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Introduction:Dengue virus (DENV) is a significant global arboviral threat with fatal
potential, currently lacking effective antiviral treatments or a universally
applicable vaccine. In response to this unmet need, we developed the “i-
DENV” web server to facilitate structure-based drug prediction targeting key
viral proteins.

Methods: The i-DENV platform focuses on theNS3 protease andNS5 polymerase
of DENV using machine learning techniques (MLTs) and quantitative structure-
activity relationship (QSAR) modeling. A total of 1213 and 157 unique compounds,
along with their IC50 values targeting NS3 and NS5 respectively, were retrieved
from the ChEMBL and DenvInD databases. Molecular descriptors and fingerprints
were computed and used to train multiple regression-based MLTs, including
SVM, RF, kNN, ANN, XGBoost, and DNN, with ten-fold cross-validation.

Results: The best-performing SVM and ANN models achieved Pearson
correlation coefficients (PCCs) of 0.857/0.862 (NS3) and 0.982/0.964 (NS5) on
training/testing sets, and 0.870/0.894 (NS3) and 0.970/0.977 (NS5) on
independent validation sets. Model robustness was supported through scatter
plots, chemical clustering, statistical analyses, decoy set etc. Virtual screening
identified Micafungin, Oritavancin, and Iodixanol as top hits for NS2B/NS3
protease, and Cangrelor, Eravacycline, and Baloxavir marboxil for NS5
polymerase. Molecular docking further confirmed strong binding affinities of
these compounds.

Discussion: Our in-silico findings suggest these repurposed drugs as promising
antiviral candidates against DENV. However, further in vitro and in vivo studies are
essential to validate their therapeutic potential. The i-DENV web server is freely
accessible at http://bioinfo.imtech.res.in/manojk/idenv/, offering a structure-
specific drug prediction platform for DENV research and antiviral drug discovery.

KEYWORDS

machine learning, antivirals, artificial intelligence, algorithm, web server, QSAR

OPEN ACCESS

EDITED BY

Jean Christopher Chamcheu,
Louisiana State University, United States

REVIEWED BY

Nitin Sharma,
Washington University in St. Louis, United States
Sisir Nandi,
Uttarakhand Technical University, India
Mohammed Imam,
Umm Al-Qura University, Saudi Arabia

*CORRESPONDENCE

Manoj Kumar,
manojk@imtech.res.in

RECEIVED 03 April 2025
ACCEPTED 12 June 2025
PUBLISHED 26 June 2025

CITATION

Gautam S, Thakur A and Kumar M (2025) i-
DENV: development of QSAR based regression
models for predicting inhibitors targeting non-
structural (NS) proteins of dengue virus.
Front. Pharmacol. 16:1605722.
doi: 10.3389/fphar.2025.1605722

COPYRIGHT

© 2025 Gautam, Thakur and Kumar. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Pharmacology frontiersin.org01

TYPE Original Research
PUBLISHED 26 June 2025
DOI 10.3389/fphar.2025.1605722

https://www.frontiersin.org/articles/10.3389/fphar.2025.1605722/full
https://www.frontiersin.org/articles/10.3389/fphar.2025.1605722/full
https://www.frontiersin.org/articles/10.3389/fphar.2025.1605722/full
https://www.frontiersin.org/articles/10.3389/fphar.2025.1605722/full
https://www.frontiersin.org/articles/10.3389/fphar.2025.1605722/full
http://bioinfo.imtech.res.in/manojk/idenv/
https://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2025.1605722&domain=pdf&date_stamp=2025-06-26
mailto:manojk@imtech.res.in
mailto:manojk@imtech.res.in
https://doi.org/10.3389/fphar.2025.1605722
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2025.1605722


Introduction

Dengue virus (DENV), an arbovirus from the Flaviviridae
family, causes tropical diseases and is a major global health
concern. The World Health Organization (WHO) lists Dengue
among the top ten global threats, with nearly half the world’s
population at risk and about 390 million infections annually
(Waggoner et al., 2016; Bhatt et al., 2013; Brady et al., 2012).
Globalization, urbanization, and climate change are expanding
the range of Aedes aegypti and Aedes albopictus, potentially
placing 60% of the global population at risk by 2080 (Ebi and
Nealon, 2016; Messina et al., 2019; de Almeida et al., 2017). DENV
encompasses four serotypes (DENV-1 to DENV-4), each capable of
causing the full range of disease. Infection with a different serotype
can lead to severe conditions like dengue hemorrhagic fever (DHF)
and potentially fatal dengue shock syndrome (DSS) due to antibody-
dependent enhancement (ADE), which complicates vaccine
development (Goethals et al., 2023; Dash et al., 2006). Currently,
no approved antivirals exist and only symptomatic treatment is
available (Kaptein et al., 2021).

DENV possesses an 11 kb single-strand RNA genome, yielding
seven non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A,
NS4B, NS5) and three structural proteins (CP, EP, MP) (Khan
et al., 2023). Its life cycle reveals key steps such as endocytosis, viral
fusion, transcription, and release of new viral particles (Behnam
et al., 2016). The envelope (E) protein mediates host cell attachment
and membrane fusion. The membrane (M) protein stabilizes the
mature virion and aids assembly after prM cleavage. The capsid (C)
protein packages viral RNA and initiates particle formation.
NS1 supports replication, immune evasion, and viral assembly.
NS2A is involved in replication, polyprotein processing, and
cytopathogenesis. NS2B, as a cofactor for NS3, forms a protease
complex crucial for polyprotein processing and immune
suppression. NS4A modulates host membranes and promotes
viral protein oligomerization for replication. NS4B dimerizes,
interacts with NS5, and helps form the replication complex
(Nasar et al., 2020; Nath et al., 2024). NS3 and NS5 proteins
have diverse enzymatic activities. NS5 contains a
methyltransferase domain (N-terminal) for mRNA capping and
an RNA-dependent RNA polymerase (RdRp) domain (C-terminal)
for genome replication. NS5 is highly conserved among the four
DENV serotypes, making it a promising target for anti-dengue drug
development due to the absence of similar RdRp activity in human
enzymes (Shimizu et al., 2019; Coulerie et al., 2013). The
NS3 protease, consisting of NS2B and NS3, is crucial for DENV
replication, functioning as a trypsin-like serine protease, with
catalytic residues His51, Asp75, and Ser135. As a result,
disrupting NS3 protein proves fatal to the virus, underscoring its
potential as a key target for antiviral drug development (Tomlinson
et al., 2009).

Several experimental studies have targeted NS3 and
NS5 proteins to combat DENV infection. For example, -
Abdullah et al. used computational methods to identify Zileuton,
trimethadione, and linalool as novel NS3 inhibitors, with IC50 values
of 3.3 mM, 25.97 mM, and 1.12 mM. They further proposed Ziltri
and zilool based on docking results (Abdullah et al., 2023). Likewise,
Balasubramanian et al. identified curcumin as a DENV2 NS2B/
NS3 protease inhibitor, synthesizing analogs (CC1-CC5) with IC50

values between 36.23 and 66.01 μM, EC50 values between 8.07 and
29.25 μM, and CC50 values between 25.50 and 87.40 μM
(Balasubramanian et al., 2019). Salleh et al. investigated
21 Malaysian medicinal plants and found that Dryobalanops
aromatica methanol extract showed 99.7% inhibition at 200 μg/
mL with an IC50 of 0.30 μg/mL targeting NS2B-NS3 protease (Salleh
et al., 2019). Shimizu et al. identified RK-0404678 as a potent
DENV2 NS5 RNA polymerase inhibitor with an EC50 of 6.0 μM,
screened from 16,240 compounds (Shimizu et al., 2019).
Jarerattanachat et al. identified Isoquercitrin as a dual-binding
NS5 Methyltransferase inhibitor, effectively suppressing DENV
with minimal toxicity (CC50 > 20 μM) (Jarerattanachat et al.,
2023). However, only a few of these antiviral candidates have
advanced to clinical trials, highlighting the need for novel
DENV-targeted treatments.

