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Introduction: Dengue virus (DENV) is a significant global arboviral threat with fatal
potential, currently lacking effective antiviral treatments or a universally
applicable vaccine. In response to this unmet need, we developed the “i-
DENV” web server to facilitate structure-based drug prediction targeting key
viral proteins.

Methods: The i-DENV platform focuses on the NS3 protease and NS5 polymerase
of DENV using machine learning techniques (MLTs) and quantitative structure-
activity relationship (QSAR) modeling. A total of 1213 and 157 unique compounds,
along with their IC50 values targeting NS3 and NS5 respectively, were retrieved
from the ChEMBL and DenvInD databases. Molecular descriptors and fingerprints
were computed and used to train multiple regression-based MLTs, including
SVM, RF, kNN, ANN, XGBoost, and DNN, with ten-fold cross-validation.

Results: The best-performing SVM and ANN models achieved Pearson
correlation coefficients (PCCs) of 0.857/0.862 (NS3) and 0.982/0.964 (NS5) on
training/testing sets, and 0.870/0.894 (NS3) and 0.970/0.977 (NS5) on
independent validation sets. Model robustness was supported through scatter
plots, chemical clustering, statistical analyses, decoy set etc. Virtual screening
identified Micafungin, Oritavancin, and lodixanol as top hits for NS2B/NS3
protease, and Cangrelor, Eravacycline, and Baloxavir marboxil for NS5
polymerase. Molecular docking further confirmed strong binding affinities of
these compounds.

Discussion: Our in-silico findings suggest these repurposed drugs as promising
antiviral candidates against DENV. However, further in vitro and in vivo studies are
essential to validate their therapeutic potential. The i-DENV web server is freely
accessible at http://bioinfo.imtech.res.in/manojk/idenv/, offering a structure-
specific drug prediction platform for DENV research and antiviral drug discovery.
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Introduction

Dengue virus (DENV), an arbovirus from the Flaviviridae
family, causes tropical diseases and is a major global health
concern. The World Health Organization (WHO) lists Dengue
among the top ten global threats, with nearly half the world’s
population at risk and about 390 million infections annually
(Waggoner et al., 2016; Bhatt et al, 2013; Brady et al., 2012).
Globalization, urbanization, and climate change are expanding
the range of Aedes aegypti and Aedes albopictus, potentially
placing 60% of the global population at risk by 2080 (Ebi and
Nealon, 2016; Messina et al., 2019; de Almeida et al., 2017). DENV
encompasses four serotypes (DENV-1 to DENV-4), each capable of
causing the full range of disease. Infection with a different serotype
can lead to severe conditions like dengue hemorrhagic fever (DHF)
and potentially fatal dengue shock syndrome (DSS) due to antibody-
dependent enhancement (ADE), which complicates vaccine
development (Goethals et al., 2023; Dash et al., 2006). Currently,
no approved antivirals exist and only symptomatic treatment is
available (Kaptein et al., 2021).

DENV possesses an 11 kb single-strand RNA genome, yielding
seven non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A,
NS4B, NS5) and three structural proteins (CP, EP, MP) (Khan
et al,, 2023). Its life cycle reveals key steps such as endocytosis, viral
fusion, transcription, and release of new viral particles (Behnam
etal., 2016). The envelope (E) protein mediates host cell attachment
and membrane fusion. The membrane (M) protein stabilizes the
mature virion and aids assembly after prM cleavage. The capsid (C)
protein packages viral RNA and initiates particle formation.
NSI supports replication, immune evasion, and viral assembly.
NS2A is involved in replication, polyprotein processing, and
cytopathogenesis. NS2B, as a cofactor for NS3, forms a protease
complex crucial for polyprotein processing and immune
suppression. NS4A modulates host membranes and promotes
viral protein oligomerization for replication. NS4B dimerizes,
interacts with NS5, and helps form the replication complex
(Nasar et al, 2020; Nath et al, 2024). NS3 and NS5 proteins
NS5
methyltransferase domain (N-terminal) for mRNA capping and
an RNA-dependent RNA polymerase (RdRp) domain (C-terminal)
for genome replication. NS5 is highly conserved among the four

have diverse  enzymatic  activities. contains  a

DENV serotypes, making it a promising target for anti-dengue drug
development due to the absence of similar RdRp activity in human
enzymes (Shimizu et al, 2019; Coulerie et al, 2013). The
NS3 protease, consisting of NS2B and NS3, is crucial for DENV
replication, functioning as a trypsin-like serine protease, with
catalytic residues His51, Asp75, and Serl135. As a result,
disrupting NS3 protein proves fatal to the virus, underscoring its
potential as a key target for antiviral drug development (Tomlinson
et al., 2009).

Several experimental studies have targeted NS3 and
NS5 proteins to combat DENV infection. For example, -
Abdullah et al. used computational methods to identify Zileuton,
trimethadione, and linalool as novel NS3 inhibitors, with ICs, values
of 3.3 mM, 25.97 mM, and 1.12 mM. They further proposed Ziltri
and zilool based on docking results (Abdullah et al., 2023). Likewise,
Balasubramanian et al. identified curcumin as a DENV2 NS2B/

NS3 protease inhibitor, synthesizing analogs (CC1-CC5) with ICs,
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values between 36.23 and 66.01 pM, ECs, values between 8.07 and
29.25 uM, and CC50 values between 25.50 and 87.40 uM
2019). Salleh et al.
21 Malaysian medicinal plants and found that Dryobalanops

(Balasubramanian et al, investigated
aromatica methanol extract showed 99.7% inhibition at 200 ug/
mL with an IC50 of 0.30 pg/mL targeting NS2B-NS3 protease (Salleh
et al, 2019). Shimizu et al. identified RK-0404678 as a potent
DENV2 NS5 RNA polymerase inhibitor with an ECsy of 6.0 puM,
16,240 compounds 2019).
Jarerattanachat et al. identified Isoquercitrin as a dual-binding

screened from (Shimizu et al,
NS5 Methyltransferase inhibitor, effectively suppressing DENV
with minimal toxicity (CC50 > 20 uM) (Jarerattanachat et al,
2023). However, only a few of these antiviral candidates have
advanced to clinical trials, highlighting the need for novel
DENV-targeted treatments.

In this concern, combining computational approaches with
experimental studies offers a more effective strategy for
developing antivirals against viral structural and non-structural
proteins, expediting drug discovery. For example, - Indu et al.
screened 7,000 phytocompounds DENV  proteins,

identifying astragaloside II, III, and IV as potential inhibitors

against

based on strong binding energies, which were further tested in
Vero cell line (Indu et al.,, 2021). Similarly, Khan et al. assessed
diterpenoids against dengue viral proteins (Envelope, NS1, NS3,
NS5) using molecular docking, dynamics simulation, and network
pharmacology (Khan et al., 2021). Cabarcas-Montalvo et al. docked
210,903 PubChem molecules against NS2B/NS3 and tested the top
5 candidates in antiviral assays (Cabarcas-Montalvo et al., 2016). In
another study, Mirza et al. screened 18 million compounds from the
ZINC database against NS3 protease using various in silico methods
and tested 4 potent compounds through in vitro studies (Mirza et al.,
2018). Furthermore, machine learning techniques (MLTs) have been
widely applied in drug development. For example, - Gupta et al.
developed DDPM, an early diagnostic model using MLTs to aid in
dengue diagnosis and prognosis (Gupta et al,, 2023). Similarly,
Natali et al. used MLTs to identify rare antibody sequences
capable of neutralizing pathogens (Natali et al, 2024). In this
context, our group has developed several machine learning-based
antiviral prediction tools utilizing quantitative structure-activity
relationship (QSAR) information of molecules and peptides.

