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The World Health Organization (WHO) ranks tuberculosis (TB) as one of the top
10 causes of deaths worldwide. Notably, tobacco smoking represents a
significant promoting factor in TB progression, being associated with poorer
treatment outcomes, delayed conversion to negative smear or culture, and
higher dropout rates from treatment plans. Remarkably, high rates of smoking
and TB frequently overlaps in the same countries, warranting the need for
targeted public health interventions. Prioritising smoking cessation is essential
for smokers with TB, as sustained abstinence has been associated with reduced
mortality and a more successful cure. This review examines the intricate
relationship between cigarette smoking, smoking cessation therapies and anti-
TB drugs, focusing on the impact of tobacco smoking compounds on liver
detoxifying systems, such as influence of polycyclic aromatic hydrocarbons
(PAHs) on hepatic cytochrome P450 (CYP450) enzymes mostly, and on
metabolism of antituberculous medications. Integrating smoking cessation
and TB treatment programmes must also take into account potential drug-
drug interactions between smoking cessation medications and anti-TB drugs,
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a critical area for patient safety and effective TB management. This review article
aims to provide healthcare professionals with the knowledge to better support TB
patients who smoke or are intending to quit, to ensure tailored and effective
treatment strategies, while highlighting gaps in current research and advocating for
further studies to fill these gaps.

KEYWORDS

cytochrome P450, drug-drug interactions, adverse drug reactions, antibiotics, nicotine,
smoking cessation

1 Introduction

Tuberculosis (TB) is a preventable, treatable, and curable infectious
disease that primarily affects the lungs. Despite advances in medical
treatment, TB remains a significant global health challenge (Bloom
et al., 2017). In 2022, an estimated 10.6 million people developed TB,
with a high prevalence in South-East Asia (notably India, Indonesia,
China, the Philippines, Pakistan, and Bangladesh) andAfrica (including
Nigeria and the Democratic Republic of the Congo). Additionally,
approximately 1.3 million people were estimated to have died from TB
that same year. Thus, theWorldHealth Organization (WHO) ranks TB
as a leading killer infectious disease and one of the top 10 causes of
deaths worldwide (Global Tuberculosis Report, 2023).

In Europe, TB incidence has generally decreased over the past
decade, with the European Centre for Disease Prevention and Control
(ECDC) reporting an average rate of around eight cases per
100,000 people in the European Union (EU)/European Economic

Area (EEA) in 2022, with a total of 36,179 TB cases. Eastern European
countries such as Romania and Lithuania still face higher TB rates,
contributing to the continent’s overall case burden. In Italy, the
incidence of TB is relatively low compared to global rates, with
around 4.1 cases per 100,000 people in 2022, with 2,439 new cases.
However, certain high-risk populations, including recent immigrants,
individuals with HIV, and vulnerable urban populations, still
experience a notable risk of TB (TB Incidence, 2024).

The susceptibility of these groups is multifactorial. Immigrants
often arrive from countries with high TB endemicity and may
experience reactivation of latent TB due to stress, malnutrition,
or crowded living conditions in the host country (Hayward et al.,
2018; Pareek et al., 2016). People living with HIV (PLHIV) are
particularly susceptible because of a compromised immune system,
as the depletion of CD4+ T-cells critically impairs the body’s ability
to control Mycobacterium tuberculosis (Mtb) infection, leading to a
significantly higher risk of progression from latent to active disease
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clearance, injures the epithelial barrier, and depletes surfactant proteins, facilitating bacillary entry into the alveoli. Created with BioRender.com;
accessed on 12 January 2025.
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(Getahun et al., 2010). TheWHO estimates that PLHIV are 18 times
more likely to develop active TB than HIV-negative individuals
(Tuberculosis and HIV, 2025; TB Preventive Treatment, 2025).
Vulnerable urban populations, including homeless and those
residing in low-income settings, are exposed to a potent mix of
biological insults due to factors like poor ventilation in shelters,
household crowding, and limited access to healthcare, all of which
facilitate disease transmission. A systematic review and meta-
analysis investigating the risk of TB among populations living in
slum settings, reported an odds ratio of 2.96 (2.84–3.09) for smear-
positive TB among dwellers compared with national averages
(Noykhovich, Mookherji, and Roess, 2019).

Taken together these data show that each population’s elevated
TB burden results from an interplay of biological susceptibility and
adverse social conditions. Effective TB control must therefore couple
biomedical interventions–systematic Latent Tuberculosis Infection
(LTBI) screening of recent migrants, integrated TB–HIV services,
smoke-free housing initiatives–with policies that tackle the
underlying social determinants of health, such as overcrowding,
insecure employment, and inadequate access to care (Zumla et al.,
2025; Feldman et al., 2024; Lönnroth et al., 2009).

One significant factor promoting TB disease progression is
smoking (Amere et al., 2018). Currently, 1.3 billion people
worldwide use tobacco, primarily through smoking, which leads
to over seven million deaths annually from smoking-related illnesses
(Tobacco Collaborators, 2017 Tobacco Collaborators, 2017;
Tobacco Collaborators, 2021 Tobacco Collaborators, 2021; WHO
Report on the Global Tobacco Epidemic, 2023).Tobacco smoking is
a major risk factor noy only for lung cancer, chronic obstructive
pulmonary disease (COPD), and cardiovascular diseases, but also
significantly contributes to the global burden of TB, particularly in
low- and middle-income countries (LMICs) (Gajalakshmi et al.,
2003; Song et al., 2024; Dana et al., 2024; Riccardi et al., 2024;
Pampaloni et al., 2021).

Remarkably, high rates of smoking and TB frequently overlaps
in the same countries (Global Tuberculosis Report, 2023; WHO
Report on the Global Tobacco Epidemic, 2023; TB Disease Burden,
2024; WHO Global, 2025). For instance, countries with a high TB
burden such as India, Indonesia, China, the Philippines, and
Bangladesh also report high smoking prevalence. This overlap is
not coincidental but is rooted in shared socioeconomic
determinants. Factors such as poverty, crowded living conditions,
limited access to education and healthcare, andmalnutrition create a
fertile ground for both TB transmission and the adoption of
smoking behaviours. Studies have shown a direct correlation
between smoking prevalence and TB incidence at a population
level, suggesting that tobacco use acts as a significant driver of
the TB epidemic in these regions, contributing to increased
transmission, disease progression, and mortality (WHO Global,
2024; Jha et al., 2008).

These data suggest that the geographic overlap of high TB
burden and intense tobacco use is more than accidental. Indeed,
tobacco smoke is likely to amplify TB risk through both direct
biological effects (immune suppression, altered drug metabolism)
and shared socio-economic determinants.

Approximately 80% of the world’s smokers live in LMICs, where
the majority of TB deaths occur. It is estimated that 20% of TB cases
are associated with smoking (National Center for Chronic Disease

Prevention and Health Promotion Office on Smoking and
Health, 2014).

This co-occurrence presents significant public health challenges,
as tobacco use is detrimental to TB. There is sufficient evidence to
infer a causal relationship between smoking and increased risk of TB
disease, recurrent disease, and mortality (National Center for
Chronic Disease Prevention and Health Promotion Office on
Smoking and Health, 2014). Smokers have a TB disease risk
approximately twice that of their non-smoking counterparts. It is
also possible that smoking impacts the progression to active disease.
A recent meta-analysis has shown that smoking is associated with
poorer treatment outcomes, delayed conversion to negative smear or
culture, and higher dropout rates from treatment plans, ultimately
leading to a lower likelihood of treatment success (E. Y. Wang
et al., 2020).

Stopping smoking may have significant benefits for individuals
with TB. Indeed, successful abstinence from smoking in TB care has
been shown to lead to better treatment outcomes for TB patients,
including a substantially lower rate of treatment default and failure,
better sputum conversion rate, and improved radiological findings
(Awaisu et al., 2011). Therefore, prioritizing smoking cessation is
vital for smokers with TB. TheWHO underscores the significance of
smoking cessation for patients with TB (A Guide for Tuberculosis
Patients to Quit Smoking, 2025).

When discussing smoking cessation in individuals with TB, it is
crucial to acknowledge that the substances in tobacco smoke can
alter various liver enzyme detoxification pathways. These alterations
can significantly impact the pharmacokinetics of certain
antituberculous medications. On the other hand, smoking
cessation can lead to a gradual normalization of these metabolic
pathways, similarly affecting the pharmacokinetics of drugs.
Consequently, during the quitting process, it may be necessary to
adjust or lower the dosages of some medications to ensure both
effective and safer treatment.

This review article aims to explore the interrelationship between
smoking, the process of smoking cessation, and the treatment of TB.
An evaluation of the impact of smoking on the effectiveness and
metabolism of antituberculosis medications is also conducted.
Furthermore, it delves into the potential interactions between
pharmaceutical agents employed in smoking cessation
programmes and antitubercular treatments. By highlighting these
interactions, this review could offer valuable insights for healthcare
providers to enhance treatment approaches for TB patients who
smoke or have recently stopped, and for researchers to identify
potential areas for further study.

2 Methods

A comprehensive review of the literature was conducted from
July 2024 to October 2024, encompassing a wide range of research
methodologies, including observational studies, randomised and
non-randomised clinical trials, experimental studies, case reports,
and case series. The primary objective of this review was to identify
studies that offered valuable insights into the potential metabolic
interactions between smoking, smoking cessation, and smoking
cessation medications, with a focus on their impact on the
pharmacokinetics and pharmacodynamics of antituberculous

Frontiers in Pharmacology frontiersin.org03

Bellanca et al. 10.3389/fphar.2025.1606150

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1606150


drugs. The search was performed in both MEDLINE (PubMed) and
EMBASE. Customised search strings were created and employed to
locate relevant studies, the details of which are provided in
Supplementary Material. Additional specialized databases like
DrugBank.com, Knox et al. (2024), PharmGKB, (2024), along
with the Summary of Product Characteristics (SmPC), were also
examined for each medication. The titles and abstracts of these
articles were then reviewed by CMB, SPP, EA and AM to identify
studies for a comprehensive evaluation. Studies that appeared
suitable for inclusion or could not be definitively excluded based
solely on the title and abstract were advanced for further assessment.
The Zotero software (Zotero 6.0.30; Roy Rosenzweig Centre for
History and New Media (RRCHNM); George Mason University)
was employed for the management of records and the elimination of
duplicates. Following this, the remaining full-text articles were
independently evaluated by other authors, with any
disagreements resolved through discussion and consensus.
Articles that met the established inclusion criteria were selected
for the qualitative synthesis. Additionally, the references cited in the
included articles and review papers were further examined to
discover any potentially relevant studies. A standardized data
extraction form specifically created for this purpose was utilised
to gather pertinent data. The extracted details, such as authors, study
population, study design, definition of smoking status, median
follow-up time and outcomes, were systematically documented
and organised in a table. The qualitative synthesis focused on the
clinical significance of smoking cessation in relation to TB-related
complications.