In this concern, combining computational approaches with
experimental studies offers a more effective strategy for
developing antivirals against viral structural and non-structural
proteins, expediting drug discovery. For example, - Indu et al.
screened 7,000 phytocompounds against DENV proteins,
identifying astragaloside II, III, and IV as potential inhibitors
based on strong binding energies, which were further tested in
Vero cell line (Indu et al., 2021). Similarly, Khan et al. assessed
diterpenoids against dengue viral proteins (Envelope, NS1, NS3,
NS5) using molecular docking, dynamics simulation, and network
pharmacology (Khan et al., 2021). Cabarcas-Montalvo et al. docked
210,903 PubChem molecules against NS2B/NS3 and tested the top
5 candidates in antiviral assays (Cabarcas-Montalvo et al., 2016). In
another study, Mirza et al. screened 18 million compounds from the
ZINC database against NS3 protease using various in silicomethods
and tested 4 potent compounds through in vitro studies (Mirza et al.,
2018). Furthermore, machine learning techniques (MLTs) have been
widely applied in drug development. For example, - Gupta et al.
developed DDPM, an early diagnostic model using MLTs to aid in
dengue diagnosis and prognosis (Gupta et al., 2023). Similarly,
Natali et al. used MLTs to identify rare antibody sequences
capable of neutralizing pathogens (Natali et al., 2024). In this
context, our group has developed several machine learning-based
antiviral prediction tools utilizing quantitative structure–activity
relationship (QSAR) information of molecules and peptides.
Quantitative Structure–Activity Relationship (QSAR) is a
computational modeling technique employed to establish
relationships between the structural or physicochemical
properties of chemical compounds and their biological activities.
The fundamental assumption of QSAR is that variations in
molecular structure lead to differences in biological behavior,
including key pharmacokinetic parameters such as absorption,
distribution, metabolism, excretion, and toxicity (ADMET)
(Kwon et al., 2019). These include AVCpred for prediction and
design of antiviral compounds (Qureshi et al., 2017), AVPpred for
prediction of highly effective antiviral peptides (Thakur et al., 2012),
AVP-IC50Pred for prediction of peptide antiviral activity in terms of
half maximal inhibitory concentration (IC50) (Qureshi et al., 2015),
and HIVprotI for prediction and design of HIV proteins inhibitors
(Rajput and Kumar, 2022), among others. Furthermore, we have
created MLT-based platforms such as anti-Flavi (Rajput and Kumar,
2018), anti-Nipah (Rajput et al., 2019), and anti-corona (Rajput
et al., 2021a) to predict antiviral compounds against various
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FIGURE 1
Curated data fromChEMBL andDenvInD, resulting in 1213 unique entries targeting theNS3 protein and 157 unique entries targeting the NS5 protein.
Using PaDEL software, descriptors in one-dimensional, two-dimensional, and three-dimensional formats were computed. Recursive feature elimination
method from the sklearnmodule was employed for feature selection. The data was then divided into training and testing datasets, and various MLTs were
applied. Model performance was assessed using MAE, MSE, RMSE, R2, and PCC, and validated with applicability domain, scatter plot, chemical
clustering, box plot, statistical test such as paired t-tests or Wilcoxon signed-rank tests and decoy set analysis. Potential repurposed drugs were identified
through an analysis of the DrugBank database using the best-developedmodels for both NS3 and NS5 inhibitors. For further validation, the top predicted
drugs were docked against NS3 and NS5 proteins using AutoDock Vina. The best-performing models were integrated into the web server “i-DENV”.
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TABLE 1 PerformanceMetrics of best performingmodels developed for NS3 andNS5 Protein using variousMLTs and Feature Selectionmethod on TT and IV
Datasets.

Algorithm Feature selection Model parameters Dataset MAE MSE RMSE R2 PCC

NS3

SVM SVR gamma:0.0001 C:100 T1092 0.191 0.065 0.255 0.733 0.857

V121 0.195 0.074 0.272 0.756 0.870

Perceptron gamma:0.001 C:10 T1092 0.239 0.099 0.315 0.593 0.771

V121 0.212 0.087 0.295 0.713 0.844

DT gamma:0.005 C:1 T1092 0.255 0.118 0.343 0.517 0.719

V121 0.215 0.097 0.311 0.680 0.833

RF SVR n:400 T1092 0.264 0.124 0.352 0.492 0.703

V121 0.213 0.093 0.305 0.693 0.851

Perceptron n:500 T1092 0.275 0.130 0.361 0.467 0.684

V121 0.225 0.102 0.319 0.663 0.832

DT n:400 T1092 0.266 0.124 0.350 0.475 0.705

V121 0.218 0.103 0.321 0.66 0.825

kNN SVR k:3 T1092 0.251 0.119 0.346 0.511 0.725

V121 0.250 0.131 0.363 0.565 0.756

Perceptron k:7 T1092 0.267 0.127 0.356 0.480 0.695

V121 0.227 0.105 0.325 0.651 0.811

DT k:5 T1092 0.270 0.131 0.362 0.464 0.690

V121 0.233 0.109 0.330 0.639 0.799

ANN SVR solver:lbfgs
activation: identity

T1092 0.192 0.064 0.253 0.738 0.862

V121 0.190 0.070 0.265 0.781 0.894

Perceptron activation:logistic T1092 0.249 0.108 0.329 0.556 0.751

V121 0.216 0.086 0.293 0.716 0.844

DT activation: logistic T1092 0.275 0.135 0.365 0.426 0.682

V121 0.241 0.111 0.332 0.634 0.798

XGBoost SVR n_estimators = 300, max_depth = 3, learning_rate = 0.141 T1092 0.249 0.111 0.334 0.544 0.738

V121 0.222 0.087 0.296 0.710 0.849

Perceptron n_estimators = 300, max_depth = 7, learning_rate = 0.058 T1092 0.272 0.132 0.362 0.448 0.678

V121 0.212 0.089 0.298 0.705 0.842

DT n_estimators = 200, max_depth = 3, learning_rate = 0.104 T1092 0.259 0.119 0.344 0.514 0.718

V121 0.225 0.096 0.31 0.681 0.830

NS5

SVM SVR gamma:0.0001 C:400 T140 0.135 0.049 0.197 0.954 0.982

V15 0.138 0.044 0.210 0.94 0.970

Perceptron gamma:0.0005 C:400 T140 0.222 0.105 0.310 0.884 0.953

V15 0.24 0.137 0.370 0.814 0.904

DT gamma:0.005 C:10 T140 0.429 0.399 0.591 0.632 0.802

V15 0.420 0.446 0.668 0.395 0.713

(Continued on following page)
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pathogens. Additionally, we created a database of repurposed drugs
effective against 23 epidemic and pandemic-associated viruses
(Rajput et al., 2021b).

Recently, we developed the Anti-Dengue platform to predict
repurposed drugs targeting DENV based on their IC50/pIC50 values
(in μM) using various MLTs. However, this platform focuses on the
entire virus without specifying the targeted site of the drug (Gautam
et al., 2024). To address this gap, we introduce a new machine-
learning-driven pipeline named “i-DENV”, which enables the
identification of inhibitors targeting NS3 and NS5 proteins of
DENV. The platform employs diverse MLTs (Support vector
machine (SVM), Random Forest (RF), k-nearest neighbor (kNN),
Artificial neural network (ANN), Extreme Gradient Boosting
(XGBoost) and Deep Neural Network (DNN)). Using our top-
performing models, we screened the DrugBank database to
predict promising repurposed drug candidates for NS3 and
NS5 proteins. Selected drug candidates underwent additional

support through molecular docking, confirming strong binding
affinities. Overall, this study contributes to the discovery of
antiviral drugs specifically targeting NS3 and NS5 proteins,
offering potential therapeutic benefits in combating
DENV infection.