Quantitative ~ Structure-Activity ~Relationship (QSAR) is a
computational modeling technique employed to establish
relationships  between the structural or physicochemical

properties of chemical compounds and their biological activities.
The fundamental assumption of QSAR is that variations in
molecular structure lead to differences in biological behavior,
including key pharmacokinetic parameters such as absorption,
distribution, metabolism, excretion, and toxicity (ADMET)
(Kwon et al.,, 2019). These include AVCpred for prediction and
design of antiviral compounds (Qureshi et al., 2017), AVPpred for
prediction of highly effective antiviral peptides (Thakur et al., 2012),
AVP-IC50Pred for prediction of peptide antiviral activity in terms of
half maximal inhibitory concentration (IC50) (Qureshi et al., 2015),
and HIVprotl for prediction and design of HIV proteins inhibitors
(Rajput and Kumar, 2022), among others. Furthermore, we have
created MLT-based platforms such as anti-Flavi (Rajput and Kumar,
2018), anti-Nipah (Rajput et al., 2019), and anti-corona (Rajput
et al, 202la) to predict antiviral compounds against various
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FIGURE 1
Curated data from ChEMBL and DenvInD, resulting in 1213 unique entries targeting the NS3 protein and 157 unique entries targeting the NS5 protein.

Using PaDEL software, descriptors in one-dimensional, two-dimensional, and three-dimensional formats were computed. Recursive feature elimination
method from the sklearn module was employed for feature selection. The data was then divided into training and testing datasets, and various MLTs were
applied. Model performance was assessed using MAE, MSE, RMSE, R2, and PCC, and validated with applicability domain, scatter plot, chemical

clustering, box plot, statistical test such as paired t-tests or Wilcoxon signed-rank tests and decoy set analysis. Potential repurposed drugs were identified
through an analysis of the DrugBank database using the best-developed models for both NS3 and NS5 inhibitors. For further validation, the top predicted
drugs were docked against NS3 and NS5 proteins using AutoDock Vina. The best-performing models were integrated into the web server "i-DENV".
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TABLE 1 Performance Metrics of best performing models developed for NS3 and NS5 Protein using various MLTs and Feature Selection method on TT and IV
Datasets.

Algorithm  Feature selection Model parameters Dataset MAE MSE RMSE R? PCC
NS3

SVM SVR gamma:0.0001 C:100 T1002 0.191 | 0.065 @ 0.255 0.733 | 0.857
Via 0.195 0.074 0.272 0.756 | 0.870

Perceptron gamma:0.001 C:10 Tio92 0.239 0.099 0.315 0.593 | 0.771

Vi 0.212 0.087 0.295 0.713 | 0.844

DT gamma:0.005 C:1 T1002 0255 | 0.118 | 0.343 0517 | 0.719

Vi 0.215 0.097 0.311 0.680 | 0.833

RF SVR n:400 Tio92 0.264 0.124 | 0.352 0.492 | 0.703
Vi 0.213 0.093 0.305 0.693 | 0.851

Perceptron n:500 T1o92 0.275 0.130 0.361 0.467 | 0.684

Vi 0.225 0.102 0.319 0.663 | 0.832

DT n:400 T1092 0.266 0.124 | 0.350 0.475 | 0.705

Vio 0.218 0.103 0.321 0.66 0.825

kNN SVR k:3 T1092 0.251 0.119 0.346 0.511 | 0.725
Vio 0.250 0.131 0.363 0.565 | 0.756

Perceptron k:7 T1092 0.267 0.127 0.356 0.480 | 0.695

Vi 0227 | 0105 | 0325 0.651 | 0.811

DT k:5 T1092 0.270 0.131 0.362 0.464 | 0.690

Vio 0.233 0.109 0.330 0.639 | 0.799

ANN SVR solver:Ibfgs T1092 0.192  0.064 | 0.253 0.738  0.862

activation: identity

Viat 0.190 | 0.070 | 0.265 0.781 | 0.894

Perceptron activation:logistic Tio92 0.249 0.108 0.329 0.556 | 0.751

Viat 0216 | 0086 | 0293 0716 = 0.844

DT activation: logistic Tro02 0275 | 0.135 | 0365 0426  0.682

Vi 0.241 0.111 0.332 0.634 | 0.798

XGBoost SVR n_estimators = 300, max_depth = 3, learning_rate = 0.141 = Tjgo, 0.249 0.111 0.334 0.544 | 0.738
Vi 0.222 0.087 0.296 0.710 | 0.849

Perceptron n_estimators = 300, max_depth = 7, learning_rate = 0.058 = Tjgo, 0.272 0.132 0.362 0.448 | 0.678

Vi 0.212 0.089 0.298 0.705 | 0.842

DT n_estimators = 200, max_depth = 3, learning_rate = 0.104 = T;go> 0.259 0.119 0.344 0.514 | 0.718

Vi 0.225 0.096 0.31 0.681 | 0.830

NS5

SVM SVR gamma:0.0001 C:400 Tia0 0.135 0.049 0.197 0.954 | 0.982
Vis 0.138 0.044 | 0.210 094 | 0.970

Perceptron gamma:0.0005 C:400 T4 0.222 0.105 0.310 0.884 | 0.953

Vis 0.24 0.137 0.370 0.814 | 0.904

DT gamma:0.005 C:10 Tia0 0.429 0.399 0.591 0.632 | 0.802

Vis 0.420 0.446 0.668 0.395 | 0.713

(Continued on following page)
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TABLE 1 (Continued) Performance Metrics of best performing models developed for NS3 and NS5 Protein using various MLTs and Feature Selection

method on TT and IV Datasets.

Algorithm  Feature selection Model parameters Dataset MAE MSE RMSE R? PCC
RF SVR n:400 depth: 12 Tha0 0.399 0.324 0.544 0.659 | 0.840
Vis 0.340 0.211 0.46 0.713 | 0.863
Perceptron n:300 Tia0 0.360 0.294 0.513 0.680 | 0.852
Vis 0.288 0.180 0.425 0.755 | 0.873
DT n:200 depth: None leaf:1 Tha0 0.424 0.388 0.601 0.560 | 0.799
Vis 0.367 0.308 0.555 0.582 | 0.771
kNN SVR k:3 Ti40 0.343 0.235 0.468 0.727 | 0.889
Vis 0.292 0.144 0.380 0.804 | 0.901
Perceptron k:3 Tha0 0.335 0.235 0.468 0.753 | 0.895
Vis 0.360 0.232 0.481 0.686 | 0.833
DT k:3 Tha0 0.508 0.499 0.687 0.446 | 0.739
Vis 0.563 0.609 0.781 0.173 | 0.663
ANN SVR solver: Ibfgs activation: identity learning: invscaling Tra0 0.159 0.073 | 0.271 0.928 | 0.964
Vis 0.160 0.048 0.219 0.935 | 0.977
Perceptron solver: Ibfgs activation: logistic learning: adaptive Tra0 0.255 0.119 0.345 0.884 | 0.942
Vis 0.337 0.238 0.488 0.710 | 0.854
DT solver: Ibfgs activation: tanh learning: adaptive Trao 0.532 0.505 0.711 0.508 | 0.762
Vis 0.507 0.592 0.769 0.197 | 0.708
XGBoost SVR n_estimators = 300, max_depth = 3, learning_rate = 0.078 = T4 0.334 0.22 0.444 0.766 | 0.889
Vis 0.388 0274 | 0.523 0.628 = 0.818
Perceptron n_estimators = 300, max_depth = 3, learning_rate = 0.143 = T4 0.335 0.243 0.458 0.678 | 0.846
Vis 0.313 0.200 0.447 0.729 | 0.870
DT n_estimators = 150, max_depth = 5, learning_rate = 0.038 = T4 0.406 0.326 0.548 0.609 | 0.812
Vis 0.358 0.207 0.455 0.719 | 0.854

SVR, Support vector regression; DT, Decision tree; TT, Training or testing dataset; IV, Independent validation dataset; PCC, Pearson’s correlation coefficient, R* - coefficient of determination,
MAE, mean absolute error; MSE, mean squared error; RMSE, root mean squared error. Bold values indicate the best-performing model(s) based on Pearson correlation coefficient (PCC) and

coefficient of determination (R?) for each dataset.

pathogens. Additionally, we created a database of repurposed drugs
effective against 23 epidemic and pandemic-associated viruses
(Rajput et al,, 2021b).