This review consolidates the evidence on the metabolic and
clinical relationships between smoking and TB. It highlights how
smoking affects both disease progression and the pharmacokinetics
of treatments. The paucity of data on specific enzyme pathways and
differences in study populations may affect the applicability of the
findings. In addition, the review focuses primarily on
pharmacological issues, with less emphasis on behavioural and
socioeconomic elements.

3 Impact of tobacco smoke on
enzymatic drug metabolism

Tobacco smoke is a complex mixture of polycyclic aromatic
hydrocarbons (PAHs), ammonia, aromatic amines, phenols,
carbonyls, hydrocyanic acid, and N-nitrosamines (Hoffmann and
Hoffmann, 1997). Numerous of these chemicals interact with the
enzymes involved in xenobiotic metabolism and various
transporters, thus affecting the biotransformation of substances.
Therefore, cigarette smoking, as well as quitting, may impact
drug metabolism (Maideen, 2019).

Particularly, PAHs formed during incomplete tobacco
combustion influence the hepatic cytochrome P450 (CYP450)
enzyme system, especially by induction of isoenzymes CYP1A1,
1A2, 1B1, and 2E1, leading to accelerated drug clearance, potentially
lowering blood concentrations. As a consequence, therapeutic
monitoring and eventually dose adjustment would be required
(Stepanov et al., 2010; McDonnell and Dang, 2013; Meech and
Mackenzie, 1997). Moreover, mounting evidence points to the
possibility that enzyme function may undergo alterations,

potentially attributable to epigenetic processes, which could in
turn result in a sustained increase in metabolic rate even after
the cessation of smoking (Hirota et al., 2008; O’Malley et al., 2014).

Among the isoenzymes, the induction of CYP1A2 is of clinical
importance because many drugs are its substrates. A study found a
1.66-fold increase in CYP1A2 activity in smokers of 11–20 cigarettes
per day, which is reversed after smoking cessation (Tantcheva-Poór
et al., 1999). Within 4 days of quitting, caffeine clearance, a measure
of CYP1A2 activity, fell by 36% (Faber and Uwe, 2004). For former
heavy smokers taking CYP1A2-metabolized drugs, dose
adjustments after cessation are essential to avoid elevated drug
levels and adverse drug reactions (ADRs). CYP1A1 metabolic
activity has also been shown to be increased by approximately
66%–70% in smokers, mainly due to exposure to aryl
hydrocarbons such as benzo [a]pyrene (Vistisen, Loft, and
Poulsen, 1991). It also appeared that tobacco use affects the
quantitative mRNA expression of CYP1B1, the induction of
which may be influenced by genetic polymorphisms (Helmig
et al., 2010).

The enhanced CYP2E1 expression and activity (Villard et al.,
1998; Seree et al., 1996) in smokers has been demonstrated by
accelerated metabolism of substances such as chlorzoxazone of
about 24% (Benowitz et al., 2003).

Conversely, the impact of PAHs on uridine diphosphate (UDP)-
glucuronosyltransferases (UGTs) appears to be complex and
unclear, with a paucity of research in this area. However, given
the inconsistency and heterogeneity of findings, it can be inferred
that the effects may vary between different UGT isoforms (Collier
et al., 2002; Court, 2010; Dragacci et al., 1987).

Nicotine, a well-known component of cigarette smoke, also alter
metabolic pathways particularly by interfering with Organic Cation
Transporters (OCTs) in vitro (Bergen et al., 2014; Urakami et al.,
1998; Lips et al., 2005). Its impact on CYP2E1, CYP2A1/2A2, and
CYP2B1/2B2 has been demonstrated within the central nervous
system (Anandatheerthavarada et al., 1993a; Anandatheerthavarada
et al., 1993b), though the clinical significance remains unclear (Zevin
and Benowitz, 1999). While pharmacokinetics interactions are
mainly attributable to PAHs, nicotine does alter and possibly
negate drug effects by activating the sympathetic nervous system
(N. L. Benowitz, 1997). Additionally, it has been reported that
nicotine metabolism is impaired and even reduced by tobacco
smoke through the inhibition of CYP2A6, which is mainly
responsible for the conversion to cotinine (Lee et al., 1987;
Benowitz and Jacob, 1993; 2000). Alongside PAHs and nicotine,
other smoke constituents like acetone and carbon monoxide (CO)
may affect hepatic enzymes but are considered less impactful (Zevin
and Benowitz, 1999; Bellanca et al., 2024).

Beyond the impact on drug-metabolising enzymes, components
of tobacco smoke exert various effects at cellular and subcellular
level. Many studies have examined the influence of individual
components, such as nicotine, aryl hydrocarbon, acetylcholine,
and acrolein but the biological consequences stem from
prolonged exposure to all components combined.

Cigarette smoke profoundly undermines the host’s capacity to
contain Mtb at every stage of infection. In the airways it slows
mucociliary clearance, injures the epithelial barrier, and depletes
surfactant proteins, facilitating bacillary entry into the alveoli (Tilley
et al., 2015; Moré et al., 2010; Honda et al., 1996; Corleis et al., 2023).
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Once there, smoke-expanded pools of alveolar macrophages are
paradoxically less effective: phagocytosis, autophagy, antigen
presentation, and production of key cytokines such as tumor
necrosis factor-α (TNF-α), interleukin-12 (IL-12), and interferon-
γ (IFN-γ) are all attenuated, while a shift toward anti-inflammatory
M2 phenotypes and smoke-induced metabolic exhaustion enable
intracellular survival of the pathogen (Leemans et al., 2005; Hodge
et al., 2007; O’Leary et al., 2014; Chen et al., 2007; Smit et al., 2014).

The innate immune response is further compromised by an
influx of hypo-functional neutrophils. Defective efferocytosis leaves
bacteria-laden dying cells to rupture, thereby amplifying tissue
damage and bacillary spread (Dallenga et al., 2017; Kirkham
et al., 2004). Down-stream, dendritic cells exposed to smoke
migrate poorly to lymph nodes and bias T-cell priming away
from protective Th1 immunity, favouring Th2, Th17, and
regulatory T-cell profiles marked by exhaustion receptors such as
PD-1 and CTLA-4 (Feng et al., 2011; McNab et al., 2011; Quan
et al., 2022).

Emerging evidence indicates that smoking induces gut
dysbiosis, altering the composition and function of intestinal
bacteria. Since the microbiome contributes to systemic
immunity and can metabolise certain drugs, this may represent
an indirect mechanism affecting both host susceptibility to TB
and the bioavailability of orally administered anti-TB agents (Fan
et al., 2023; Leite et al., 2022; Belkaid and Hand, 2014; Zhao
et al., 2023).

At a subcellular level, toxins in cigarette smoke, such as
cadmium and acrolein, are known to induce mitochondrial
dysfunction and increase oxidative stress. This can impair cellular
energy production and trigger apoptotic pathways in immune cells,
further weakening the host response. Moreover, the added oxidative
burden could potentially exacerbate drug-induced toxicities (Zhang
et al., 2024; Wang et al., 2017; Aridgides et al., 2019; Lugg
et al., 2022).

4 Effects of tobacco smoke on
metabolism of antituberculous
medications

Therapeutic options for TB encompass both first- and second-
line drugs. The current standard for drug-sensitive TB (DS-TB) is a
6-month regimen comprising isoniazid (INH), rifampin (also
known as rifampicin) (RIF), pyrazinamide (PZA), and
ethambutol (EMB), starting with a 2-month intensive phase of all
four drugs, followed by 4 months of INH and RIF (Alsayed and
Gunosewoyo, 2023). However, as a result of the rise in antibiotic
resistance, second-line drugs are now essential (Drug-Resistant
Tuberculosis, 2024). Drug-resistant TB (DR-TB) is defined by
resistance to at least one of the first-line drug, while multidrug-
resistant TB (MDR-TB) implies resistance to both RIF and INH, and
extensively drug-resistant TB (XDR-TB) refers to MDR-TB strains
that are resistant to fluoroquinolones (FQ) and at least one
aminoglycoside (Johnson et al., 2024). Recent advances, primarily
based on three landmark clinical studies, namely, Nix-TB, ZeNix,
and TB PRACTECAL (Conradie et al., 2020; 2022; Nyang’wa et al.,
2022), led to the introduction of 6–9 months regimens of
bedaquiline, pretomanid, linezolid, with or without moxifloxacin

(BPaL-M or BPaL, respectively), offering improved outcomes
compared to older treatment strategies (Johnson et al., 2024).

On this ground the WHO updated its DR-TB treatment
guidelines in 2022 (WHO Consolidated Guidelines on
Tuberculosis, 2024), recommending the 6-month BPaL-M
regimen for MDR/Rifampicin-Resistant (RR)-TB in patients
unexposed to bedaquiline, pretomanid, or linezolid (Johnson
et al., 2024). For patients diagnosed with FQ-susceptible strains
of Mtb, a 9-month all-oral regimen is advised, while those with FQ
resistance may receive BPaL without moxifloxacin. Longer regimens
remain viable for patients with additional resistance, intolerance to
short-course drugs, severe disease, pregnancy, certain
extrapulmonary TB cases, or other complex needs, with
alternative agents recommended as needed (i.e., streptomycin,
levofloxacin, clofazimine, and delamanid) (Vanino et al., 2023).

There is compelling evidence of an association between TB and
smoking habits, in terms of increased risk of poorer outcome and
defaulting on antituberculosis treatment (Bates et al., 2007; Batista
et al., 2008). Furthermore, there is evidence that tobacco-induced
immunological changes are reversible 6 months after smoking
cessation (Arcavi and Benowitz, 2004; Miller et al., 1982; Hughes
et al., 1985; Sopori, 2002). Therefore, integrating treatment regimens
to eradicate Mtb infection and smoking cessation therapies appears
to be an effective strategy to act on both fronts and ultimately lead to
improved health and reduced healthcare burden (Aryanpur et al.,
2016; Novotny, 2008; Schneider and Thomas, 2007). However, one
of the major problems is the plausible occurrence of drug-drug
interactions (DDIs), as both pathological conditions require long-
term medical therapies. Indeed, the shortest treatment regimens for
TB last at least 6 months, making the occurrence of DDIs not only
likely but probable. Further widening the population at risk of DDIs
is the need to provide TB preventive treatment (TPT) to all those at
high risk of contracting the disease. Indeed, regimens based on RIF,
INH or levofloxacin are recommended for HIV positive patients,
cohabitants of affected persons, healthcare workers, and other
categories of people engaged in high TB prevalence environments
(WHO Consolidated Guidelines on Tuberculosis Module 1, 2024;
Tanoglu et al., 2023).

As previously discussed, tobacco smoke is a mixture of
substances exhibiting varying abilities to induce or inhibit the
activity of hepatic detoxifying enzymes, as well as other
transporters involved in the elimination of xenobiotics. In
addition, the reversible nature of enzyme induction after smoking
cessation emphasizes the need for careful management and dose
adjustments of medications in quitters to ensure optimal
pharmacotherapy. A further complicating factor is the extensive
range of chemotherapeutic antibiotics that are available for the
treatment of TB, each of which possesses its own distinctive
pharmacokinetic and pharmacodynamic characteristics. It is
therefore crucial to ascertain whether the patient is a smoker,
bearing in mind the substantial degree of overlap between the
two conditions, and whether they are undergoing smoking
cessation therapy or intending to start it while simultaneously
affected by TB. In this context, it is of utmost importance to
analyse the metabolism of individual molecules with a view to
establishing a highly personalised therapy.

