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Our daily diet often includes food additives found in numerous processed foods.
Growing concerns about the toxicity and potential health risks of synthetic dyes
have drawn increased attention from researchers and regulatory authorities. This
study examines the embryotoxic effects of Quinoline Yellow (QY), a synthetic dye
commonly used as an additive, using both in silico and in vivo models.
Computational studies on QY were conducted using QSAR (Quantitative
Structure Activity Relations) analysis to identify the major toxicological
endpoints. In silico predictions indicated clastogenic and reproductive
toxicities, interaction with androgen and estrogen receptors, and an elevated
propensity for skin and respiratory allergies. Danio rerio (zebrafish) embryos were
exposed to various concentrations of QY (0.005–2 mg·mL−1) over 48, 72 and 96-
h periods. Lethal effects were observed at concentrations above 0.5 mg mL−1,
with a median lethal concentration LC50 of 0.64 mg mL−1. Exposure to QY
(0.5–2 mg·mL−1) resulted in pericardial edema, swollen and necrosed yolk sac,
blood stasis and reduced eye size. The study provides direct evidence for the
developmental toxicity and teratogenic potential of QY. To enhance the analysis,
attention-based Convolutional Neural Networks (CNN) and Transfer Learning
(TL) were employed to discern morphological alterations in zebrafish embryos
exposed and not exposed to QY. Automating the analysis and classification of
zebrafish embryo images diminishes the workload and time burden on biological
experts while simultaneously enhancing the reproducibility and objectivity of the
classification. The developed neural network further corroborates the evidence
suggesting QY’s potential toxicity.
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1 Introduction

Recent epidemiological studies have shown a strong correlation between consuming
Ultra-Processed Foods (UPFs) and an increased risk of developing various chronic diseases
(Jardim et al., 2021). The use of artificial dyes in the industry remains a topic of considerable
controversy and debate among both scientists and consumers (Rambler et al., 2022;
Amchova et al., 2015; Debras et al., 2022). While food additives at acceptable levels are
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deemed safe for human consumption, their widespread presence
and conflicting data suggest the potential for toxicological risks to
both humans and marine organisms (Tkaczyk et al., 2020; Li et al.,
2024). The ADI, expressed in mg/kg/day, represents the maximum
amount of a substance a person can ingest daily throughout their
lifetime without causing harm. Estimating the adequate ADI level is
challenging, especially since many consumed products contain the
same additives. It is widely acknowledged that children are the
demographic most at risk of exceeding the recommended daily
intake of food additives. Numerous food additives are found in
products that are particularly popular among children, such as
sweets, flavoured drinks, ice cream, sausages, and fast food.
Furthermore, there is a lack of conclusive evidence regarding the
impact of food additives, environmental contaminants, cosmetic
ingredients, and pharmaceuticals during the prenatal period and
early childhood. Due to numerous reports of adverse effects on
consumers, the list of synthetic colours is being systematically
updated (Amchova et al., 2015; Østergaard and Knudsen, 1998;
Soni et al., 2024). On the other hand, data on the exposure of aquatic
organisms to colourings is lacking in the world literature. Children
are at greater risk of developing chronic diseases resulting from early
exposure to environmental substances. However, with access to
advanced toxicity prediction methods and new test models
(zebrafish), safety studies of synthetic dyes are warranted.

QY belongs to the group of quinophthalone dyes. Commercially
available as a mixture of monosulphonic, disulphonic, and
trisulphonic acid derivatives, QY is used in confectionery,

isotonic, and carbonated drinks. It can cause allergies and
hyperactivity in children, as well as potentially be mutagenic and
genotoxic (Chequer et al., 2015; Chequer et al., 2017; McCann et al.,
2007; Scientifc Opinion on the re-evaluation of Quinoline Yellow,
2009). On the other hand, a study conducted in rats where QY was
administered subcutaneously did not demonstrate evidence of
carcinogenicity. The available in vivo oldest evidence does not
indicate a genotoxic effect of quinoline yellow. Several methods
have been used in in vitro and in vivo testing, including bacterial
mutation assays, the L5178Ymouse lymphoma genemutation assay,
and the NMRI mouse micronucleus assay (Scientifc Opinion on the
re-evaluation of Quinoline Yellow, 2009). In 2009, the European
Food Safety Authority (EFSA, 2025; Scientifc Opinion on the re-
evaluation of Quinoline Yellow, 2009) panel reduced the Acceptable
Daily Intake (ADI) of QY from 10 mg/kg/b.w. to 0.5 mg/kg/b.w. A
study examining the impact of the combination of food colours
known as ‘Southampton’ (Tartrazine, Quinoline Yellow, Sunset
Yellow, Ponceau 4R, Allura Red AC, Carmoisine) and Sodium
Benzoate revealed an augmentation in behavioural activity among
children (McCann et al., 2007). Nevertheless, there is a certain
degree of ambiguity in interpreting the outcomes of these
subsequent tests when evaluating the safety of quinoline yellow.
This discrepancy can be attributed to the fact that the studies above
used a test substance containing a high proportion of the
monosulphonate component, ranging from 85% to 91%. In
contrast, the specifications for QY intended for food use indicate
that disulphonate is the primary component (over 80%), with
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monosulphonate present only in minimal amounts (15%). These
compositional differences could significantly affect the safety
assessment, highlighting the need for further research. Recent
studies by Macioszek and Kononowicz (Macioszek et al., 2004)
suggest that QY may have clastogenic and/or mutagenic properties,
potentially causing DNA damage. An additional concern is the
widespread use of QY in pharmaceuticals and cosmetic products.
Although regulatory guidelines set permissible levels of synthetic
dyes in individual products, they often fail to account for cumulative
exposure, including that originating from environmental sources.

