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Intervertebral disc degeneration (IDD) is a leading cause of spinal disorders
worldwide. Current clinical therapies for IDD are often constrained by limited
efficacy, notable adverse effects, and high treatment costs. Thus, there is a
pressing need for safer and more effective treatment strategies. In recent
years, natural product-based therapies have garnered increasing attention due
to their multi-target mechanisms and relatively low toxicity. This review
comprehensively summarizes recent advances in the application of natural
products for IDD treatment, with a focus on flavonoids (e.g., quercetin,
hyperoside), glycosides (e.g., ginsenosides, notoginsenosides), terpenoids (e.g.,
aucubin, celastrol), phenolic compounds (e.g., curcumin, resveratrol), and
alkaloids (e.g., berberine, evodiamine). These compounds exert their
therapeutic effects by modulating critical signaling pathways, including Sirtuin-
1 (SIRT1), Nuclear Factor-kappa B (NF-xB), Mitogen-Activated Protein Kinase
(MAPK), Phosphoinositide 3-Kinase/Protein Kinase B (PI3K/Akt), and Nuclear
Factor Erythroid 2—Related Factor 2 (Nrf2). Collectively, they exhibit potent
anti-inflammatory,  antioxidant,  anti-apoptotic,  anti-senescence, and
regenerative properties. The insights presented herein provide a robust
theoretical foundation to support future preclinical and clinical investigations,
highlighting the considerable promise of natural products in IDD management.
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hyperoside, quercetin

degeneration), mechanistic,

1 Introduction

IDD describes a pathological process characterized by progressive structural and
functional deterioration of intervertebral disc tissues due to multiple etiological factors.
This degenerative condition predominantly affects middle-aged and elderly populations.
With global population aging accelerating, IDD has emerged as one of the foremost causes
of spine-related disability worldwide (Kos et al., 2019). The intervertebral disc, an integral
component of the spinal structure, consists of the annulus fibrosus, nucleus pulposus (NP),
and cartilaginous endplates (CEP), collectively essential for maintaining spinal stability and
flexibility. Additionally, IDD is recognized as the primary pathological basis underlying disc
herniation (Risbud and Shapiro, 2014). In a healthy state, intervertebral discs exhibit
notable elasticity and effective shock-absorbing capabilities. Nevertheless, aging and
external pathological factors progressively induce disc degeneration, typified by annular
fissures, NP dehydration, and CEP calcification (Sar et al., 2016).
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Schematic illustration of the major signaling pathways modulated by natural products in the treatment of IDD. Representative compound
categories—including flavonoids, glycosides, terpenoids, phenolic compounds, and alkaloids—target key molecular pathways such as NF-xB, SIRT1/Nrf2,
PI3K/Akt, MAPK (p38/INK/ERK), and AMPK/mTOR. These pathways are involved in reducing inflamsnmation and apoptosis, enhancing ECM stability and cell
viability, and promoting autophagy, collectively contributing to the attenuation of IDD progression.

IDD contributes to various spinal disorders, including disc
herniation, sciatica, and spinal stenosis. Present therapeutic
strategies for IDD primarily aim at symptomatic relief and
pain management (Le Maitre et al., 2015), employing both
and interventions. ~ Conservative

conservative surgical

approaches generally involve pharmacological therapies,
physical rehabilitation, and lifestyle modifications. However,
these methods typically provide only transient symptomatic
relief and are largely ineffective in reversing the underlying
degenerative processes (Yu et al., 2018). Surgical interventions,
including discectomy and artificial disc replacement, can
partially restore disc function, yet they carry substantial risks
and potential postoperative complications (Cai et al., 2011).
Moreover, the substantial economic burden associated with
surgical treatment limits its accessibility. Consequently, the
development of safer, more effective, and economically viable
therapies remains a significant priority among clinicians and
researchers. Recently, natural products have attracted
considerable attention as potential therapeutic candidates for
IDD due to their capability to modulate multiple biological
targets involved in disc degeneration.

Natural products are chemical compounds derived from natural
sources, including plants, animals, and microorganisms,
characterized by a wide range of biological activities and
pharmacological properties. Compared with traditional synthetic
drugs, natural products offer significant advantages, such as lower
toxicity and the capacity for multi-target interventions, making
them increasingly attractive as therapeutic options for
intervertebral disc degeneration (IDD) (Chen et al., 2021). These
natural compounds have demonstrated substantial efficacy in

reducing inflammation, alleviating oxidative stress, inhibiting
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apoptosis, and promoting cellular regeneration. Consequently,
they may slow down or partially reverse the degenerative
processes associated with IDD (Liu Z. et al., 2023; Mavrogonatou
and Kletsas, 2024). Notably, flavonoids, glycosides, terpenoids, and
phenolic compounds have demonstrated significant therapeutic
promise in recent studies (Wan et al, 2025). This review
comprehensively summarizes current advancements in utilizing
natural products for IDD therapy, focusing specifically on
representative compounds and elucidating their underlying
mechanisms of action to guide future research and clinical
development. These multi-targeted mechanisms and compound
classifications are visually summarized in Figure I.

Compared to previous reviews that primarily focused on
inflammatory modulation or single-pathway mechanisms (Chen
et al, 2021; Liu Z. et al,, 2023), this study provides a systematic
classification of natural compounds, integrates their molecular
mechanisms across multiple pathways, and uniquely emphasizes
structure-activity relationships and quantitative pharmacological
data, future
translational research.

offering a comprehensive perspective for

A systematic literature search was conducted using PubMed,
Web of Science, and Google Scholar, covering the period from
January 2000 to May 2025. The following Boolean string was used
(“intervertebral disc degeneration” OR “IVDD” OR “IDD”) AND
(“natural products” OR “flavonoids” OR “alkaloids” OR
“polyphenols” OR “glycosides” OR “terpenoids”). Articles were
screened based on title and abstract, and inclusion criteria were:
(1) studies reporting in vitro or in vivo effects of plant-derived
metabolites on IDD; (2) studies involving known active ingredients
with structural and mechanistic data; (3) peer-reviewed journal
articles in English.

frontiersin.org


https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1605764

Wu et al.

10.3389/fphar.2025.1605764

OH .
.)
HO 0 Q HO S O
\ ()
OH HE
[0, ]
Q
Quercetin Apigenin Butelh
OH
OH
OH OH s
o HO © 0
\ \ O
OH HO \ OH OoH
\ 0
Baicalein Kaempferol Luteolin
OH
OH |
O of
Naringin Plnocembrin
OH OH
HO o \ o
\ ~ )
OH OH OH HO
Q (@)
Fisetin Acacetin Hyperoside

FIGURE 2
Molecular structures of flavonoid compounds.

2 Flavonoids

Flavonoids are among the most widely investigated natural
compounds in IDD treatment due to their potent antioxidant,
Their
polyphenolic structures allow them to scavenge free radicals,
inhibit and modulate ECM
metabolism in nucleus pulposus cells. It is worth noting that

anti-inflammatory, and matrix-preserving properties.

pro-inflammatory  pathways,
flavonoids are a subclass of phenolic compounds, sharing similar

and biological functions such as
antioxidation and anti-inflammation. However, flavonoids are

polyphenolic  structures
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often discussed separately due to their extensive subclass-specific
research. This section discusses key flavonoids and their specific
mechanisms of action, highlighting their therapeutic relevance to
disc degeneration (Figure 2).

2.1 Hyperoside
Hyperoside is a natural flavonol glycoside derived from various

plant genera, including Hypericum, Filipendula, and Polygonum. It is
recognized for its notable anti-inflammatory, antioxidant, and anti-
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Molecular structures of terpenoids compounds.

SIRTI activation stimulates the phosphoinositide 3-kinase (PI3K)/
protein kinase B (Akt) signaling pathway, thereby suppressing

apoptotic activities (Xu et al.,, 2022). SIRT1, an NAD"-dependent
interleukin (IL)-1p-induced apoptosis and inflammation in

deacetylase and key regulator of inflammation in inflammatory and

immune responses (Han et al., 2021). Studies have indicated that
frontiersin.org
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FIGURE 5
Molecular structures of phenolic compounds.

nucleus pulposus cells (NPCs), and regulating extracellular matrix
(ECM) remodeling (Qi et al., 2020). Additionally, activation of
endoplasmic reticulum (ER) stress contributes significantly to
NPC apoptosis and ECM degradation, thereby playing a pivotal
role in the pathogenesis of IDD (Yao et al., 2024). Recent evidence
indicates that hyperoside significantly mitigates TNF-a-induced
apoptosis in human NPCs by upregulating SIRT1 and Nrf2.
Furthermore, hyperoside effectively reduces ECM degradation
and apoptosis mediated by ER stress, highlighting its therapeutic
potential in the treatment of IDD (Xie et al., 2022a).

2.2 Quercetin

Quercetin, a widely distributed flavonoid, exhibits strong
antioxidant and anti-inflammatory effects (Li Y. et al, 2016).
The p38 MAPK signaling pathway, an essential component of
the MAPK family, significantly contributes to the pathological
processes underlying intervertebral disc degeneration (IDD)
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(Zhang X. et al, 2023). Studies have shown that quercetin
effectively protects NPCs from apoptosis by inhibiting
p38 MAPK-mediated autophagy, thereby preventing ECM
degeneration and significantly alleviating IDD symptoms in a
rat tail puncture-induced IDD model (Zhang S. et al,, 2021).
Additionally, quercetin exerts protective effects on NPCs by
suppressing apoptosis and ECM degradation through activation
of the SIRT1-autophagy signaling pathway (Wang D. et al., 2020).
Notably, quercetin is recognized as a senolytic agent capable of
binding to the Kelch-like ECH-associated protein 1 (Keapl)-
nuclear factor erythroid 2-related factor 2 (Nrf2) complex,
subsequently inhibiting the NF-xB pathway. This action reduces
the expression of senescence-associated secretory phenotype
(SASP) factors in interleukin (IL)-1(3-stimulated NPCs (Shao
et al, 2021). Furthermore, a combination therapy involving
dasatinib and quercetin has demonstrated efficacy in
attenuating age-dependent IDD progression in mouse models
(Novais et al., 2021). Quercetin also inhibits oxidative stress-

induced senescence in mesenchymal stem cells derived from
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FIGURE 7
Key signaling pathways and mechanisms of four classes of natural compounds discussed in this review.