Methodology

For developing the “i-DENV” predictive algorithm, the overall
workflow is given in Figure 1.

Data collection

For the predictor, experimentally validated compounds were
taken from the CHEMBL and DenvInD databases. CHEMBL

TABLE 1 (Continued) Performance Metrics of best performing models developed for NS3 and NS5 Protein using various MLTs and Feature Selection
method on TT and IV Datasets.

Algorithm Feature selection Model parameters Dataset MAE MSE RMSE R2 PCC

RF SVR n:400 depth: 12 T140 0.399 0.324 0.544 0.659 0.840

V15 0.340 0.211 0.46 0.713 0.863

Perceptron n:300 T140 0.360 0.294 0.513 0.680 0.852

V15 0.288 0.180 0.425 0.755 0.873

DT n:200 depth: None leaf:1 T140 0.424 0.388 0.601 0.560 0.799

V15 0.367 0.308 0.555 0.582 0.771

kNN SVR k:3 T140 0.343 0.235 0.468 0.727 0.889

V15 0.292 0.144 0.380 0.804 0.901

Perceptron k:3 T140 0.335 0.235 0.468 0.753 0.895

V15 0.360 0.232 0.481 0.686 0.833

DT k:3 T140 0.508 0.499 0.687 0.446 0.739

V15 0.563 0.609 0.781 0.173 0.663

ANN SVR solver: lbfgs activation: identity learning: invscaling T140 0.159 0.073 0.271 0.928 0.964

V15 0.160 0.048 0.219 0.935 0.977

Perceptron solver: lbfgs activation: logistic learning: adaptive T140 0.255 0.119 0.345 0.884 0.942

V15 0.337 0.238 0.488 0.710 0.854

DT solver: lbfgs activation: tanh learning: adaptive T140 0.532 0.505 0.711 0.508 0.762

V15 0.507 0.592 0.769 0.197 0.708

XGBoost SVR n_estimators = 300, max_depth = 3, learning_rate = 0.078 T140 0.334 0.22 0.444 0.766 0.889

V15 0.388 0.274 0.523 0.628 0.818

Perceptron n_estimators = 300, max_depth = 3, learning_rate = 0.143 T140 0.335 0.243 0.458 0.678 0.846

V15 0.313 0.200 0.447 0.729 0.870

DT n_estimators = 150, max_depth = 5, learning_rate = 0.038 T140 0.406 0.326 0.548 0.609 0.812

V15 0.358 0.207 0.455 0.719 0.854

SVR, Support vector regression; DT, Decision tree; TT, Training or testing dataset; IV, Independent validation dataset; PCC, Pearson’s correlation coefficient, R2 - coefficient of determination,

MAE, mean absolute error; MSE, mean squared error; RMSE, root mean squared error. Bold values indicate the best-performing model(s) based on Pearson correlation coefficient (PCC) and

coefficient of determination (R2) for each dataset.
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provides data on bioactive molecules with drug-like properties,
integrating chemical, bioactivity, and genomic data to aid in
developing new pharmaceutical treatments (Mendez et al., 2019;

Davies et al., 2015). DenvInD is a comprehensive database
encompassing known inhibitors targeting potential therapeutic
targets of the DENV (Dwivedi et al., 2021).

FIGURE 2
Performance comparison of five (A) NS3 and (B) NS5 machine learning models (SVM, RF, ANN, kNN, and XGBoost) using five evaluation metrics:
PCC, MAE, MSE, RMSE, and R2. Each boxplot illustrates the distribution ofmetric values acrossmultiple runs, with the central line denoting themedian, the
box representing the interquartile range (IQR), and whiskers extending to 1.5 times the IQR. Outliers are depicted as individual points beyond this range.

FIGURE 3
SHAP-Based Analysis of Key Features in the Best Predictive SVM Model for pIC50 Prediction: (A) Beeswarm Plot for NS3 Protein, (B) Beeswarm Plot
for NS5 Protein. Each point represents a single sample (compound) and illustrates the impact of a feature on the model’s output. The x-axis indicates the
SHAP value, representing the magnitude and direction of a feature’s contribution to the prediction. Features are ranked vertically by their overall
importance, measured by the mean absolute SHAP value. The color gradient (blue to red) denotes the feature value for each sample, with blue
indicating low values and red indicating high values. Points spread further from zero along the x-axis indicate greater influence on the prediction. These
plots help visualize both the importance of each feature and the direction of its effect across the dataset.
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Steps for data retrieval

• ChEMBL provided information on 1,372 compounds for
NS3 and 67 for NS5 protein, while DenvInD offered data

on 95 compounds specifically targeting NS5 protein (Mendez
et al., 2019) (Davies et al., 2015) (Dwivedi et al., 2021).

• The NS3 and NS5 dataset underwent a filtering process to
extract inhibitors with EC50/IC50 values and corresponding

FIGURE 4
The applicability domain analysis using william plot for both (A) NS3 and (B) NS5 protein between the leverage and standardized residuals of the
molecules. The x-axis represents the leverage values, indicating the influence of each compound on the model, while the y-axis shows the standardized
residuals, reflecting the prediction error for each compound. Data points are color-coded: blue circles represent compounds from the training/testing
dataset, and orange triangles represent those from the independent validation dataset. The horizontal dashed red lines at ±3 delineate the threshold
for standardized residuals; points outside this range are considered outliers. The vertical dashed red line represents the critical leverage value (h*), beyond
which compounds may be deemed influential and outside the model’s applicability domain. These plots help identify both outliers and structurally
influential compounds, supporting the reliability and robustness of the developed models.

FIGURE 5
Reliability of the best predictive models for NS3 and NS5 was evaluated by generating scatter plots comparing the actual pIC50 values of molecules
with their predicted values. The models assessed include: (A) SVM for NS3, (B) ANN for NS3, (C) SVM for NS5, and (D) ANN for NS5.
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SMILES representations. Subsequently, redundant entries
were removed.

• Finally, we identified 1213 and 155 unique entries targeting
NS3 and NS5 protein, respectively.

• The unique entries’ half-maximal inhibitory concentration
(IC50), given in molar concentration, was transformed into
pIC50 using the equation pIC50 = -log10(IC50). This
transformation facilitates easier interpretation and

FIGURE 6
To validate the accuracy of the predicted models using the top-performing SVMmodel for NS3 protein, we created scatter plots. These plots were
used to compare the actual pIC50 values with the decoy values from four distinct decoy sets: (A) Set 1, (B) Set 2, (C) Set 3, and (D) Set 4.

FIGURE 7
To validate the accuracy of the predicted models using the top-performing SVMmodel for NS5 protein, we created scatter plots. These plots were
used to compare the actual pIC50 values with the decoy values from four distinct decoy sets: (A) Set 1, (B) Set 2, (C) Set 3, and (D) Set 4.
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comparison of drug potency by presenting the data on a
consistent and more intuitive logarithmic scale.

Supplementary Table S1 provides the dataset of drugs and
inhibitors used to develop the model for NS3 and NS5 protein.

Format conversion

The compound structures from the NS3 and NS5 dataset were
converted from SMILES to structure-data file (3D-SDF) format
using Open Babel version 3.1.1 (O’Boyle et al., 2011). These
converted files were subsequently employed as input to extract
chemical descriptors and fingerprints.

Computation of molecular descriptors
and fingerprints

To develop QSAR based predictive models for the NS3 and
NS5 proteins of DENV, we used PaDEL software to compute
molecular descriptors and fingerprints (Yap, 2011). We computed
17,968 chemical descriptors for each molecule in the NS3 and
NS5 protein dataset. Descriptors are numeric representations of

molecular features, while fingerprints capture structural fragments,
connectivity, bonds, and functional groups using binary sequences,
where 1 denotes presence and 0 denotes absence (Grisoni et al., 2018).
Descriptors and fingerprints are essential for analyzing drugs and
chemicals, as they help assess their QSAR (Perkins et al., 2003).