The Danio rerio has been demonstrated as an invaluable tool for
the expedient screening of chemical toxicity, as it identifies
numerous phenotypic abnormalities (McColl et al., 2011).
Furthermore, Danio rerio retains key vertebrate traits such as
high fecundity, rapid development, and translucent juveniles, all
of which contribute to the speed and ease of experimentation
compared to mammalian models. Despite specific anatomical and
physiological differences characteristic of aquatic species, Danio
rerio possesses most organs analogous in structure and function
to those of humans (MacRae and Peterson, 2015).

Nevertheless, the primary challenge remains in the labour-
intensive morphometric analysis of the acquired microscopic
images, which limits the attainment of maximum throughput.
The application of machine learning tools holds the potential to
facilitate the development of models capable of distinguishing
between the morphological characteristics of diverse organisms,
including Danio rerio (Lin et al., 2018). Initial studies
concentrated on identifying specific embryonic phenotypes, such
as mortality and developmental stages. However, processing large
datasets and distinguishing between numerous sublethal
morphological abnormalities continue to pose significant
challenges. Recent literature on Danio rerio has primarily focused
on specific organs (Dong et al., 2023). Furthermore, researchers are
interested in quantitative measurements, such as body length and
curvature. Consequently, it is crucial to develop tools that can
simultaneously capture the most prevalent phenotypes. The
application of machine learning to replace manual measurements
would undoubtedly enhance the applicability and efficiency of the
zebrafish model. Convolutional Neural Networks (CNNs) are the
example of such model commonly employed for image recognition
due to their ability to efficiently capture spatial hierarchies in images
through convolutional layers that detect edges, textures, and
patterns. The CNN architecture diminishes the necessity for
manual feature extraction, enabling the network to learn
pertinent features directly from raw images. Moreover, CNNs’
capacity to handle extensive volumes of high-dimensional data
renders them highly effective for intricate image classification
tasks (Gu et al., 2018; Li et al., 2022).

Animal tests’ high costs and time-intensive nature pose
significant challenges to evaluating chemicals on domestic and
international markets. In silico techniques, such as computer
modelling and analysis, offer an alternative by predicting the
toxicity of chemicals based on correlations between molecular
properties and biological activity. The primary advantage of in
silico methods lies in their utility during early research stages.
Virtual screening of molecular libraries facilitates the rapid
identification of promising structures from thousands of potential
candidates. For instance, these methods can eliminate molecules

with specific structural alerts (toxicophores) that may indicate a
particular toxic effect. In silico techniques are distinguished by their
efficiency, speed, low cost, and precision, making them particularly
valuable prior to synthesising chemical compounds, including
potential medicinal substances (Segall and Barber, 2014). In
recent years, numerous models for toxicity prediction have been
developed to support risk assessment, along with open-access
websites that leverage machine learning and structural alerts, all
of which are freely available (Cheng et al., 2012). Quantitative
Structure-Activity Relationship (QSAR) and Quantitative
Structure–Toxicity Relationship (QSTR) models, which predict
biological and/or physicochemical properties from the structural
parameters of a chemical compound, constitute a well-established
approach to chemical data analysis. They are particularly valuable
for predicting various toxicity indices, including mutagenicity,
carcinogenicity, and acute toxicity (Kar and Leszczynski, 2019).

This study investigated the potentially toxic effects of QY in a
model of Danio rerio (zebrafish). The scope of the work included
conducting an experiment using different concentrations of QY,
assessing survival, embryo morphology, and possible developmental
defects. In silico analysis of QY toxicity was also conducted using the
ADMET Predictor software. Additionally, a machine learning
protocol was established to analyze toxic endpoints in zebrafish
embryos treated with QY.

2 Materials and methods

2.1 Materials

All solvents and inorganic chemicals used in this study were of
analytical grade. The standard of QY (CAS number 8004-92-0) and
tricain (CAS number 886-86-2) were purchased from Sigma Aldrich
(Hoeilaart, Belgium). Millipore DirectQ UV3 system (Darmstadt,
Germany) was used as the source of water (R > 18 MΩ cm). The
zebrafish embryos (AB TL line) were sourced from the International
Institute of Molecular and Cell Biology in Warsaw and maintained
in E3 medium (concentrate of NaCl, KCl, CaCl2, MgSO4). Embryo
staging was conducted in accordance with the criteria established by
Kimmel et al. (1995).

2.2 Methods

2.2.1 Procedure for toxicity testing
Zebrafish embryos (AB × TL) were obtained from the

International Institute of Molecular and Cell Biology in Warsaw
and maintained in E3 medium. The embryos were identified
according to Kimmel et al. (1995), and only the fertilized ones
that showed the process of cell division were selected. At 6 h post
fertilization (hpf), the embryos were placed on 96-well plates (one
embryo per well, twenty for one group) with previously. The
embryos were treated with QY at concentrations ranging from
0.005, 0.02, 0.1, 0.5, 0.75, 1, 1.5, 2 mg mL−1 for 96 h post-
fertilisation (hpf), and the resulting morphological changes were
assessed by the guidelines outlined in OECD 236 (OECD, 2013).
Observations were made at 24-h intervals up to 96 hpf. The
experiment was conducted in triplicate under identical
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conditions. Currently, the European Commission Directive 2010/
63/EU permits experimentation in fish embryos at the earliest life
stages without being regulated as animal experiments; zebrafish are
considered models in vitro until 120 hpf [http://data.europa.eu/eli/
dir/2010/63/2019-06-26 (EFSA, 2025)]. The plates were incubated at
a constant temperature of 27°C ± 1°C with a light-dark cycle (12 h/
12 h) throughout the study period. The embryos were analyzed
under a microscope (Olympus CKX53), and images were captured
using an Olympus EP50 camera (CAM-EP50). The length, width of
embryos and eye size were measured using EPview1.3 software
(Olympus, Tokyo, Japan).) at 96 hpf. A tricaine (0.3%) solution was
applied at the end of the experiment for euthanasia.