Recently, we developed the Anti-Dengue platform to predict
repurposed drugs targeting DENV based on their ICs0/pICs, values
(in uM) using various MLTs. However, this platform focuses on the
entire virus without specifying the targeted site of the drug (Gautam
et al, 2024). To address this gap, we introduce a new machine-
learning-driven pipeline named “i-DENV”, which enables the
identification of inhibitors targeting NS3 and NS5 proteins of
DENV. The platform employs diverse MLTs (Support vector
machine (SVM), Random Forest (RF), k-nearest neighbor (kNN),
Artificial neural network (ANN), Extreme Gradient Boosting
(XGBoost) and Deep Neural Network (DNN)). Using our top-
performing models, we screened the DrugBank database to
predict promising repurposed drug candidates for NS3 and
NS5 proteins. Selected drug candidates underwent additional

Frontiers in Pharmacology

support through molecular docking, confirming strong binding
affinities. Overall, this study contributes to the discovery of
antiviral drugs specifically targeting NS3 and NS5 proteins,
offering  potential benefits  in

DENYV infection.

therapeutic combating

Methodology

For developing the “i-DENV” predictive algorithm, the overall
workflow is given in Figure 1.

Data collection

For the predictor, experimentally validated compounds were
taken from the CHEMBL and DenvInD databases. CHEMBL

frontiersin.org
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SHAP-Based Analysis of Key Features in the Best Predictive SVM Model for pIC50 Prediction: (A) Beeswarm Plot for NS3 Protein, (B) Beeswarm Plot

for NS5 Protein. Each point represents a single sample (compound) and illustrates the impact of a feature on the model's output. The x-axis indicates the
SHAP value, representing the magnitude and direction of a feature’s contribution to the prediction. Features are ranked vertically by their overall
importance, measured by the mean absolute SHAP value. The color gradient (blue to red) denotes the feature value for each sample, with blue

indicating low values and red indicating high values. Points spread further from zero along the x-axis indicate greater influence on the prediction. These
plots help visualize both the importance of each feature and the direction of its effect across the dataset.

provides data on bioactive molecules with drug-like properties, — Davies et al, 2015). DenvInD is a comprehensive database

integrating chemical, bioactivity, and genomic data to aid in  encompassing known inhibitors targeting potential therapeutic

developing new pharmaceutical treatments (Mendez et al,, 2019;  targets of the DENV (Dwivedi et al., 2021).

Frontiers in Pharmacology 06 frontiersin.org


https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1605722

Gautam et al.

10.3389/fphar.2025.1605722

A ° O Training/Testing dataset B 3 © o Training/Testing f'atéset
0 4 Independent validation dataset OO 4 Independent validation dataset
© ] o
S o B al 5
7 2, 5 %a0.°
= o G 11 6° 8 g0 O—1—o5
o o 808 o0 @ o

3 o o °© 0&%83 6% g Q
e @ 0 ¢t oo
= ° o8 s 8 %%
B - B | 69,5 900 °
3 0.0 ° B -1 o0
c %o S 00058 4 ® o
L) Co & @5 © 8

2
%]

o
_3 o
06 08 1.0 025 050 075 100 125 150 175 2.00
Leverage Leverage

FIGURE 4

The applicability domain analysis using william plot for both (A) NS3 and (B) NS5 protein between the leverage and standardized residuals of the
molecules. The x-axis represents the leverage values, indicating the influence of each compound on the model, while the y-axis shows the standardized
residuals, reflecting the prediction error for each compound. Data points are color-coded: blue circles represent compounds from the training/testing
dataset, and orange triangles represent those from the independent validation dataset. The horizontal dashed red lines at +3 delineate the threshold

for standardized residuals; points outside this range are considered outliers. The vertical dashed red line represents the critical leverage value (h*), beyond
which compounds may be deemed influential and outside the model's applicability domain. These plots help identify both outliers and structurally
influential compounds, supporting the reliability and robustness of the developed models.
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Reliability of the best predictive models for NS3 and NS5 was evaluated by generating scatter plots comparing the actual pIC50 values of molecules
with their predicted values. The models assessed include: (A) SVM for NS3, (B) ANN for NS3, (C) SVM for NS5, and (D) ANN for NS5.

Steps for data retrieval

o ChEMBL provided information on 1,372 compounds for
NS3 and 67 for NS5 protein, while DenvInD offered data
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on 95 compounds specifically targeting NS5 protein (Mendez
et al., 2019) (Davies et al., 2015) (Dwivedi et al., 2021).

o The NS3 and NS5 dataset underwent a filtering process to

extract inhibitors with ECs¢/ICs, values and corresponding
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To validate the accuracy of the predicted models using the top-performing SVM model for NS3 protein, we created scatter plots. These plots were
used to compare the actual plCsg values with the decoy values from four distinct decoy sets: (A) Set 1, (B) Set 2, (C) Set 3, and (D) Set 4.
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To validate the accuracy of the predicted models using the top-performing SVM model for NS5 protein, we created scatter plots. These plots were
used to compare the actual plCsg values with the decoy values from four distinct decoy sets: (A) Set 1, (B) Set 2, (C) Set 3, and (D) Set 4.

SMILES representations. Subsequently, redundant entries
were removed.

« Finally, we identified 1213 and 155 unique entries targeting
NS3 and NS5 protein, respectively.
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o The unique entries’ half-maximal inhibitory concentration
(ICsp), given in molar concentration, was transformed into
pICso using the equation pICsy = -logl0(ICs). This
transformation  facilitates and

easier  interpretation
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comparison of drug potency by presenting the data on a
consistent and more intuitive logarithmic scale.

Supplementary Table S1 provides the dataset of drugs and
inhibitors used to develop the model for NS3 and NS5 protein.

Format conversion

The compound structures from the NS3 and NS5 dataset were
converted from SMILES to structure-data file (3D-SDF) format
using Open Babel version 3.1.1 (O’Boyle et al, 2011). These
converted files were subsequently employed as input to extract
chemical descriptors and fingerprints.

Computation of molecular descriptors
and fingerprints

To develop QSAR based predictive models for the NS3 and
NS5 proteins of DENV, we used PaDEL software to compute
molecular descriptors and fingerprints (Yap, 2011). We computed
17,968 chemical descriptors for each molecule in the NS3 and
NS5 protein dataset. Descriptors are numeric representations of
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molecular features, while fingerprints capture structural fragments,
connectivity, bonds, and functional groups using binary sequences,
where 1 denotes presence and 0 denotes absence (Grisoni et al., 2018).
Descriptors and fingerprints are essential for analyzing drugs and
chemicals, as they help assess their QSAR (Perkins et al., 2003).

Feature selection

Feature selection is the process of selecting the most important
features from a larger set to enhance model performance and
interpretability (Taghizadeh et al., 2022). Feature selection used
the Recursive Feature Elimination (RFE) module from scikit-learn
with Perceptron, Support Vector Regression (SVR), and Decision
Tree (DT) methods. The goal was to identify the top 50, 100, 150,
and 200 features for each dataset. All selected features were then
used as input for MLTs on the NS3 and NS5 datasets (Lin et al.,
2012) (Gholami et al., 2012).