INH is a prodrug that enters the Mtb cytoplasm via passive
diffusion, where it inhibits mycolic acid synthesis by targeting the
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InhA enzyme, an essential catalyst in an early step of the mycolic
acid biosynthetic pathway (Bardou et al., 1998; Mitchison, 1956).
INH initially exerts a bacteriostatic effect for the first 24 h of
treatment, followed by a bactericidal activity against proliferating
Mtb at therapeutic levels (Unissa et al., 2016).

INH is mainly metabolized in the liver through two major
pathways to metabolites such as acetyl isoniazid (AcINH),
hydrazine (Hz), acetyl hydrazine (AcHz), diacetyl hydrazine
(DiAcHz), and isonicotinic acid (INA), primarily mediated by
arylamine N-acetyl transferase2 (NAT2) and amidases (Wang
et al., 2016; Ellard and Gammon, 1976; McKENNIS et al., 1959).
Further oxidation of Hz and AcHz by CYP450 enzymes, particularly
CYP2E1, generates reactive intermediates that form covalent
adducts with endogenous macromolecules, a process implicated
in INH-induced hepatotoxicity (Delaney and Timbrell, 1995; Yue
et al., 2004; Metushi and Jack, 2014).

The rifamycins are a family of antibiotics including rifampin,
rifabutin, and rifapentine, which bind to the ß-subunit of bacterial
DNA-dependent RNA polymerase (RNAP), inhibiting RNA
synthesis and causing Mtb death (Abulfathi et al., 2019).
Rifamycins are well-absorbed orally, with RIF showing high
bioavailability, although food can reduce its absorption. They
distribute widely throughout body tissues and fluids, reaching
effective concentrations against intracellular pathogens.
Specifically, RIF undergoes hepatic metabolism to its active
metabolite, 25-desacetyl-rifampicin, and is a well-characterized
inducer of multiple CYP450 enzymes, including CYP3A4,
CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, and UGTs. It
also affects transporters such as P-glycoprotein (P-gp) and
multidrug resistance-associated protein-2 (MRP2), leading to
significant DDIs risk. Enzyme induction shortens rifampin’s half-
life with prolonged use, making daily dosing necessary. Excreted
mainly in bile, with some renal elimination, it can turn body fluids
orange-red, a harmless but noticeable ADRs. Hepatotoxicity
remains a concern, thus liver function monitoring during therapy
is essential (Jamis-Dow et al., 1997; Nakajima et al., 2011; Rae et al.,
2001; Sumida et al., 2000; Dalet-Beluche et al., 1992; Niemi et al.,
2003; Rifadin, 2023).

Rifabutin, a more hydrophobic rifamycin with reduced enzyme
induction potential and fewer DDIs, is particularly valuable in Mtb/
HIV coinfections. It also has a longer half-life, allowing less frequent
dosing. Of its five identified metabolites, 25-O-desacetyl and 31-
hydroxy are the most predominant (Knox et al., 2024; Crabol et al.,
2016; Kim et al., 2022; Blaschke and Skinner, 1996). Rifabutin act as
a weaker inducer than RIF, with 2–3 times lower effect on CYP3A4,
making drug interactions less impactful in clinical practice (AIFA -
Ricerca Farmaco, 2024).

Rifapentine, whose half-life is the longest, enables weekly
administrations. It is known to induce CYP3A4 and CYP2C8/
9 enzymes, starting within 4 days of the first dose and returning
to baseline 14 days after discontinuation. Studies suggest that the
induction potential of rifapentine is less than that of RIF but greater
than that of rifabutin (Priftin, 2000).

PZA is a prodrug that converts to its active form, pyrazinoic acid
(PA), under acidic conditions inside Mtb. PA then diffuses back into
the bacilli, where it accumulates and exerts multiple effects against
Mtb, including inhibition of fatty acid synthase, disruption of
membrane potential, and interference with energy production by

interacting with ribosomal protein S1 to inhibit trans-translation
(Boshoff, Mizrahi, and Barry, 2002; Zimhony et al., 2007; Ngo et al.,
2007; Shi et al., 2011).

PZA is primarily metabolized to PA in the liver by amidase. PA
can be further oxidized by xanthine oxidase (XO) to form 5-
hydroxy-pyrazinoic acid (5-OH-PA), a metabolite thought to be
more hepatotoxic than PA. Alternatively, PZA can be initially
oxidized to 5-hydroxy-pyrazinamide (5-OH-PZA) by XO,
followed by amidase-mediated hydrolysis to 5-OH-PA. PZA and
its metabolites are mainly excreted by the kidney (AmericanMedical
Association, 1992; Lacroix et al., 1989).

The hepatotoxicity of PZA is dose-dependent, especially at doses
above 40 mg/kg, and correlates with its hepatic metabolism,
suggesting a direct toxic effect rather than a hypersensitive or
immune-mediated mechanism. Experimental studies in Wistar
rats treated with PZA or PA showed hepatotoxicity, as
demonstrated by elevated serum alanine aminotransferase,
aspartate transaminase, and galactose single-point levels
(Tostmann et al., 2008; Shih et al., 2013). Recent studies further
confirmed 5-OH-PA as the most toxic metabolite, causing liver
damage and metabolic shifts in rats (Rawat et al., 2018; Hussain,
Zhu, and Ma, 2021).

EMB diffuses into Mtb cells and inhibits the
arabinosyltransferases (embA, embB, and embC), thus disrupting
the formation of cell wall components like arabinogalactan and
lipoarabinomannan, ultimately hindering cell division (Myambutol,
2008; L. Zhang et al., 2020; Goude et al., 2009; Amin et al., 2008).
Around 50% of an EMB dose is excreted unchanged in the urine,
with an additional 8%–15% appearing as metabolites, and about
20%–22% is found unaltered in faeces. The main metabolic pathway
involves oxidation by aldehyde dehydrogenase to an aldehyde
metabolite, which is converted to the dicarboxylic acid 2,2’-
(ethylenediimino)di-butyric acid (Myambutol, 2008; Peets
et al., 1965).

Although EMB metabolism does not involve CYP450 enzymes,
a study by Lee S.Y. et al. in 2014 found that it inhibits several CYP
isoforms in human liver microsomes. Using liquid chromatography-
electrospray ionization tandem mass spectrometry, EMB has been
reported to inhibit CYP1A2 and CYP2E1 strongly, CYP2C19 and
CYP2D6 moderately, and CYP2A6, CYP2C9, and CYP3A4 weakly
(Lee et al., 2014).

Streptomycin, the first drug available for the treatment of Mtb, is
now largely a second-line option due to concerns about resistance
and toxicity (Waters and Tadi, 2024), indicated in MDR-TB and
various non-tuberculosis infections. It is an aminoglycoside which
exhibits bactericidal effects both by disrupting cell membranes and
impairing protein synthesis through binding to the 16S rRNA in
helix 44 (h44) near the A site of the 30S ribosomal subunit. This
binding displaces residues A1492 and A1493 in h44, mimicking
correct codon-anticodon pairing, which impedes translation and
other steps in protein synthesis (Serio et al., 2018; Bulitta et al.,
2015). Recent studies indicate that aminoglycosides bind to an
additional cryptic site in the 23S rRNA of the 50S subunit,
contributing to translation errors that destabilize membrane
structure (Sullivan et al., 2018; Ying et al., 2019).
Misincorporated proteins may integrate into the cell membrane,
enhancing the bactericidal effect by further damaging bacterial
integrity (Wallace et al., 1973; Borovinskaya et al., 2007).
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Because of poor oral absorption, streptomycin is administered
parenterally, typically by intramuscular injection, and less often
intravenously. Peak serum concentrations (25–50 mcg/mL) are
achieved within an hour after 1 g intramuscular dose (Waters
and Tadi, 2024). No significant human metabolites of
streptomycin have been identified, with 50%–60% of the drug
excreted unchanged in the urine (Chandra Acharya and
Kurosu, 2023).

Capreomycin, used primarily as a second-line treatment for
MDR-TB, has an unclear mechanism of action. It is thought to
inhibit protein synthesis by binding to the 70S ribosomal unit,
thereby causing abnormal proteins essential for bacterial survival
to be produced, ultimately leading to bacterial cell death (Knox et al.,
2024; Capastat, 2019).

Capreomycin is administered parenterally, via intramuscular or
intravenous injection, as it cannot be efficiently absorbed if taken
orally (Capastat, 2019).

Amikacin is a semi-synthetic aminoglycoside derived from
kanamycin A, given as a second-line treatment for MDR-TB and
several Gram-negative bacterial infections. It interacts with the
bacterial 30S ribosomal subunit, interfering with mRNA binding
and tRNA acceptor sites. The disruption of protein synthesis results
in the production of non-functional or toxic peptides, leading to
bacterial cell death (Arikayce, 2023).

Amikacin exerts bactericidal effects against both Gram-positive
and Gram-negative bacteria, including strains resistant to other
aminoglycosides like gentamicin and tobramycin. It does not
undergo appreciable metabolism, which enhances its stability
against bacterial enzymatic deactivation, thereby reducing
resistance occurrence (Knox et al., 2024; Arikayce, 2023).

Due to poor oral bioavailability, amikacin is administered
parenterally. Roughly 50%–60% of an administered dose is
excreted unchanged in the urine, making it mainly cleared
through the kidneys (Chandra Acharya and Kurosu, 2023;
Arikayce, 2023).

Levofloxacin is a fluoroquinolone antibiotic, specifically the S-
(−) isomer of racemic ofloxacin. It inhibits the activity of two key
bacterial enzymes, DNA gyrase and topoisomerase IV, which are
type II topoisomerases essential for DNA replication, transcription,
repair, and recombination (Fish and Chow, 1997).

In humans, levofloxacin is not subject to extensive metabolism,
as it is found unchanged in the urine. Indeed, approximately 79.6%
of the administered dose is recovered as original drug within 24 h of
administration. Three metabolites have been identified at low
concentrations, levofloxacin-β-D-glucuronide (M1), desmethyl-
levofloxacin (M2), and levofloxacin-N-oxide (M3), although only
M2 and M3 were detected in humans (Fish and Chow, 1997;
Levaquin, 2008).

At therapeutic plasma concentrations levofloxacin does not
alter CYP450 enzymes activity, thereby not being relevant for
drug interactions at this level (Levaquin, 2008; Fàbrega
et al., 2009).

Moxifloxacin is a fluoroquinolone antibiotic with high potency
and superior penetration into tissues and lesions compared to
levofloxacin, making it effective for TB treatment. By inhibiting
DNA gyrase and topoisomerase IV, moxifloxacin hinders DNA
replication and transcription. Its efficacy has been confirmed in a
phase 3 clinical trial for RR-TB, thus representing a key component

of the shortened treatment regimen for DS-TB (Sarathy et al., 2019;
Nunn et al., 2019; Ahmad et al., 2018).

