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Introduction: Prostate cancer (PCa) remains a significant global health challenge
despite advancements in treatment strategies. There is a need to explore the
molecular heterogeneity of PCa to facilitate the development of personalized
treatment approaches. This study investigates the molecular heterogeneity of
PCa by combining genomic and transcriptomic data using a systems
biology approach.

Methods: By utilising whole-genome sequencing and differentially expressed
genes from “The Cancer Genome Atlas Prostate Adenocarcinoma (TCGA-PRAD)”
patient samples, we identified 357 intersecting genes. From protein-protein
interaction network analysis, 22 hub genes were identified as critical
regulators associated with PCa prognosis and pathogenesis. Furthermore,
these hub genes were subjected to functional and pathway enrichment
analysis via gene ontology (GO) and the Kyoto Encyclopaedia of Genes and
Genomes (KEGG).

Results: Notably, the PI3K/Akt signalling pathway was significantly enriched with
eight of these hub genes, with significant clinical relevance. Dipeptidyl Peptidase
4 (DPP4) emerged as a promising therapeutic target. Further, in vitro assays were
performed to investigate and validate the molecular role of DPP4 through
pharmacological inhibition using Linagliptin, a selective DPP4 inhibitor.
Inhibition of DPP4 led to the induction of apoptosis, G1/S phase cell cycle
arrest, and significant suppression of cell proliferation and migration in PC3
and DU145 cell lines.

Discussion: These experiments revealed novel downstream regulatory effects of
DPP4, demonstrating that its inhibition results in the transcriptional
downregulation of FGF17, PDGFRA, COL4A1, and COL9A2, thereby
contributing to the inactivation of the PI3K/Akt signaling pathway. Collectively,
these findings highlight DPP4 as a potential therapeutic target for the treatment
of PCa.
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GRAPHICAL ABSTRACT

By integrative genomic analysis, DPP4 emerged as potential therapeutic target in PCa. Inhibiting DPP4 downregulates PDGFRA and FGF17 and
induced cellular apoptosis, cell cycle arrest and hinders cell migration by disrupting the PI3K/Akt pathway.

1 Introduction

Prostate cancer (PCa) is a prevalent non-dermal heterogeneous
malignancy among males that poses a significant health concern
worldwide, and it remains the second leading cause of cancer-related
deaths in men (Sekhoacha et al., 2022; Bhargavi et al., 2023).
According to the American Cancer Society (ACS) report “Cancer
Statistics 2023″, there are an estimated 288,300 cases of PCa in the
United States of America alone, accounting for 29% of all cancer
types among males (Siegel et al., 2023). However, it is noteworthy
that while a significant number of individuals may be diagnosed with
PCa, only a minority of them will exhibit clinically relevant
manifestations of the disease (Silberstein et al., 2013). Treatments
available for PCa consist of surgery, radiation therapy, hormone
therapy, chemotherapy, and targeted therapy. However, there is a
pressing requirement for improved treatments, particularly for
aggressive and treatment-resistant types of the condition. The
emphasis should be on identifying and diagnosing PCa
accurately, particularly in less developed nations where mortality
rates are higher due to limited access to screening and better
treatment alternatives (Sekhoacha et al., 2022; Wasim et al., 2023;
Ferroni et al., 2019).

Advancements in genomics and precision medicine hold
substantial promise for identifying novel therapeutic targets in
PCa. Unique genetic alterations such as mutations in tumor