Feature selection

Feature selection is the process of selecting the most important
features from a larger set to enhance model performance and
interpretability (Taghizadeh et al., 2022). Feature selection used
the Recursive Feature Elimination (RFE) module from scikit-learn
with Perceptron, Support Vector Regression (SVR), and Decision
Tree (DT) methods. The goal was to identify the top 50, 100, 150,
and 200 features for each dataset. All selected features were then
used as input for MLTs on the NS3 and NS5 datasets (Lin et al.,
2012) (Gholami et al., 2012).

Randomized dataset creation

Random selection processes were used to create a training/
testing (TT) and independent validation (IV) dataset. To achieve

FIGURE 8
Chemical Diversity Analysis using (A) 2DMDS Plot for NS3, (B) 3DMDS Plot for NS3-Targeting Compounds, (C) 2DMDS Plot for NS5, and (D) 3DMDS
Plot for NS5-Targeting Compounds.
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TABLE 2 The top leading repurposed drug candidates predicted to be effective against NS3 and NS5 Protein of DENVwith information such as drugbank ID,
drug name, primary indication, predicted pIC50, and their current testing status.

DrugBank_ID Target_Protein Drug
name

Primary indication Predicted_pIC50

(ANN)
Predicted_pIC50

(SVM)
Status

DB01141 NS3 Micafungin Treating candidemia, acute
disseminated candidiasis,
and other invasive Candida
infections

7.818 6.743 Experimental

DB00035 NS3 Desmopressin Synthetic vasopressin
analog reduces water
excretion in diabetes
insipidus and nocturia

6.139 5.978 Computational

DB00362 NS3 Anidulafungin Treatment of several types
of candida infections

5.635 5.6 Experimental

DB00482 NS3 Celecoxib NSAID for arthritis, pain,
menstrual symptoms, and
polyp reduction

5.476 5.263 Experimental
and
computational

DB08911 NS3 Trametinib Kinase inhibitor for BRAF-
mutated cancers like
melanoma and non-small
cell lung cancer, used alone
or with dabrafenib

5.425 5.177 Experimental

DB00696 NS3 Ergotamine Alpha-1 adrenergic agonist
for treating migraines with
or without aura and cluster
headaches

5.375 5.105 Computational

DB00520 NS3 Caspofungin Echinocandin treats various
fungal infections

5.261 5.505 Experimental

DB00796 NS3 Candesartan
cilexetil

For hypertension, left
ventricular hypertrophy,
and delaying diabetic
nephropathy

5.15 5.102 Experimental

DB00091 NS3 Cyclosporine Used in transplants and
inflammatory conditions
including ulcerative colitis,
rheumatoid arthritis, and
atopic dermatitis

5.144 5.452 Experimental

DB00471 NS3 Montelukast Treating asthma,
preventing exercise-
induced
bronchoconstriction, and
managing seasonal allergic
rhinitis

5.12 5.141 Experimental
and
computational

DB01017 NS5 Minocycline Wide variety of infections 5.711 5.732 Experimental

DB00254 NS5 Doxycycline Wide variety of infections 5.643 5.68 Experimental

DB01263 NS5 Posaconazole Invasive infections by
Candida species and
Aspergillus species

5.529 5.506 Experimental

DB00997 NS5 Doxorubicin Treating various cancers
like AIDS-associated
Kaposi’s Sarcoma and
metastatic cancers

4.997 5.027 Experimental
and
computational

DB00686 NS5 Pentosan
polysulfate

For relieving bladder pain
or discomfort from
interstitial cystitis

4.478 4.853 Experimental

DB00811 NS5 Ribavirin For managing chronic HCV
infection

3.526 3.737 Experimental
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TABLE 3 Docking interactions of selected drugs (inhibitors) with DENV NS2B/NS3 protease and DENV NS5 polymerase.

Ligand
(Drugbank_ID)

Protein/Receptor
(PDB_id)

Binding energies
(kcal mol−1)

Interacting amino
acid residues

Distance
(Å)

Molecular
interactions

Delavirdine (DB00705) NS2B/NS3 (2FOM) −8.3 Gly B:153
His B:51
Ser B:135
Leu B:128
Pro B:132

2.99
4.47
5.19
4.95
4.59
4.20
3.76
4.91
4.87
3.77

Van der waals
Conventional Hydrogen

bond
Carbon hydrogen bond

Pi-Sigma
Pi-alkyl

Raltegravir (DB06817) −8.1 Val B:52
Ile B:36
His B:51
Pro B:132
Arg B:54
Thr B:53
Ala B:56

4.19
3.39
5.78
5.84
5.40
5.43
5.88
4.76
4.83
4.75
5.98

Van der waals
Conventional Hydrogen

bond
Carbon Hydrogen Bond

Halogen (Fluorine)
Pi- Cation

Pi-Pi T- shaped
Pi-alkyl

Rimexolone (DB00896) −8.1 Ala B:56
Thr B:53
Val B:52
Ile B:36
Arg B:54
His B:51
Glu A:48

4.37
5.78

Van der waals
Conventional Hydrogen

bond alkyl

Fluoxymesterone (DB01185) −7.9 Asn-B:152
Gly-B:153
Gly-B:151
Pro-B:132
Leu-B:128
Tyr-B:161

NA Van der waals

Baloxavir_marboxil
(DB13997)

NS5 (4V0Q) −8.4 Phe-A:398
Ala-A:421
Val-A:402
Trp-A:418
Gln-A:602
Gly-A:604
Asn-A:492
Tyr-A:606
Val-A:603
Asn-A:405
Lys-A:401

6.42
7.57
5.28
4.05
7.37
3.27
5.12
5.14
3.54
6.68
5.85
6.67

Van der waals
Conventional Hydrogen

bond
Carbon hydrogen bond
Halogen (Fluorine)

Sulfur-X
Pi-Sulfur
Pi-Alkyl

Diphemanil (DB13720) −8.3 Lys-A:355
Arg-A:581
Pro-A:298

6.07
6.03
4.47

Van der waals
Pi-alkyl

Latamoxef (DB04570) −7.4 Tyr-A:606
Asn-A:609
Gly-A:604
Ile-A:797
His-A:798
Ser-A:661
His-A:711

4.52
4.04
3.32
5.24
4.87
5.27

Van der waals
Conventional Hydrogen

bond
Carbon hydrogen bond

Alkyl

Cyclothiazide (DB00606) −7.3 Phe-A:485
Val-A:603
Gly-A:604
Tyr-A:606
Asn-A:492
Gln-A:602
Thr-A:605

6.04
3.80
3.69
3.26
5.00
5.29
4.42

Van der waals
Conventional Hydrogen

bond
Unfavourable Donor-

Donor
Alkyl

Pi-Alkyl
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this, 10% of the total data were randomly allocated as an IV dataset,
with the remaining 90% utilized for the TT dataset. This process was
repeated 5 times to get different 5 sets of TT and IV dataset. The
NS3 dataset comprised 1213 molecules - T1092 and V121, while the
NS5 dataset consisted of 155 molecules - T140 and V15.

Ten-fold cross-validation

Ten-fold cross-validation is employed to assess the performance
of a machine learning model. This method entails dividing the
dataset randomly into ten equal subsets, or “folds”. The model
undergoes ten rounds of training and evaluation, where each round
uses a different fold as the validation set and the remaining nine
folds as the training set. This systematic approach ensures that each
data point is validated exactly once. Afterward, the performance
metrics obtained from each round are averaged to provide a more
accurate evaluation of the model’s performance.