Approximately 52% of an oral or intravenous dose is
metabolized via glucuronide and sulfate conjugation.
Moxifloxacin is not substrate of the CYP450 system, nor does it
affect such enzymes, minimizing its interaction with other drugs.
The main metabolites are the sulfate conjugate (M1), eliminated in
faeces, and the glucuronide conjugate (M2), excreted in the urine.
About 45% of the dose is excreted as unchanged drug (Avelox, 2016;
Strydom et al., 2019; Pienaar et al., 2017).

Linezolid is the first member of the oxazolidinone antibiotic
class and acts by inhibiting bacterial protein synthesis. It binds to the
50S ribosomal subunit, preventing the formation of the functional
70S initiation complex required for translation (Leach et al., 2011;
Shinabarger et al., 1997).

Linezolid undergoes metabolism primarily through non-
enzymatic oxidation of its morpholine ring, resulting in two
inactive metabolites: aminoethoxyacetic acid (Metabolite A), the
predominant one, and hydroxyethyl glycine (Metabolite B).
Importantly, the process does not involve the CYP450 enzyme
system, showing no inhibitory or inductive effect on clinically
significant isoforms such as CYP1A2, CYP2C9, CYP2C19,
CYP2D6, CYP2E1, or CYP3A4. The absence of interaction with
these major isoforms significantly reduces the risk of CYP450-
mediated DDIs (Dryden, 2011; Zyvox, 2014; Slatter et al., 2001).
Conversely, a potential for interactions with drugs affecting
monoamine levels exists, as it is a reversible, non-selective
inhibitor of monoamine oxidase (MAO) (Zyvox, 2014).

Excretion is primarily renal, with approximately 84% of an
administered dose excreted in the urine (30% as the unchanged
drug, 40% as Metabolite B, and 10% as Metabolite A). Faecal
elimination is minimal, accounting for only small amounts of
metabolites (Zyvox, 2014; Slatter et al., 2001).

Ethionamide is commonly used in longer regimens, especially
when other drugs like bedaquiline, clofazimine, delamanid, or
linezolid are not feasible. Its bacteriostatic or bactericidal effects
depend on drug concentration at the infection site and organism
susceptibility. Ethionamide requires activation by the mycobacterial
enzyme flavin monooxygenase (EthA) and the transcriptional
repressor EthR to form ethionamide sulfoxide, which binds to
NAD+ and inhibits the enoyl-acyl carrier protein reductase
(InhA), thereby blocking mycolic acid synthesis, responsible for
cell death (Dover et al., 2007).

Ethionamide is extensively metabolized in the liver, mainly
through flavin-containing monooxygenase (FMO3). Six
metabolites have been identified: 2-ethylisonicotinamide,
carbonyl-dihydropyridine, thiocarbonyl-dihydropyridine,
S-oxocarbamoyl dihydropyridine, 2-ethylthioisonicotinamide, and
ethionamide sulfoxide, the latter having significant
antimycobacterial activity (Henderson et al., 2008; Krueger and
Williams, 2005; Trecator, 2016).

Clofazimine, originally an anti-leprosy antibiotic, is now
recommended as a core drug in both short and long regimens
for DR-TB. Although the exact mechanism of action is not fully
understood, clofazimine seems to interfere with cellular membrane
functions, including ion transport and respiration, ultimately
causing Mtb death (Cholo et al., 2017; Barry et al., 1956; Yano
et al., 2011; Lechartier and Cole, 2015).
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Clofazimine metabolism comprises partial hepatic
transformation, with at least eight metabolites identified in
human liver microsomes. CYP3A4 and CYP1A2 are primarily
involved, with additional contributions from CYP2C8 and
CYP2D6. At low concentrations, it is a weak inducer of CYP3A4,
but at therapeutic levels shows inhibitory properties, suggesting the
potential for both auto-induction and inhibition depending on the
concentration (Howlader et al., 2022; Shimokawa et al., 2015).
Notably, in vitro studies report that clofazimine also inhibits
CYP2C8, CYP2D6, and CYP3A4/5, indicating the likelihood of
clinically significant interactions with drugs metabolised by these
isoenzymes (Lamprene, 2019; Maartens et al., 2018).

Renal excretion is minimal, with most of clofazimine and its
metabolites eliminated through biliary system. The main urinary
metabolites, apparently pharmacologically inactive, are produced by
hydrolytic dehalogenation and deamination followed by
glucuronidation (Banerjee et al., 1974; Levy, 1974; P. C. Feng,
Fenselau, and Jacobson, 1981).

Bedaquiline, a diarylquinoline antimycobacterial drug, targets
Mtb via inhibition of ATP synthase, essential for bacterial survival.
Specifically, it binds to enzyme subunit c. Impeding this crucial
mechanism of energy production, bedaquiline is particularly
effective against persistent bacilli (Sirturo, 2012; Mesens et al., 2010).

It is predominantly metabolised by CYP3A4 in the liver into the
N-monodesmethyl (M2) metabolite, which exhibits anti-tubercular
activity, albeit with approximately five times less potency than the
parent drug. Minor contributions to drug metabolism have been
observed in vitro from CYP1A1, CYP2C8, and CYP2C18, though
these enzymes are less relevant in vivo due to their lower hepatic
expression compared to CYP3A4 (Shimada et al., 1994). Bedaquiline
does not induce or inhibit major CYP isoenzymes, namely, CYP1A2,
CYP2C9, CYP2C19, or CYP2D6 at clinically relevant
concentrations, minimizing the risk of CYP450-related
interactions (Mesens et al., 2010). Moreover, its impact on
isoforms CYP1A2, CYP2A6, CYP2C8/9/10, CYP2C19, CYP2D6,
CYP2E1, CYP3A4, CYP3A4/5, and CYP4A has also been shown to
be negligible in vitro.

Excretion is primarily biliary, with a minimal amount appearing
in the urine. The drug does not significantly interact with transport
proteins like P-gp, further reducing the risk of DDIs (Sirturo, 2012).

Pretomanid is a prodrug used in combination with bedaquiline
and linezolid for tackling pulmonary XDR-TB and treatment-
intolerant or nonresponsive MDR-TB. It requires activation by
Mtb deazaflavin-dependent nitroreductase (Ddn). Under aerobic
conditions, pretomanid stops protein and lipid synthesis by
reducing the availability of keto mycolic acids, essential for cell
wall integrity. In anaerobic environments, it produces nitric oxide
(NO), which inhibits cytochrome c oxidase and reduces ATP
production in non-replicating Mtb cells (Pstragowski, Zbrzezna,
and Bujalska-Zadrozny, 2017; Singh et al., 2008; Malo et al., 2021).

Approximately 20% of drug metabolism is due to partial phase
one reactions by CYP3A4. At clinical concentrations, pretomanid
does not inhibit major CYP isoenzymes, including CYP1A2,
CYP2C8, CYP2C9, CYP2C19 or CYP2D6, and does not induce
CYP2C9 or CYP3A4, limiting the potential for DDI trough CYPs.
On the other hand, it significantly inhibits the OAT3 transporter,
potentially increasing the concentration of OAT3 substrates
(Mitnick, McGee, and Peloquin, 2009; Pretomanid, 2019). Of an

administered dose, about 53% is excreted in the urine and 38% in
faeces, both as unchanged drug and metabolites (Wang et al., 2015).

Delamanid is a prodrug indicated as part of a combination
regimen for treating MDR-TB in adults. It requires activation by the
mycobacterial F420 coenzyme system, including Ddn, to exert its
antimycobacterial activity. Upon activation, it inhibits the synthesis
of methoxy-mycolic and keto-mycolic acids, leading to depletion of
essential cell wall components and subsequent bacterial death (Lewis
and Sloan, 2015; Szumowski and Lynch, 2015).

Delamanid is primarily metabolized by albumin and, to a lesser
extent, by CYP3A4 in the liver. Secondary metabolic pathways may
involve CYP1A1, CYP2D6, and CYP2E1, though their contributions
are minor in comparison to CYP3A4. Its main metabolite, DM-6705
(M1), accounts for 13%–18% of total plasma exposure and has been
associated with QT prolongation. The hydrolytic cleavage of its 6-
nitro-2,3-dihydroimidazo [2,1-b] oxazole moiety generates M1,
which undergoes further transformations involving hydroxylation
and oxidation, mediated largely by CYP3A4 (Szumowski and Lynch,
2015; Deltyba, 2014). While M1 and other metabolites do not retain
significant antimycobacterial activity, they can still impact cardiac
safety. Delamanid is primarily cleared via hepatic metabolism, with
negligible renal excretion (Deltyba, 2014; Sasahara et al., 2015).

Among antituberculous medications, INH, RIF, EMB,
clofazimine, bedaquiline, and delamanid are known to be
CYP450 enzyme system substrates or can impact its metabolic
activity by induction or inhibition. Therefore, potential
interactions with cigarette smoking compounds may be expected.

Given the activity of PAHs in inducing CYP2E1, smokers taking
INH as part of TB therapy may experience increased synthesis of
reactive intermediates resulting from further oxidation of oxidised
HZ and AcHZ. This could increase the risk of INH-associated
hepatotoxicity. However, most studies do not include cigarette
smoking as a possible individual risk factor for drug-induced
hepatotoxicity (DIH). Interestingly, a retrospective cohort study
highlighted that cigarette smoking appears to be negatively
associated with DIH, which is surprising as induction of
CYP2E1 in smokers is expected to increase exposure to toxic
metabolites (Zaverucha-do-Valle et al., 2014). The reduced risk
may be related to tobacco smoke compounds in glutathione
S-transferase (GST) activity, which is involved in the nicotine
detoxification pathway (Pachauri and Flora, 2013). Another
explanation for this phenomenon could be a link between
smoking habit and NAT2 acetylator status. Indeed, heterocyclic
amines in tobacco smoke require activation by CYP1A2 and NAT2
(Voutsinas et al., 2013). Slow acetylator status is associated with
reduced ability to detoxify these xenobiotics, but active smokers may
have higher NAT2 activity and faster INH metabolism (Kroon,
2007). Based on these premises, smokers who quit may be at
increased risk of developing DIH and thus may require dose
adjustment to avoid liver damage.

RIF induction of CYP3A4 is mediated by an orphan nuclear
receptor known as the pregnane X receptor (PXR). The drug binds
to PXR, forming an activated complex, and subsequently combines
with the retinoid X receptor (RXR) to form a heterodimer that
targets a DNA response element, enhancing CYP3A4 gene
transcription. Consequently, CYP3A4 protein synthesis is
increased (Lehmann et al., 1998). The expression of several other
proteins is induced in a similar manner. Indeed, genes reported to be
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regulated by known PXR ligands are CYP1A1, CYP2C8, CYP2C9,
MDR1, MRP2, and members of the UGT, sulfotransferase, and
carboxylesterase families (Goodwin, Redinbo, and Kliewer, 2002).
Moreover, in vitro studies have demonstrated that RIF induces
various CYP enzymes, including CYP1A2, CYP2A6, CYP2B6,
CYP2C8, CYP2C9, CYP2C19, and CYP3A5 (Rae et al., 2001;

Dalet-Beluche et al., 1992; Niemi et al., 2003). Concerning
CYP1A2, in vivo induction is suggested, as demonstrated by the
paraxanthine-to-caffeine ratio rising in healthy subjects (Branch
et al., 2000; Fuhr and Rost, 1994).