2.2.2 In silico studies using the software
ADMET Predictor

A comprehensive measure of toxicological endpoints was
obtained through the calculation using the software ADMET
Predictor™ version 10.1 (Simulation Plus, Lancaster, CA) and
described in the Results section.

2.2.3 Statistical analysis
Statistically significant differences between groups were

evaluated using an ANOVA followed by the Dunnett post hoc
test or non-parametric Kruskal-Wallis test. Statistical significance
was defined as p < 0.05. Data were presented as mean ± SEM. Data
analysis was with GraphPad Prism software version 8 (GraphPad
Software, San Diego, United States).

2.3 Classifying phenotypes with
neural networks

2.3.1 The designed classification architecture
To classify the acquired images of embryos’ phenotypes, we designed

three versions of a CNN architecture, each of which was constructed by
fine-tuning a pretrained base model and incorporating the Convolutional
Block Attention Module (CBAM) mechanism (Figure 1). For the base
models, we selected theResNet50,VGG16, andXception neural networks,
each of which was sourced from the Keras library. ResNet50 is a deep

learning model distinguished by its 50-layer architecture comprising
convolutional layers with ReLU activation units, pooling layers, and
batch normalisation layers (Tensorflow.keras.applications.resnet50,
2020). The incorporation of residual blocks in ResNet50 improves
classification accuracy by addressing the vanishing gradient problem, a
prevalent issue in deep neural networks. ResNet50 has been extensively
applied in tasks such as image classification, object detection, and
transfer learning.

VGG16 is another base model selected by us for the experiments.
VGG16 was previously used in the experiments classifying Danio
rerio embryos’ phenotypes (Tyagi et al., 2018).VGG16 consists of
13 convolutional layers, 3 fully connected layers, and 5 max pooling
layers (Simonyan and Zisserman, 2014). The base VGG16 model
was trained over one million images from the ImageNet dataset. The
experiments presented by Tyagi et al. (2018) suggest that
VGG16 network can provide good classification results when
fine-tuned with the acquired images of Danio rerio phenotypes if
a relatively small number of classes (e.g., five) was used in
classification.

Finally, as the third base model tested in the experiments, we
selected the Xception model (Chollet, 2017). The model’s
architecture consists of 36 convolutional layers structured into
14 modules, all but first and last having linear residual
connections around them.

Subsequently, in the designed architecture, we integrated the
base model with the CBAM attention mechanism. CBAM applies
attention in two stages:

• Channel attention aims to enhance the information conveyed
by the channels of each convolutional layer by assigning a
weight to each channel, which is learned during the model’s
training process. Higher weights indicate greater importance
of the corresponding channels.

• Spatial attention mechanisms concentrate on the most
significant spatial locations within each channel. For our
data, the spatial attention mechanism aims to (i) enhance
the detection of blood stasis by focussing on blood clots and
(ii) minimise noise in the input images by emphasising regions
containing actual embryos.

FIGURE 1
Designed architecture of the neural network.
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Following the implementation of CBAM, we incorporated two
additional intricate layers: global average pooling as well as a dense
and dropout layer. The dense layer comprises 512 neurons, and the
dropout rate is set to 0.5. These concluding layers are employed to
reduce the network’s complexity and mitigate overfitting, thereby
augmenting the model’s ability to generalise effectively.

2.3.2 Neural Network’s training procedure
In order to train the network, we applied the

following procedure:

1. The model is trained using the images of embryos provided by
Jeanray et al. (2015). To this end, we utilised the learning
component of the dataset described therein. For the purpose of
our experiments, we selected images from five classes: Dead,
Edema, Blood stasis, Necrosed yolk sac, and Normal. This
selection corresponds to the categorization of embryos in our
experiments on QY exposure.

2. Subsequently, the designed model is fine-tuned with the above-
mentioned selected data of Jeanray et al. (2015). This fine-
tuning process adjusts the weights of one-third of the final
layers of the base model, as well as all other layers added by us.

3. Finally, the model undergoes a second round of fine-tuning
using data from our experiments. This time, fine-tuning is
applied to all layers of the network, including both the base
model layers and the additional layers integrated into the
architecture.

We provide the exact learning parameters of the model in
Table 2. We opted to utilise the Jeanray et al. (2015) dataset in
the training of ourmodel for two primary reasons: (i) to augment the
classification accuracy of our model, as their images exhibit a high
level of structure and quality; and (ii) due to the limited size of our
own collected dataset of Danio rerio.

2.3.3 Data augumentation
The data used to train the designed architecture are augmented

by applying two operations:

1. To enhance the recognition of blood stasis, we multiplied the
red channel values by 1.5 to increase the intensity of the
red color.

2. We added further augmentation, including image rotation,
zoom, horizontal flipping, and brightness adjustments, using
the ImageDataGenerator object from the Keras library.