Randomized dataset creation

Random selection processes were used to create a training/
testing (TT) and independent validation (IV) dataset. To achieve
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TABLE 2 The top leading repurposed drug candidates predicted to be effective against NS3 and NS5 Protein of DENV with information such as drugbank ID,
drug name, primary indication, predicted plCso, and their current testing status.

DrugBank_ID  Target_Protein Primary indication Predicted_plICso  Predicted_plCso,  Status

(ANN) (SVM)

DB01141 NS3 Micafungin Treating candidemia, acute | 7.818 6.743 Experimental
disseminated candidiasis,
and other invasive Candida
infections

DB00035 NS3 Desmopressin | Synthetic vasopressin 6.139 5978 Computational
analog reduces water
excretion in diabetes
insipidus and nocturia

DB00362 NS3 Anidulafungin | Treatment of several types | 5.635 5.6 Experimental
of candida infections

DB00482 NS3 Celecoxib NSAID for arthritis, pain, 5.476 5.263 Experimental
menstrual symptoms, and and
polyp reduction computational
DB08911 NS3 Trametinib Kinase inhibitor for BRAF- | 5.425 5.177 Experimental

mutated cancers like
melanoma and non-small
cell lung cancer, used alone
or with dabrafenib

DB00696 NS3 Ergotamine Alpha-1 adrenergic agonist | 5.375 5.105 Computational
for treating migraines with
or without aura and cluster
headaches

DB00520 NS3 Caspofungin Echinocandin treats various | 5.261 5.505 Experimental
fungal infections

DB00796 NS3 Candesartan For hypertension, left 5.15 5.102 Experimental
cilexetil ventricular hypertrophy,
and delaying diabetic
nephropathy
DB00091 NS3 Cyclosporine Used in transplants and 5.144 5.452 Experimental

inflammatory conditions
including ulcerative colitis,
rheumatoid arthritis, and
atopic dermatitis

DB00471 NS3 Montelukast Treating asthma, 5.12 5.141 Experimental
preventing exercise- and
induced computational

bronchoconstriction, and
managing seasonal allergic

rhinitis
DB01017 NS5 Minocycline Wide variety of infections | 5.711 5.732 Experimental
DB00254 NS5 Doxycycline Wide variety of infections = 5.643 5.68 Experimental
DB01263 NS5 Posaconazole Invasive infections by 5.529 5.506 Experimental

Candida species and
Aspergillus species

DB00997 NS5 Doxorubicin Treating various cancers 4.997 5.027 Experimental
like AIDS-associated and
Kaposi’s Sarcoma and computational

metastatic cancers

DB00686 NS5 Pentosan For relieving bladder pain = 4.478 4.853 Experimental
polysulfate or discomfort from
interstitial cystitis

DB00811 NS5 Ribavirin For managing chronic HCV | 3.526 3.737 Experimental
infection
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TABLE 3 Docking interactions of selected drugs (inhibitors) with DENV NS2B/NS3 protease and DENV NS5 polymerase.

Ligand Protein/Receptor Binding energies Interacting amino Distance Molecular
(Drugbank_ID) (PDB_id) (kcal mol-1) acid residues (A) interactions
Delavirdine (DB00705) NS2B/NS3 (2FOM) -8.3 Gly B:153 299 Van der waals
His B:51 4.47 Conventional Hydrogen
Ser B:135 5.19 bond
Leu B:128 4.95 Carbon hydrogen bond
Pro B:132 4.59 Pi-Sigma
420 Pi-alkyl
3.76
491
4.87
3.77
Raltegravir (DB06817) -8.1 Val B:52 4.19 Van der waals
Ile B:36 3.39 Conventional Hydrogen
His B:51 5.78 bond
Pro B:132 5.84 Carbon Hydrogen Bond
Arg B:54 5.40 Halogen (Fluorine)
Thr B:53 5.43 Pi- Cation
Ala B:56 5.88 Pi-Pi T- shaped
476 Pi-alkyl
4.83
4.75
5.98
Rimexolone (DB00896) -8.1 Ala B:56 437 Van der waals
Thr B:53 5.78 Conventional Hydrogen
Val B:52 bond alkyl
Ile B:36
Arg B:54
His B:51
Glu A:48
Fluoxymesterone (DB01185) -7.9 Asn-B:152 NA Van der waals
Gly-B:153
Gly-B:151
Pro-B:132
Leu-B:128
Tyr-B:161
Baloxavir_marboxil NS5 (4V0Q) -84 Phe-A:398 6.42 Van der waals
(DB13997) Ala-A:421 7.57 Conventional Hydrogen
Val-A:402 5.28 bond
Trp-A:418 4.05 Carbon hydrogen bond
Gln-A:602 7.37 Halogen (Fluorine)
Gly-A:604 327 Sulfur-X
Asn-A:492 5.12 Pi-Sulfur
Tyr-A:606 5.14 Pi-Alkyl
Val-A:603 3.54
Asn-A:405 6.68
Lys-A:401 5.85
6.67
Diphemanil (DB13720) -8.3 Lys-A:355 6.07 Van der waals
Arg-A:581 6.03 Pi-alkyl
Pro-A:298 4.47
Latamoxef (DB04570) -7.4 Tyr-A:606 4.52 Van der waals
Asn-A:609 4.04 Conventional Hydrogen
Gly-A:604 3.32 bond
Tle-A:797 5.24 Carbon hydrogen bond
His-A:798 4.87 Alkyl
Ser-A:661 5.27
His-A:711
Cyclothiazide (DB00606) -7.3 Phe-A:485 6.04 Van der waals
Val-A:603 3.80 Conventional Hydrogen
Gly-A:604 3.69 bond
Tyr-A:606 3.26 Unfavourable Donor-
Asn-A:492 5.00 Donor
Gln-A:602 529 Alkyl
Thr-A:605 4.42 Pi-Alkyl
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Docking poses of selected drugs (A) Delavirdine; (B) Raltegravir; (C) Rimexolone and (D) Fluoxymesterone with DENV NS2BNS3 protease

represented as 2-D line models.

this, 10% of the total data were randomly allocated as an IV dataset,
with the remaining 90% utilized for the TT dataset. This process was
repeated 5 times to get different 5 sets of TT and IV dataset. The
NS3 dataset comprised 1213 molecules - Tjg9, and V,;, while the
NS5 dataset consisted of 155 molecules - T 4 and V5.

Ten-fold cross-validation

Ten-fold cross-validation is employed to assess the performance
of a machine learning model. This method entails dividing the
dataset randomly into ten equal subsets, or “folds”. The model
undergoes ten rounds of training and evaluation, where each round
uses a different fold as the validation set and the remaining nine
folds as the training set. This systematic approach ensures that each
data point is validated exactly once. Afterward, the performance
metrics obtained from each round are averaged to provide a more
accurate evaluation of the model’s performance.

Model performance assessment

We evaluated the model’s performance using metrics such as
Mean Absolute Error (MAE), Mean Squared Error (MSE), Root
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Mean Squared Error (RMSE), Coefficient of Determination (R2),
and Pearson’s Correlation Coefficient (PCC or R). These metrics
were calculated using the formulas provided below-

n act ppred n act N pred
”anl Ei E - anl Ei anl E;

pcc = 2 ct\2 red\2 red\2
\/n22=1 (Ef) —(ZLlEf ) _\/"ZZ=1 (Ef ) _(Z:=1 Ef )

_ 1 < red _
MAE = n; |EP! - Ege
RMSE = %zl (EPe - poer)’

Where, ‘n’ represents the size of the dataset, ‘Eact’ denotes the
actual values, and ‘Epred’ corresponds to the predicted values.