In light of these findings, the safety and efficacy profile of RIF
during TB treatment can be altered in smokers because of the

TABLE 1 Antituberculous medications known to be CYP450 enzyme system substrates or can impact its metabolic activity, possible effects of tobacco
smoke compounds, and resulting potential interactions.

Drug Hepatic CYP450 Metabolic Pathway
Involved

Tobacco Smoke Compounds
Effects on CYP450 Activities (Ref.)

Resulting Potential Interactions

Isoniazid CYP2E1 oxidates its metabolites PAHs may contribute to CYP2E1 induction Given the activity of PAHs in inducing
CYP2E1, smokers taking INH as part of TB
therapy may experience increased synthesis of
reactive intermediates resulting from further
oxidation of oxidised HZ and AcHZ. This
could increase the risk of INH-associated

hepatotoxicity. However, most studies do not
include cigarette smoking as a possible
individual risk factor for drug-induced

hepatotoxicity (DIH)

Rifampin The drug itself is an inducer of CYP3A4, CYP1A2,
CYP2B6, CYP2C8, CYP2C9, CYP2C19

Concomitant induction of CYP450 enzymes
mediated by PAHs

Safety and efficacy profile of rifampin during
TB treatment can be altered in smokers
because of the concomitant induction of
CYP450 enzymes mediated by PAHs. It is
worth mention that rifampin clearance
increases during multiple-dose therapy,
leading to autoinduction of its own

metabolism, further complicating therapeutic
management

Ethambutol The drug itself is a strong inhibitor of CYP1A2 and
CYP2E1

PAHs are inducers of CYP1A2 and CYP2E1 Careful assessment of safety and efficacy
profiles of co-administered medications in TB
patients who also smoke are warranted to
avoid ADRs and achieve therapeutic goals

Rifabutin The drug itself is a mild inducer of CYP450 enzymes Concomitant induction of CYP450 enzymes
mediated by PAHs

Safety and efficacy profile of rifabutin during
TB treatment can be altered in smokers
because of the concomitant induction of
CYP450 enzymes mediated by PAHs

Rifapentine The drug itself is an inducer of CYP3A4 and
CYP2C8/9

In vitro study highlighted that PAHs activate
CYP3A4 gene transcription through the activation of
hPXR in HepG2 cells. Thus, PAHs may contribute to
CYP3A4 induction in human liver (Kumagai et al.,

2012)

Safety and efficacy profile of rifapentine
during TB treatment can be altered in smokers
because of the concomitant induction of
CYP450 enzymes mediated by PAHs

Clofazimine It is primarily metabolised by CYP3A4 and CYP1A2,
with additional contributions from CYP2C8 and

CYP2D6. Moreover, at low concentrations, the drug
itself is a weak inducer of CYP3A4, but at therapeutic
levels shows inhibitory properties, suggesting the
potential for both auto-induction and inhibition

depending on drug concentration

PAHs are inducers of CYP1A2 and may also
contribute to CYP3A4 induction in human liver

(Kumagai et al., 2012)

TB smokers may experience increased
metabolite synthesis, potentially necessitating
dosage adjustments. Furthermore, adequate
dose monitoring is even more important when
considering that clofazimine is itself, at low
concentration, a weak inducer of CYP3A4, but

at therapeutic levels shows inhibitory
properties

Bedaquiline Metabolised by CYP3A4 and CYP1A1 PAHs are inducers of CYP1A1 and may also
contribute to CYP3A4 induction in human liver

(Kumagai et al., 2012)

Bedaquiline exposure may be reduced during
co-administration with CYP1A1 and

CYP3A4 inducers like PAHs, neglecting its
effectiveness

Pretomanid Partially metabolised by CYP3A4 PAHs may contribute to CYP3A4 induction in
human liver (Kumagai et al., 2012)

Although pretomanid is just partially
metabolised by CYP3A4, its exposure may be

reduced during co-administration with
CYP3A4 inducers like PAHs, neglecting its

effectiveness

Delamanid Metabolised by CYP3A4 and, to a lesser extent, by
CYP1A1, CYP2D6, and CYP2E1

PAHs are inducers of CYP1A1 and CYP2E1.
Moreover, they may contribute to CYP3A4 induction

in human liver (Kumagai et al., 2012)

CYP1A1 and 2E1, although playing a minor
role in the overall delamanid metabolism, can
be induced by PAHs making smokers more
prone to severe ADRs (e.g., QT prolongation)
due to increased metabolite concentrations

Frontiers in Pharmacology frontiersin.org09

Bellanca et al. 10.3389/fphar.2025.1606150

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1606150


concomitant induction of CYP450 enzymes mediated by PAHs. It is
worth mention that RIF clearance increases during multiple-dose
therapy, leading to autoinduction of its own metabolism, further
complicating therapeutic management (Loos et al., 1987).

According to Lee S.Y. and colleagues, EMB has strong inhibitory
potential against CYP1A2 and CYP2E1. Conversely, PAHs are
inducers of such cytochromes. Therefore, careful assessment of
safety and efficacy profiles of co-administered medications in TB
patients who also smoke are warranted to avoid ADRs and achieve
therapeutic goals.

Clofazimine is at least partially metabolised in the liver via
CYP3A4 and CYP1A2, thereby TB smokers may experience
increased metabolite synthesis, potentially necessitating dosage
adjustments.

As bedaquiline mainly undergoes phase one reactions catalysed
by CYP3A4, its exposure may be either reduced or increased during
co-administration with inducers or inhibitors of
CYP3A4 respectively (Sirturo, 2012). To a lesser extent,
CYP1A1 also participates in drug metabolism, thus co-
administering CYP1A1 inducers can decrease bedaquiline
concentrations neglecting its effectiveness.

The metabolic pathways of delamanid involve
CYP450 isoenzymes as well. In particular, CYP1A1 and 2E1,
although playing a minor role in the overall metabolism, can be
induced by PAHs making smokers more prone to severe ADRs (e.g.,
QT prolongation) due to increased metabolite concentrations.

Table 1 and Figure 1 provide an overview of the antituberculous
medications known to be CYP450 enzyme system substrates or can
impact its metabolic activity and possible interactions with tobacco
smoke compounds.

5 Interactions between smoking
cessation medications and
antituberculous drugs

In the past few years, numerous studies have investigated the
association between smoking and TB severity suggesting that the
former has a negative impact on patients’ outcome, resulting in
delayed culture conversion, treatment extension, and increasing risk
of recurrence after pharmacotherapies completion (Slama et al.,
2007; Smit et al., 2010; Abal et al., 2005; Nijenbandring de Boer et al.,
2014). In this context, Altet N. et al. evaluated the effect of tobacco
smoke on radiological manifestations, sputum conversion, and
immune response to Mtb by analysing IFN-γ secretion using
IFN-γ Release Assays (IGRAs). To this aim, 525 participants
were studied: 175 with active pulmonary TB, 350 from contact
tracing studies, and 41 with secondary TB cases. Clinical,
radiological, and microbiological data were collected for each
participant, and they underwent QuantiFERON-TB Gold (QFN-
G-IT) and T-SPOT.TB. The authors inferred that smoking had a
negative effect on radiological manifestations and delayed the time

FIGURE 1
Mechanism of CYP450 hepatic isoenzymes induction by cigarette smoke PAHs, enhancing rifamycins, clofazimine, isoniazid, bedaquiline,
pretomanid, and delamanid metabolism, thus decreasing active drug concentrations, increasing toxic metabolites and potential for ADRs. Therefore,
dose monitoring appears necessary. Abbreviations: CYP450, cytochrome P450; PAHs, polycyclic aromatic hydrocarbons; ADRs, adverse drug reactions.
Created with BioRender.com; accessed on 20 June 2025.
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to sputum conversion, probably related to an attenuated IFN-γ
response caused by direct tobacco smoke (Altet et al., 2017).

A prospective cohort study has been performed in India to
determine the impact of smoking on TB treatment outcome and the
prevalence of smoking habits among newly diagnosed individuals.
The investigators enrolled 2,350 patients (1,758 male and
592 female) who were classified as never smokers, current
smokers, and former smokers on the basis of self-report.
Participants were then started on anti-TB treatment and followed
for 2 years. During the observation period, smoking has been
associated with more extensive lung disease, cavitation, and
positive sputum smear and culture results at baseline.
Additionally, both current and former smokers were significantly
more likely to have positive microbiological tests after 2 months of
treatment. The same groups also showed higher rates of non-
adherence, treatment failure, and relapse. In light of these
findings, it has been concluded that tobacco smoking is
associated with a significantly increased risk of advanced and
more severe disease in the form of pulmonary cavitation, positive
sputum smear and culture results, and lower conversion rate after
treatment initiation (Mahishale et al., 2015).

In 2022, a prospective observational study came to opposite
conclusions though. The purpose of the study was to describe the
severity of disease and treatment outcomes in TB smokers compared
with non-smokers in Guinea-Bissau. It showed that among the
1,780 patients included, 385 of whom were smokers for a median of
10 years, there was no difference in disease severity at diagnosis. In
addition, smokers were not more prone to negative treatment
outcomes, although a trend was observed (adjusted odds ratio
[OR] 1.24, 95% confidence interval [CI] 0.91–1.70), and were
more likely to be lost to follow-up, but this was also not
significant (adjusted hazard ratio [HR] 2.09, 95% CI 0.89–4.94).
Thus, the authors suggested that in a highly endemic TB setting with
few tobacco smokers, worse disease severity or outcome due to
smoking were not observed, but they highlighted the existence of
confounding factors (Bay et al., 2022).

Another study, conducted in Taipei, sought to determine
whether tobacco smoking increases the risk of TB relapse in
adults who have successfully completed TB treatment, and the
underlying factors. A total of 5,567 patients were enrolled, of
whom 84 (1.5%) experienced recurrence during follow-up. The
incidence of relapses was 4.9 episodes/1,000 person-years of
follow-up. In subjects who smoked more than ten cigarettes per
day, the risk was twice that of non-smokers/former smokers,
according to Cox proportional hazards regression (Yen et al., 2014).

Despite mounting evidence of an association between smoking
and TB in terms of risk and influence on outcome, a crucial but often
overlooked issue is the interaction between antituberculosis drugs
and smoking cessation therapies. Indeed, a significant number of
people affected by TB are also smokers in the process of quitting.
Unveiling the molecular mechanisms that underscore these events is
of utmost importance, as clinically relevant DDIs can complicate TB
management and interfere with the success of smoking cessation.

Interactions can also have a significant impact on the safety and
efficacy profile of treatments, particularly if they compromise
pharmacological activity and increase the odds of ADRs.