2.3.4 Preparation of datasets used for the
Network’s training

As previously outlined, the network’s training process employed the
dataset provided by Jeanray et al. (2015) and our own collection of
images, which were divided into training (learning) and testing
segments. As mentioned earlier, from the training images categorized
into ten classes by Jeanray et al., we selected images fromonly five classes.
Consequently, the training data comprises a total of 658 images obtained
by us from Jeanray et al. (2015) and our collected 137 images. The
histograms presented in Figures 2, 3 respectively depict the count of
images belonging to each class for the selected dataset of Jeanray et al.
(2015) and the training dataset of our collected images.

To evaluate the model’s performance, we additionally collected
96 images from the experiments with QY dosing. Each image is
assigned a decision class (representing the final embryo state, such as
Edema or Blood stasis) that is utilized in assessing the classification
accuracy of the developed model.

2.3.5 Code and computer specifications
The Python programming language was employed in the

development of this project, leveraging the extensive ecosystem of
data manipulation tools and libraries available within it. The
machine learning model development process was orchestrated
using Keras, the widely adopted machine learning framework.
Keras empowers users to construct sophisticated deep neural
networks that incorporate transfer learning and attention
mechanisms. All the code used in this project is available at:
https://github.com/piotr-maciag/nns_toxic_add.

3 Results

3.1 Zebrafish experiments

3.1.1 Body width in lateral position of
zebrafish embryos

The width of the embryo body in a lateral position was
quantified at 96 hpf. The measurement was taken from the
dorsal strut to the end of the abdomen to ensure repeatability
and illustrate the yolk sac swelling (Figures 4, 5). The resulting
data were subjected to statistical analysis. A statistically significant
difference was observed between the control group and the group
exposed to QY concentrations of 0.5 mg·mL−1, and 0.75 mg·mL−1

(p < 0.0001) (Figure 4).

3.1.2 Blood stasis
Blood stasis was an interesting parameter observed during the

72-h experiment (Figures 6B,C). This appeared in different parts of
the larvae’s bodies. They usually accompany a lack of circulation
while preserving cardiac activity.

3.1.3 Pericardial edema
Pericardial edema was observed at 72 hpf. Its concentration

ranged from 0.5 to 2 mg·mL−1. In each case, it was accompanied by
swollen and necrosed yolk sac edema (Figure 6C). These changes
were not observed in controls and concentrations of 0.02 mg mL-1

and 0.1 mg mL-1.

3.1.4 Mortality rate in zebrafish embryo
Lethal effects were observed, namely, coagulation and absence of

heartbeat which were associated with concentrations exceeding
0.5 mg·mL−1. Coagulation was typically observed as early as
72 hpf (Figure 6A), whereas cessation of the heartbeat was only
apparent at 96 hpf, often following circulatory collapse observed at
72 hpf. In the control group, mortality was 0%, while in all groups
exposed to the substance at concentrations of 0.5 mg/mL and above,
it increased, exceeding 50% at concentrations higher than
0.75 mg mL-1 (Figure 7). In addition, a difference in cause of
death can be observed in the concentration range 0.5 mg·mL−1

and above 2 mg·mL−1 (Figure 8).
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3.1.5 Eye size on zebrafish embryos
Eye size was measured at 72 hpf. The following day,

measurement at 96 hpf could not be performed due to numerous
coagulations. In addition to more general phenotypes, QY also
caused microphthalmia (small eyes) (Figure 9). A statistically
significant difference was observed between the control group
and the groups exposed to QY at concentrations of 0.75 mg/mL

(*p < 0.05), 1 mg/mL and 1.5 mg/mL (***p < 0.001), and 2 mg/mL
(**p < 0.0001).

3.1.6 Calculation of LC50
Given that the mortality rate exceeded 50%, it was decided that

the lethal concentration value (LC50) should be calculated using the
probit method. A straight line was plotted after converting the

FIGURE 2
The number of images in each class selected for the experiments of the original training set of (Jeanray et al., 2015)

FIGURE 3
The number of images in each class of our collected dataset.
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concentration to a logarithmic value and fitting the probit to the
mortality value. The LC50 value was then calculated from the
equation of the straight line for probit 5 (y = 5), which indicates
a 50% mortality rate (LC50 = 0,64 mg·mL−1). To confirm the
LC50 result obtained by the probit method, an analysis was
conducted in the CompuSyn software (CompuSyn Inc., Paramus,
US). The calculated value in the program was also
0.64 mg·mL−1 (Figure 10).

3.2 Prediction of quinoline yellow toxicity
using in silico studies ADMET predictor

A toxicity study was initiated with an analysis conducted using
ADMET Predictor, a machine learning platform designed explicitly
for ADMET modelling. This platform is equipped with advanced
data analysis capabilities and compound metabolism prediction
functionalities (https://www.simulations-plus.com/software/
admetpredictor/toxicity/) (Toxicity Module, 2025). Furthermore,
ADMET Predictor is a predictive tool for detecting human
toxicity parameters, including carcinogenic, cardiotoxic, and
hepatotoxic effects. It enables the prediction of developmental
toxicity and mutagenicity of compounds. In silico studies, a high
probability of QY inducing skin and respiratory sensitisation was
demonstrated in a rat and mouse model. Based on its structural
alerts and physicochemical properties, the compound QY is
classified as toxic, in accordance with established predictive
toxicology frameworks. The murine Local Lymph Node Assay
(LLNA), a validated and reproducible method for assessing the
relative potency of chemical skin sensitizers, was employed in the
present study. Additionally, a qualitative assessment of respiratory
sensitization potential was conducted using a rat model, with the
results summarized in Table 1. Reproductive toxicity was evaluated

using standardized endpoints and is also presented in Table 1. The
term ‘reproductive toxicity’ refers to any factor that disrupts an
organism’s reproductive capabilities. This encompasses a range of
adverse effects, including damage to reproductive organs,
behavioural changes, infertility and impaired offspring
development, both during and after gestation. In this study, the
ADMET Predictor utilised data from the FDA/TETRIS database,
which was initially sourced from the literature. Additionally,
clastogenicity and mutagenicity (MUT) studies were conducted,
based on the calculation of chromosomal aberrations (Chrom_
Aberr) and the prediction of Ames test results (Table 1).