NPCs through regulation of the miR-34a/SIRT1 axis (Zhao  in traditional Chinese medicine formulas commonly employed for
WJ. et al,, 2023). Quercetin (100 mg/kg/day) reduced IL-1 by = lumbar disc herniation treatment (Sun W. et al., 2022). These
45% and increased SIRT1 2.1-fold. Network pharmacology studies  collective in vitro and in vivo findings underscore quercetin’s
have further identified quercetin as a critical bioactive component  promising therapeutic potential for IDD management.
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TABLE 1 Key signaling pathways and mechanisms of five classes of natural compounds discussed in this review.

10.3389/fphar.2025.1605764

Compound Source Signaling pathways Effects Key targets
Quercetin Various fruits and vegetables p38 MAPK, SIRT1-autophagy, = Inhibits apoptosis and ECM degradation, = p38 MAPK, SIRT1, Keap1-Nrf2,
NF-kB, miR-34a/SIRT1 alleviates IDD NF-«xB
Kaempferol Tea, broccoli, grapefruit MAPK, PI3K/Akt, NF-kB Suppresses inflammation and apoptosis NF-«B, PI3K/Akt
Luteolin Celery, green pepper MAPK, NF-«xB Reduces ECM degradation MMPs, NF-«xB
Apigenin Parsley, celery NEF-kB, MAPK Protects NPCs from degeneration NE-kB, MMPs
Icariin Epimedium PI3K/Akt/mTOR Promotes ECM synthesis mTOR, LC3
Baicalein Scutellaria baicalensis MAPK, NF-kB Suppresses IL-1p effects COX-2, MMP-13
Naringin Citrus fruits PI3K/Akt, NF-xB Reduces inflammation and oxidative stress =~ SOD, NF-kB
Hesperidin Citrus peel Nrf2/HO-1 Delays NPC degeneration Nrf2, HO-1
Genistein Soy products ERB, MAPK Reduces inflammation and enhances ERB, MMPs
matrix
Formononetin Red clover PI3K/Akt, ERB Promotes ECM balance ERB, PI3K

Biochanin A

Chickpeas, red clover

NF-kB, MAPK

Delays IDD progression

NF-kB, MMP-13

Ginsenoside Rgl

Panax ginseng

Wnt/B-catenin, YAP/TAZ,
NF-«kB

Regulates disc homeostasis; inhibits
apoptosis, inflammation, ECM degradation

Aggrecan, Collagen II, IL-6,
TNF-a, p-p65, IkK

Ginsenoside Rg3
Notoginsenoside R1
(NGR1)

Astragaloside IV
(AS-1V)

Panax ginseng

Panax notoginseng

Astragalus membranaceus

p38 MAPK

NF-kB/NLRP3, GSK-3p/p-
catenin

PI3K/Akt, EGFR/MAPK,
NF-xB

Inhibits apoptosis, ECM degradation;

protects annulus fibrosus

Promotes ECM synthesis, inhibits
pyroptosis and inflammation

Reduces inflammation, apoptosis, ECM

degradation

MMP2, MMP3, ADAMTS-4,
ADAMTS-5

GSK-3p, p-catenin, NLRP3, IL-
1, IL-18

IkB-a, NF-kB p65, Bcl-2, Bax,
Caspase-3, Col2al, ADAMTS-5

Dioscin Dioscorea spp. MAPK,NF-«B, TLR4 Maintains ECM homeostasis, reduces MMP1, MMP3, MMP13,
inflammation ADAMTS-5, Col2, Aggrecan

Aucubin Eucommia ulmoides, Aucuba NF-«B,NLRP3, Wnt/B-catenin = Anti-inflammatory, ECM protection, Col2al, Aggrecan, MMP-13,

japonica, Plantago asiatica senescence inhibition p-p65 NLRP3

Morroniside Cornus officinalis Hippo, Nrf2/Keapl Reduces senescence, inhibits pyroptosis, p53, p21, MST1/2, LATS1/2,
protects ECM YAP/TAZ

Celastrol Tripterygium wilfordii NF-xB Anti-inflammatory, oxidative stress MMP-3, MMP-9, MMP-13,
reduction, ECM protection ADAMTS-4, COX-2, iNOS

Curcumin Turmeric NF-xB, Nrf2, PI3K/Akt Anti-inflammatory, antioxidant, ECM BDNF, IL-1B, COX-2, TGF-f1/2,
protection MMP-9

Myricetin Fruits, vegetables, tea, wine Nrf2/HO-1, NF-«xB Antioxidant, anti-inflammatory, protects iNOS, COX-2, MMP-13,
NPCs ADAMTS-5

Sesamin Sesame seeds MAPK, JNK ECM protection, apoptosis inhibition CASP3, BAX, BCL2, BECN2,

NLRP3

Tea Polyphenols Green tea Keap1/Nrf2/ARE Anti-inflammatory, antioxidant, ECM Type II collagen, aggrecan
synthesis

Resveratrol Grapes, red wine SIRT1, NF-kB, PI3K/Akt SIRT1 activation, anti-senescence MMP-1, MMP-13, LC3-II,

Beclin-1
Proanthocyanidins Grape seeds PI3K/Akt, SIRT3/FOX03, Anti-apoptotic, anti-inflammatory, Bcl-2, Bax, Drpl, OPA1, MFN2
NF-kB mitochondrial protection
Tyrosol Olives, fungi SIRT1, PI3K/Akt, NF-kB/ Anti-apoptotic, anti-inflammatory SIRT1, PGE2, TNF-a, IL-6
FOXO03
Ligustrazine Ligusticum chuanxiong NF-kB, COX-2, iNOS Anti-inflammatory, tissue-protective MMP-13, iNOS; Col2
Berberine Coptis chinensis, NF-kB, Bcl-2, Caspases Anti-apoptotic, anti-inflammatory MMP-3, MMP-13, Bcl-2
Phellodendron amurense
Sinomenine Sinomenium acutum Autophagy pathway Anti-inflammatory, autophagy-inducing Autophagy markers
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TABLE 1 (Continued) Key signaling pathways and mechanisms of five classes of natural compounds discussed in this review.

Effects

Key targets

Compound Signaling pathways
Higenamine Various plants PI3K/Akt, ROS
Evodiamine Evodia rutaecarpa SIRT1, PI3K/Akt
Palmatine Fibraurea recisa TFEB, CHOP

2.3 Apigenin

Apigenin, another flavonoid compound, possesses a broad
spectrum of biological activities. Mammalian target of rapamycin
(mTOR), a conserved serine/threonine kinase, has a significant role
in various degenerative joint conditions, including IDD (Pal et al.,
2015). The mTOR signaling pathway is essential for maintaining
homeostasis within the intervertebral disc, and disruptions in
autophagic flux are closely linked to NPC senescence and
apoptosis during IDD progression (Chen et al.,, 2023). Apigenin
enhances autophagy through the AMP-activated protein kinase
(AMPK)/mTOR/transcription  factor EB (TFEB)
cascade, effectively alleviating oxidative stress-induced senescence

signaling

in NPCs. Moreover, apigenin suppresses the expression of tumor

necrosis  factor-alpha  (TNF-a)-mediated  pro-inflammatory
cytokines, thereby mitigating disc degeneration in rat models of
IDD (Ding and Li, 2020). These findings highlight apigenin as a
potentially valuable natural therapeutic candidate for the prevention

and treatment of IDD.

2.4 Butein

In addition to mechanical stress, diabetes and the accumulation
of advanced glycation end-products (AGEs) significantly contribute
to the progression of IDD (Li S. et al., 2024). Dysregulated glucose
metabolism exacerbates IDD by affecting critical cellular processes
such as senescence, apoptosis, inflammation, proliferation, and
ECM degradation (Jung et al., 2023; Lintz et al., 2022). Butein, a
chalcone-type flavonoid isolated from plants belonging to the
Anacardiaceae, Asteraceae, and Fabaceae families (Padmavathi
2017), exhibits properties,

antioxidant, anti-angiogenic,

et al, diverse pharmacological

including anti-inflammatory,
anticancer, and antidiabetic activities (Song et al, 2016). Both
in vitro and in vivo studies have revealed that butein activates
SIRT1, leading to the suppression of p53 acetylation. This
mechanism protects NPCs from apoptosis and senescence
triggered by hyperglycemia. Specifically, butein treatment
significantly alleviated IDD symptoms in diabetic rat models, as
evidenced by increased expression of SIRT1 and decreased
acetylation levels of p53 within nucleus pulposus tissues (Zh
et al, 2019). These findings indicate butein as a promising

candidate for IDD management, particularly in diabetic contexts.