Medications for smoking cessation include various forms of
nicotine replacement therapy (NRT), bupropion, varenicline, and

cytisine (Polosa and Benowitz, 2011; Cohen et al., 2024) that have
been shown to improve quit rates in the general population of
smokers. Compared with placebo, the likelihood of quitting smoking
was roughly doubled with NRT (1.84, 95% CI 1.71–1.99) and
bupropion (1.82, 1.60–2.06) and was improved further with
varenicline (2.88, 2.40–3.47) (Cahill et al., 2013).

Dogar O. et al. conducted a randomised, double-blind, placebo-
controlled trial to assess the effectiveness and safety of cytisine in
patients with TB in Bangladesh and Pakistan. 2,472 patients
(1,527 from Bangladesh and 945 from Pakistan) smoking daily
and willing to quit who had been diagnosed with pulmonary TB
within the previous 4 weeks, were enrolled. Subjects were randomly
assigned to receive cytisine (n = 1239) at a dose of 9 mg on day 0,
gradually tapered to 1.5 mg on day 25, or placebo (n = 1233) for
25 days. The primary endpoint was continuous abstinence at
6 months, defined as self-report and confirmed biochemically by
a breath CO reading of less than 10 parts per million (ppm). Primary
and safety analysis were done in the intention-to-treat (ITT)
population. At 6 months, 401 (32.4%) participants in the cytisine
group and 366 (29.7%) in the placebo group had achieved
continuous abstinence. Fifty-three (4.3%) patients in the cytisine
group and 46 (3.7%) in the placebo group reported serious adverse
events (SAEs) (94 events in the cytisine group and 90 events in the
placebo group), which included 91 deaths (49 in the cytisine group
and 42 in the placebo group). None of the adverse events (AEs) were
attributed to the study medication. Authors stated that the add-on of
cytisine to brief behavioural support for the treatment of tobacco
addiction in TB patients is not supported by their findings (Dogar
et al., 2020).

An open-label randomised controlled trial investigated the
impact of intensive smoking cessation activities as an add-on to
TB treatments on patient-related outcomes. A total of 800 self-
reporting smokers with pulmonary TB on standard anti-TB drugs
were enrolled in the study and randomly assigned (1:1) to receive
either NRT plus behavioural change counselling or counselling
alone, delivered at baseline and at two follow-up visits. The
primary endpoints were change in TB-score at 24 weeks and
culture conversion at 8 weeks. The biochemical smoking
cessation rates, defined as serum cotinine levels of less than
10 ng/mL and/or exhaled CO levels of less than 6 ppm, were
significantly higher in the intervention group at 24 weeks (47.8%
vs. 32.4%) as well as the self-reported cessation rates (69.3% vs.
38.7%). Despite the TB-scores at 24 weeks (95% CI) were lower in
the intervention arm (2.07 vs. 2.12), the difference was not clinically
meaningful. Patients in the control arm required treatment
extension more often than intervention arm (6.4% vs. 2.6%).
Authors concluded that combining NRT with behaviour change
counselling resulted in a significantly higher quit rates and lower
cotinine levels, but significant impact on patient-related or
microbiological outcomes were not detected (Sharma et al., 2018).

Safety concerns arise when smoking cessation medications and
anti-TB drugs are co-administered, so predicting and assessing
potential DDIs would be extremely helpful. To date, many digital
tools are available to determine their clinical significance, being the
management largely dependent on impact and severity of the
interaction. However, there is no consensus among the current
resources and a standardised classification method would be
warranted. More specifically, the British National Formulary
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marks with bullet points potentially harmful drug pairs which
should be prescribed cautiously, under appropriate monitoring,
or avoided altogether (British National Formulary, 2015).
Micromedex Drug–Reax System categorizes interactions into
three degrees of severity, major, moderate, and minor, and the
strength of the reporting into five categories—excellent, good, fair,
poor, and unlikely (DRUG-REAX, 2024). Drugs.com Drug
Interaction Checker (DDIC) and DrugBank.com classify
interactions into four severity levels: major, moderate, minor, and
unknown (Knox et al., 2024; Drug Interaction Checker Quickly
Check Your Meds, 2024). Vidal’s Interactions médicamenteuses
comprises four seriousness grades according to the recommended
clinical management—contraindicated, avoid, precaution, and “take
into account” (i.e., no specific recommendation) (Les interactions
médicamenteuses, 2024). Drug Interaction Facts rates interaction
severity into three levels—major, moderate, and minor—and the
degree of documentation into five—established, probable, suspected,
possible, and unlikely—by combining these two categories. It also
ranks each interaction from 1 to 5 in terms of importance (Tatro,
2014). MedScape drug interaction checker sorts DDIs as serious,
significant, or minor. Serious interactions impose switching to an
alternative molecule, whereas significant ones necessitate close
monitoring. Minor DDIs do not require either discontinuation or
switching (Drug Interactions Checker - Medscape Drug Reference
Database, 2024). Notably, information from digital tools must
always be compared with SmPC of interacting drugs in order to
avoid errors or misinterpretations.

Concerning potential DDIs between NRT and anti-TB drugs,
DrugBank.com reports that the metabolism of nicotine can be
decreased when combined with INH or EMB and increased
when co-administered with rifabutin. Indeed, when nicotine is
administered concurrently with a CYP2A6 inhibitor of unknown
strength, the substrate metabolism will be reduced, resulting in
increasing serum concentrations and heightened risk, incidence,
and/or severity of ADRs. Conversely, concomitant use of nicotine
and rifabutin, a CYP2B6 inducer, will result in a modest increase in
mediated metabolism of the substrate, potentially leading to a
reduction in serum concentration and/or therapeutic effect
(DrugBank Clinical API Plugins, 2024).

In vitro research suggests that varenicline does not appear to
influence the pharmacokinetics of substances that are primarily
metabolised by CYP enzymes. Since less than 10% of its clearance is
attributed to varenicline’s metabolism, it is anticipated that agents
affecting the CYP450 system will have no effect on its
pharmacokinetic profile. This suggests that dose adjustments will
not be necessary. Furthermore, at therapeutic levels, varenicline does
not inhibit human renal transport proteins, as demonstrated by
preclinical studies. Consequently, it is improbable that active
substances eliminated by renal secretion will be impacted by
varenicline (Champix, 2006). As indicated by online sources,
INH, PZA, EMB, and levofloxacin have the potential to reduce
its excretion rate. Conversely, varenicline may also impact the
clearance of streptomycin, capreomycin, and amikacin. The renal
clearance of medications is influenced by various renal functions,
including glomerular filtration, passive diffusion, tubular secretion,
and reabsorption. It is important to note that two of these processes,
namely, tubular secretion and reabsorption, are subject to
saturation. As a result, they can be influenced by competition

among several substrates for removal. This suggests a significant
likelihood that one drug will “out-compete” or saturate the renal
excretion pathways prior to the elimination of the other co-
administered drugs, leading to inhibited or delayed clearance.
The net result of these processes is an increase in serum
concentrations, which, by the way, has been demonstrated to
escalate the risk and/or severity of ADRs associated to exposure
to such drugs (DrugBank Clinical API Plugins, 2024).

Bupropion is subject to metabolic processes involving the
CYP450 enzyme system, predominantly through CYP2B6, with
contributions from CYP1A2, 2A6, 2C9, 2D6, 2E1, and
3A4 isoforms, though to a lesser degree (Connarn et al., 2015).
These enzymes also play a pivotal role in the metabolic pathways of
various TB medications, which could lead to alterations in the
concentrations and effects of such drugs. It is imperative to
adjust dosages and meticulously select treatments for patients
who are using bupropion. Furthermore, research from both
preclinical and clinical studies indicates that bupropion can
inhibit CYP2D6 activity. The oxidation of the bupropion side
chain leads to the production of a glycine conjugate of
metachlorobenzoic acid, which is primarily expelled as the main
urinary metabolite, with glucuronidated metabolites also being
found in urine. Although there are discrepancies in the literature
regarding their various chiral forms, these metabolites are produced
from all three active metabolites by different UGT enzymes. In vitro,
the primary enzyme involved in the glucuronidation of
hydroxybupropion is UGT2B7, with a minor role played by
UGT2B4. UGT2B7 is also chiefly responsible for generating
erythrohydrobupropion glucuronide, while UGT1A4, UGT1A3,
UGT1A9, and UGT2B4 have lesser involvement. The
identification of the UGTs that mediate the conjugation of active
bupropion metabolites is crucial for understanding factors that
could affect potential DDIs. In vitro research has demonstrated
that at concentrations up to 200 mcg/ml, 84% of bupropion binds to
proteins in human plasma. Hydroxybupropion exhibits a similar
binding rate, whereas the protein binding extent for
threohydrobupropion is about half that of bupropion.
Consequently, interactions related to protein binding are unlikely
to have clinical significance (Jefferson, Pradko, and Muir, 2005).

Digital tools highlight that potential DDIs between bupropion
and anti-TB drugs, namely, RIF, INH, PZA, EMB, rifabutin,
streptomycin, capreomycin, amikacin, levofloxacin, moxifloxacin,
linezolid, and bedaquiline may occur.

DDIC, Drugs.com, MedScape.com, and INTERCheckWeb.it
points out the plausible interaction between bupropion and RIF.
In particular, according to DDIC and MedScape.com, RIF will
decrease the level or effect of bupropion by inducing
CYP2B6 activity. Therefore, pharmacological response to
bupropion should be monitored more closely whenever a
CYP2B6 inducer is added to or withdrawn from therapy, and the
bupropion dosage adjusted as necessary. DrugBank.com reports that
the metabolism of bupropion can be increased when combined with
RIF. Indeed, the latter is an inducer of CYP2C9 while bupropion is
substrate of CYP2C9. Concomitant administration of these agents
can produce a decrease in the serum concentration of the affected
drug which may translate to reduced therapeutic efficacy.
Ultimately, INTERCheckWeb.it suggests a reduction in systemic
exposure to bupropion with an associated increase in clearance of
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TABLE 2 Possible interactions between antituberculous drugs and smoking cessation medications, classified according to severity level. Major/Serious:
highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit. Moderate: moderately clinically significant. Usually avoid
combinations; use it only under special circumstances. Minor: minimally clinically significant. Minimize risk; assess risk and consider an alternative drug,
take steps to circumvent the interaction risk and/or institute a monitoring plan. Unknown: no interaction information available.

Treatment
Line

Drug NRT (Ref.) Bupropion (Ref.) Varenicline (Ref.) Cytisine (Ref.)