suppressor genes and oncogenes can promote tumor progression
and therapy resistance. Notably, the androgen receptor (AR)
signaling pathway, a key driver of PCa, is tightly regulated by
hormonal activity, particularly testosterone and
dihydrotestosterone. Dysregulation of this pathway, often through
AR gene amplification, mutations, or splice variants, leads to
sustained AR activation even in the absence of androgens,
contributing to castration-resistant prostate cancer (CRPC) (Ma
et al., 2024; He et al., 2021; Chitluri and Emerson, 2024).
Additionally, genetic alterations in pathways such as PTEN/PI3K/
AKT, DNA damage repair (e.g., BRCA1/2), and TMPRSS2-ERG
fusions further enhance tumor aggressiveness and confer resistance
to conventional hormone therapies (Waarts et al., 2022; Berger and
Mardis, 2018). Integrating hormonal context with genomic analysis
is thus critical, as the crosstalk between androgen signaling and
oncogenic mutations shapes disease trajectory and treatment
response (Li et al., 2025; Wang et al., 2008). Understanding these
interactions facilitates the development of targeted therapies such as
AR inhibitors, PI3K inhibitors, and PARP inhibitors that disrupt key
hormonal and genetic drivers of PCa progression (Antonarakis et al.,
2020; Crumbaker et al., 2017).

Similarly, gene expression profiles can provide valuable
information about the biological characteristics of a tumor
(Creighton, 2023). Overexpression or under-expression of certain
genes can indicate the presence of specific molecular subtypes of
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cancer, each with distinct clinical behaviours and treatment
responses. For instance, the overexpression of androgen receptor
signaling pathways in metastatic PCa highlights the importance of
androgen deprivation therapies (Hoang et al., 2017; Jillson et al.,
2021). Nevertheless, some patients develop resistance to androgen
deprivation therapy (ADT), resulting in poor prognosis and limited
treatment choices (Maitland, 2021). However, as tumors evolve, they
may alter their gene expression patterns to develop resistance to
these therapies, necessitating the identification of new targets and
the development of novel therapeutic approaches (Gatenby and
Brown, 2020).We have conducted a comprehensive study to address
this issue. Our study involved identifying mutated genes (MutGs),
characterizing deleterious mutated genes (DMutGs) from NGS data
and integrating differentially expressed genes (DEGs) retrieved from
the GEPIA2 database. Additionally, we incorporated protein-
protein interaction (PPI) networks, identified hub genes,
predicted correlations between hub genes, and conducted Gene
Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes
(KEGG) pathway enrichment analyses. Furthermore, we evaluated
immune cell infiltrates and performed survival analysis using large-
scale DNA microarray and RNA-Seq data from GEO, TCGA, and
other public databases to explore potential hub genes and biological
pathways related to the occurrence, development, and prognosis of
PCa. We identified 22 hub genes involved in PCa progression and
metastasis, investigated them, identified potential therapeutic
targets, and experimentally validated them.

2 Materials and methods

2.1 In-silico

2.1.1 Dataset download and single nucleotide
variants (SNV’s) identification from WGS

To conduct our study, we obtained the paired-end (PE) whole
genome sequence (WGS) of a human adult male prostate tumor
tissue in fasta format with the run SRA accession SRP250789 from
the SRA database accessed on February 2023. We also obtained
differentially expressed genes (DEGs) for prostate adenocarcinoma
(PRAD), from the GEPIA2 database (Tang et al., 2019). These genes
were selected based on specific criteria, including a log2FC > 1 and a
q-value <0.01. To ensure the quality of the WGS reads, we subjected
them to quality control and assessed the quality using FastQC. Any
low-quality sequences were removed using Trimmomatic
ILLUMINACLIP NexteraPE-PE for adapters, with MINLEN
adopted to drop the reads below 25 bp length and
SLIDINGWINDOW was invoked to remove the bases with a
phred score below 20. The trimmed sequences were then aligned
to the reference genome using Burrows-Wheeler aligner (BWA).
Variants were detected using bcftools, and SNVs with a high-quality
score of >100 were filtered.

2.1.2 Determining common genes
The polyphen2 tool (Adzhubei et al., 2013) (accessed on April

2023) was used to assess the ability to predict single nucleotide
variants, identify mutated genes, and predict genomes with
deleterious mutations. The analysis compared deleterious
mutated genes (DMutGs) to mutated genes (MutGs) and

differentially expressed genes (DEGs). This investigation led to
the identification of specific genes with deleterious mutations and
differential expression.