2.5 Baicalein

Baicalein is a prominent flavonoid isolated predominantly from
the roots of Scutellaria baicalensis, a traditional medicinal herb

Frontiers in Pharmacology

Anti-apoptotic, anti-inflammatory iNOS, COX-2, TNF-a

‘ Anti-apoptotic, anti-inflammatory MMP-13, TNF-a; Col2

‘ Anti-inflammatory, antioxidant Autophagy, CHOP

widely utilized in Chinese medicine (Tsou et al, 2016). It has
been extensively studied for its potent hepatoprotective and anti-
inflammatory properties across diverse disease models (Chen et al.,
2014). Research has demonstrated that baicalein effectively inhibits
the activation of key signaling pathways such as NF-kB and MAPK.
It also reduces the overproduction of inflammatory cytokines,
including prostaglandin E2 (PGE2), tumor necrosis factor-alpha
(TNF-a), and IL-6 in IL-1pB-stimulated NPCs. Baicalein (25-50 uM)
reduced cyclooxygenase-2 (COX-2) and PGE2 by 52%-68%.
Furthermore, baicalein has shown a dose-dependent capability to
counteract ECM degradation, specifically reversing the loss of
aggrecan and type II collagen (Col2) (Jin et al, 2019).
Complementary in vivo studies employing rat models of needle
puncture-induced IDD further validate baicalein’s therapeutic
efficacy in mitigating disc degeneration (Jin et al, 2019).
Additionally, baicalein suppresses TNF-a-induced apoptosis and
catabolic activity in NPCs through activation of the PI3K/Akt
signaling pathway (Liu Y. et al., 2023). Collectively, these studies
underscore baicalein’s significant therapeutic potential as a natural
product-based intervention for IDD.

2.6 Kaempferol

Kaempferol is a naturally occurring flavonoid found in tea, as well
as many common vegetables and fruits, including legumes, broccoli,
cabbage, gooseberries, grapes, kale, strawberries, tomatoes, citrus
fruits, Brussels sprouts, apples, and grapefruits (Calderén-Montaino
et al, 2011). Its anti-inflammatory properties allow it to be used in
treating a range of acute and chronic inflammatory diseases, such as
disc degeneration, colitis, postmenopausal bone loss, and acute lung
injury (Ren et al, 2019). Bone marrow mesenchymal stem cells
(BMSCs) are considered a promising autologous source for
regenerating nucleus pulposus tissue. When co-cultured with
NPCs, BMSCs can differentiate into NPC-like cells, enhancing
2015).
suppressing
osteogenic, adipogenic, and inflammatory responses induced by
lipopolysaccharide (LPS) in BMSCs (Zhu et al, 2017). In an
injectable kaempferol-loaded fibrin gel study (Gao et al, 2023),
intradiscal injection in IDD rat models demonstrated favorable

their viability and matrix production (Cao et al,

Kaempferol —ameliorates IDD  progression by

injectability, sustained release, and biocompatibility. The treatment
reduced IDD-associated inflammation and regulated ECM synthesis
and degradation. Network pharmacology studies suggest kaempferol
may be a key active compound in traditional Chinese medicine for
IDD (Wang X. et al,, 2023; Liu H. et al,, 2023). In IL-1p-induced
in vitro IDD models, kaempferol inhibited phosphorylation of ERK1/
2, downregulated matrix metalloproteinase (MMP)-3 and a
disintegrin and metalloproteinase with thrombospondin motifs
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TABLE 2 Structure-activity relationship of natural compounds in IDD.

10.3389/fphar.2025.1605764

Compound Class Key structural features Reported activities in IDD Structure—Activity notes
Hyperoside Flavonoid | Quercetin-3-O-galactoside Anti-inflammatory, ECM protection Glycosylation enhances water solubility and
cellular uptake
Quercetin Flavonoid | 3',4'-dihydroxy B ring, 3-OH on C ring Antioxidant, anti-inflammatory, pro- Catechol enhances NF-kB inhibition and
autophagy radical scavenging
Apigenin Flavonoid | 5,7-dihydroxy A ring, 4'-OH B ring Senescence delay, autophagy induction Hydroxyl pattern modulates AMPK pathway
Butein Flavonoid | 3,4-dihydroxy B ring, 4'-OH SIRT1 activation, reduces oxidative stress = Polyphenolic structure linked to
SIRT1 modulation
Baicalein Flavonoid | 5,6,7-trihydroxy A ring Inhibits COX-2, promotes ECM gene Trihydroxy enhances ROS neutralization
expression
Kaempferol Flavonoid | 4'-OH, 3-OH, no catechol B ring Anti-oxidative, ECM metabolism balance = Fewer hydroxyls = weaker anti-inflammatory
Vs quercetin
Luteolin Flavonoid | 3'4'-dihydroxy B ring, 5,7-dihydroxy A Anti-apoptotic, Nrf2/HO-1 activation Catechol B ring supports ROS scavenging
ring
Naringin Flavonoid | Flavanone glycoside, 4'-OH Reduces IL-1f, protects NPCs Glycoside enhances bioavailability
Pinocembrin Flavonoid | 5,7-dihydroxyflavanone Anti-inflammatory, mitochondrial Flavanone skeleton stabilizes ROS response
protection
Icariin Flavonoid | Prenylated flavonoid with glycoside Activates autophagy, ECM protection Prenyl group enhances lipophilicity and
bioactivity
Fisetin Flavonoid | 3,7,3',4’-tetrahydroxyflavone Reduces oxidative damage, promotes Hydroxylation key to antioxidant capacity
chondrogenesis
Acacetin Flavonoid | 5,7-dihydroxy-4'-methoxyflavone NF-kB inhibition, ECM homeostasis Methoxy substitution modulates lipophilicity
Ginsenoside Rgl Glycoside | Steroid backbone with sugar moieties ECM upregulation, inflammation Glucose moieties promote ECM stimulation
inhibition
Ginsenoside Rg3 Glycoside | Steroid glycoside with fewer sugar units Anti-apoptotic, inhibits inflammatory Fewer sugars may enhance permeability
cytokines
Notoginsenoside Glycoside | Dammarane-type saponin Inhibits TNF-a, MMPs, enhances ECM High glycosylation enhances solubility
R1
Astragaloside IV Glycoside | Cycloartane-type triterpenoid glycoside Reduces oxidative stress, inhibits apoptosis = Sugar groups modulate transport
Diosgenin Glycoside | Spirostan-type sapogenin NF-kB pathway inhibition Steroid-like core enhances membrane activity
Kinsenoside Glycoside | Lactone ring with sugar unit Reduces ROS, prevents apoptosis Lactone may activate survival pathways
Crocin Glycoside | Polyene chain with sugar ends MMP suppression, anti-inflammatory Glycosylation aids in cytokine modulation
Loganin Terpenoid | Iridoid glycoside Anti-apoptosis, ECM protection Iridoid core supports anabolic signaling
Morroniside Terpenoid = Secoiridoid structure with glucose Anti-inflammatory, collagen synthesis Iridoid ring promotes matrix balance
Celastrol Terpenoid | Quinone methide triterpenoid MMP-13 inhibition, MRI signal increase = Quinone group inhibits NF-kB and proteases
Curcumin Phenol B-diketone with phenolic rings Anti-inflammatory, neuroprotective Conjugated system suppresses p65 activity
Myricetin Phenol Polyhydroxylated flavonol ROS inhibition, ECM upregulation Hydroxyl groups support antioxidant effect
Sesamin Phenol Lignan with methylenedioxy groups Reduces TNF-a, IL-6 expression Lignan backbone interacts with inflammation
genes
Tea Polyphenols Phenol EGCG, EGC etc., gallate esters Inhibits IL-1p, protects ECM Galloyl moieties chelate ROS agents
Resveratrol Phenol Stilbene with 3,54'-OH Autophagy induction, apoptosis inhibition = Planar ring system supports SIRT1 and Beclin
activation
Proanthocyanidins | Phenol Condensed tannin polymers Antioxidant, matrix protection Polymer size affects bioavailability
Tyrosol Phenol Phenylethanol structure Anti-inflammatory, cytoprotection Simple phenol supports cell viability
Gingerol Phenol Alkyl chain with phenol and hydroxyl IL-6, TNF-a inhibition, ECM balance Alkyl tail aids in membrane interaction
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TABLE 2 (Continued) Structure-activity relationship of natural compounds in IDD.

10.3389/fphar.2025.1605764

Compound Key structural features Reported activities in IDD Structure—Activity notes
Berberine Alkaloid Isoquinoline alkaloid with quaternary Suppresses inflammation, enhances Quaternary ammonium structure promotes
ammonium structure autophagy, inhibits ECM degradation cell entry and NF-kB inhibition
Ligustrazine Alkaloid Tetramethylpyrazine core Improves microcirculation, reduces Small molecular size enhances tissue
apoptosis, inhibits p38/MAPK penetration and anti-inflammatory activity
Sinomenine Alkaloid Morphinan-type alkaloid Induces autophagy, reduces TBHP- Morphinan structure supports autophagy-
induced apoptosis, delays IDD progression = dependent protective effects
Higenamine Alkaloid Benzylisoquinoline alkaloid, f2-adrenergic = Suppresses inflammation, reduces Aromatic backbone modulates inflammation
agonist apoptosis, inhibits ROS-mediated PI3K/ and P2 signaling
Akt pathway
Evodiamine Alkaloid Indoloquinazoline scaffold Activates STIRT1/PI3K-AKkt, inhibits Indole and quinazoline units contribute to
apoptosis and ECM degradation, promotes | multifunctional bioactivity
Col I
Palmatine Alkaloid Protoberberine-type isoquinoline Activates TFEB, relieves ER stress, reduces = Protoberberine framework facilitates
NPC apoptosis and ECM loss autophagy and ER homeostasis

(ADAMTS)-4, while upregulating aggrecan and type II collagen
expression. Kaempferol significantly restored cell viability and
reduced both ROS accumulation and apoptosis in NPCs (Wang X.
et al., 2023).

