology described in the
Methods section. The structural modifications were based on the
AlphaFold-derived ALK tyrosine kinase domain template

FIGURE 3
Interaction profile of ALK variants with lorlatinib by hydrophobic interaction, hydrogen, and halogen bonds (A) Heatmap illustrating the three main
types of interactions between shows three groups of interactions of ALK structure variants with lorlatinib: hydrophobic interaction, hydrogen and halogen
bonds, each blue box displays interactions frequency with key amino acids (from 0 to 3), (B) Representative three-dimensional structure of the ALK
variants S1252V, highlighting its interactions with lorlatinib. The image displays hydrophobic interactions in discontinuous lines with Leu1256,
Val1130 and Leu1122 (amino acids in yellow), and hydrogen bonds interactions represented in blue continuous lines with Arg1253 and Met1199 (amino
acids in pink), and halogen bond interaction represented in cyan continuous line with Asp1270 amino acid in gray color, demonstrating the multifaceted
binding mechanism that stabilizes lorlatinib within the active site of the ALK protein.
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(Figures 4A,B). Two computational predictors of tumorigenicity
were used: SIFT, where a score close to or equal to 0 classifies
substitutions as deleterious (indicating potential disruption of
protein function), and PolyPhen-2, where a score close to or
equal to 1 classified a substitution as damaging (suggesting
structural and functional impairment of the protein).
Additionally, molecular docking analyses using AutoDock
Vina revealed binding energy values ranging
from −9.6 to −10.8 kcal/mol (Figure 4C).

The expected inverse correlation between SIFT and PolyPhen-2
scores was confirmed by Spearman’s correlation test (r = −0.3276,
p = 0.0166), indicating a statistically significant negative association
between these predictive metrics (Figure 4D). However, when
comparing these tumorigenic predictor scores with binding
energy values, the correlations were notably weak (r SIFT vs.
binding energy = −0.04; r PolyPhen-2 vs. binding
energy = −0.03) and statistically nonsignificant (p = 0.791 and
p = 0.818, respectively) (Figure 4E).

These results suggest the relationship between computational
predictors of oncogenic potential and molecular properties.
Although SIFT and PolyPhen-2 scores predicted that these ALK
substitutions could contribute to tumorigenesis, the strong binding
affinity of lorlatinib indicates its potential to effectively target these
ALK variants, possibly mitigating their oncogenic effects (See
Supplementary 4).

Discussion

Amino acid point mutations in the ALK protein are critical in
conferring resistance to ALK inhibitor therapies in cancer. Notably,
mutations such as G2032R and I1151Tins are associated with
resistance to the first-generation inhibitor crizotinib. Conversely,
mutations such as C1156T/Y, L1198F, D1203N, and G1202R have
been linked to resistance against second-generation inhibitors,
including ceritinib, alectinib, and brigatinib. Furthermore, third-

FIGURE 4
ALK structure variants exhibit strong binding energy to lorlatinib as known sensitive group (A) ALK protein structure obtained from AlphaFold
visualized using PyMOL (academic version), (B) ALK variant, A1200V, generated through mutagenesis in PyMOL, with substituted residue highlighted in
red stick, (C) Heatmap displaying SIFT and PolyPhen-2 scores for all 53 ALK variants implicated in different cancer types, along with their respective
binding (Kcal/mol), (D) Spearman’s correlation analysis reveals a significant negative correlation between SIFT and PolyPhen-2 score, and (E)
Tumorigenic predictor scores (SIFT and PolyPhen-2) show not significant correlation with binding energies of the 53 ALK amino acids substitutions.
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generation inhibitors like lorlatinib exhibit resistance to mutations
such as L1198F, G2032R, D1203N, and G1123D (Poei et al., 2024).
Despite these challenges, lorlatinib has demonstrated significant
therapeutic efficacy in overcoming drug resistance (Poei et al.,
2024; Johnson et al., 2014).

In this study, we identified 53 amino acid substitutions in the
ALK protein using the ATCG database. We classified them as
potential oncogenic drivers based on predictive tools such as
SIFT and PolyPhen-2 scores. These mutations have been
associated with various cancers, including NSCLC, anaplastic
large-cell lymphoma, neuroblastoma, and colorectal carcinoma.
Moreover, our findings suggest novel associations of these
mutations with additional cancer types, including skin,
retroperitoneal, peritoneal, pancreatic, kidney, esophageal, breast,
bladder, and adrenal tumors (Holla et al., 2017; Adzhubei et al.,
2010; Bresler et al., 2014).