First Line Rifampin Unknown (Drug Interaction
Checker Quickly Check Your
Meds, 2024; Drug
Interactions Checker -
Medscape Drug Reference
Database, 2024; DrugBank
Clinical API Plugins, 2024;
Intercheck WEB, 2024)

Moderate (Drug Interaction
Checker Quickly Check Your
Meds, 2024; Drug Interactions
Checker - Medscape Drug
Reference Database, 2024;
DrugBank Clinical API Plugins,
2024; Intercheck WEB, 2024)

Unknown (Drug Interaction
Checker Quickly Check Your
Meds, 2024; Drug Interactions
Checker - Medscape Drug
Reference Database, 2024;
DrugBank Clinical API Plugins,
2024; Intercheck WEB, 2024)

Unknown (Drug Interaction
Checker Quickly Check Your
Meds, 2024; Drug
Interactions Checker -
Medscape Drug Reference
Database, 2024; DrugBank
Clinical API Plugins, 2024;
Intercheck WEB, 2024)

Isoniazid Moderate (DrugBank
Clinical API Plugins, 2024)

Moderate (Drug Interaction
Checker Quickly Check Your
Meds, 2024; DrugBank Clinical
API Plugins, 2024

Minor (DrugBank Clinical API
Plugins, 2024)

Unknown (Drug Interaction
Checker Quickly Check Your
Meds, 2024; Drug
Interactions Checker -
Medscape Drug Reference
Database, 2024; DrugBank
Clinical API Plugins, 2024;
Intercheck WEB, 2024)

Pyrazinamide Unknown (Drug Interaction
Checker Quickly Check Your
Meds, 2024; Drug
Interactions Checker -
Medscape Drug Reference
Database, 2024; DrugBank
Clinical API Plugins, 2024;
Intercheck WEB, 2024)

Minor (DrugBank Clinical API
Plugins, 2024)

Minor (DrugBank Clinical API
Plugins, 2024)

Unknown (Drug Interaction
Checker Quickly Check Your
Meds, 2024; Drug
Interactions Checker -
Medscape Drug Reference
Database, 2024; DrugBank
Clinical API Plugins, 2024;
Intercheck WEB, 2024)

Ethambutol Minor (DrugBank Clinical
API Plugins, 2024)

Minor (DrugBank Clinical API
Plugins, 2024)

Minor (DrugBank Clinical API
Plugins, 2024)

Unknown (DrugBank
Clinical API Plugins, 2024;
Drug Interaction Checker
Quickly Check Your Meds,
2024; Drug Interactions
Checker - Medscape Drug
Reference Database, 2024;
Intercheck WEB, 2024)

Rifabutin Minor (DrugBank Clinical
API Plugins, 2024)

Minor (DrugBank Clinical API
Plugins, 2024)

Unknown (Drug Interaction
Checker Quickly Check Your
Meds, 2024; Drug Interactions
Checker - Medscape Drug
Reference Database, 2024;
DrugBank Clinical API Plugins,
2024; Intercheck WEB, 2024)

Unknown (Drug Interaction
Checker Quickly Check Your
Meds, 2024; Drug
Interactions Checker -
Medscape Drug Reference
Database, 2024; DrugBank
Clinical API Plugins, 2024;
Intercheck WEB, 2024)

Rifapentine Unknown (Drug Interaction
Checker Quickly Check Your
Meds, 2024; Drug
Interactions Checker -
Medscape Drug Reference
Database, 2024; DrugBank
Clinical API Plugins, 2024;
Intercheck WEB, 2024)

Unknown (Drug Interaction
Checker Quickly Check Your
Meds, 2024; Drug Interactions
Checker - Medscape Drug
Reference Database, 2024;
DrugBank Clinical API Plugins,
2024; Intercheck WEB, 2024)

Unknown (Drug Interaction
Checker Quickly Check Your
Meds, 2024; Drug Interactions
Checker - Medscape Drug
Reference Database, 2024;
DrugBank Clinical API Plugins,
2024; Intercheck WEB, 2024)

Unknown (Drug Interaction
Checker Quickly Check Your
Meds, 2024; Drug
Interactions Checker -
Medscape Drug Reference
Database, 2024; DrugBank
Clinical API Plugins, 2024;
Intercheck WEB, 2024)

Second Line Streptomycin Moderate (DrugBank
Clinical API Plugins, 2024)

Moderate (DrugBank Clinical
API Plugins, 2024)

Moderate (DrugBank Clinical
API Plugins, 2024)

Unknown (Drug Interaction
Checker Quickly Check Your
Meds, 2024; Drug
Interactions Checker -
Medscape Drug Reference
Database, 2024; DrugBank
Clinical API Plugins, 2024;
Intercheck WEB, 2024)

Capreomycin Moderate (DrugBank
Clinical API Plugins, 2024)

Moderate (DrugBank Clinical
API Plugins, 2024)

Moderate (DrugBank Clinical
API Plugins, 2024)

Unknown (Drug Interaction
Checker Quickly Check Your
Meds, 2024; Drug
Interactions Checker -
Medscape Drug Reference

(Continued on following page)
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TABLE 2 (Continued) Possible interactions between antituberculous drugs and smoking cessation medications, classified according to severity level.
Major/Serious: highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit. Moderate: moderately clinically
significant. Usually avoid combinations; use it only under special circumstances. Minor: minimally clinically significant. Minimize risk; assess risk and
consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan. Unknown: no interaction information
available.

Treatment
Line

Drug NRT (Ref.) Bupropion (Ref.) Varenicline (Ref.) Cytisine (Ref.)

Database, 2024; DrugBank
Clinical API Plugins, 2024;
Intercheck WEB, 2024)

Amikacin Minor (DrugBank Clinical
API Plugins, 2024)

Moderate (DrugBank Clinical
API Plugins, 2024)

Moderate (DrugBank Clinical
API Plugins, 2024)

Unknown (Drug Interaction
Checker Quickly Check Your
Meds, 2024; Drug
Interactions Checker -
Medscape Drug Reference
Database, 2024; DrugBank
Clinical API Plugins, 2024;
Intercheck WEB, 2024)

Levofloxacin Unknown (DrugBank
Clinical API Plugins, 2024;
Drug Interaction Checker
Quickly Check Your Meds,
2024; Drug Interactions
Checker - Medscape Drug
Reference Database, 2024;
Intercheck WEB, 2024)

Minor (DrugBank Clinical API
Plugins, 2024)/Major (Drug
Interaction Checker Quickly
Check Your Meds, 2024)

Minor (DrugBank Clinical API
Plugins, 2024)

Unknown (Drug Interaction
Checker Quickly Check Your
Meds, 2024; Drug
Interactions Checker -
Medscape Drug Reference
Database, 2024; DrugBank
Clinical API Plugins, 2024;
Intercheck WEB, 2024)

Moxifloxacin Unknown (Drug Interaction
Checker Quickly Check Your
Meds, 2024; Drug
Interactions Checker -
Medscape Drug Reference
Database, 2024; DrugBank
Clinical API Plugins, 2024;
Intercheck WEB, 2024)

Major (Drug Interaction Checker
Quickly Check Your Meds, 2024)

Unknown (Drug Interaction
Checker Quickly Check Your
Meds, 2024; Drug Interactions
Checker - Medscape Drug
Reference Database, 2024;
DrugBank Clinical API Plugins,
2024; Intercheck WEB, 2024)

Unknown (Drug Interaction
Checker Quickly Check Your
Meds, 2024; Drug
Interactions Checker -
Medscape Drug Reference
Database, 2024; DrugBank
Clinical API Plugins, 2024;
Intercheck WEB, 2024)

Linezolid Unknown (Drug Interaction
Checker Quickly Check Your
Meds, 2024; Drug
Interactions Checker -
Medscape Drug Reference
Database, 2024; DrugBank
Clinical API Plugins, 2024;
Intercheck WEB, 2024)

Serious (Drug Interactions
Checker - Medscape Drug
Reference Database, 2024)/Major
(Drug Interaction Checker
Quickly Check Your Meds, 2024;
DrugBank Clinical API Plugins,
2024; Intercheck WEB, 2024)

Unknown (Drug Interaction
Checker Quickly Check Your
Meds, 2024; Drug Interactions
Checker - Medscape Drug
Reference Database, 2024;
DrugBank Clinical API Plugins,
2024; Intercheck WEB, 2024)

Unknown (Drug Interaction
Checker Quickly Check Your
Meds, 2024; Drug
Interactions Checker -
Medscape Drug Reference
Database, 2024; DrugBank
Clinical API Plugins, 2024;
Intercheck WEB, 2024)

Ethionamide Unknown (Drug Interaction
Checker Quickly Check Your
Meds, 2024; Drug
Interactions Checker -
Medscape Drug Reference
Database, 2024; DrugBank
Clinical API Plugins, 2024;
Intercheck WEB, 2024)

Unknown (Drug Interaction
Checker Quickly Check Your
Meds, 2024; Drug Interactions
Checker - Medscape Drug
Reference Database, 2024;
DrugBank Clinical API Plugins,
2024; Intercheck WEB, 2024)

Unknown (Drug Interaction
Checker Quickly Check Your
Meds, 2024; Drug Interactions
Checker - Medscape Drug
Reference Database, 2024;
DrugBank Clinical API Plugins,
2024; Intercheck WEB, 2024)

Unknown (Drug Interaction
Checker Quickly Check Your
Meds, 2024; Drug
Interactions Checker -
Medscape Drug Reference
Database, 2024; DrugBank
Clinical API Plugins, 2024;
Intercheck WEB, 2024)

Clofazimine Unknown (Drug Interaction
Checker Quickly Check Your
Meds, 2024; Drug
Interactions Checker -
Medscape Drug Reference
Database, 2024; DrugBank
Clinical API Plugins, 2024;
Intercheck WEB, 2024)

Unknown (Drug Interaction
Checker Quickly Check Your
Meds, 2024; Drug Interactions
Checker - Medscape Drug
Reference Database, 2024;
DrugBank Clinical API Plugins,
2024; Intercheck WEB, 2024)

Unknown (Drug Interaction
Checker Quickly Check Your
Meds, 2024; Drug Interactions
Checker - Medscape Drug
Reference Database, 2024;
DrugBank Clinical API Plugins,
2024; Intercheck WEB, 2024)

Unknown (Drug Interaction
Checker Quickly Check Your
Meds, 2024; Drug
Interactions Checker -
Medscape Drug Reference
Database, 2024; DrugBank
Clinical API Plugins, 2024;
Intercheck WEB, 2024)

Bedaquiline Unknown (Drug Interaction
Checker Quickly Check Your
Meds, 2024; Drug
Interactions Checker -
Medscape Drug Reference
Database, 2024; DrugBank
Clinical API Plugins, 2024;
Intercheck WEB, 2024)

ModerateDrug Interaction
Checker Quickly Check Your
Meds, 2024)

Unknown (Drug Interaction
Checker Quickly Check Your
Meds, 2024; Drug Interactions
Checker - Medscape Drug
Reference Database, 2024;
DrugBank Clinical API Plugins,
2024; Intercheck WEB, 2024)

Unknown (Drug Interaction
Checker Quickly Check Your
Meds, 2024; Drug
Interactions Checker -
Medscape Drug Reference
Database, 2024; DrugBank
Clinical API Plugins, 2024;
Intercheck WEB, 2024)

(Continued on following page)
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203% and reductions in Cmax and AUC of 39% and 43%
respectively, due to the rifampin-related induction of bupropion
metabolism.