Robustness assessment and
comparative analysis using
statistical tests

To ensure the robustness of predictive models, 95% confidence
intervals (CIs) were computed for key performance metrics (PCC,
MAE, MSE, RMSE, and R?) using 10-fold cross-validation across
all machine learning techniques (MLTs). Statistical significance of
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Docking poses of selected drugs (A) Baloxavir marboxil; (B) Latamoxef; (C) Cyclothiazide and (D) Diphemanil with DENV NS5 polymerase

represented as 2-D line models.

performance differences among models was assessed through
pairwise comparisons of these metrics. The Shapiro-Wilk test
was used to evaluate normality, determining the choice of
statistical tests: a paired t-test for normally distributed data or
the Wilcoxon signed-rank test for non-normally distributed data.
Additionally, box plots were generated using Seaborn and
Matplotlib libraries to visualize the distribution and variability
of performance metrics across different models (Hazra, 2017;
Shapiro and Wilk, 1965; Rosner et al., 2006; Ross and Willson,
2017; Williamson et al., 1989).

SHAP analysis

SHAP (SHapley Additive exPlanations) was employed to
analyze feature importance in the best predictive Support
Vector Machine (SVM) model for pICs, prediction targeting
the NS3 and NS5 protein. A Support Vector Regression (SVR)
model with optimized hyperparameters was trained using 10-fold
cross-validation. Features were standardized using StandardScaler,
and SHAP values were computed using a KernelExplainer with a
k-means-selected background dataset of 50 representative training
samples. The SHAP values were aggregated across all folds to
generate a comprehensive beeswarm and summary plot,
highlighting the most influential features (Lundberg and

Lee, 2017).
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Applicability domain analysis

In addition to model performance, accuracy for new predictions
is crucial. Applicability domain (AD) analysis establishes the
model’s boundaries to ensure reliable predictions. A query
molecule’s chemical properties must fall within the AD of the
trained model to ensure precise predictions (Kar et al., 2018).

To assess this, William’s plot was employed using a leverage
approach for NS3 and NS5 proteins, illustrating the relationship
between leverage and standardized residuals. The leverage threshold
(h*) is:

Leverage threshold (h*) = 3(p + 1)n

where p - the number of descriptors used in developing the model. n
is the number of compounds used in the training dataset.

The leverage threshold (h*) is a key component of AD analysis,
used to identify influential or outlier compounds in a QSAR model.

Leverage (h) quantifies a compound’s influence on the model. If h >
hs, the compound is flagged as an outlier or highly influential, indicating
it may fall outside the AD and require further evaluation. Compounds
within h# are considered reliably predicted by the model. The factor 3 in
the formula is an empirically chosen value commonly used in QSAR
modeling to set a practical threshold (Khosrokhavar et al., 2010).

To affirm the models’ effectiveness, scatter plots were created to
compare predicted pICs, values with actual pICs, values for the top-
performing models in both NS3 and NS5 datasets.
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FIGURE 11

Docking poses of selected drugs (A) Delavirdine; (B) Raltegravir; (C) Rimexolone and (D) Fluoxymesterone with DENV NS2BNS3 protease in the form

of ribbon structures.

Decoy sets analysis

Using the DecoyFinder 2.0 tool, Decoys were created for these drug
candidates (Cereto-Massagué et al., 2012). We used a molecular weight-
based method to create these decoys, utilizing the ZINC20 database,
which includes 4.78 million drug-like molecules (Irwin et al., 2020).

Four distinct decoy datasets were created, containing
1213 decoys for the NS3 dataset and 155 for the NS5 dataset.
These decoys, randomly generated to correspond to active drug
candidates, were processed further through format conversion and
molecular descriptor calculations to obtain their pICs, values. A
correlation analysis was then performed to measure the Pearson’s
Correlation Coefficient (PCC), evaluating the relationship between
the pICs, values of the decoys and the actual pICs, values of the
corresponding active drug candidates.

Chemical clustering analysis

We performed chemical clustering analysis using two methods: the
ChemMine tool and t-distributed Stochastic Neighbor Embedding
(t-SNE) visualization. In the ChemMine tool, molecular SMILES were
used as input to assess drug heterogeneity, applying both
multidimensional scaling (MDS) and binning clustering with a
similarity threshold of 0.6 (Backman et al, 2011). For t-SNE, the
dataset containing molecular descriptors and pICs, values was loaded
using Pandas and standardized with StandardScaler to ensure uniform
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feature scaling. t-SNE from sklearn. manifold was applied to reduce
dimensionality to two components for visualization. A scatter plot was
generated using matplotlib. pyplot, with pICs, values as the color gradient
to illustrate activity distribution (Van Der Maaten and Hinton, 2008).

Drug repurposing

We used top-performing SVM and ANN models for both NS3
and NS5 proteins to identify potent repurposed drug candidates. We
then screened 2,150 approved drugs from the Drugbank database to
identify promising candidates (Knox et al., 2024). As a preliminary
step, transformed the file format and calculated molecular descriptors
of these drugs with PaDEL software. These descriptors were then used
to identify potential repurposed drug candidates for DENV.

Molecular docking

After identifying highly promising drug candidates targeting
dengue NS proteins, the top 4 drugs in each category, based on 3D
structure availability and predicted pICs, values, were selected for
molecular docking studies. For ligand preparation, the selected
drugs 3D structures were acquired from PubChem in SDF
format, converted to PDB format using PyMOL software, and
then import the file in auto dock tools to convert it into PDBQT
format (Eberhardt et al., 2021) (Trott and Olson, 2010).
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FIGURE 12

Docking poses of selected drugs (A) Baloxavir marboxil; (B) Latamoxef; (C) Cyclothiazide and (D) Diphemanil with DENV NS5 polymerase in the form

of ribbon structures.

To prepare the receptors, the 3D crystal structures of the DENV
NS2B/NS3 protease (PDB ID: 2FOM) and NS5 polymerase (PDB ID:
4V0Q) were retrieved in PDB format from the RCSB Protein Data Bank.
These structures were then loaded into Discovery Studio to remove the
original ligands—glycerol (GOL) from the NS2B/NS3 protease and
S-adenosyl-l-homocysteine (SAH) from the NS5 polymerase.

Prior to docking analyses, the 3D protein structures were refined
by removing extraneous ions, ligands, and non-essential water
molecules. Polar hydrogen atoms and Kollman charges were
added to the receptor proteins. The refined structures were then
saved in PDBQT format for the subsequent docking experiments.

To perform the docking simulations, AutoDock Vina (version
1.1.2) with default settings was used to create grid boxes for the
dengue NS3 and NS5 proteins. Nine optimal docking conformations
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were then generated for both proteins and the inhibitor molecules
(Eberhardt et al., 2021) (Trott and Olson, 2010).

The exhaustiveness parameter was set to 8 to compute the
minimum binding affinity between proteins and ligands.
Subsequently, the interactions were then analyzed and visualized
using PYMOL and Discovery Studio Visualizer (DSV) (Rigsby and

Parker, 2016) (Biovia et al., 2016).

Web server development

The “i-DENV” web server, designed to predict a chemical’s
pICsp and ICsy (uM) for inhibiting DENV, integrates the most
effective SVM models for NS3 and NS5 proteins. It is built using the

frontiersin.org


https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1605722

Gautam et al.