Furthermore, lorlatinib has demonstrated the ability to target
multiple ALK mutations, including C1156Y, I1171 N/S, F1174C,
L1196M, L1198F, G1202R, D1203N, E1210K, and G1269A,
showcasing sensitivity in NSCLC patients, even those resistant to
prior-generation ALK inhibitors. This suggests that lorlatinib may
potentially address a broader spectrum of ALK amino acid
substitutions, positioning it as a promising candidate for
repurposing therapies in various types of cancer (Bertacca et al.,
2023). Our hypothesis was further validated by binding energy
calculations for all 53 ALK variants revealed values comparable
to those of experimentally validated ALK wild-type (WT), C1156Y,
L1196M, and G1202R mutations, which are known to be sensitive to
lorlatinib (Poei et al., 2024; Gainor et al., 2016).

Among the 53 identified ALK amino acid substitutions, three
have been reported to interact with the active site of ALK protein.
We identified two structures containing the F1174L mutation (PDB
codes: 2YJR and 4FNW) and four structures for R1275Q (PDB
codes: 4FNY, 4FNX, 4FNZ, and 4FNW), both implicated in
neuroblastoma (Epstein et al., 2012; Sasaki et al., 2010).
Additionally, a structure harboring the G1202R mutation (PDB
code: 9GBE) was identified in complex with the NVL-655 ALK
inhibitor for NSCLC, suggesting that lorlatinib may also target this
variant (Lin et al., 2024). Furthermore, a case report in NSCLC
demonstrated that the ALK I1171Nmutation, along with other ALK
amino acids substitutions identified in this study, conferred
resistance to ensartinib but remained sensitive to lorlatinib,
further supporting the efficacy of lorlatinib against multiple ALK
amino acids substitutions (Ye and Guo, 2023). The remaining
49 ALK amino acids substitutions may also contribute to
oncogenesis, as their oncogenic predictor scores suggest potential
alterations in the ALK protein. Although these mutations have not
yet been documented in the literature, they are available in the
TCGA database and have been associated with different types of
cancer, with some mutations occurring in more than one
cancer type.

Given that lorlatinib has demonstrated efficacy against multiple
ALK amino acids substitutions, our results suggest that it could
target all 53 identified substitutions, as indicated by binding energy
calculations and protein-ligand interaction profiles. Previous studies
have reported binding energy values of −8.9, −8.6, and −8.4 kcal/mol
for ALK-WT, F1174C, and F1174L, respectively, when interacting
with lorlatinib. In contrast, our results for the same mutations

yielded a stronger binding energy of −9.7 kcal/mol. Similarly,
binding energy values ranging from −9.6 to −10.8 kcal/mol were
observed for the remaining ALK amino acid substitutions analyzed
in this study (Balasundaram and Doss, 2023), further supporting
lorlatinib’s potential as a versatile therapeutic option.

The strong binding energy affinities observed for all 53 ALK
amino acid substitutions can be attributed to key stabilizing
interactions, including hydrophobic and hydrogen bond
interactions, so they play an important role because they stabilize
the protein-ligand energy (Varma et al., 2010). Specifically, lorlatinib
exhibited strong hydrophobic interactions with Leu 1,122, Val 1,130,
Ala 1,148, Leu 1,196, and Leu 1,256, as well as hydrogen bonds with
Leu 1,122 and Met 1,199. Additionally, halogen bonds with Glu
1,197 and ASP 1270 were identified for substitutions lacking
hydrogen bonds, which are critical in drug design as they
enhance protein-ligand interactions. Fluorine and chlorine atoms
are frequently incorporated into drug structures to improve
physicochemical properties (Shinada et al., 2019; Margiotta et al.,
2020), whichmay explain why ALK amino acid substitutions such as
A1234T, A1252V, E1242K, F1245I, K1352N, P1112Q, R1212H, and
V1338A exhibit strong binding to lorlatinib, as its molecular
conformation includes a fluorine atom.