2.7 Luteolin

There is a close relationship between the intervertebral disc and
the adjacent vertebral endplates, and Modic changes, defects,
sclerosis, and calcification in these endplates are associated with
disc degeneration (Zehra et al., 2019). Degeneration of the endplate
may result in abnormal collagen-bone matrix remodeling, spatial
reorganization, hypertrophy, and angiogenesis, which in turn
promote IDD progression (Zehra et al., 2017). Luteolin, beyond
its general antioxidant activity as a flavonoid, exhibits anti-
inflammatory, cardiovascular, anticancer, and neuroprotective
properties (Huan et al, 2023). It is found in various vegetables,
botanical drugs, and fruits such as carrots, broccoli, cabbage, parsley,
thyme, mint, basil, celery, artichokes, and apples (Aziz et al., 2020).
A study on endplate chondrocytes found that luteolin significantly
suppressed the expression of MMP13, p53, and p21 while promoting
CDK2, CDK4, and Col2al expression. It alleviated chondrocyte
senescence, as confirmed by cell cycle analysis, proliferation assays,
and P-galactosidase staining (Long et al., 2025). Another study
showed that Luteolin dose-dependently reduced NPC apoptosis
and reversed TNF-a-induced senescence and inflammation
through activating SIRT6 and inhibiting NF-kB (Xie et al., 2022b).

2.8 Naringin

Naringin is a flavonoid compound extracted from citrus fruits,
known for its strong anti-inflammatory and antioxidant effects (Gan
et al, 2023). In a study using degenerative human NPCs from
patients with discogenic low back pain, naringin increased aggrecan,
bone morphogenetic protein (BMP)-2, and SRY-box transcription
inhibiting TNF-a and
MMP3 expression, promoting NPC proliferation and recovery

factor 6 (Sox6) expression, while
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from degeneration (Li N. et al, 2016). Naringin also enhanced
autophagy by upregulating LC3 and Beclin-1, reducing oxidative
stress-induced NPC apoptosis. Its anti-apoptotic effect was partially
reversed by 3-methyladenine, suggesting autophagy is key to its
protective action (Zhang et al., 2018). Naringin regulates autophagy
via the AMPK pathway, either directly or by indirectly activating
SIRT1 (Chen R. et al,, 2022), maintaining ECM stability in terms of
Col2, aggrecan, and MMP13. In vivo studies showed that naringin
alleviated IDD in puncture-induced rat models. In studies on
nucleus pulposus mesenchymal stem cells (NPMSCs), naringin at
100 uM for 24 h was non-cytotoxic and reduced H,0,-induced
apoptosis via the PI3K/Akt pathway, also mitigating mitochondrial
dysfunction, including increased ROS, decreased membrane
potential, reduced ATP levels, and altered ultrastructure (Nan
et al, 2020a). Naringin suppressed IL-1P-induced MMPs and
inflammation in NPCs by downregulating the NF-«kB pathway
and p53 expression (Gao G. et al, 2019). It also inhibited
annulus fibrosus cell apoptosis caused by cyclic stretch by
suppressing NF-kB activation, and MRI assessments confirmed
IDD alleviation in treated rats (Zhang YH. et al, 2022).
Additionally, naringin protected endplate chondrocytes from
apoptosis by
suppressing NOD-like receptor family pyrin domain containing 3
(NLRP3) inflammasome activation (Wang J. et al., 2024), which is
involved in the IDD pathological process (Chao-Yang et al., 2021).

promoting SIRT3-mediated mitophagy and

Naringin and its aglycone naringenin are also identified as effective
anti-inflammatory agents for treating low back pain and sciatica
(Devraj et al., 2019).

2.9 Pinocembrin

Pinocembrin is a major flavonoid compound isolated from
various plants, including pine heartwood, eucalyptus, poplar,
euphorbia, and Boesenbergia rotunda (Rasul et al, 2013). It
exhibits
neuroprotective, cardioprotective, and anticancer properties
(Elbatreek et al, 2023). A significant study found that
pinocembrin alleviated IDD progression in mice and protected

antioxidant, anti-inflammatory, antimicrobial,
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the
calcification (Wa et al,

CEP from oxidative stress-induced degeneration and
2023). In wvitro, it activated the
inhibited parkin-mediated mitophagy,

Nrf2 pathway, and

reduced chondrocyte ferroptosis.

2.10 Icariin

Icariin is a flavonoid glycoside extracted from Epimedium, a
traditional Chinese medicinal herb, and has gained attention due to
its diverse pharmacological activities (Szabo et al., 2022). Widely
used in traditional medicine and valued in modern pharmacology,
icariin is a promising natural compound for biomedical and tissue
engineering applications (Seyedi et al., 2023). It possesses multiple
therapeutic effects on bone health, inflammation, cancer, immunity,
cardiovascular and nervous system protection, and sexual function
(Wang et al., 2021a; Song et al., 2020; Zeng et al., 2022; Si et al., 2024;
Fang et al,, 2024). Studies indicate that icariin protects NPCs and
CEP cells and slows IDD progression by exerting anti-inflammatory,
antioxidant, anti-apoptotic effects and promoting ECM synthesis. It
inhibits IL-1p-induced MAPK and NF-kB pathways, reducing
proinflammatory factors, degradative enzymes, and oxidative
stress (Hua et al, 2018). Moreover, icariin activates the Nrf2/
HO-1 pathway to promote mitophagy, inhibit ferroptosis,
maintain mitochondrial function and redox balance, and enhance
cell survival (Hua et al., 2020; Shao Y. et al., 2022). In vivo, it
upregulates chemokines such as insulin-like growth factor (IGF)-1,
transforming growth factor (TGF)-P, and stromal-derived factor
(SDF)-1, promoting stem cell migration and tissue repair, mitigating
CEP calcification and IDD pathology (Shao Y. et al.,, 2022; Zhang Z.
et al., 2022).

2.11 Fisetin

Fisetin is a natural flavonoid found in many fruits and
vegetables, apples,
cucumbers (Khan et al., 2013). Due to its antioxidant, anti-

such as strawberries, persimmons, and
inflammatory, anticancer, anti-aging, and nephroprotective
activities (Kashyap et al., 2019; Ren et al., 2021; Wang B. et al,
2024; Ding et al., 2022; Zhou C. et al,, 2023), it shows potential in
treating various chronic diseases. Fisetin protects both NPMSCs and
NPCs by inhibiting oxidative stress and apoptosis, while
maintaining ECM integrity (Zhou Q. et al, 2023). Oxidative
stress is a major driver of IDD, and fisetin, acting through the
Nrf2/HO-1 pathway, inhibits oxidative stress-induced ferroptosis,
reduces cell death, and maintains ECM homeostasis (Li C. et al.,
2024). Both in vitro and in vivo studies confirm its effectiveness in
protecting disc cells and alleviating disc degeneration in rats (Zhou

Q. et al, 2023; Li C. et al., 2024).

2.12 Acacetin

Acacetin is a monomethoxy flavonoid mainly found in Robinia
pseudoacacia and various botanical drugs (Singh et al., 2020). It has
shown broad therapeutic potential due to its anti-inflammatory,
antioxidant,  anticancer, and

antimicrobial, anti-obesity,
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cardiovascular protective properties (Wu et al, 2022; Zhang G.
et al,, 2023; Bu et al., 2024; Mu et al., 2022; Liou et al., 2022; Li et al.,
2020). Acacetin effectively mitigates NPC degeneration in both
it activates the
Nrf2 pathway, upregulates antioxidant proteins such as HO-1,
NAD(P)H:quinone oxidoreductase 1 (NQOI1), and superoxide
dismutase (SOD), inhibits ROS production, and reduces COX-2
and iNOS-mediated inflammation. It also prevents aggrecan and
Col2 degradation (Wang et al, 2020b; Pan C. et al, 2023).
Additionally, acacetin inhibits the phosphorylation of p38, c-Jun
N-terminal kinase (JNK), and ERK1/2, thereby slowing NPC
degeneration. In vivo studies using MRI and histopathology
that IDD
puncture-induced rat models (Wang et al., 2020b).

in vitro and in vivo models. In vitro,

confirmed acacetin  significantly ameliorates in

3 Glycosides

Glycosides, especially saponins, are active components in many
traditional herbal medicines. In IDD models, glycosides exert anti-
inflammatory, antioxidative, and anti-apoptotic effects, often
through PI3K/Akt or JAK/STAT signaling. Their glycosidic
linkages enhance solubility and bioavailability, contributing to
their This
representative glycosides and their regulatory functions in IDD
(Figure 3).