LAMP software stack, which includes Linux (OS), Apache (web
server), MySQL (database), and PHP (scripting language). The
system runs on Ubuntu 20.04.6 LTS (Focal Fossa), a Debian-
based Linux distribution, with Apache 2.4.41 as the web server
and MySQL 8.0.40-Oubuntu0.20.04.1 on a 64-bit Linux system. For
server-side scripting, it utilizes PHP 7.4.3-4ubuntu2.28 (CLI),
incorporating Zend Engine v3.4.0 and Zend OPcache v7.4.3-
4ubuntu2.28 for optimized performance.

The “i-DENV” web server’s user interface is built with HTML,
CSS, and PHP, while the backend is powered by Python, Perl, and
JavaScript to handle computations and data processing. To improve
accessibility, it includes dedicated “Help” and “FAQs” pages,
ensuring users have guidance and support while using the platform.

Results
Feature selection

For the NS3 dataset, top performing SVM and ANN models
used 200 features selected by SVR, including KRFP1702, FPSA-1,
and others. Supplementary Table S2 presents the top 200 features
identified through SVR, DT, and Perceptron using the RFE module.
For the NS5 dataset, the top SVM and ANN models used
100 features selected by SVR, including SubFP151, KRFPC4060,
KRFPC1634, KRFPC1670, ExtFP453 and others. Supplementary
Table S2 presents the top 100 features identified through SVR,
DT, and Perceptron using the RFE module.

Assessment of the effectiveness of MLTs-
Based QSAR models

To identify potential inhibitors for DENV, we developed
prediction models using six MLTs and datasets with 200 features
for NS3 and 100 features for NS5 protein.

To assess the performance of the developed QSAR models, Diverse
statistical metrics were employed like MAE, MSE, R2, RMSE, and PCC.
PCC measures how strongly predicted pICs, values align with actual
pICs, values, ranging from —1 (negative correlation) to +1 (positive
correlation), with 0 indicating no correlation. R* values measure how
well data aligns with a statistical model. A value of 1 indicates a perfect
fit, while 0 indicates no fit at all. MAE shows how close predicted values
are to actual values, while RMSE measures the average magnitude of
errors. Lower values of both MAE and RMSE indicate better model
performance and vice versa.

For the DENV NS3 dataset, the best SVM and ANN models
achieved PCC values of 0.857 and 0.862 on the TT dataset and
0.870 and 0.894 on the IV dataset. Similarly, for the DENV
NS5 dataset, the top SVM and ANN models demonstrated PCC
values 0of 0.982 and 0.964 on the TT dataset and 0.970 and 0.977 on the
IV dataset, respectively. The performance metrics of best performing
models developed for NS3 and NS5 Protein using various MLTs and
Feature Selection methods on TT and IV Datasets are given in Table 1.
The detailed information about best predictive developed models are
mentioned in Supplementary Table S3.

The performance metrics of the DNN are provided in
Supplementary Table S4.
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Robustness assessment and comparative
analysis using statistical tests

The predictive performance of the machine learning models
was assessed using 10-fold cross-validation, reporting key metrics
(MAE, MSE, RMSE, R? and PCC) with 95% confidence intervals.
SVM-SVR (gamma: 0.0001, C: 100) achieved the lowest error and
highest predictive accuracy for NS3, with an MAE of 0.182-0.200,
RMSE of 0.236-0.272, R* of 0.678-0.764, and PCC of 0.831-0.877.
For NS5, SVM-SVR (gamma: 0.0001, C: 400) exhibited superior
performance (MAE: 0.091-0.178, RMSE: 0.122-0.273, R%:
0.928-0.979, PCC: 0.972-0.991), indicating highly accurate
predictions.

Statistical analysis (Shapiro-Wilk test for normality, paired
t-test/Wilcoxon signed-rank test) confirmed SVM as the best-
performing model for both NS3 and NS5, significantly
outperforming RF, kNN, and XGBoost across all metrics. ANN
showed competitive performance, with no significant difference
from SVM, while RF and ANN outperformed kNN and XGBoost
in several comparisons.

Box plots as depicted in Figure 2 illustrated model performance
variability, with SVM and ANN consistently achieving the best
results (highest PCC and R? lowest errors), while RF showed high
variability. KNN and XGBoost exhibited weaker predictive ability,
with higher errors and lower correlation. These findings establish
SVM as the most reliable model, followed by ANN, with kNN and
XGBoost as the least effective.

The 95% confidence intervals and statistical analysis results
(Shapiro-Wilk test for normality, paired t-test/Wilcoxon signed-
rank test) are provided in the Supplementary Table S5.

SHAP analysis

SHAP is a theoretical approach that quantifies feature
importance by assessing the impact of each feature on the
model’s output. Figures 3A,B present Beeswarm plots, where each
dot represents a SHAP value for a specific feature in an individual
molecule. The x-axis denotes SHAP values, indicating both the
direction and magnitude of each feature’s influence on model
predictions. Positive SHAP values suggest that a feature enhances
predicted activity, while negative values indicate a suppressive effect.
The color gradient represents feature values, with red signifying
higher values and blue representing lower values. Features that
spread further along the x-axis exert greater influence on
predictions. Supplementary Figures SIA and S1B provide mean
absolute SHAP value plots, ranking features based on their overall
contribution to model predictions. Figure 3A highlights RDF25v
(Radial Distribution Function - 0.25, van der Waals volume-
weighted) as the most influential descriptor, followed by FP851
(Fingerprint), Ki (K Global Shape Index, Ionization Potential-
Weighted), and MATS2v (Moran Autocorrelation, Lag 2, van der
Woaals Weighted). Figure 3B highlights GraphFP798 (Graph-based
Fingerprint), PubchemFP770 (Binary Molecular
Fingerprint), —and  ATSC2m  (Centered
Lag 2, Mass-Weighted)
features. These findings underscore the significance of structural,

Molecular
Broto-Moreau

Autocorrelation, as key predictive

electronic, and steric properties in driving model predictions.
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Applicability domain analysis

SVM model’s reliability for NS3 and NS5 proteins was
validated via applicability domain analysis using William’s
plot. Most data points fell within the h* values of 0.56 for
NS3 and 2.1 for NS5, as depicted in Figure 4. This suggests
that the SVM models for NS3 and NS5 proteins exhibit good
reliability and generalization capacity for the given dataset. The
presence of only a few points outside the critical h* threshold
indicates minimal extrapolation, reinforcing the model’s
robustness and predictive accuracy. These results validate the
applicability of the SVM model for predicting biological activity
related to NS3 and NS5 proteins. Furthermore, Figure 5 presents
scatter plots of the best predictive models for NS3 and
NS5 proteins, comparing the actual and predicted
pIC50 values for both the TT and IV datasets. Scatter plots for
the remaining models are provided in Supplementary Figures
S2 and S3. The close clustering of data points inside the boundary
highly
Supplementary Table S6 contains the data utilized for the

line suggests developed models are accurate.
plotting William’s plot for NS3 and NS5 protein, while
Supplementary Table S7 includes the actual and predicted

pICso values for the scatter plots of NS3 and NS5 proteins.

Verification with decoys

Decoys, which do not bind to targets, were used to validate the
predictive model’s accuracy by comparing pICs, values of four
decoy sets with those of active molecules for NS3 and
NS5 proteins (Supplementary Table S8). For the NS3 protein,
Decoy sets 1 - 4 had PCC values of —0.009, —0.016, —0.022, and
0.024, respectively, shown in Figure 6. For the NS5 protein, Decoy
sets 1 - 4 had PCC values of 0.105, —0.01, —0.085, and —0.019,
respectively, shown in Figure 7.