Model performance assessment

We evaluated the model’s performance using metrics such as
Mean Absolute Error (MAE), Mean Squared Error (MSE), Root

Mean Squared Error (RMSE), Coefficient of Determination (R2),
and Pearson’s Correlation Coefficient (PCC or R). These metrics
were calculated using the formulas provided below-

PCC � n∑n
n�1 E

act
i Epred

i −∑n
n�1 E

act
i ∑n

n�1 E
pred
i����������������������

n∑n
n�1 Eact

i( )2 − ∑n
n�1 E

act
i( )2√

−
������������������������
n∑n

n�1 Epred
i( )2 − ∑n

n�1 E
pred
i( )2√

MAE � 1
n
∑n
n�1

Epred
i − Eact

i

∣∣∣∣∣ ∣∣∣∣∣
RMSE �

����������������
1
n
∑n
n�1

Epred
i − Eact

i( )2√

Where, ‘n’ represents the size of the dataset, ‘Eact’ denotes the
actual values, and ‘Epred’ corresponds to the predicted values.

Robustness assessment and
comparative analysis using
statistical tests

To ensure the robustness of predictive models, 95% confidence
intervals (CIs) were computed for key performance metrics (PCC,
MAE, MSE, RMSE, and R2) using 10-fold cross-validation across
all machine learning techniques (MLTs). Statistical significance of

FIGURE 9
Docking poses of selected drugs (A) Delavirdine; (B) Raltegravir; (C) Rimexolone and (D) Fluoxymesterone with DENV NS2BNS3 protease
represented as 2-D line models.
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performance differences among models was assessed through
pairwise comparisons of these metrics. The Shapiro-Wilk test
was used to evaluate normality, determining the choice of
statistical tests: a paired t-test for normally distributed data or
the Wilcoxon signed-rank test for non-normally distributed data.
Additionally, box plots were generated using Seaborn and
Matplotlib libraries to visualize the distribution and variability
of performance metrics across different models (Hazra, 2017;
Shapiro and Wilk, 1965; Rosner et al., 2006; Ross and Willson,
2017; Williamson et al., 1989).

SHAP analysis

SHAP (SHapley Additive exPlanations) was employed to
analyze feature importance in the best predictive Support
Vector Machine (SVM) model for pIC50 prediction targeting
the NS3 and NS5 protein. A Support Vector Regression (SVR)
model with optimized hyperparameters was trained using 10-fold
cross-validation. Features were standardized using StandardScaler,
and SHAP values were computed using a KernelExplainer with a
k-means-selected background dataset of 50 representative training
samples. The SHAP values were aggregated across all folds to
generate a comprehensive beeswarm and summary plot,
highlighting the most influential features (Lundberg and
Lee, 2017).

Applicability domain analysis

In addition to model performance, accuracy for new predictions
is crucial. Applicability domain (AD) analysis establishes the
model’s boundaries to ensure reliable predictions. A query
molecule’s chemical properties must fall within the AD of the
trained model to ensure precise predictions (Kar et al., 2018).

To assess this, William’s plot was employed using a leverage
approach for NS3 and NS5 proteins, illustrating the relationship
between leverage and standardized residuals. The leverage threshold
(h*) is:

Leverage threshold h*( ) � 3 p + 1( )n
where p - the number of descriptors used in developing the model. n
is the number of compounds used in the training dataset.

The leverage threshold (hp) is a key component of AD analysis,
used to identify influential or outlier compounds in a QSAR model.

Leverage (h) quantifies a compound’s influence on the model. If h >
hp, the compound is flagged as an outlier or highly influential, indicating
it may fall outside the AD and require further evaluation. Compounds
within hp are considered reliably predicted by the model. The factor 3 in
the formula is an empirically chosen value commonly used in QSAR
modeling to set a practical threshold (Khosrokhavar et al., 2010).

To affirm the models’ effectiveness, scatter plots were created to
compare predicted pIC50 values with actual pIC50 values for the top-
performing models in both NS3 and NS5 datasets.

FIGURE 10
Docking poses of selected drugs (A) Baloxavir marboxil; (B) Latamoxef; (C) Cyclothiazide and (D) Diphemanil with DENV NS5 polymerase
represented as 2-D line models.
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Decoy sets analysis

Using the DecoyFinder 2.0 tool, Decoys were created for these drug
candidates (Cereto-Massagué et al., 2012).We used amolecular weight-
based method to create these decoys, utilizing the ZINC20 database,
which includes 4.78 million drug-like molecules (Irwin et al., 2020).

Four distinct decoy datasets were created, containing
1213 decoys for the NS3 dataset and 155 for the NS5 dataset.
These decoys, randomly generated to correspond to active drug
candidates, were processed further through format conversion and
molecular descriptor calculations to obtain their pIC50 values. A
correlation analysis was then performed to measure the Pearson’s
Correlation Coefficient (PCC), evaluating the relationship between
the pIC50 values of the decoys and the actual pIC50 values of the
corresponding active drug candidates.

Chemical clustering analysis

We performed chemical clustering analysis using two methods: the
ChemMine tool and t-distributed Stochastic Neighbor Embedding
(t-SNE) visualization. In the ChemMine tool, molecular SMILES were
used as input to assess drug heterogeneity, applying both
multidimensional scaling (MDS) and binning clustering with a
similarity threshold of 0.6 (Backman et al., 2011). For t-SNE, the
dataset containing molecular descriptors and pIC50 values was loaded
using Pandas and standardized with StandardScaler to ensure uniform

feature scaling. t-SNE from sklearn. manifold was applied to reduce
dimensionality to two components for visualization. A scatter plot was
generated usingmatplotlib. pyplot, with pIC50 values as the color gradient
to illustrate activity distribution (Van Der Maaten and Hinton, 2008).

Drug repurposing

We used top-performing SVM and ANN models for both NS3
and NS5 proteins to identify potent repurposed drug candidates. We
then screened 2,150 approved drugs from the Drugbank database to
identify promising candidates (Knox et al., 2024). As a preliminary
step, transformed the file format and calculated molecular descriptors
of these drugs with PaDEL software. These descriptors were then used
to identify potential repurposed drug candidates for DENV.

Molecular docking

After identifying highly promising drug candidates targeting
dengue NS proteins, the top 4 drugs in each category, based on 3D
structure availability and predicted pIC50 values, were selected for
molecular docking studies. For ligand preparation, the selected
drugs 3D structures were acquired from PubChem in SDF
format, converted to PDB format using PyMOL software, and
then import the file in auto dock tools to convert it into PDBQT
format (Eberhardt et al., 2021) (Trott and Olson, 2010).

FIGURE 11
Docking poses of selected drugs (A)Delavirdine; (B) Raltegravir; (C) Rimexolone and (D) Fluoxymesterone with DENVNS2BNS3 protease in the form
of ribbon structures.
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To prepare the receptors, the 3D crystal structures of the DENV
NS2B/NS3 protease (PDB ID: 2FOM) and NS5 polymerase (PDB ID:
4V0Q) were retrieved in PDB format from the RCSB Protein Data Bank.
These structures were then loaded into Discovery Studio to remove the
original ligands—glycerol (GOL) from the NS2B/NS3 protease and
S-adenosyl-l-homocysteine (SAH) from the NS5 polymerase.

Prior to docking analyses, the 3D protein structures were refined
by removing extraneous ions, ligands, and non-essential water
molecules. Polar hydrogen atoms and Kollman charges were
added to the receptor proteins. The refined structures were then
saved in PDBQT format for the subsequent docking experiments.

To perform the docking simulations, AutoDock Vina (version
1.1.2) with default settings was used to create grid boxes for the
dengue NS3 and NS5 proteins. Nine optimal docking conformations

were then generated for both proteins and the inhibitor molecules
(Eberhardt et al., 2021) (Trott and Olson, 2010).

The exhaustiveness parameter was set to 8 to compute the
minimum binding affinity between proteins and ligands.
Subsequently, the interactions were then analyzed and visualized
using PyMOL and Discovery Studio Visualizer (DSV) (Rigsby and
Parker, 2016) (Biovia et al., 2016).