Two digital tools identified the potential interaction between
bupropion and INH. DrugBank.com reports that the risk or severity
of seizure can be increased when bupropion is combined with INH.
Indeed, bupropion carries a dose-dependent risk of seizure further
exacerbated when combined with other medications that can reduce
the seizure threshold. According to Drug.com, combining INH with
other medications known to cause liver toxicity, such as bupropion,
could increase the likelihood of liver injury. INH is subject to
metabolism through the actions of N-acetyltransferase and
CYP2E1. The acetylation process of INH varies genetically and is
generally categorized as either slow or rapid, with slow acetylators
showing a relative deficiency in N-acetyltransferase. While the rate
of acetylation does not significantly impact the drug’s effectiveness,
it may result in elevated levels of INH in the bloodstream and a
higher occurrence of ADRs. Furthermore, INH has been found to
act as an in vitro inhibitor for several isoenzymes, including CYP450
(2C9, 2C19, 2E1, and 3A4). Consequently, concurrent
administration of hepatotoxic medications that are metabolised
via these pathways may result in elevated concentrations of the
concomitant drug, which can potentially culminate in
hepatic injury.

PZA, EMB and levofloxacin have been demonstrated to reduce
the renal clearance rate of bupropion, with the potential observation
of elevated plasma levels. Consequently, this may result in an
escalation of the risk, occurrence, and/or severity of ADRs
associated with bupropion exposure. Conversely, bupropion has
been observed to inhibit the renal elimination of streptomycin,
capreomycin, and amikacin, which could result in elevated serum
concentrations and an augmented risk of ADRs associated with
aminoglycosides (DrugBank Clinical API Plugins, 2024).

Regarding the co-administration of bupropion with linezolid,
four tools indicate an increased risk of serotonergic syndrome
(agitation, mental confusion, cognitive deficits, diaphoresis,
myoclonus, hyperreflexia, hypertension, palpitations, and muscle

rigidity). Therefore, it would be recommended to use the
combination with caution and to monitor the onset of early signs
such as anxiety, confusion, disorientation and, if necessary, to
discontinue drug treatment (Drug Interaction Checker Quickly
Check Your Meds, 2024; Drug Interactions Checker - Medscape
Drug Reference Database, 2024; DrugBank Clinical API Plugins,
2024; Intercheck WEB, 2024).

Finally, co-administration of bedaquiline with bupropion may
cause an increased risk of hepatotoxicity, so it is better to avoid this
association whenever possible, especially in patients who already
have impaired liver function (Drug Interaction Checker Quickly
Check Your Meds, 2024).

Possible interactions between antituberculous drugs and
smoking cessation medications are summarised in Table 2.

Table 3 summarise the role of non-CYP450 proteins involved in
drug metabolism/transport and impact of cigarette smoking.

6 Discussion

To our knowledge this scoping review is the first to
comprehensively explore the intricate relationship between
tobacco smoking, smoking cessation, and TB treatment. Smoking
plays a significant role in accelerating TB progression, worsening
treatment outcomes, and increasing mortality rates. Furthermore,
the impact of tobacco smoke on the enzymatic metabolism of
antituberculous drugs highlights a critical challenge in optimizing
treatment for TB patients who smoke. Smoking cessation, while
beneficial for improving treatment outcomes, presents its own set of
complexities, particularly in adjusting therapeutic regimens as
enzymatic activity normalizes post-cessation. Careful monitoring
of patients during this transition is therefore essential.

Tobacco smoke, particularly through its PAHs, alters the
pharmacokinetics and pharmacodynamics of antituberculous
drugs. By inducing hepatic enzyme activity, tobacco smoke
accelerates drug metabolism, potentially reducing the efficacy of
TB medications. Conversely, smoking cessation reverses this

TABLE 2 (Continued) Possible interactions between antituberculous drugs and smoking cessation medications, classified according to severity level.
Major/Serious: highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit. Moderate: moderately clinically
significant. Usually avoid combinations; use it only under special circumstances. Minor: minimally clinically significant. Minimize risk; assess risk and
consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan. Unknown: no interaction information
available.

Treatment
Line

Drug NRT (Ref.) Bupropion (Ref.) Varenicline (Ref.) Cytisine (Ref.)

Pretomanid Unknown (Drug Interaction
Checker Quickly Check Your
Meds, 2024; Drug
Interactions Checker -
Medscape Drug Reference
Database, 2024; DrugBank
Clinical API Plugins, 2024;
Intercheck WEB, 2024)

Unknown (Drug Interaction
Checker Quickly Check Your
Meds, 2024; Drug Interactions
Checker - Medscape Drug
Reference Database, 2024;
DrugBank Clinical API Plugins,
2024; Intercheck WEB, 2024)

Unknown (Drug Interaction
Checker Quickly Check Your
Meds, 2024; Drug Interactions
Checker - Medscape Drug
Reference Database, 2024;
DrugBank Clinical API Plugins,
2024; Intercheck WEB, 2024)

Unknown (Drug Interaction
Checker Quickly Check Your
Meds, 2024; Drug
Interactions Checker -
Medscape Drug Reference
Database, 2024; DrugBank
Clinical API Plugins, 2024;
Intercheck WEB, 2024)

Delamanid Unknown (Drug Interaction
Checker Quickly Check Your
Meds, 2024; Drug
Interactions Checker -
Medscape Drug Reference
Database, 2024; DrugBank
Clinical API Plugins, 2024;
Intercheck WEB, 2024)

Unknown (Drug Interaction
Checker Quickly Check Your
Meds, 2024; Drug Interactions
Checker - Medscape Drug
Reference Database, 2024;
DrugBank Clinical API Plugins,
2024; Intercheck WEB, 2024)

Unknown (Drug Interaction
Checker Quickly Check Your
Meds, 2024; Drug Interactions
Checker - Medscape Drug
Reference Database, 2024;
DrugBank Clinical API Plugins,
2024; Intercheck WEB, 2024)

Unknown (Drug Interaction
Checker Quickly Check Your
Meds, 2024; Drug
Interactions Checker -
Medscape Drug Reference
Database, 2024; DrugBank
Clinical API Plugins, 2024;
Intercheck WEB, 2024)
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enzyme induction, necessitating tailored drug dosing to maintain
therapeutic effectiveness while minimizing adverse reactions.

Evidence highlights the importance of integrated care strategies
that combine TB treatment with smoking cessation efforts. Quitting
smoking not only supports better TB outcomes but also reduces the
risk of chronic conditions like cardiovascular disease and COPD.
However, careful management of potential DDIs between anti-TB
therapies and smoking cessation medications is essential to ensure
both safety and efficacy. Monitoring interactions is critical when
prescribing smoking cessation therapies alongside TB medications.
Specifically, avoiding combinations such as bupropion with linezolid
or bedaquiline is recommended due to the risk of serotonin
syndrome or hepatotoxicity.

The present work has certain limitations, firstly because it is
based on data from the existing literature, which appears to be
fragmentary and inconsistent. Despite a careful search and selection
of sources, the evidence often comes from works that were not
designed to explore the field of drug-drug interactions and, in
particular, with tobacco combustion compounds. Additionally,
there is a paucity of contemporary studies that seek to quantify
the metabolisms of specific molecules and the extent of the impact of
changes in enzyme activity induced by cigarette smoke. A
comprehensive evaluation of the individual associations, based on
pharmacokinetic studies that also consider individual variability, is
still a long way off.

Given the complexity of these interactions, a patient-centered
approach is essential. This includes assessing individual smoking
status, metabolic responses, and drug regimens to tailor treatment
effectively. Collaborative care involving TB specialists and smoking
cessation experts can enhance personalization, improve adherence,
and minimize ADRs.

The overlap of high TB prevalence and smoking rates,
especially in LMICs, highlights the need for targeted public
health interventions. Policies that integrate smoking cessation

into TB control programs could significantly reduce the global TB
burden. Routine incorporation of smoking cessation into TB care
has the potential to enhance treatment adherence, reduce drug
resistance, and improve patient outcomes. Global frameworks
already exist but are often implemented in silos. The WHO’s
MPOWER package offers a set of evidence-based tobacco control
measures (Monitor tobacco use, Protect people from smoke,
Offer help to quit, Warn about dangers, Enforce bans on
advertising, and Raise taxes) that can be synergistically aligned
with the WHO’s End TB Strategy. For example, raising tobacco
taxes not only reduces smoking prevalence but can also generate
revenue to fund TB control programs. Similarly, integrating
“Offer help to quit” services directly into TB clinics is a high-
impact intervention. However, policy implementation in LMICs
faces substantial barriers, including limited resources, and weak
health systems. Successful country models, such as integrating
brief tobacco interventions into national TB programs,
demonstrate that these challenges can be overcome with
political commitment and tailored strategies (WHO Report on
the Global Tobacco Epidemic, 2019; The End TB Strategy, 2025;
A WHO the Union Monograph on TB and Tobacco
Control, 2005).

Despite these promising directions, significant knowledge gaps
remain. Understanding the long-term effects of smoking cessation
on drug metabolism and TB outcomes requires further
investigation. Future research should focus on elucidating the
specific mechanisms of DDIs, including the roles of PAHs and
nicotine in enzyme modulation. Clinical trials are needed to develop
optimal dosing strategies during smoking cessation for TB patients,
particularly in relation to newer antituberculous drugs. Additionally,
the influence of genetic polymorphisms on enzyme activity among
TB smokers and quitters warrants exploration.

A concerted effort to integrate smoking cessation with TB care
offers an opportunity to optimize treatment outcomes, reduce

TABLE 3 Role of non-CYP450 proteins involved in drug metabolism/transport and impact of cigarette smoking on their activity.

Protein/Enzyme Family Main Function Relevant Drugs Impact of Cigarette
Smoking

Arylamine N-acetyltransferase 2
(NAT2)

Acetylation of drugs and xenobiotics Isoniazid Active smokers may have higher
NAT2 activity, leading to faster INH

metabolism

Uridine Diphosphate-
glucuronosyltransferases (UGTs)

Phase II conjugation (glucuronidation) of
drugs and their metabolites

Moxifloxacin, Levofloxacin (metabolites),
Bupropion (metabolites)

The impact of PAHs from tobacco smoke
is described as complex and unclear, with

potential effects varying between
different UGT isoforms

Flavin-containing monooxygenase 3
(FMO3)

Oxygenation and activation of certain
drugs

Ethionamide -

Amidase Hydrolysis of amide bounds in prodrugs to
their active forms

Isoniazid, Pyrazinamide -

Xanthine Oxidase (XO) Oxidation of PZA’s active metabolite (PA)
to a hepatotoxic form (5-OH-PA)

Pyrazinamide -

Aldehyde Dehydrogenase Oxidation of aldehydes Ethambutol -

Transporter Proteins (e.g., OCTs,
P-gp, MRP2, OAT3)

Mediate drug influx and efflux, affecting
absorption, distribution, and renal/biliary

excretion

Nicotine, Varenicline, Pretomanid (as
OAT3 inhibitor), Rifampin (as P-gp/

MRP2 inducer)

Nicotine itself interferes with Organic
Cation Transporters (OCTs) in vitro.
Competition for renal transporters can
occur between drugs, potentially altering

clearance
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healthcare burdens, and enhance the quality of life for affected
populations. These efforts should be prioritized in public health
strategies to combat the dual burden of TB and tobacco use
effectively.
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