Analysis of chemical heterogeneity

Structural variability in NS3 and NS5 compounds was assessed
which  grouped
NS3 compounds into 685 bins and NS5 compounds into 71 bins,

through  binning  clustering  analysis,
using a similarity threshold of 0.6 (Supplementary Table S9).
Additionally, 2D

visualized dissimilarities among NS3 and NS5 compounds in

and 3D multidimensional scaling plots
chemical space, using a similarity threshold of 0.6, shown in
Figure 8. t-Distributed Stochastic Neighbor Embedding (t-SNE)
was applied to the standardized descriptor space to reduce
dimensionality ~and  visualize potential  structure-activity
relationships (SAR). The resulting distribution revealed distinct
clusters of high bioactivity (yellow-green regions), suggesting
potent molecular scaffolds, while lower-activity compounds
(purple regions) were more dispersed, reflecting greater structural
diversity as depicted in the Supplementary Figure S4. The gradual
color transitions indicate that bioactivity is influenced by subtle
variations in molecular descriptors rather than discrete clustering.
Both these methods showed that compounds in both datasets exhibit

diverse nature of chemicals.
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Prediction of promising repurposed drug
candidates against NS3 and NS5 protein

The top SVM and ANN models for both NS3 and NS5 were used
to predict repurposed drugs from the approved drugs category of the
DrugBank database. The top candidates reported in the literature for
both proteins are presented in Tables 2, while the remaining top
candidates are provided in Supplementary Table S10.

i-DENV web server

To predict a query molecule’s inhibition efficiency, users upload
or paste the SDF format of the query molecule. Results, including
SMILES, pICsy, and IC5, (uM), are displayed in a table. Predictions
may take a few minutes, and users can save or copy the job ID to
check status later. The “i-DENV” web server is freely accessible at
http://bioinfo.imtech.res.in/manojk/idenv/.

Molecular docking of predicted promising
inhibitors with NS3 and NS5 protein

Molecular docking finds the optimal conformation between a
drug (ligand) and a protein (receptor) to achieve the minimum
binding energy. In the NS3 and NS5 datasets, Delavirdine
(DB00705) had the lowest binding energy of —8.3 kcal/mol
against DENV NS2B/NS3 protease, as shown in Table 3,
compared to Raltegravir (DB06817) at —8.1 kcal/mol, Rimexolone
(DB00896) at —8.1 kcal/mol, and Fluoxymesterone (DB01185)
at =7.9 kcal/mol. For DENV NS5 polymerase, Baloxavir marboxil
(DB13997) demonstrated the lowest binding energy of —8.4 kcal/
mol, detailed in Table 3. Conversely, Diphemanil (DB13720),
Latamoxef (DB04570), and Cyclothiazide (DB00606), exhibited
binding energies of —8.3, 7.4, and —7.3 kcal/mol, respectively.

The NS2B-NS3 protease contains a catalytic triad (His51, Asp75,
Ser135) in its active site (Aguilera-Pesantes et al., 2017; Lin et al., 2024;
Norshidah et al,, 2023). In our molecular docking analysis, Delavirdine
and Raltegravir exhibited strong binding within the active site, suggesting
their potential as NS2B-NS3 protease inhibitors. Delavirdine forms
hydrogen bonds with His51 and Serl135, potentially interfering with
catalytic activity, while Asp75 stabilizes His51. Additional interactions
with Tyr150, Leul28, and Pro132 further enhance ligand stability within
the active site (Figure 9A). Raltegravir engages His51 through Pi-Pi
stacking and Pi-alkyl interactions, which may disrupt Ser135 activation.
A hydrogen bond with Ser135 could impair its nucleophilic function,
affecting protease activity. Additional hydrogen bonds with Thr53 and
Arg54 reinforce Raltegravir binding (Figure 9B).

The NS5 polymerase binding pocket comprises conserved
residues (Ser56, Gly81, Cys82, Arg84, Gly85, Thr104, Lysl105,
His110, Asp131, Vall32, Aspl146, and Gly148) and a hydrophobic
pocket containing Trp302, Phe354, Val358, Val577, Val579, Val603,
Gly599, Ala406, Ala407, Asn492, Glu507, Tyr606, and Ile797
(Mukhtar et al,, 2023; Valencia et al, 2021). Among the tested
drugs, Baloxavir marboxil, Latamoxef, and Cyclothiazide exhibited
strong binding, suggesting their potential as NS5 polymerase
inhibitors. Baloxavir marboxil binds tightly to NS5 polymerase
through hydrogen bonds with Asn492, Tyr606, Gly604, Thr605,
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GIn602, Gly607, and Val603, while hydrophobic interactions with
Trp418, Val402, Ala421, and Phe398 enhance stability. The presence
of conserved residues suggests high-affinity binding, potentially
inhibiting NS5 activity (Figure 10A). Latamoxef forms hydrogen
bonds with Asn492, Gly604, Thr605, Asn609, Tyr606, Ile797,
His711, and Ser661, securing ligand stability. ~Additional
interactions with Gly607 and GIn602 provide further stabilization,
while Val603 and Ile797 contribute to hydrophobic anchoring,
suggesting Latamoxef’s potential as an NS5 polymerase inhibitor
(Figure 10B). Cyclothiazide interacts with NS5 polymerase via
hydrogen bonds with Asn492, Tyr606, Gly604, Thr605, Gln602,
and Gly607, stabilizing its binding. Pi-alkyl interactions with
Val603 and Phe485 enhance ligand stability, while the involvement
of 1le797 suggests strong anchoring within the active site, reinforcing
Cyclothiazide’s inhibitory potential (Figure 10C).

Figures 11, 12 display the ribbon structures of NS3 and NS5 proteins
bound with their respective ligands, while Figures 9, 10 illustrate their
molecular interactions in two-dimensional line models.

Discussion

Dengue remains a major global health challenge due to the lack of
effective antivirals and vaccine development difficulties (Norshidah et al,,
2021). The genetic diversity among DENV serotypes (DENV-1-4)
ranges from 60% to 75% amino acid homology, while viruses within
the same serotype share over 97% (Guzman and Harris, 2015). Effective
antivirals must target all serotypes to prevent antibody-dependent
enhancement (ADE). Vaccine development is hindered by limited
knowledge of protective factors, inadequate animal models, and the
need for a tetravalent vaccine (Wilder-Smith, 2020). Further, natural
products and phytochemicals have also been explored as an alternative to
synthetic drugs for managing dengue fever (Sagar et al., 2024; Saleh and
Kamisah, 2020). However, developing new small molecule antivirals is
crucial, and employing a computational approach in this process would
significantly accelerate drug discovery research. To address this, we
developed “i-DENV”, a QSAR-based machine-learning pipeline
predicting repurposed drugs against NS3 and NS5 proteins.