therapeutic  potential. section  summarizes

3.1 Ginsenosides

Ginseng is one of the most widely used herbal nutraceuticals in
the world and has a long history of use in traditional Chinese
medicine (Shi et al., 2019). Modern pharmacological studies have
shown that ginseng has multiple biological effects, including
anticancer, antioxidant, and anti-inflammatory  activities
(Metwaly et al, 2019). Ginsenosides are the main active
components of ginseng and are triterpenoid saponins, with more
than 180 types identified to date (Yu et al, 2019). Based on the
structure of the glycoside moiety, Rgl is classified as a
protopanaxatriol-type dammarane ginsenoside (Kim et al., 2015).
Ginsenoside Rgl has become a major research focus for IDD
treatment. It can regulate disc homeostasis and water content,
inhibit apoptosis, inflammation, and ECM degradation, thereby
the of IDD. Rgl NPC

proliferation, reduces apoptosis, and enhances aggrecan and type

delaying progression improves
IT collagen (Col2al) expression by inhibiting the Wnt/p-catenin
signaling pathway (Yu et al., 2020). It also suppresses the activation
of the Yes-associated protein (YAP)-1/transcriptional coactivator
with PDZ-binding motif (TAZ) pathway, thereby preventing IDD
progression. Rgl significantly increases the mechanical and thermal
threshold in IDD rats and alleviates histological changes (Yang YH.
et al, 2022). Recent studies found that Rgl ameliorates IDD
progression in rats by inhibiting the activation of the NF-kB
pathway. In IL-1B-induced NPCs, Rgl promotes proliferation,
inhibits apoptosis, and suppresses the expression of IL-6, TNF-q,
aggrecan, collagen II, p-p65/p65, and inhibitor of kappa B kinase
(IxK) in a dose-dependent manner (Yu et al., 2024). Rgl (10-50 uM)
decreased TNF-a and IL-6 by 60%, and upregulated aggrecan
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expression by >2-fold. In addition, Rg3, a

protopanaxadiol-type saponin, has also been shown to regulate

ginsenoside

IDD. Treatment with Rg3 reversed IL-1p-induced apoptosis in
NPCs and significantly reduced the expression of MMP2, MMP3,
ADAMTS-4, and ADAMTS-5 via inactivation of the p38 MAPK
pathway. Compared to Rgl, Rg3 not only alleviates NPC
degeneration but also restores annulus fibrosus alignment and
preserves more proteoglycan-rich matrix (Chen J. et al,, 2024).

3.2 Notoginsenoside

The root of Panax notoginseng has been used as a traditional
herb for thousands of years, mainly for hemostasis and promoting
blood circulation, and it holds a landmark status in traditional
Chinese medicine (Zhu and Wan, 2023). Its major pharmacological
effects are attributed to notoginsenosides, a group of dammarane-
type tetracyclic triterpenes with potent bioactivity (Liu et al., 2020a).
Notoginsenosides exhibit a broad range of activities including
cardiovascular protection, neuroprotection, antidiabetic effects,
pulmonary
protection, bone metabolism regulation, renal protection, and
2020b; Guo et 2019).
Notoginsenoside R1 (NGR1), a member of the protopanaxatriol

hepatoprotection,  gastrointestinal ~ protection,

anticancer effects (Liu et al, al.,
group, is the major component of notoginsenosides, with
significantly higher content in roots and rhizomes than in other
plant parts (Zhu T. et al, 2021). NGRI1 enhances alkaline
phosphatase activity and mineralized nodule formation in bone
marrow mesenchymal stem cells (BMSCs), and increases estrogen
receptor-a expression, thereby regulating the GSK-3(/p-catenin
pathway to promote BMSC proliferation, migration, and
osteogenic differentiation (Lu et al,, 2024). In studies using IDD
rat models and NPCs, NGRI1 the NF-xB/
NLRP3 pathway, improved NPC function, and inhibited
pyroptosis, while promoting ECM synthesis and reducing

inactivated

proinflammatory cytokine mRNA expression both in vitro and in
vivo (Tang et al., 2021).

3.3 Astragaloside IV

Astragalosides I, II, and IV are the major saponins found in
Astragalus membranaceus, with astragaloside IV (AS-IV) being the
most biologically active (Zhang et al., 2020). AS-IV is one of the
main active components extracted from Astragalus and is
considered a marker compound for quality evaluation of
traditional Chinese medicines. It has demonstrated anti-
inflammatory, antioxidant, neuroprotective, antifibrotic, and
antitumor effects (Liang et al, 2023). In NPCs, miR-223
promotes inflammation and cell injury wvia the JAK2/
STATI pathway, and the combined use of AS-IV and tanshinone
ITA may protect NPCs by downregulating miR-223 and suppressing
JAK2 and STAT1 expression (Du et al, 2021). Other Astragalus
derivatives, such as cycloastragenol and AS-IV, have been shown to
extend the proliferative capacity and lifespan of NPCs (Hong et al.,
2021). These compounds upregulate telomerase expression and
improve telomere attrition under high glucose conditions, while
enhancing proliferation and morphology of NPCs. In vitro and in
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vivo studies of IDD have demonstrated that AS-IV reduces IL-1f-
induced inflammation, apoptosis, and ECM degradation, and
protects against IDD progression in needle-puncture rat models
(Tian et al., 2022). AS-IV inhibits IkB-a phosphorylation and NF-kB
p65 nuclear translocation, indicating suppression of the NF-kB
pathway. It also upregulates Col2, aggrecan, and Bcl-2 while
downregulating Bax and cleaved caspase-3 expression and
activating the PI3K/Akt pathway (Zhang L. et al, 2023).
Furthermore, AS-IV maintains disc height and volume in lumbar
instability mouse models, improves matrix metabolism, and restores
Col2al, ADAMTS-5, aggrecan, and MMP-13 expression in
degenerated discs. It also suppresses EGFR, p38 MAPK, and
caspase-3 expression in annulus fibrosus tissue during IDD
progression, possibly via inhibition of the EGFR/MAPK pathway
(Chen D. et al., 2024).

3.4 Dioscin

Dioscin is a natural steroidal saponin with bioactivity, extracted
from several medicinal botanical drugs (Bandopadhyay et al., 2022).
Pharmacological research has demonstrated its anti-inflammatory,
anti-apoptotic, and antioxidant effects in various diseases (Tao et al.,
2018). In IDD, dioscin inhibits the IL-1p-induced overexpression of
MMP1, MMP3, MMP13, and ADAMTS-5, while promoting
Col2 and aggrecan thereby ~maintaining ECM
homeostasis in cartilage. These effects are associated with
inhibition of the MAPK and NF-«B signaling pathways (Ding
et al, 2023). Toll-like receptor 4 (TLR4) is overexpressed in
cartilage during osteoarthritis and plays an important role in

synthesis,

cartilage degradation (Goémez et al.,, 2015). Similarly, degenerated
NPCs show increased TLR4 expression and respond to LPS-induced
TLR4 activation by enhancing proinflammatory cytokine release
and reducing ECM content in discs (Rajan et al., 2013). Studies on
the potential effects of dioscin in IL-1p-treated NPCs indicate that it
suppresses the TLR4/NF-kB pathway to reduce catabolic activity
and levels of IL-6 and TNF-a (Wang L. et al., 2020).

3.5 Kinsenoside

Kinsenoside is a glycoside compound extracted from
Anoectochilus roxburghii and is considered its primary bioactive
constituent (Qi et al., 2018). Anoectochilus is a member of the
Orchidaceae family and is widely distributed in tropical and
subtropical Asia (Song W. et al., 2021). Kinsenoside possesses
hepatoprotective, hypoglycemic, anti-
inflammatory, vasoprotective, and anti-osteoporotic properties
(Han et al,, 2016; Zhang et al., 2007; Liu et al., 2013; Xiang et al,,
2016). Its biological effects are associated with pathways such as
ERK, MAPK, NF-«B, and vascular endothelial growth factor
(VEGF) signaling (Luo et al,, 2018). In both in vivo and in vitro
studies, kinsenoside treatment alleviated T2-weighted signal loss
and disc height reduction in IDD rat models, kinsenoside

(50 mg/kg) improved disc height index by 22.3%, improved

hypolipidemic,

matrix loss and other pathological features, and delayed IDD
progression. the  AKT-ERK1/
2-Nrf2 pathway in NPCs, and in a Nrf2-dependent manner,

Kinsenoside activated
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rescued NPC viability under oxidative stress and protected against
apoptosis, senescence, and mitochondrial dysfunction (Wang Y.
et al.,, 2019).

3.6 Crocin

Crocin is a glycosylated carotenoid compound extracted from
Crocus sativus L (saffron) and is the main water-soluble carotenoid
responsible for its yellow color (Boozari and Hosseinzadeh, 2022).
has
neuroprotective, anti-retinopathy, anticancer, and antidepressant

Crocin demonstrated antioxidant, anti-inflammatory,
properties (Heydari et al, 2023; Hashemzaei et al, 2020;
Pourmousavi et al,, 2024; Tao et al.,, 2023). Studies have shown
that crocin can inhibit inflammation and catabolic processes
associated with IDD (Li et al.,, 2015). In vitro, crocin significantly
suppresses the LPS-induced overexpression of MMP-1, MMP-3,
MMP-13, ADAMTS-4, ADAMTS-5, and proinflammatory
cytokines including IL-1B, TNF-a, IL-6, iNOS, and TLR-2.
Crocin (25-100 pM) reduced MMP-13 mRNA by 65%, cytokine
levels by >50%. It also inhibits JNK phosphorylation in the MAPK
pathway and partially prevents the reduction of chondroitin sulfate
and Col2. Ex vivo experiments indicate that crocin protects ECM

components in the disc and delays IDD progression (Li et al., 2015).

4 Terpenoids

Terpenoids, derived from isoprene units, exhibit diverse
bioactivities and have shown promise in IDD therapy. Their
mechanisms include the inhibition of inflammatory signaling
pathways, protection of ECM components, and modulation of
cellular stress responses. Glycosides, especially saponins,
sometimes overlap in biological functions with terpenoids,
particularly in modulating PI3K/Akt and NF-«kB pathways. This
overlap indicates possible structural synergy or shared biosynthetic
origins. This section highlights key terpenoid compounds and their

functions in delaying disc degeneration (Figure 4).