Web server development

The “i-DENV” web server, designed to predict a chemical’s
pIC50 and IC50 (μM) for inhibiting DENV, integrates the most
effective SVMmodels for NS3 and NS5 proteins. It is built using the

FIGURE 12
Docking poses of selected drugs (A) Baloxavir marboxil; (B) Latamoxef; (C)Cyclothiazide and (D)Diphemanil with DENVNS5 polymerase in the form
of ribbon structures.
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LAMP software stack, which includes Linux (OS), Apache (web
server), MySQL (database), and PHP (scripting language). The
system runs on Ubuntu 20.04.6 LTS (Focal Fossa), a Debian-
based Linux distribution, with Apache 2.4.41 as the web server
and MySQL 8.0.40-0ubuntu0.20.04.1 on a 64-bit Linux system. For
server-side scripting, it utilizes PHP 7.4.3-4ubuntu2.28 (CLI),
incorporating Zend Engine v3.4.0 and Zend OPcache v7.4.3-
4ubuntu2.28 for optimized performance.

The “i-DENV” web server’s user interface is built with HTML,
CSS, and PHP, while the backend is powered by Python, Perl, and
JavaScript to handle computations and data processing. To improve
accessibility, it includes dedicated “Help” and “FAQs” pages,
ensuring users have guidance and support while using the platform.

Results

Feature selection

For the NS3 dataset, top performing SVM and ANN models
used 200 features selected by SVR, including KRFP1702, FPSA-1,
and others. Supplementary Table S2 presents the top 200 features
identified through SVR, DT, and Perceptron using the RFE module.
For the NS5 dataset, the top SVM and ANN models used
100 features selected by SVR, including SubFP151, KRFPC4060,
KRFPC1634, KRFPC1670, ExtFP453 and others. Supplementary
Table S2 presents the top 100 features identified through SVR,
DT, and Perceptron using the RFE module.

Assessment of the effectiveness of MLTs-
Based QSAR models

To identify potential inhibitors for DENV, we developed
prediction models using six MLTs and datasets with 200 features
for NS3 and 100 features for NS5 protein.

To assess the performance of the developed QSARmodels, Diverse
statistical metrics were employed likeMAE,MSE, R2, RMSE, and PCC.
PCC measures how strongly predicted pIC50 values align with actual
pIC50 values, ranging from −1 (negative correlation) to +1 (positive
correlation), with 0 indicating no correlation. R2 values measure how
well data aligns with a statistical model. A value of 1 indicates a perfect
fit, while 0 indicates no fit at all. MAE shows how close predicted values
are to actual values, while RMSE measures the average magnitude of
errors. Lower values of both MAE and RMSE indicate better model
performance and vice versa.

For the DENV NS3 dataset, the best SVM and ANN models
achieved PCC values of 0.857 and 0.862 on the TT dataset and
0.870 and 0.894 on the IV dataset. Similarly, for the DENV
NS5 dataset, the top SVM and ANN models demonstrated PCC
values of 0.982 and 0.964 on the TTdataset and 0.970 and 0.977 on the
IV dataset, respectively. The performance metrics of best performing
models developed for NS3 and NS5 Protein using various MLTs and
Feature Selectionmethods on TT and IVDatasets are given in Table 1.
The detailed information about best predictive developed models are
mentioned in Supplementary Table S3.

The performance metrics of the DNN are provided in
Supplementary Table S4.

Robustness assessment and comparative
analysis using statistical tests

The predictive performance of the machine learning models
was assessed using 10-fold cross-validation, reporting key metrics
(MAE, MSE, RMSE, R2, and PCC) with 95% confidence intervals.
SVM-SVR (gamma: 0.0001, C: 100) achieved the lowest error and
highest predictive accuracy for NS3, with an MAE of 0.182–0.200,
RMSE of 0.236–0.272, R2 of 0.678–0.764, and PCC of 0.831–0.877.
For NS5, SVM-SVR (gamma: 0.0001, C: 400) exhibited superior
performance (MAE: 0.091–0.178, RMSE: 0.122–0.273, R2:
0.928–0.979, PCC: 0.972–0.991), indicating highly accurate
predictions.

Statistical analysis (Shapiro-Wilk test for normality, paired
t-test/Wilcoxon signed-rank test) confirmed SVM as the best-
performing model for both NS3 and NS5, significantly
outperforming RF, kNN, and XGBoost across all metrics. ANN
showed competitive performance, with no significant difference
from SVM, while RF and ANN outperformed kNN and XGBoost
in several comparisons.

Box plots as depicted in Figure 2 illustrated model performance
variability, with SVM and ANN consistently achieving the best
results (highest PCC and R2, lowest errors), while RF showed high
variability. kNN and XGBoost exhibited weaker predictive ability,
with higher errors and lower correlation. These findings establish
SVM as the most reliable model, followed by ANN, with kNN and
XGBoost as the least effective.

The 95% confidence intervals and statistical analysis results
(Shapiro-Wilk test for normality, paired t-test/Wilcoxon signed-
rank test) are provided in the Supplementary Table S5.

SHAP analysis

SHAP is a theoretical approach that quantifies feature
importance by assessing the impact of each feature on the
model’s output. Figures 3A,B present Beeswarm plots, where each
dot represents a SHAP value for a specific feature in an individual
molecule. The x-axis denotes SHAP values, indicating both the
direction and magnitude of each feature’s influence on model
predictions. Positive SHAP values suggest that a feature enhances
predicted activity, while negative values indicate a suppressive effect.
The color gradient represents feature values, with red signifying
higher values and blue representing lower values. Features that
spread further along the x-axis exert greater influence on
predictions. Supplementary Figures S1A and S1B provide mean
absolute SHAP value plots, ranking features based on their overall
contribution to model predictions. Figure 3A highlights RDF25v
(Radial Distribution Function - 0.25, van der Waals volume-
weighted) as the most influential descriptor, followed by FP851
(Fingerprint), Ki (K Global Shape Index, Ionization Potential-
Weighted), and MATS2v (Moran Autocorrelation, Lag 2, van der
Waals Weighted). Figure 3B highlights GraphFP798 (Graph-based
Molecular Fingerprint), PubchemFP770 (Binary Molecular
Fingerprint), and ATSC2m (Centered Broto-Moreau
Autocorrelation, Lag 2, Mass-Weighted) as key predictive
features. These findings underscore the significance of structural,
electronic, and steric properties in driving model predictions.
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Applicability domain analysis

SVM model’s reliability for NS3 and NS5 proteins was
validated via applicability domain analysis using William’s
plot. Most data points fell within the h* values of 0.56 for
NS3 and 2.1 for NS5, as depicted in Figure 4. This suggests
that the SVM models for NS3 and NS5 proteins exhibit good
reliability and generalization capacity for the given dataset. The
presence of only a few points outside the critical h* threshold
indicates minimal extrapolation, reinforcing the model’s
robustness and predictive accuracy. These results validate the
applicability of the SVM model for predicting biological activity
related to NS3 and NS5 proteins. Furthermore, Figure 5 presents
scatter plots of the best predictive models for NS3 and
NS5 proteins, comparing the actual and predicted
pIC50 values for both the TT and IV datasets. Scatter plots for
the remaining models are provided in Supplementary Figures
S2 and S3. The close clustering of data points inside the boundary
line suggests developed models are highly accurate.
Supplementary Table S6 contains the data utilized for the
plotting William’s plot for NS3 and NS5 protein, while
Supplementary Table S7 includes the actual and predicted
pIC50 values for the scatter plots of NS3 and NS5 proteins.