In the TCGA database, 541 somatic ALK amino acid
substitutions were identified; however, not all were predicted to
be oncogenic drivers. Only 53 were classified as tumorigenic based
on SIFT and Polyphen-2 predictor scores within the ALK tyrosine
kinase domain. These predictors, which range from 0 to 1, assess the
likelihood that an amino acid substitution will impact protein
function. SIFT scores between 0 and 0.05 indicate deleterious
effects, while PolyPhen-2 scores from 0.85 to 1 classify
substitutions as damaging (Ng and Henikoff, 2003; Adzhubei
et al., 2013). In our analysis, all 53 ALK amino acid substitutions
exhibited SIFT scores close to 0 and PolyPhen-2 scores near 1,
confirming their deleterious and damaging nature, respectively.
Previous studies have proposed a combined model using both
predictors to assess non-synonymous variants, showing a positive
correlation between 1-SIFT scores and PolyPhen-2 scores (Wei
et al., 2011). However, in our study, we observed a negative
correlation, which may be attributed to the direct comparison of
PolyPhen-2 scores with the original SIFT scores rather than their
complementary 1-SIFT values.

While the SIFT and PolyPhen-2 predictors did not exhibit a
strong correlation with binding energy, our analysis revealed a weak
negative correlation (See Figure 4E), likely due to random variations.
Nevertheless, the binding energies to lorlatinib suggest that
lorlatinib remains effective against all 53 ALK amino acid
substitutions classified as deleterious or damaging in cancer.
These findings support the potential repurpose of lorlatinib to
target additional ALK-driven cancers beyond NSCLC, as
indicated by in silico simulations.

In this study, we acknowledge a limitation in relying solely on in
silico tools such as SIFT and PolyPhen-2 for assessing the oncogenic
potential of ALK genomic alterations. While these tools offer
valuable predictive insights into variant pathogenicity, they do
not encompass the full spectrum of clinical oncogenicity criteria.
Future research should explore the broader context of ALK
interactions and functional consequences to enhance
understanding of their oncogenic roles.
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To verify the predictive potential of pathogenicity, we conducted
a manual search on the Alphamissense portal: https://
alphamissense.hegelab.org/search (Author anonymous, 2025;
Minton, 2023). Through this approach, we confirmed that all the
53 genetic variants we proposed were classified as likely pathogenic,
with the majority exceeding a confidence score of 0.89 (See
Supplementary Table 5). Additionally, we evaluated the amino
acid changes associated with oncogenicity or treatment resistance
using the OncoKB™ database (Suehnholz et al., 2024; Chakravarty
et al., 2017), which is one of the most reputable platforms for genetic
variant curation, adhering to rigorous standards of somatic variants
classification (Horak et al., 2022).

On the other hand, while the exact impact on ATP-binding or
kinase activation for these specific novel substitutions requires
experimental validation, their classification as “likely
pathogenic” suggests they may contribute to aberrant ALK
signaling. Several identified mutations have known biological
and clinical implications according to OncoKB™ (https://www.
oncokb.org/gene/ALK) (Chakravarty et al., 2017; ALK, 2017).
The ALK I1171N (p.Ile1171Asn) mutation is classified as “Likely
Oncogenic” and is clinically relevant due to its resistance to first-
and second-generation ALK inhibitors (crizotinib, ceritinib, and
alectinib), while notably retaining sensitivity to brigatinib and
lorlatinib (ALK, 2017; Ceccon et al., 2013). This highlights a
critical mechanism of acquired drug resistance. Similarly, ALK
F1174L (p.Phe1174Leu) is an “Oncogenic” mutation associated
with resistance to crizotinib, ceritinib, and alectinib, but shows
sensitivity to lorlatinib and brigatinib. The ALK F1174C (p.
Phe1174Cys) mutation, also “Likely Oncogenic,” exhibits
resistance to crizotinib and ceritinib but remains sensitive to
alectinib, brigatinib, and lorlatinib. Conversely, ALK F1174I (p.
Phe1174Ile), another “Likely Oncogenic” variant, displays a
broader sensitivity to crizotinib, ceritinib, alectinib, and
lorlatinib. These F1174 variants underscore the diverse
therapeutic challenges and opportunities within a single amino
acid position (see Supplementary 7) (ALK, 2017; Cheng et al.
, 2023).