The mutagenicity models were derived from the Carcinogenic
Chemicals Database (CPDB). The ten models (MUTs) were
employed individually to assess the predicted mutagenicity of five
Salmonella typhimurium strains with microsomal activation (MUT
m97 + 1537; MUT m98; MUT m100; MUT m102+wp2 and MUT
m1535) and without microsomal activation (MUT 97 + 1537; MUT
98; MUT 100; MUT 102+wp2 and MUT 1535). QY showed
predictable mutagenicity only for S. typhimurium strains
TA97 and/or TA1537, while it was not found for other strains
(Table 1). An artificial neural network ensemble model named
provided by ADMET Predictor is used to assess the clastogenic
potential of QY (Table 1). The parameters related to liver toxicity
were found to be within an acceptable range, with no discernible
impact on the activity of alkyl phosphatase (AlkPhos), lactate
dehydrogenase (LDH), aspartate transaminase (AST) and alanine
transaminase (ALT). The results of the analyses conducted in
ADMET Predictor indicate that QY may induce an increase in γ-
glutamyl transferase activity (GGT) (Table 1). Another parameter
was related to endocrine disruption. The objective was to ascertain
whether the molecule would exhibit a discernible affinity for the
estrogen receptor through utilising two neural network models. A
toxic result indicates the presence of a detectable affinity for the
receptor. The Estro_Filter model is a second model that predicts the
degree of binding of a compound to the oestrogen receptor.
Similarly, a neural network model (Andro_Filter) for the
androgen receptor was developed. Qualitative estimates of
androgen and oestrogen receptor toxicity in rats for QY are
presented in Table 1. The model analysing the structure of QY
predicts that it can compete with sex hormones to inhibit and
interact with oestrogen and/or androgen receptors, potentially
disrupting endocrine system signalling. This disruption can block
the normal flow of hormone signals and lead to toxicity (Table 1).

3.3 Results of image classification with
designed neural network’s architecture

The designed neural network model was evaluated in the
experiments described below. Firstly, we describe the learning
parameters used in the model’s training process. The learning
parameters specified in Table 2 were determined through
meticulous preliminary experiments. Specifically, each training
dataset was partitioned into actual training and validation sets in
an 8:2 ratio. During each training phase, the batch size was set to
16 images. Early stopping was implemented in every training phase,
with the maximum number of training epochs set to 100. The initial
learning rate was progressively reduced during the training phases.

FIGURE 4
Effect of exposure of embryos to concentrations of QY in the
range 0.02–0.75 mg·mL−1 on the body width of Danio rerio [µm], E3 -
negative control, **** significantly different from E3 (p < 0.0001),
nonparametric Kruskal-Wallis test, ±SEM, n = 20.
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The early stopping condition was configured to reduce the learning
rate by a factor of 0.5 if the validation loss did not exhibit an
improvement for five consecutive epochs, with a minimum learning
rate capped at 1e-6.

To evaluate the performance of the designed architecture, we
employed several metrics. The final condition of an embryo can
often be described by multiple states (e.g., Edema and Blood Stasis).
In multi-class classification, the model frequently outputs more than
one decision class along with their associated probabilities. To assess
classification quality, we utilized the concepts of Top-1, Top-2, and
Top-3 predicted classes:

• Top-1 evaluation selects the class with the highest predicted
probability as the model’s output for evaluation.

• Top-2 and Top-3 evaluations determine a prediction as
correct if the actual class is among the top 2 or top
3 predicted classes, respectively.

To assess the classification performance, we employed four
metrics: Precision, Recall, Accuracy, and F1 Score. The respective
formulas are presented below. These metrics are reported separately
for evaluations of the Top-1, Top-2, and Top-3 predictions for each
base model (Tables 3–5). As can be noted from the tables, the
ResNet50 based model tends to provide the best classification
results. Furthermore, confusion matrices are presented for the
Top-1, Top-2, and Top-3 evaluations for the ResNet50 base
model, which yielded the most favorable classification outcomes
(Figures 11–13).

FIGURE 5
Embryo in lateral position at 96 hpf; (A) control E3; (B) QY - 0.02 mg·mL−1; (C) QY -0.1 mg·mL−1; (D) QY - 0.5 mg·mL−1.
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Precision � True Positives

True Positives + False Positives

Recall � True Positivies

True Positives + FalseNegatives

Accuracy � True Positives + TrueNegatives

TotalNumber of Images in Test Set

F1 � 2 ×
Precision × Recall

Precision + Recall

The results demonstrate that the proposed model (especially
when the ResNet50 based model was used) achieves very strong
classification performance for the Dead and Normal decision classes
across all three evaluation types. For the classes Blood stasis,
Necrosed Yolk Sac, and Edema, the model performs significantly
better in the Top-2 and Top-3 evaluations than in Top-1 results.
This can be attributed to the model’s tendency to consider multiple
states as applicable, which aligns with the inherent overlap in these
conditions. Figures 11–13 illustrate the confusion matrices for the

Top-1, Top-2, and Top-3 evaluations using the ResNet50 based
model, respectively. The examples of predictions of classes with the
model are shown in Figure 14.