4.1 Aucubin

Aucubin is an iridoid glycoside compound widely found in
traditional medicinal botanical drugs such as Eucommia ulmoides
Oliv (Eucommiaceae), Aucuba japonica, and Plantago asiatica (Bridi
et al,, 2023). Tt exhibits anti-inflammatory, antioxidant, anxiolytic
and antidepressant, antidiabetic, antifibrotic, antimicrobial,
anticancer, antihypertensive, gastroprotective, cardioprotective,
and retinoprotective properties (Kartini et al., 2023; Wang et al,,
2020d; Shao M. et al., 2022; Yang P. et al., 2022; Feng et al., 2023).
Due to its abundant natural sources, high safety, and multiple
biological benefits, aucubin holds great potential for applications
in health supplements and pharmaceuticals (Zeng et al., 2020). In
recent years, microRNAs (miRNAs) have been actively studied in
the context of IDD and are considered to play important roles in its
pathogenesis through various pathways (Wang et al, 2022).
Aucubin inhibits ECM degradation in IL-1p- TNF-a-
stimulated NPCs by downregulating miR-140 expression and

or
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modulating its downstream target, cAMP response element-
binding protein 1 (CREB1) (Ya et al,, 2019). In both in vivo and
in vitro experiments using a lumbar instability mouse model,
aucubin was found to increase the expression of Col2al and
aggrecan while reducing MMP-13, p-p65, NLRP3, and caspase-1
expression. It suppressed NF-kB-NLRP3 inflammasome activation
in chondrocytes and mitigated ECM degradation in cartilage
endplate (CEP) cells, thereby alleviating CEP degeneration (Zou
et al, 2023). Aucubin (100 mg/kg/day) increased Col2al and
aggrecan expression by 2.5-fold, and decreased MMP-13 by 60%.
Additionally, aucubin exerts protective effects against IDD by
modulating the NF-kB and Wnt signaling pathways, inhibiting
cellular senescence, and reducing inflammatory cytokine levels
(Li L. et al., 2023).

4.2 Morroniside

Morroniside is an iridoid glycoside extracted from Cornus
officinalis, a traditional herb that has been used as food and
medicine in China, Korea, and Japan for over 2,000 years (Shi P.
2024).
cardioprotective, ~ nephroprotective, ~and  hepatoprotective
properties (Yu et al., 2021; Li et al,, 2023b; Li W. et al.,, 2023;
Zhang C. et al, 2024), and has demonstrated potential in the
prevention and treatment of focal cerebral ischemia, spinal cord

et al, It possesses neuroprotective, osteoprotective,

injury, Alzheimer’s disease, osteoporosis, osteoarthritis, acute
myocardial infarction, and diabetes (Jiang H. et al., 2024; Xiao
et al., 2023; Qian et al.,, 2024; Duan et al., 2021; Chen Y. et al,,
2024). Recent studies have shown that morroniside significantly
ameliorates the progression of IDD. In both in vitro and in vivo
studies, morroniside suppressed ROS-induced aberrant activation of
the Hippo signaling pathway in NPCs and reduced the expression of
senescence  markers  including  senescence-associated -
galactosidase, p53, and p21 (Zhou et al, 2022; Ge et al.,, 2024).
Its mechanisms include inhibition of the phosphorylation of MST1/
2 and LATS1/2 within the Hippo pathway, thereby reversing YAP/
TAZ suppression, alleviating NPC senescence, and mitigating IDD
progression by regulating ECM metabolism and preserving tissue
structural integrity (Zhou et al, 2022). Moreover, morroniside
reduced NPC pyroptosis by activating the Nrf2/Keapl pathway,
further supporting its therapeutic potential in IDD (Ge et al., 2024).
These findings suggest that morroniside may serve as a novel
therapeutic agent for IDD by targeting multiple mechanisms,
particularly the ROS-Hippo-p53 signaling axis.

4.3 Celastrol

Celastrol is a pentacyclic triterpenoid compound extracted from
the traditional Chinese medicine Tripterygium wilfordii Hook. f.
(Celastraceae), and it exhibits a wide range of pharmacological
effects (Wang et al, 2023b). It has shown potent anticancer,
antitumor, anti-obesity, and antidiabetic properties (Song et al.,
2023; Xu H. et al,, 2023; Xu et al,, 2021; Gu et al., 2023), and has
demonstrated unique therapeutic potential for acute and chronic
inflammation, brain injury, vascular disorders, immune diseases,
renal disorders, skeletal diseases, and cardiac conditions (Li Z. et al.,
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2022; Li M. et al., 2022; Zhang C. et al., 2021; Shirai et al., 2023; Pan
M. et al., 2023). Celastrol effectively suppresses inflammation and
oxidative stress by inhibiting the NF-kB signaling pathway, reducing
IL-1B-induced expression of matrix-degrading enzymes (such as
MMP-3, MMP-9, MMP-13, and ADAMTS-4, -5), oxidative stress
markers (COX-2,
TNF-a) in NPCs
reduced MMP-13
vivo studies have

iNOS), and pro-inflammatory cytokines (IL-6,
(Chen et al, 2017). Celastrol (0.25-1.0 uM)
and ADAMTS-5 by over 70%. Moreover, in
shown that celastrol improves disc structure
and significantly enhances T2-weighted MRI signals in a
puncture-induced rat model of IDD (Chen et al., 2017).

5 Phenolic

Some terpenoids exhibit similar anti-inflammatory mechanisms
to glycosides and phenolics, suggesting cross-class pharmacological
activity in IDD management. Phenolic compounds are natural
antioxidants widely found in plants. In IDD, they modulate
oxidative stress, inhibit inflammatory mediators, and promote
ECM synthesis. Their structural diversity, such as hydroxyl group
positioning and conjugation, contributes to their differential
biological effects. Phenolic compounds as a broad category
include flavonoids as a subclass. Their shared hydroxyl-rich
structures contribute to their roles in redox regulation and
inflammation suppression. This section reviews major phenolic
agents involved in IDD management (Figure 5).

5.1 Curcumin

Curcuma longa (Zingiberaceae) is widely used in India, China,
and Southeast Asia as an aromatic stimulant, food preservative, and
coloring agent. It is now also cultivated in other regions, including
Southeast Asia, China, and Latin America (Kotha and Luthria,
2019). Curcumin, a polyphenolic compound extracted from
turmeric, possesses a wide range of pharmacological properties,
including anti-aging, anti-inflammatory, antioxidant, anticancer,
antidiabetic, antibacterial, antiviral, antifibrotic,
immunomodulatory, and antifungal activities (Zia et al, 2021;
Abd et al., 2021; Zhao C. et al.,, 2023; Nanavati et al.,, 2022). In
recent years, curcumin nanoformulations have attracted increasing
attention—such as nanofibers, lipid-based nanostructured carriers,
solid

nanohydrogels—which offer enhanced bioavailability compared

self-nanoemulsifying  drug  delivery  systems, and
to free curcumin (Ataei et al,, 2023; Ansari et al., 2023; Araya-Sib
etal., 2021). In IDD rat models, curcumin intervention significantly
reduced the expression of NF-kB p65 and TNF-a in lumbar disc
tissues. MRI and ultrastructural analyses also revealed marked
improvements in disc degeneration in the curcumin-treated
group (Ma et al, 2015). Further studies found that curcumin
protects against IDD progression by decreasing levels of IL-1(,
IL-6, iNOS, COX-2, TGF-B1/2, and MMP-9, while promoting the
expression of brain-derived neurotrophic factor (BDNF) (Hu et al.,
2017). Curcumin (50 mg/kg) reduced NF-kB and TNF-a by 45%-
60%, BDNF 12.3-fold. Curcumin regulates the expression of
senescence-associated secretory phenotype (SASP) factors and

enhances ECM synthesis via the Nrf2 and NF-kB pathways in
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degenerated discs (Cherif et al., 2019). In addition, curcumin
inhibits
phenotype loss in endplate chondrocytes under high-tension

upregulates autophagy, apoptosis, and mitigates
mechanical loading, thereby alleviating mechanical imbalance-
induced IDD (Xiao et 2020).

nanoparticles loaded with curcumin—produced using solvent

al,, Novel polylactic acid
evaporation and water-in-oil emulsion methods—form bioactive
hydrogels that overcome curcumin’s hydrophobicity and inhibit
TNF-a production, immune cell activation, and inflammation,
offering a promising future strategy for IDD therapy (Zamboni
et al., 2022).

5.2 Myricetin

Myricetin is both a flavonoid and a phenolic compound. Its
structure contains multiple hydroxyl groups, giving it strong
antioxidant capacity typical of polyphenols (Jomovd et al., 2019).
Myricetin is widely distributed in fruits, vegetables, tea, berries, and
red wine (Song X. et al., 2021). It exhibits antioxidant, antidiabetic,
anticancer, anti-inflammatory, antiepileptic, anti-amyloidogenic,
and cardiovascular protective properties (Kumar et al., 2023;
Pluta et al, 2021; Wang L. et al, 2019; Wang et al, 2023c;
Rahmani et al, 2023; Sharma et al., 2023; Ma et al., 2022).
Studies have shown that myricetin inhibits IL-1p-induced
responses, the of
proinflammatory mediators such as iNOS, COX-2, TNF-a, and

inflammatory reducing production
IL-6, while regulating ECM component expression—reversing
downregulation of aggrecan and type II collagen and suppressing
the upregulation of MMP-13 and ADAMTS-5 (Xie et al.,, 2023).
Myricetin (25-50 uM) reduced IL-6/iNOS 58%-70%. Additionally,
myricetin activates the Nrf2/HO-1 signaling pathway and blocks
NF-kB activation, protecting NPCs from oxidative stress and
inflammation (Mao and Fan, 2024). In both in vitro and in vivo
models, myricetin effectively alleviated apoptosis, mitochondrial
dysfunction, and senescence induced by H,O, or IL-1f (Xie
et al, 2023; Mao and Fan, 2024). These findings highlight
myricetin’s significant biological activity in preventing and
treating IDD, particularly through the Nrf2/HO-1 pathway.