Furthermore, the ALK G1202R (p.Gly1202Arg) mutation is
categorized as a “Resistance” mutation, confirming its role in
resistance to crizotinib, ceritinib, alectinib, and brigatinib, while
being sensitive to lorlatinib. This well-characterized mutation is a
key driver of acquired resistance to several ALK TKIs. In contrast,
the ALK A1200V (p.Ala1200Val) and ALK E1242K (p.Glu1242Lys)
mutations are both deemed “Likely Neutral” by OncoKB, suggesting
they may not significantly impact ALK function or drug response.
Lastly, the ALK R1275Q (p.Arg1275Gln) mutation is identified as
“Oncogenic” and has demonstrated sensitivity to crizotinib and
lorlatinib in both in vitro and in vivo studies, indicating its potential
as a targetable alteration (see Supplementary 7) (ALK, 2017; Cheng
et al., 2023).

The consistent sensitivity of several ALK mutations
demonstrated in our in silico experiments, including I1171N,
F1174L, F1174C, F1174I, G1202R, and R1275Q, to lorlatinib, as
highlighted by our findings and supported by OncoKB
classifications, strongly suggests the potential for therapeutic
repurposing of this third-generation ALK inhibitor beyond its
current primary indication in NSCLC. Lorlatinib’s known ability
to overcome common resistance mutations that emerge from

earlier-generation ALK TKIs, coupled with its excellent central
nervous system (CNS) penetration, makes it a highly promising
candidate for other ALK-driven malignancies, particularly those
with a propensity for CNS metastases, such as neuroblastoma. This
work influences future preclinical and clinical investigations by
providing a rationale to explore lorlatinib’s efficacy in a broader
spectrum of ALK-driven cancers.

Future steps should include: (Huret and Dessen, 2024):
Preclinical validation: detailed in vitro and in vivo studies in
diverse ALK-driven cancer models (e.g., specific lymphomas,
inflammatory myofibroblastic tumors, or other solid tumors
where ALK fusions or activating mutations are identified)
harboring these specific sensitive mutations, to thoroughly
characterize its anti-tumor activity and optimal dosing; (Yao
et al., 2013); Biomarker-driven clinical trials: initiating basket or
umbrella clinical trials specifically enriching for patients with
these lorlatinib-sensitive ALK mutations, regardless of cancer
type, to evaluate clinical response rates and safety in a real-world
setting; and (Holla et al., 2017) Investigation of combination
therapies: exploring rational combinations of lorlatinib with
other targeted agents or conventional therapies to potentially
overcome emergent resistance mechanisms or enhance
therapeutic efficacy. By leveraging the comprehensive genomic
and functional data presented here, a more precise and
personalized approach to treating ALK-driven cancers can be
developed, potentially improving patient outcomes in a wider
range of malignancies.

In conclusion, our study identified novel amino acid
substitutions in the ALK tyrosine kinase domain associated with
cancers beyond hematological malignancies and NSCLC.
Importantly, we demonstrated that lorlatinib retains efficacy
against these mutations, suggesting its potential for therapeutic
repurposing in other ALK-mutated cancers. This finding persists
despite SIFT and PolyPhen-2 predictions of oncogenic progression,
positioning lorlatinib as a promising candidate for broader clinical
applications.
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SUPPLEMENTARY FIGURE 1
Mechanism of action of lorlatinib in tumoral cell. The ALK gene, located on
the short arm of chromosome 2, encodes the transmembrane ALK protein.
In contrast, the EML4-ALK fusion gene produces an oncogenic ALK variant
that lacks the extracellular and transmembrane domains, retaining only the
intracellular region containing the tyrosine kinase domain. This truncated
protein becomes susceptible to constitutive phosphorylation by ATP,
leading to dysregulation of signaling pathways involved in cell proliferation
and survival. Lorlatinib, a small-molecule inhibitor, crosses the cell
membrane and competes with ATP for binding at ALK’s active site, thereby
modulating these signaling pathways.

SUPPLEMENTARY FIGURE 2
Workflow data obtaining This is the workflow followed to obtain our data.
Here, 548 ALK variants were available on TCGA, of which 341 displayed
missense mutations. Only 137 variants were characterized as deleterious/
damaging as predicted by SIFT and PolyPhen algorithms. Finally, we focused
on 53 ALK substitutions that affected the tyrosine kinase domain.
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