4 Discussion

In silico predictions based on the structures of QY indicated that
the compound may cause endocrine disruption, chromosomal
aberrations, reproductive toxicity and mutagenic effects in the
Ames test, as well as skin and respiratory sensitisation in animal
models. Furthermore, no hepatotoxic effects were observed,
although elevated γ-glutamyl transferase levels were noted in the
presence of QY. In a study conducted by Damayanti et al. (2015), the
researchers employed in silico methods to predict the acute toxicity
(LD50), mutagenicity, carcinogenicity, reproductive toxicity,
chronic toxicity (NOEL), metabolite toxicity for synthetic
additives that act as antioxidants. In a separate study,

FIGURE 6
(A) coagulation at 72 hpf (2 mg·mL−1), (B) blood stasis at 72 hpf (0.5 mg·mL−1), (C) blood stasis, swollen and necrosed yolk sac, pericardial edema at
96 hpf (0.5 mg·mL−1).
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butylhydroxytoluene (BHT) was employed as a case study to
examine the efficacy of computational techniques, including
reverse screening and molecular docking, in identifying protein-
ligand interactions of artificial additives based on their toxicological
effects (Tortosa et al., 2020). In silico analyses can be employed to
ascertain the characteristics of synthetic additives and to examine
their functional mechanisms or potential adverse effects. It is worthy
of note that this may be relevant in cases where experimental studies
are clearly lacking, as is the case with BHT. In the search for
xenoestrogens in synthetic additives, an integrated in silico and
in vitro approach has been employed, as outlined in (Amadasi et al.,
2009). In recent years, there has been a notable increase in the
number of studies examining the toxic effects of food additives, with
the brindle danio serving as a model organism in many of these
investigations. The toxic effects of food additives in the zebrafish
model have been found to be primarily manifested as dose-
dependent developmental toxicity. The findings of the Sarmah
et al. (2020) analysis demonstrate the developmental toxicity of
the synthetic antioxidant BHT. Other studies employing the
zebrafish model have indicated that exposure to sodium
dehydroacetate (DHA-S), an approved preservative commonly
added to processed foods, may represent a potential
cardiovascular risk factor. In a comprehensive evaluation of the
adverse effects of propylparaben and methylparaben on the early
developmental stages of Bereketoglu and Pradhan (2019) observed a
range of abnormalities, including spine and pigmentation defects,
pericardial edema and reproductive toxicity. Furthermore, the
altered expression of the androgen receptor (AR) and estrogen
receptor 2 alpha (ESR2a) indicated anti-androgenic and
estrogenic effects of parabens in zebrafish.

Synthetic dyes are frequently employed as colourings,
particularly in confectionery products. Consequently, it can be
hypothesised that they may have more adverse health effects in
children than in adults. In view of the toxicity of azo dyes, EU
countries regularly undertake reviews and revisions of their ADI
values. The developmental toxicity of four azo dyes, including
Tartrazine, Sunset Yellow, Amaranth Red and Allura Red, has
been evaluated using zebrafish embryos. At concentration levels
of 5–50 mM, it has been demonstrated that azo dyes can impede the

FIGURE 7
Concentration-dependent mortality of Danio rerio at 96 hpf and
E3 (negative control), ±SEM, n = 20.

FIGURE 8
Comparison of causes of death as a percentage [%] over a range
of QY concentrations from 0.5 mg·mL−1 to 2 mg·mL−1.

FIGURE 9
Effect of embryo exposure to QY concentrations in the range
0.02–2 mg·mL−1 on Danio rerio eye size [µm], E3 - negative control,
statistically significant differences *p < 0.05, ***p < 0.001, ****p <
0.0001, (Welsh’s ANOVA, [Dunnett’s post hoc test]), ±SEM,
n = 20.

FIGURE 10
Plot of the dependence of mortality (Fa) on quinoline yellow (QY)
concentration (dose).
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process of leaving the chorion and induce developmental
abnormalities, including cardiac edema, a slowed heart rate, a
swollen yolk follicle, a curvature of the spine and a tail
deformity. The embryos demonstrated complete lethality at
100 mM of the analysed azo dyes. Conversely, impediments to
the embryos’ departure from the chorion and aberrant
developmental outcomes were observed at concentrations
exceeding the ADI (Jiang et al., 2020). The dose-dependent toxic
effects of the caramel colouring agent E150d on the embryos of
zebrafish included disruption of chorion exit, survival, phenotype,
heartbeat, and swimming ability, as well as damage to skeletal
muscle and the pericardial cavity. These effects were observed at
varying doses of the food dye sulphite ammonia caramel (Capriello
et al., 2021; Hou et al., 2023).