5.3 Sesamin

Sesamin is a lipophilic lignan classified as a polyphenol, derived
from sesame seeds and oil. It exhibits diverse pharmacological
activities including immunomodulation, anti-inflammation,
antioxidant, and neuroprotection (Majdalawieh et al, 2022;
Dalibalta et al., 2020; Ghaderi et al.,, 2023). It is commonly used
as a dietary supplement to improve blood pressure and lipid levels,
mainly by modulating key steps in fatty acid and cholesterol
metabolism (Sun Y. et al., 2022; Majdalawieh et al,, 2020). In
studies of disc degeneration, sesamin protects intervertebral discs
from inflammation and ECM damage by inhibiting JNK
phosphorylation and MAPK pathway activation, thereby reducing
LPS-induced expression of inflammatory cytokines and catabolic
enzymes (Li K. et al., 2016). In vivo, sesamin attenuates injury-
induced IDD, as demonstrated by preserved MRI signals,

suppressed expression of catabolic enzymes, maintained ECM
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content, and reduced histological degeneration, indicating its
potential as an early therapeutic agent for IDD (Li and Lv, 2020).
Moreover, sesamin inhibits apoptosis, reverses CASP3, BAX, and
BCL2 expression, delays ECM degradation, and promotes cell
proliferation, showing protective and therapeutic effects against
lumbar disc degeneration (Guo et al., 2023). Recent studies have
found that sesamin enhances cell viability and reduces apoptosis by
upregulating BECN2 and downregulating autophagy-related genes
(ATG14, VPS34, GASP1) and inflammasome proteins (NLRP3,
NLRC4, NLRP1, AIM2), alleviating LPS-induced chondrocyte
degeneration. These findings support BECN2 as a potential target
for IDD therapy (Zhang B. et al., 2024).

5.4 Tea polyphenols

Tea polyphenols (TPs) possess anti-inflammatory, antioxidant,
immunomodulatory, and antitumor properties (Hong et al, 2022;
Wang et al., 2021b; Dai et al,, 2023). Major active components such
as epigallocatechin gallate (EGCG) and epicatechin gallate (ECG) have
shown promise in treating immune-related disorders and suppressing
tumor metastasis (Bag and Bag, 2020). In food processing, TPs interact
with proteins, polysaccharides, and lipids, affecting their functional
(Rana et 2022). their
immunomodulatory, —antitumor nutritional

properties al, Further research into

mechanisms, and
interactions will provide scientific evidence for health promotion
and disease prevention. Studies have confirmed that TPs activate the
Keapl/Nrf2/ARE pathway, enhance the expression of matrix-related
genes, and reduce degeneration-associated factors, thereby protecting
NPCs from oxidative stress-induced degeneration and effectively

delaying IDD in both in vitro and in vivo models (Song D. et al., 2021).

5.5 Resveratrol

Resveratrol exhibits multiple mechanisms of action in delaying
or treating IDD, primarily by modulating the SIRT1 pathway,
inhibiting ECM degradation and inflammation, and delaying
cellular senescence. In degenerated human NPCs, resveratrol
significantly upregulates SIRT1, Col2al, and aggrecan expression
while downregulating MMP-1 (Wu et al, 2015). In rabbit IDD
models, intradiscal injection of resveratrol improved T2-weighted
MRI signals, increased aggrecan expression, and reduced MMP-13
mRNA levels (Kwon, 2013). Mechanistically, resveratrol activates
SIRT1, suppresses NF-kB signaling, and in 1,25(OH),D-deficient
mice, reduces TNF-a and IL-1P levels via SIRT1-mediated
p65 deacetylation (Wang P. et al., 2023). Furthermore, resveratrol
regulates NPC autophagy via the Nampt/NAD*/SIRT1 pathway,
restoring LC3 II/I
degeneration (Shi et al, 2022). Resveratrol (20 puM) increased
LC3-II by »>2-fold, reduced apoptosis 40%. For delivery,
thermosensitive PLGA-PEG-PLGA hydrogels offer controlled
release, and co-delivery with tannic acid significantly suppresses

and Beclin-1 expression and delaying

local inflammation and promotes ECM regeneration (Liu et al.,
2025). Targeted delivery is further improved using CDH2 antibody-
loaded nanobubbles with ultrasound, enhancing resveratrol
localization and release in NPCs, effectively slowing degeneration
(Shen et al,, 2018). Resveratrol also exhibits anti-apoptotic, anti-
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aging, and antioxidant effects, inhibits p21 and pl6 expression,
promotes cell proliferation, and reduces apoptosis, supporting its
potential as a therapeutic agent for IDD (Liu et al, 2022; Guo
et al., 2017).

5.6 Proanthocyanidins (PACs)

Proanthocyanidins (PACs) effectively delay the progression of
IDD through multi-target mechanisms, exhibiting significant anti-
apoptotic, anti-aging, antioxidant, and anti-inflammatory properties
(Xu J. et al., 2023). Studies have shown that PACs activate the PI3K/
Akt pathway to upregulate Bcl-2 expression and suppress Bax and
cleaved caspase-3, thereby reducing IL-1B-induced apoptosis in
human NPCs. PACs also inhibit the p53/p21/pl6 signaling
pathway, thereby reducing cellular senescence (Chen HW. et al,
2022). With respect to mitochondrial homeostasis, PACs help
maintain membrane potential by activating the SIRT3/
FOXO3 axis, inhibit Drpl-mediated mitochondrial fission, and
promote the expression of OPAl and MEFN2, significantly
reducing caspase-3 activity (Hua et al, 2024). In terms of
inflammation regulation, PACs block the binding of LPS to
TLR4/MD-2, suppress the NF-kB pathway, and reduce the
expression of various inflaimmatory mediators and matrix-
degrading enzymes, while promoting the synthesis of type II
collagen and aggrecan (Shang et al, 2020). Despite the current
evidence being primarily derived from cellular and animal models,
PACs show promising potential as therapeutic candidates for IDD,
warranting the development of targeted delivery systems and further
evaluation for clinical translation.

5.7 Tyrosol

Tyrosol is a natural phenolic compound with the chemical
structure 4-(2-hydroxyethyl)phenol, widely found in marine and
terrestrial fungi (e.g., Penicillium species) and plant endophytes
(Ferreira et al, 2025). It exhibits a diverse range of activities,
including inhibition of pathogenic virulence factor expression,
antitumor and anti-inflammatory effects, as well as regulation of
intestinal metabolism, showing application in
antimicrobial, anticancer, and metabolic disease contexts (Chang
et al,, 2019; Yu et al,, 2023; Pal et al., 2023). Tyrosol significantly
inhibits IL-1pB-induced apoptosis and inflammation in human NPCs
by upregulating SIRT1 and activating the PI3K/Akt pathway,
reducing caspase activity and the levels of TNF-a, IL-6, nitric

oxide (NO), and prostaglandin E2 (PGE2). It also suppresses

potential

MMP expression while promoting the synthesis of type II
collagen, SOX-9, and aggrecan. These effects are mediated by
SIRT1-dependent modulation of the NF-kB/FOXO3 pathway,
suggesting the potential of tyrosol as a therapeutic agent for
delaying IDD progression (Qi et al., 2020).

5.8 Gingerol

Gingerols are phenylpropanoid phenolic compounds found in
the rhizome of ginger, characterized by an o-methoxyphenol group
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and an unsaturated C11-C15 carbon chain. They are subclassified
into 6-, 8-, and 10-gingerols based on side-chain length (Martin
et al, 2017). Gingerols exhibit multiple biological activities,
including anti-inflammatory, anticancer, antidiabetic, and
antioxidant effects (Nimmakayala et al., 2016; Basith et al., 2016;
Orhan et al,, 2007). Gingerol derivatives such as D-6-G and 6-
gingerol (6-GIN) have shown effectiveness in delaying IDD through
D-6-G
activation

multiple  mechanisms. significantly ~ suppresses
NLRP3 and GSDMD-mediated
pyroptosis, reduces IL-1p and IL-18 secretion, and upregulates
IL-10. It also activates the Nrf2/HO-1 pathway to scavenge

reactive oxygen species (ROS) and preserve mitochondrial

inflammasome

function (Xi et al, 2024). 6-GIN simultaneously activates the
PI3K/Akt pathway, enhances type II collagen and aggrecan
expression, and inhibits MMP-13 along with apoptosis-related
signaling, and enhances autophagy to clear damaged
mitochondria. Its protective effects on ECM depend on PI3K/Akt
signaling, highlighting its anti-inflammatory, antioxidant, and
matrix-repairing potential in IDD (Nan et al., 2020b).

6 Alkaloids

Alkaloids are nitrogen-containing compounds with strong
pharmacological properties. While structurally distinct from
polyphenols, alkaloids also exhibit overlapping anti-inflammatory
and anti-apoptotic effects, expanding the functional convergence
among diverse natural compounds. In the context of IDD, they have
been shown to reduce oxidative stress, suppress inflammatory
cytokines, and protect disc cells from apoptosis. Their small
molecular size and lipophilicity facilitate cell penetration and
biological activity. This section focuses on key alkaloids and their
therapeutic roles in IDD (Figure 6).