Verification with decoys

Decoys, which do not bind to targets, were used to validate the
predictive model’s accuracy by comparing pIC50 values of four
decoy sets with those of active molecules for NS3 and
NS5 proteins (Supplementary Table S8). For the NS3 protein,
Decoy sets 1 - 4 had PCC values of −0.009, −0.016, −0.022, and
0.024, respectively, shown in Figure 6. For the NS5 protein, Decoy
sets 1 - 4 had PCC values of 0.105, −0.01, −0.085, and −0.019,
respectively, shown in Figure 7.

Analysis of chemical heterogeneity

Structural variability in NS3 and NS5 compounds was assessed
through binning clustering analysis, which grouped
NS3 compounds into 685 bins and NS5 compounds into 71 bins,
using a similarity threshold of 0.6 (Supplementary Table S9).
Additionally, 2D and 3D multidimensional scaling plots
visualized dissimilarities among NS3 and NS5 compounds in
chemical space, using a similarity threshold of 0.6, shown in
Figure 8. t-Distributed Stochastic Neighbor Embedding (t-SNE)
was applied to the standardized descriptor space to reduce
dimensionality and visualize potential structure-activity
relationships (SAR). The resulting distribution revealed distinct
clusters of high bioactivity (yellow-green regions), suggesting
potent molecular scaffolds, while lower-activity compounds
(purple regions) were more dispersed, reflecting greater structural
diversity as depicted in the Supplementary Figure S4. The gradual
color transitions indicate that bioactivity is influenced by subtle
variations in molecular descriptors rather than discrete clustering.
Both these methods showed that compounds in both datasets exhibit
diverse nature of chemicals.

Prediction of promising repurposed drug
candidates against NS3 and NS5 protein

The top SVM and ANNmodels for both NS3 and NS5 were used
to predict repurposed drugs from the approved drugs category of the
DrugBank database. The top candidates reported in the literature for
both proteins are presented in Tables 2, while the remaining top
candidates are provided in Supplementary Table S10.

i-DENV web server

To predict a query molecule’s inhibition efficiency, users upload
or paste the SDF format of the query molecule. Results, including
SMILES, pIC50, and IC50 (μM), are displayed in a table. Predictions
may take a few minutes, and users can save or copy the job ID to
check status later. The “i-DENV” web server is freely accessible at
http://bioinfo.imtech.res.in/manojk/idenv/.

Molecular docking of predicted promising
inhibitors with NS3 and NS5 protein

Molecular docking finds the optimal conformation between a
drug (ligand) and a protein (receptor) to achieve the minimum
binding energy. In the NS3 and NS5 datasets, Delavirdine
(DB00705) had the lowest binding energy of −8.3 kcal/mol
against DENV NS2B/NS3 protease, as shown in Table 3,
compared to Raltegravir (DB06817) at −8.1 kcal/mol, Rimexolone
(DB00896) at −8.1 kcal/mol, and Fluoxymesterone (DB01185)
at −7.9 kcal/mol. For DENV NS5 polymerase, Baloxavir marboxil
(DB13997) demonstrated the lowest binding energy of −8.4 kcal/
mol, detailed in Table 3. Conversely, Diphemanil (DB13720),
Latamoxef (DB04570), and Cyclothiazide (DB00606), exhibited
binding energies of −8.3, −7.4, and −7.3 kcal/mol, respectively.

The NS2B-NS3 protease contains a catalytic triad (His51, Asp75,
Ser135) in its active site (Aguilera-Pesantes et al., 2017; Lin et al., 2024;
Norshidah et al., 2023). In our molecular docking analysis, Delavirdine
and Raltegravir exhibited strong binding within the active site, suggesting
their potential as NS2B-NS3 protease inhibitors. Delavirdine forms
hydrogen bonds with His51 and Ser135, potentially interfering with
catalytic activity, while Asp75 stabilizes His51. Additional interactions
with Tyr150, Leu128, and Pro132 further enhance ligand stability within
the active site (Figure 9A). Raltegravir engages His51 through Pi-Pi
stacking and Pi-alkyl interactions, which may disrupt Ser135 activation.
A hydrogen bond with Ser135 could impair its nucleophilic function,
affecting protease activity. Additional hydrogen bonds with Thr53 and
Arg54 reinforce Raltegravir binding (Figure 9B).

The NS5 polymerase binding pocket comprises conserved
residues (Ser56, Gly81, Cys82, Arg84, Gly85, Thr104, Lys105,
His110, Asp131, Val132, Asp146, and Gly148) and a hydrophobic
pocket containing Trp302, Phe354, Val358, Val577, Val579, Val603,
Gly599, Ala406, Ala407, Asn492, Glu507, Tyr606, and Ile797
(Mukhtar et al., 2023; Valencia et al., 2021). Among the tested
drugs, Baloxavir marboxil, Latamoxef, and Cyclothiazide exhibited
strong binding, suggesting their potential as NS5 polymerase
inhibitors. Baloxavir marboxil binds tightly to NS5 polymerase
through hydrogen bonds with Asn492, Tyr606, Gly604, Thr605,
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Gln602, Gly607, and Val603, while hydrophobic interactions with
Trp418, Val402, Ala421, and Phe398 enhance stability. The presence
of conserved residues suggests high-affinity binding, potentially
inhibiting NS5 activity (Figure 10A). Latamoxef forms hydrogen
bonds with Asn492, Gly604, Thr605, Asn609, Tyr606, Ile797,
His711, and Ser661, securing ligand stability. Additional
interactions with Gly607 and Gln602 provide further stabilization,
while Val603 and Ile797 contribute to hydrophobic anchoring,
suggesting Latamoxef’s potential as an NS5 polymerase inhibitor
(Figure 10B). Cyclothiazide interacts with NS5 polymerase via
hydrogen bonds with Asn492, Tyr606, Gly604, Thr605, Gln602,
and Gly607, stabilizing its binding. Pi-alkyl interactions with
Val603 and Phe485 enhance ligand stability, while the involvement
of Ile797 suggests strong anchoring within the active site, reinforcing
Cyclothiazide’s inhibitory potential (Figure 10C).

Figures 11, 12 display the ribbon structures of NS3 and NS5 proteins
bound with their respective ligands, while Figures 9, 10 illustrate their
molecular interactions in two-dimensional line models.

Discussion

Dengue remains a major global health challenge due to the lack of
effective antivirals and vaccine development difficulties (Norshidah et al.,
2021). The genetic diversity among DENV serotypes (DENV-1–4)
ranges from 60% to 75% amino acid homology, while viruses within
the same serotype share over 97% (Guzman and Harris, 2015). Effective
antivirals must target all serotypes to prevent antibody-dependent
enhancement (ADE). Vaccine development is hindered by limited
knowledge of protective factors, inadequate animal models, and the
need for a tetravalent vaccine (Wilder-Smith, 2020). Further, natural
products and phytochemicals have also been explored as an alternative to
synthetic drugs for managing dengue fever (Sagar et al., 2024; Saleh and
Kamisah, 2020). However, developing new small molecule antivirals is
crucial, and employing a computational approach in this process would
significantly accelerate drug discovery research. To address this, we
developed “i-DENV”, a QSAR-based machine-learning pipeline
predicting repurposed drugs against NS3 and NS5 proteins.