The findings of the present study indicate that QY induces lethal
alterations in embryos of the zebrafish (Danio rerio). The two
endpoints observed at the 96-h exposure period were coagulation
and the absence of a heartbeat. Embryos exposed to a QY solution at
concentrations of 0.1 mg·mL−1 and above exhibited a higher
mortality rate. At a concentration of 0.5 mg·mL−1 mg, the
survival rate was 46.47% for embryos. The LC50 parameter value
was found to be 0.64 mg·mL−1. In a study conducted by Duy-Thanh
et al. (2022), the embryotoxic and teratogenic effects of QY were
analysed using a zebrafish model. The mortality data yielded
divergent results from those of the present study. The survival
rate remained above 90% up to a concentration of 0.5 mg·mL−1.
The authors of the publication report that the median lethal
concentration level was 6.89 mg·mL−1. Joshi and Katti (2018)
conducted embryotoxicity studies using the zebrafish model to
assess the toxicity of Tartrazine, a compound belonging to the
azo-structured chemical class. An LC50 value of 15.7 mg·mL−1

was determined. Moreover, the aforementioned authors
conducted a similar study, this time focusing on orange yellow.
The LC50 value was approximately 19.3 mg·mL−1. The substance
under examination in this study displays a greater toxicity potential
than other azo dyes. Among the embryotoxic effects observed,
developmental defects such as yolk sac swelling and reduced eye
size were noted. These alterations were observed at concentrations of
0.5 mg·mL−1 and 0.75 mg·mL−1, respectively. The test dye was
observed to contribute to the development of cardiac emphysema
and blood stasis, while maintaining circulation and cardiac activity.
In the aforementioned study, standard substances devoid of
impurities were subjected to analysis. The occurrence of yolk sac
edema was observed in over 50% of the larvae at concentrations of
0.5 mg·mL−1. Conversely, isolated instances of under-eye were
documented at concentrations as low as 0.02 mg·mL−1, with this
phenotype occurring in nearly 100% of larvae at concentrations of
0.5 mg·mL−1. The swelling of the yolk sac may be associated with
impaired absorption of the nutrients it contains (Ramos-Souza et al.,
2023; Kashyap et al., 2007; (Harding et al., 2021). Our study
identified a form of blood stasis that has not previously been
described in the scientific literature. A recent transcriptomics
study has demonstrated that exposure to a non-sulphonated form
of QY results in a reduction in the expression of metabolic genes in
zebrafish embryos. Of particular note is the disruption of the retinoic
acid signalling pathway, which suggests a potential impairment in
eye development. The observation that a widely used food additive
may interfere with nutrient metabolism, even at sub-ADI exposureT
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levels, warrants a critical re-evaluation of its current safety
thresholds (0.5 and 3 mg/kg b.w., respectively, set by EFSA and
JECFA) (Refined exposure assessment for quinoline yellow, 2015).
Further studies are required to elucidate the toxicity of synthetic

additives using the model organism Danio rerio. A paucity of
definitive experimental data exists in the global scientific
literature on the safety of chemical additives, including their
interaction effects during the embryonic development of the

TABLE 2 Basic learning parameters of designed neural Network’s architecture different training phases.

Parameter First phase (initial training) Second phase (fine-tuning) Third phase (fine-tuning on new data)

Data Used Jeanray-2015 Selected Training Data Jeanray-2015 Selected Training Data Our training data

Base Model ResNet50 (ImageNet weights network’s) Same as First Phase Same as First Phase

Attention Mechanism CBAM applied to base model output Same as First Phase Same as First Phase

Frozen Layers All base model layers First 1/3 of base model layers frozen None; all layers are trainable

Unfrozen Layers Only new layers added on top Last 2/3 of base model layers and new layers Entire model is trainable

Optimizer Adam optimizer Adam optimizer Adam optimizer

Initial Learning Rate 1e-4 1e-5 1e-5

Batch Size 16 16 16

Epochs Up to 100 (with early stopping) Up to 100 (with early stopping) Up to 100 (with early stopping)

Loss Function Categorical Crossentropy Categorical Crossentropy Categorical Crossentropy

Metrics Accuracy Accuracy Accuracy

TABLE 3 Classification results for the Top-1 evaluation of predictions.

ResNet50 base model VGG16 base model Xception base model

Class Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

Dead 0.93 0.88 0.90 0.68 0.81 0.74 0.17 1 0.29

Normal 0.77 0.91 0.83 0.80 0.73 0.76 0.00 0.00 0.00

Blood stasis 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Necrosed_Yolk_Sac 0.38 0.64 0.47 0.32 0.29 0.30 0.00 0.00 0.00

Edema 0.33 0.22 0.27 0.31 0.48 0.38 0.00 0.00 0.00

Average 0.48 0.53 0.50 0.42 0.46 0.44 0.03 0.20 0.06

Accuracy 0.50 0.44 0.17

Bold values in the tables indicate the best performance.

TABLE 4 Classification results for the Top-2 evaluation of predictions.

ResNet50 base model VGG16 base model Xception base model

Class Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

Dead 1.00 0.88 0.93 0.93 0.88 0.90 1.00 1.00 1.00

Normal 1.00 1.00 1.00 1.00 0.73 0.84 0.00 0.00 0.00

Blood stasis 0.40 0.14 0.21 0.00 0.00 0.00 0.00 0.00 0.00

Necrosed_Yolk_Sac 0.82 0.82 0.82 0.66 0.96 0.78 0.37 0.68 0.48

Edema 0.66 0.93 0.77 0.78 0.93 0.85 0.38 0.41 0.39

Average 0.78 0.75 0.75 0.67 0.79 0.68 0.35 0.42 0.37

Accuracy 0.78 0.77 0.48

Bold values in the tables indicate the best performance.
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organism. Recent studies indicate that quinoline yellow can induce
protein aggregation (Khan et al., 2019). One in vitro study
demonstrated that the dye may modulate the expression of
21 genes involved in DNA repair, raising concerns about its
toxicological implications (Chequer et al., 2015). Additionally,
quinoline yellow acts as a potent agonist of the aryl hydrocarbon
receptor (AHR), induces CYP1A1 expression, and inhibits estrogen
receptor signaling through AHR-dependent pathways, suggesting
potential endocrine-disrupting effects (Tarnow et al., 2020)