6.1 Ligustrazine

Ligustrazine is a benzopyran-type alkaloid with

tetramethylpyrazine structure, derived from the Umbelliferae

a

plant Ligusticum chuanxiong. Its structure is recognized as a
clinically effective agent in the treatment of cardiovascular and
(Ma 2024), especially
neuroprotective drug development (Jiang et al, 2025). In rat

cerebrovascular  diseases et al, in
models of disc degeneration induced by prolonged upright
posture, pretreatment with ligustrazine effectively restored disc
structure, inhibited the expression of collagen type X, MMP-13,
and MMP-3, upregulated type II collagen, and decreased levels of
inflammatory factors such as IL-13, COX-2, and iNOS, showing
strong tissue-protective and anti-inflammatory effects, ligustrazine
(80 mg/kg) reduced MMP-13 and iNOS ~60%, improved

histological scores by 28%. (Liang et al., 2014).

6.2 Berberine

Berberine is an isoquinoline alkaloid widely found in plants of
the Berberidaceae family, such as Coptis chinensis and Phellodendron
amurense. Berberine and its derivatives have been proven to treat
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cardiovascular endothelial injury by regulating endoplasmic

reticulum stress, apoptosis, inflammation, oxidative stress,
autophagy, platelet dysfunction, and gut microbiota imbalance
(Zhang et al., 2025). Berberine also shows therapeutic potential
in renal and skin diseases (Fan et al., 2025; A et al., 2025). It reduces
TBHP-induced apoptosis in NPCs by activating autophagy,
upregulating Bcl-2, and inhibiting pro-apoptotic proteins (Chen
et al., 2018). Additionally, it significantly inhibits the expression of
MMP-3, MMP-13, and ADAMTS-4/5, reduces ECM degradation,
and blocks NF-kB pathway activation, exerting both anti-
inflammatory and matrix-protective effects, berberine (10 pM)
suppressed cleaved-caspase 3 by 55%, increased Bcl-2 by 1.9-fold,

inhibited MMP-13 by 68%. (Lu et al.,, 2019).

6.3 Sinomenine

Sinomenine is a morphinan alkaloid extracted from the
Menispermaceae plant Sinomenium acutum. It has been used in
China as an anti-inflammatory agent for over 30 years (Jiang S. et al.,
2024). Sinomenine possesses a wide range of pharmacological
effects,
antitumor, and neuroprotective activities (Li D. et al, 2023; Li
JM. et al, 2023; Jiang P. et al., 2024). It induces autophagy in
NPCs, reversing TBHP-induced apoptosis and loss of cell viability;

including  anti-inflammatory, = immunosuppressive,

this protective effect is attenuated by the autophagy inhibitor 3-MA,
indicating that its mechanism is autophagy-dependent. Animal
experiments have also confirmed that sinomenine delays IDD
progression (Gao Z. et al., 2019).

6.4 Higenamine

Higenamine is a benzylisoquinoline alkaloid and a plant-derived
[2-adrenergic receptor agonist. Since 2017, it has been listed on the
World Anti-Doping Agency’s prohibited substances list (Rangelov
et al, 2022). It possesses antioxidant, anti-apoptotic, anti-
inflammatory, electrophysiological regulatory, antifibrotic, and
lipid-lowering properties (Chen DT. et al, 2022; Wen et al,
2021; Zhang NN. et al., 2022). Higenamine significantly inhibits
IL-1B-induced inflammation in NPCs, reducing the expression of
iNOS, COX-2, TNF-a, IL-6, and MMPs (Bai et al., 2019). Moreover,
it alleviates apoptosis under inflammatory stimulation by
suppressing ROS-mediated PI3K/Akt pathway activation, thus
exerting anti-inflammatory and cytoprotective effects (Zhu X.
et al.,, 2021).

6.5 Evodiamine

Evodiamine is an indoloquinazoline alkaloid derived from the
Rutaceae plant Evodia rutaecarpa, and exhibits anticancer,
cardioprotective, anti-inflammatory, and anti-Alzheimer’s effects,
as well as digestive system protection (Lin et al., 2024; Solanki and
Patel, 2024; Zhou et al., 2024). It upregulates SIRT1 expression and
activates the PI3K/Akt pathway, effectively inhibiting LPS-induced
apoptosis and ECM degradation in human NPCs, reducing MMP-
13 and inflammatory cytokines (TNF-qa, IL-6), and promoting the
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synthesis of type II collagen, thereby exerting multiple protective
effects (Kuai and Zhang, 2022).

6.6 Palmatine

Palmatine is a protoberberine-type isoquinoline alkaloid
extracted from the Menispermaceae plant Fibraurea recisa. It
exhibits protective effects in cardiovascular diseases, osteoporosis,
and osteoarthritis (Xin et al., 2024; Li et al., 2023f), which are largely
mediated through its antioxidant and anti-inflammatory properties
(Ekeuku et al., 2020). Palmatine activates the transcription factor
TFEB to enhance autophagy, reduces CHOP expression to alleviate
TBHP-induced endoplasmic reticulum stress, and consequently
inhibits NPC apoptosis and ECM degradation. Animal studies
that
morphology, indicating its strong potential
protection in IDD (Yu et al., 2025).

have shown palmatine helps preserve disc tissue

for structural

7 Discussion and perspectives

Natural products have garnered increasing attention as
promising therapeutic candidates for IDD due to their multi-
target mechanisms and relatively low toxicity (Sprouffske et al.,
2013). The compounds reviewed in this article—spanning
flavonoids, glycosides, terpenoids, phenolic compounds, and
alkaloids—exert anti-inflammatory, antioxidant, anti-apoptotic,
anti-senescent, and ECM-regulating activities, primarily through
the modulation of key signaling pathways such as NF-«B, SIRT1,
Nrf2, PI3K/Akt, and MAPK (Figure 7) (Chen et al, 2021;
Mavrogonatou and Kletsas, 2024). The collective findings provide
a compelling preclinical foundation for further development of
natural product-based IDD therapies (Table 1).

Despite significant progress in basic and animal research, the
clinical translation of natural products remains limited. Most studies
are confined to in vitro models or small animal experiments, with a
notable lack of human clinical trials directly targeting IDD. For
instance, compounds such as curcumin, resveratrol, and quercetin
have been assessed in clinical trials for osteoarthritis or systemic
inflammation, but no large-scale clinical investigations have
addressed their efficacy in IDD (Novais et al., 2021; Ataei et al,
2023; Kwon). Moreover, inconsistencies in dosage, treatment
duration, and outcome measures impede direct comparisons and
evidence-based application.

Several obstacles hinder the successful translation of natural
products from bench to bedside. First, many compounds suffer from
poor oral bioavailability, rapid metabolism, and low accumulation
within the avascular intervertebral disc environment (Szabé et al.,
2022; Araya-Sib et al, 2021). Second, physiological differences
and the
extrapolation of pharmacological responses (Liu Z. et al.,, 2023).

between rodent models human spine limit the
Third, standardized delivery platforms and scalable production
processes remain underdeveloped. Addressing these limitations is
crucial for advancing natural compounds into clinical practice.
Recent advances in biomaterials have introduced innovative
delivery strategies to improve the stability, targeting, and

bioactivity =~ of natural products. Notably, nanoparticle
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encapsulation, thermosensitive  hydrogels, and injectable
biocompatible gels have demonstrated enhanced efficacy in
preclinical IDD models (Tke et al., 2022; Shi S. et al., 2024). For
example, kaempferol-loaded fibrin hydrogels and PLGA-PEG-
PLGA-based resveratrol systems have shown sustained release
profiles and regenerative potential in rat models (Gao et al,
2023; Liu et al, 2025). However, long-term safety, degradation
kinetics, and regulatory pathways for these systems remain
largely unverified in humans.

To overcome existing challenges, future studies should
prioritize:rigorous  pharmacokinetic and  pharmacodynamic
evaluations in large-animal models. Early-phase clinical trials
IDD-specific
that

adjunctive use with conventional treatments (Mavrogonatou and

targeting patient  populations. Combination

strategies integrate multiple natural compounds or
Kletsas, 2024). The development of modular and customizable drug
delivery platforms. Furthermore, the integration of computational
modeling, high-throughput screening, and network pharmacology
may accelerate the identification of synergistic interactions and
optimize formulation strategies (Sun W. et al., 2022; Wang X.
et al., 2023; Liu H. et al., 2023).

In conclusion, natural products represent a rich and
underutilized resource for IDD therapy. With coordinated efforts
across pharmacology, materials science, and clinical research, their
full therapeutic potential can be more effectively translated into

viable interventions for degenerative spinal disorders (Table 2).

8 Conclusion

Natural products regulate multiple critical signaling pathways
and exhibit significant anti-inflammatory, antioxidant, anti-
apoptotic, and regenerative effects, suggesting their potential to
delay or even reverse the pathological progression of IDD.
Although research into natural product-based interventions for
IDD remains in the preclinical phase, their potential for clinical
translation is increasingly recognized. Future studies should focus
on optimizing drug delivery systems and exploring combination
therapies to facilitate the efficient translation of natural product-
based interventions from basic research to clinical application.

It is important to acknowledge that several plant-derived
metabolites included in this review—such as flavonoids and
polyphenols—are known to fall within the category of pan-assay
interference compounds, particularly in in vitro assays. These
compounds may produce misleading pharmacological signals by
non-specifically interacting with a variety of targets or assay
components. Therefore, while this
mechanistic studies, emphasis was placed on in vivo findings to

review  summarizes

reduce the overinterpretation of results from PAINS-prone
compounds. Further studies using orthogonal assays, target

deconvolution, and structure-activity analyses are needed to
validate their pharmacological relevance.
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