In this study, we employed SVM, RF, ANN, kNN, XGBoost,
and DNN algorithms to develop predictive models, which have
been widely utilized in previous studies. For instance, Auto-Kla
identifies lysine lactylation sites (Lai and Gao, 2023), and IML-
TYLCVs assesses TYLCV symptom severity (Bupi et al., 2023).
Similarly, MLTs have been applied in various antiviral prediction
platforms, including AVPpred (Thakur et al., 2012), AVP-
IC50Pred (Qureshi et al., 2015), SMEpred (Dar et al., 2016),
HIVprotI (Qureshi et al., 2018), and Anti-nipah (Rajput et al.,
2019), anti-Ebola (Rajput and Kumar, 2022), anti-corona (Rajput
et al., 2021a), and anti-dengue (Gautam et al., 2024). But these
servers primarily focus on predicting antiviral candidates against
entire viruses, lacking target protein specificity. However, few
research groups have also employed in silico methods like
molecular docking, ligand interaction analysis, and QSAR-
based models to identify repurposed drugs against DENV
(Panchal et al., 2021) (Pathak et al., 2017) (Tahir ul Qamar
et al., 2019). For instance, Chongjun et al. developed a
classification model using 591 NS3-targeting compounds,
generating nine molecular fingerprints. They implemented

SVM, RF, and XGBoost models for evaluating accuracy and
ROC_AUC (Valencia et al., 2021). Similarly, Kurniawan et al.
created a classification model using 845 compounds,
2,603 molecular descriptors and applied ensemble RF,
AdaBoost, and ERT models. Further, they evaluated
performance using accuracy, AUC, MCC, etc. (Kurniawan
et al., 2020). However, our study advances previous work by
using a larger dataset and extending the analysis by including
NS5 protein. Unlike classification approaches, we employed
regression models evaluated by MAE, MSE, RMSE, R2, and
PCC. Our comprehensive validation includes applicability
domain analysis, scatter plots, decoy validation, chemical
clustering, and further support by molecular docking
approach. The best SVM-SVR models were integrated on the
web server to predict inhibitors specifically targeting DENV
NS3 and NS5 proteins. Thus, “i-DENV” represents the first
regression-based web server to identify potential drug
candidates against the NS3 and NS5 proteins of DENV.

We have also predicted potential repurposed drug candidates from
the approvedDrugBank database using our bestmodels for bothNS3 and
NS5 proteins. The top predicted drugs have also shown antiviral effects
against other viruses. For example, in case of NS3, Micafungin and its
derivatives are effective against SARS-CoV-2 (Nakajima et al., 2023),
chikungunya (Ho et al., 2018), PRV (Hondo et al., 2024), and enterovirus
71 (Kim et al., 2016). Trametinib inhibits influenza A (Schräder et al.,
2018), while Ergotamine blocks TMPRSS2 activity relevant toCOVID-19
(Wang et al., 2022). Candesartan cilexetil, and Montelukast targets Zika
(Loe et al., 2019) (Chen et al., 2020), SARS-CoV-2 (Copertino et al.,
2021), and MERS-CoV (Gan et al., 2021). For NS5, Doxycycline inhibits
COVID-19 (Gendrot et al., 2020), vesicular stomatitis virus (Wu et al.,
2015), and JEV (Topno and Khan, 2018). Ribavirin is effective against
HCV (Dixit and Perelson, 2006), PPRV (Zhang et al., 2023), and IBDV
(Akram et al., 2023). Minocycline, combined with favipiravir, may treat
COVID-19 (Itoh et al., 2022) and inhibits RSV (Bawage et al., 2019) and
West Nile virus (Michaelis et al., 2007). Heparan sulfate mimetics are
active against enterovirus 71 (Pourianfar et al., 2012), African swine fever
virus (Garcfa-Villal and Gil-Fern, 1991), and HIV (Baba et al., 1988).
Doxorubicin shows anti-chikungunya activity (Kasabe et al., 2023), while
Posaconazole inhibits the SARS-CoV-2 helicase (Abidi et al., 2021).

Further, several top candidates for both targets have been
previously reported in the literature through experimental or in
silico analyses for DENV. For NS3, Micafungin (IC50–10.23 μM) and
its analogs Caspofungin (IC50–20.78 μM) and Anidulafungin
(IC50–3.24 μM) exhibit antiviral effects (Chen et al., 2021).
Desmopressin was identified as a potential NS5 inhibitor via
pharmacophore modeling (Kumar et al., 2022). AR-12, a
celecoxib derivative, inhibits all DENV serotypes (Hassandarvish
et al., 2017). Trametinib suppresses flaviviral replication (Valencia
et al., 2021). Ergotamine and conivaptan exhibit high in silico
binding affinity (Montes-Grajales et al., 2020). Candesartan
cilexetil inhibits DENV-2 (IC50–1.602 μM) (Loe et al., 2019) and
Cyclosporine disrupts NS5-Cyclophilin interaction, hindering
replication (Qing et al., 2009). Montelukast inhibits NS2B-NS3
protease (IC50–25.65 mM) (Jiang et al., 2022). For NS5,
doxycycline inhibits all DENV serotypes (IC50–52.3 μM at 37°C,
26.7 μM at 40°C), with greater efficacy against DENV2 and DENV4
(Rothan et al., 2014). Mycophenolic acid (IC50–0.4 mM) and
ribavirin (IC50–50.9 mM) inhibit DENV2 replication
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(Takhampunya et al., 2006). Minocycline targets multiple DENV life
cycle stages (Leela et al., 2016), while sulfated polysaccharides show
varying antiviral activity (PPS < suramin < PI-88) (Lee et al., 2006).
Doxorubicin (CC50–116.9 μM, EC50–6.573 μM) and posaconazole
block DENV RNA replication (Punekar et al., 2022) (Meutiawati
et al., 2018). Thus, the repurposed drug candidates predicted by our
algorithm hold promise as antiviral agents, potentially accelerating
DENV drug discovery efforts. Further, molecular docking validated
the top predicted drugs’ interactions with NS3 and NS5 proteins.
Delavirdine showed the lowest NS3 binding energy (−8.3 kcal/mol),
interacting with catalytic residues (His51, Ser135), while Baloxavir
marboxil had the lowest NS5 energy (−8.4 kcal/mol), forming stable
hydrogen bonds and hydrophobic interactions. These results
confirm the model’s accuracy in predicting DENV inhibitors.

The key feature of the current study is the development of the
“i-DENV” web server, specifically designed to predict the antiviral
activity of molecules against DENV. For algorithm development,
we utilized an experimentally tested dataset of molecules targeting
NS3 and NS5 proteins of DENV. Additionally, we also predict
potential repurposed drug candidates that were also previously
reported in the literature. “i-DENV” is the first regression-based
web server designed to assess the efficacy of user-defined molecules
targeting both NS3 and NS5 proteins.

The limitation of the current study is the relatively small dataset
used for the NS5 protein; expanding the dataset could further enhance
the model’s predictive performance. Another limitation is that the “i-
DENV” algorithm is designed solely to predict the antiviral efficacy of
a molecule in terms of its pIC50 value. In the future, this approach
could be extended to multi-task learning (MTL) by incorporating
additional properties beyond antiviral activity prediction. To ensure
the reliable prediction of our model, experimental validation of a
molecule is essential to confirm their efficacy against DENV.

Conclusion

“i-DENV” algorithm was developed using QSAR properties of
compounds and employing various MLTs (SVM, RF, kNN, ANN,
XGBoost and DNN).We created 360 unique configurations (5 random
states × 4 feature sets × 3 feature selection methods × 6 models per set)
for each protein dataset (NS3 and NS5). For NS3, the SVM-SVR and
ANN-SVRmodels demonstrated PCC values of 0.857 and 0.862 on the
TT dataset, and 0.870 and 0.894 on the IV dataset, respectively. ForNS5,
SVM-SVR and ANN-SVR showed PCC values of 0.982 and 0.964 on
the TT dataset, and 0.970 and 0.977 on the IV dataset, respectively.
These model’s robustness was confirmed through various analyses like
applicability domain, chemical clustering, decoy set, statistical tests, etc.
We used the approved category of the DrugBank database to identify
potential repurposed drugs. Further, the top candidates were validated
through molecular docking that confirmed the reliability of the
predictive models. While the findings provide promising insights, it
is important to note that the study is entirely based on in silico
methodologies. Therefore, further in vitro and in vivo experimental
validation is essential to confirm the therapeutic efficacy of the predicted
compounds. Overall, the freely accessible “i-DENV” web server serves
as a valuable resource for identifying novel antiviral candidates targeting
the non-structural proteins of the DENV.
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