The application of machine learning to replace manual
measurements would undoubtedly enhance the applicability and

efficiency of zebrafish model. Machine learning approaches are
becoming increasingly widespread and are now present in most
areas of research. CNN employ the concept of deep learning,
wherein the augmentation of the number of hidden neuron
layers within the network leads to a concomitant enhancement of
overall image recognition accuracy. To further augment image
recognition capabilities with CNNs, techniques such as transfer
learning and attention mechanisms can be employed. In transfer
learning, a pretrained recognition model (for instance, an ImageNet
CNN trained on a comprehensive data set of images) is selected and
augmented with additional layers or modified to adopt a distinct

TABLE 5 Classification results for the Top-3 evaluation of predictions.

ResNet50 base model VGG16 base model Xception base model

Class Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

Dead 1.00 0.94 0.97 0.94 0.94 0.94 0.39 1.00 0.56

Normal 0.92 1.00 0.96 1.00 0.91 0.95 0.00 0.00 0.00

Blood stasis 1.00 1.00 1.00 1.00 0.86 0.92 0.00 0.00 0.00

Necrosed_Yolk_Sac 1.00 1.00 1.00 0.93 1.00 0.97 1.00 1.00 1.00

Edema 0.96 0.96 0.96 0.96 1.00 0.98 1.00 1.00 1.00

Average 0.98 0.98 0.98 0.97 0.94 0.95 0.48 0.60 0.51

Accuracy 0.98 0.96 0.74

Bold values in the tables indicate the best performance.

FIGURE 11
Confusion matrix for Top-1 evaluation.
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FIGURE 12
Confusion matrix for Top-2 evaluation.

FIGURE 13
Confusion matrix for Top-3 evaluation.
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model architecture. This approach is particularly beneficial in
scenarios where the availability of domain-specific training data
is constrained, such as in the classification of biomedical images.
Kim et al. (2022) reviewed 121 publications on the application of

transfer learning in medical image recognition. The study outlines
various transfer learning approaches, where a pretrained CNN can
be extended with additional convolutional layers or used as a feature
extractor, with the extracted features then applied to train a separate

FIGURE 14
Example Top-3 predictions with the designed model (the ResNet50 base model was ued) on randomly selected images from test dataset.
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machine learning model, such as a Support Vector Machine (SVM).
Additionally, the pretrained model may or may not be fine-tuned
with new data. As indicated by Kim et al. (2022), the pretrained
ResNet50 CNN model achieved superior classification results
compared to two other models, AlexNet and VGG, when trained
on the ImageNet dataset. As presented by our experiments, the base
ResNet50 model also provides the best classification results.

Additionally, to augment classification accuracy, we
incorporated the attention mechanism into CNNs. The
attention mechanism in machine learning emulates the human
capacity to concentrate on specific portions of information to
enhance comprehension. Tsotsos et al. (1995) and Niu et al.
(2021) identify two types of human attention. The first type of
attention is often induced by a stronger stimulus that draws
human focus, while the second involves intentional
concentration on a task. In general, machine learning
implements the latter type of attention mechanism. Previous
research has indicated that applying an attention mechanism can
improve the quality of an image recognition task (Rodriguez
et al., 2020). Specifically, in this work we decided to adapt the
Convolutional Block Attention Mechanism (CBAM). This
attention mechanism comprises two modules: the Channel
Attention Module and the Spatial Attention Module. As
outlined by the authors of (Woo et al., 2018), CBAM has been
demonstrated to enhance image classification outcomes. In our
research, we applied CBAM to improve the detection of abnormal
blood stasis in embryos. Blood stasis is frequently distinguished
from other pathological states by the presence of minute blood
clots in the images. However, our experiments indicated that a
neural model lacking an attention mechanism encountered
difficulties in accurately identifying these blood clots. In
summary, we posit that the developed model can effectively
support the identification of pathological states in Danio rerio
embryos induced by specific concentrations of QY. The results
suggest that these concentrations of QY may indeed have
deleterious effects.

5 Conclusion

The in silico study presents evidence suggesting that QY may
pose potential health risks, including developmental toxicity,
allergic activity, and possible endocrine disruption. These
findings indicate that the current safety assessments may be
insufficient and warrant a more rigorous evaluation of QY,
potentially accompanied by stricter regulatory measures. The
synthetic colour QY, has been observed to induce lethal
changes in Danio rerio embryos, at concentrations ranging from
0.5 mg·mL−1 to 2 mg·mL−1. The lethality ofDanio rerio is evidenced
by the formation of cardiac dysfunction and coagulation. The
LC50 of QY was determined to be 0.64 mg·mL−1. The
administration of QY at concentrations above 0.5 mg·mL−1 has
been observed to elicit a dose-dependent pericardial edema,
swollen and necrosed yolk sac, blood stasis and reduced eye
size. Attention-based CNNs, combined with transfer learning,
can be employed for the classification of developmental toxicity
in zebrafish embryos. The model demonstrated consistent
performance in identifying healthy samples but exhibited

challenges in distinguishing between disease states. Notably, the
applied AI model also suggests that the employed doses of QY
induce pathological states in embryos. The findings of these studies
on the embryotoxic potential of QY underscore the necessity for
further experiments to gain a comprehensive understanding of the
health effects of this dye, particularly within the context of
embryonic development. Consequently, further research is
required to provide consistent data, identify suitable alternatives
to chemical colours, and assess their safety.
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