In this study, we employed SVM, RF, ANN, kNN, XGBoost,
and DNN algorithms to develop predictive models, which have
been widely utilized in previous studies. For instance, Auto-Kla
identifies lysine lactylation sites (Lai and Gao, 2023), and IML-
TYLCVs assesses TYLCV symptom severity (Bupi et al., 2023).
Similarly, MLTs have been applied in various antiviral prediction
platforms, including AVPpred (Thakur et al., 2012), AVP-
IC50Pred (Qureshi et al., 2015), SMEpred (Dar et al., 2016),
HIVprotI (Qureshi et al,, 2018), and Anti-nipah (Rajput et al,,
2019), anti-Ebola (Rajput and Kumar, 2022), anti-corona (Rajput
et al.,, 2021a), and anti-dengue (Gautam et al., 2024). But these
servers primarily focus on predicting antiviral candidates against
entire viruses, lacking target protein specificity. However, few
research groups have also employed in silico methods like
molecular docking, ligand interaction analysis, and QSAR-
based models to identify repurposed drugs against DENV
(Panchal et al., 2021) (Pathak et al., 2017) (Tahir ul Qamar
et al., 2019). For instance, Chongjun et al. developed a
classification model using 591 NS3-targeting compounds,
generating nine molecular fingerprints. They implemented
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SVM, RF, and XGBoost models for evaluating accuracy and
ROC_AUC (Valencia et al., 2021). Similarly, Kurniawan et al.
created a classification model using 845
2,603 molecular descriptors and applied
AdaBoost, and ERT models. Further,

performance using accuracy, AUC, MCC, etc. (Kurniawan

compounds,
RF,
evaluated

ensemble

they

et al., 2020). However, our study advances previous work by
using a larger dataset and extending the analysis by including
NS5 protein. Unlike classification approaches, we employed
regression models evaluated by MAE, MSE, RMSE, R’ and
PCC. Our comprehensive validation includes applicability
domain analysis, scatter plots, decoy validation, chemical
clustering, and further support by molecular docking
approach. The best SVM-SVR models were integrated on the
web server to predict inhibitors specifically targeting DENV
NS3 and NS5 proteins. Thus, “i-DENV” represents the first
regression-based web server to identify potential
candidates against the NS3 and NS5 proteins of DENV.

We have also predicted potential repurposed drug candidates from
the approved DrugBank database using our best models for both NS3 and
NS5 proteins. The top predicted drugs have also shown antiviral effects
against other viruses. For example, in case of NS3, Micafungin and its
derivatives are effective against SARS-CoV-2 (Nakajima et al., 2023),
chikungunya (Ho et al,, 2018), PRV (Hondo et al., 2024), and enterovirus
71 (Kim et al., 2016). Trametinib inhibits influenza A (Schrider et al.,
2018), while Ergotamine blocks TMPRSS2 activity relevant to COVID-19
(Wang et al,, 2022). Candesartan cilexetil, and Montelukast targets Zika
(Loe et al, 2019) (Chen et al, 2020), SARS-CoV-2 (Copertino et al.,
2021), and MERS-CoV (Gan et al.,, 2021). For NS5, Doxycycline inhibits
COVID-19 (Gendrot et al., 2020), vesicular stomatitis virus (Wu et al.,
2015), and JEV (Topno and Khan, 2018). Ribavirin is effective against
HCV (Dixit and Perelson, 2006), PPRV (Zhang et al.,, 2023), and IBDV
(Akram et al,, 2023). Minocycline, combined with favipiravir, may treat
COVID-19 (Itoh et al,, 2022) and inhibits RSV (Bawage et al,, 2019) and
West Nile virus (Michaelis et al,, 2007). Heparan sulfate mimetics are

drug

active against enterovirus 71 (Pourianfar et al., 2012), African swine fever
virus (Garcfa-Villal and Gil-Fern, 1991), and HIV (Baba et al., 1988).
Doxorubicin shows anti-chikungunya activity (Kasabe et al., 2023), while
Posaconazole inhibits the SARS-CoV-2 helicase (Abidi et al., 2021).
Further, several top candidates for both targets have been
previously reported in the literature through experimental or in
silico analyses for DENV. For NS3, Micafungin (ICs0-10.23 uM) and
its analogs Caspofungin (ICs50-20.78 pM) and Anidulafungin
(ICs50-3.24 uM) exhibit antiviral effects (Chen et al, 2021).
Desmopressin was identified as a potential NS5 inhibitor via
pharmacophore modeling (Kumar et al, 2022). AR-12, a
celecoxib derivative, inhibits all DENV serotypes (Hassandarvish
et al., 2017). Trametinib suppresses flaviviral replication (Valencia
et al., 2021). Ergotamine and conivaptan exhibit high in silico
binding affinity (Montes-Grajales et al, 2020). Candesartan
cilexetil inhibits DENV-2 (ICso-1.602 pM) (Loe et al,, 2019) and
Cyclosporine disrupts NS5-Cyclophilin interaction, hindering
replication (Qing et al, 2009). Montelukast inhibits NS2B-NS3
protease (ICs50-25.65 mM) (Jiang et al, 2022). For NS5,
doxycycline inhibits all DENV serotypes (IC50-52.3 uM at 37°C,
26.7 uM at 40°C), with greater efficacy against DENV2 and DENV4
(Rothan et al, 2014). Mycophenolic acid (ICso-0.4 mM) and

ribavirin =~ (IC5-50.9 mM) inhibit DENV2 replication
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(Takhampunya et al., 2006). Minocycline targets multiple DENV life
cycle stages (Leela et al., 2016), while sulfated polysaccharides show
varying antiviral activity (PPS < suramin < PI-88) (Lee et al., 2006).
Doxorubicin (CCsp-116.9 uM, ECs¢-6.573 uM) and posaconazole
block DENV RNA replication (Punekar et al., 2022) (Meutiawati
et al., 2018). Thus, the repurposed drug candidates predicted by our
algorithm hold promise as antiviral agents, potentially accelerating
DENV drug discovery efforts. Further, molecular docking validated
the top predicted drugs’ interactions with NS3 and NS5 proteins.
Delavirdine showed the lowest NS3 binding energy (-8.3 kcal/mol),
interacting with catalytic residues (His51, Ser135), while Baloxavir
marboxil had the lowest NS5 energy (—8.4 kcal/mol), forming stable
hydrogen bonds and hydrophobic interactions. These results
confirm the model’s accuracy in predicting DENV inhibitors.

The key feature of the current study is the development of the
“i-DENV” web server, specifically designed to predict the antiviral
activity of molecules against DENV. For algorithm development,
we utilized an experimentally tested dataset of molecules targeting
NS3 and NS5 proteins of DENV. Additionally, we also predict
potential repurposed drug candidates that were also previously
reported in the literature. “i-DENV” is the first regression-based
web server designed to assess the efficacy of user-defined molecules
targeting both NS3 and NS5 proteins.

The limitation of the current study is the relatively small dataset
used for the NS5 protein; expanding the dataset could further enhance
the model’s predictive performance. Another limitation is that the “i-
DENV” algorithm is designed solely to predict the antiviral efficacy of
a molecule in terms of its pICs, value. In the future, this approach
could be extended to multi-task learning (MTL) by incorporating
additional properties beyond antiviral activity prediction. To ensure
the reliable prediction of our model, experimental validation of a
molecule is essential to confirm their efficacy against DENV.

Conclusion

“i-DENV” algorithm was developed using QSAR properties of
compounds and employing various MLTs (SVM, RF, kNN, ANN,
XGBoost and DNN). We created 360 unique configurations (5 random
states X 4 feature sets x 3 feature selection methods x 6 models per set)
for each protein dataset (NS3 and NS5). For NS3, the SVM-SVR and
ANN-SVR models demonstrated PCC values of 0.857 and 0.862 on the
TT dataset, and 0.870 and 0.894 on the IV dataset, respectively. For NS5,
SVM-SVR and ANN-SVR showed PCC values of 0.982 and 0.964 on
the TT dataset, and 0.970 and 0.977 on the IV dataset, respectively.
These model’s robustness was confirmed through various analyses like
applicability domain, chemical clustering, decoy set, statistical tests, etc.
We used the approved category of the DrugBank database to identify
potential repurposed drugs. Further, the top candidates were validated
through molecular docking that confirmed the reliability of the
predictive models. While the findings provide promising insights, it
is important to note that the study is entirely based on in silico
methodologies. Therefore, further in vitro and in vivo experimental
validation is essential to confirm the therapeutic efficacy of the predicted
compounds. Overall, the freely accessible “i-DENV” web server serves
as a valuable resource for identifying novel antiviral candidates targeting
the non-structural proteins of the DENV.
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