2.1.3 PPI networking and hub gene selection
STRING app (Szklarczyk et al., 2021) (accessed on May 2023)

was used to investigate the interaction network in the common
human gene set identified previously. Interaction pairs were
combined with those that were experimentally verified so that an
interaction scores greater than 0.4 was applied as the cut-off. Closely
interacting genes were listed. We identified the top 50 hub genes
based on the four topological methods: maximum clique centrality
(MCC), degree, closeness, betweenness, and overlapping genes
between such methods were selected.

2.1.4 Enrichment analysis
In addition, the Gene Ontology (GO) analysis with the help of

R “clusterProfiler” was performed to investigate further
functional roles played by the overlapped hub genes and the
top cluster genes. The cellular component (CC), biological
process (BP), and molecular functions (MF) involved with the
presented genes were determined by GO enrichment analysis.
Likewise, using ShinyGO (v.0.79) (Ge et al., 2020), KEGG
analysis was performed to correlate the enriched biological
pathways of the hubs with edge cut-off = 0.2 and FDR p-value
cut-off = 0.05, followed by classification of signal pathways. This
enabled us to identify some putative biological processes,
signaling pathways and human disease pathways that would
account for PCa pathogenesis and progression.

2.1.5 Kaplan-Meier overall survival (OS) analysis
of hubs

To investigate the prognostic potential for identified hub genes,
Kaplan-Meier curve analysis was performed to compare clinical
outcomes based on the hub gene expressions associated with poor
prognosis in PCa, highlighting their potential as prognostic
biomarkers for identifying high-risk patients’ overall outcomes in
PCa patients. In the current study, Kaplan-Meier survival analysis
with hazard ratio (HR) was performed using UALCAN
(Chandrashekar et al., 2017) and GEPIA2.0 databases - TCGA
prostate adenocarcinoma (PRAD) cohort (accessed on August
2023). The cohort population was stratified into high- and low-
expression groups based on the median hub genes expression level,
ensuring an unbiased and biologically relevant comparison. (log
rank p-value<0.05, p (HR) < 0.05).

2.1.6 Tumor infiltration analysis
To further investigate the potential role of the identified hub

genes in the tumor microenvironment, we evaluated the
correlation between tumor-infiltrating immune cells across
the TCGA-PRAD cohort and the expression levels of PCa
hub genes using the TIMER2.0 database (accessed on
September 2023) (Li et al., 2020). We used the Spearman’s
test (ρ) and a p-value of <0.05 was considered statistically
significant. This analysis helped us to gain insights into the
potential interactions between immune cells and the identified
hub genes in PCa, which may provide new avenues for
therapeutic interventions.
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2.1.7 Estimating the expression of the hubs in
correlation with DPP4

To check the expression of the other hub genes in comparison
with DPP4, we used the Gene_Corr module, and the degree of
correlation was established based on the “Spearman’s rho” value.
These analyses helped us to evaluate the potential impact of
DPP4 expression on the expression of other hub genes in PCa
and identify potential therapeutic targets.

2.2 In-vitro

2.2.1 Cell lines and reagents
DU145, PC3 and HEK293 were obtained from the National

Center for Cell Sciences (NCCS, Pune). For cell culture, Dulbecco’s
Modified Eagle Medium, High Glucose (DMEM), Fetal Bovine
Serum (FBS), Antibiotic Mixture (Streptomycin and penicillin)
and Cell culture grade dimethyl sulfoxide (DMSO) were
purchased from HI-Media laboratories, Mumbai. RT-PCR and
cDNA conversion kits were obtained from Takara, Chennai.
Other plastic materials, including Transwell migration plates,
were purchased from Tarson, India. Linagliptin and doxorubicin
were purchased from Sigma-Aldrich, India.

2.2.2 Cell maintenance and cell viability assay
DU145, PC3 and HEK293 cells were maintained in a humidified

incubator set at 37°C and 5% CO2, using a complete medium
including DMEM, 10% FBS, 100 IU/mL penicillin, and 100 μg/
mL streptomycin. The media was changed every 2–3 days. Once the
cells had achieved 80%–90% confluency, they were collected, and
experimental procedures were carried out.

Cell viability was assessed by seeding cells at a density of 1 × 104 per
well on a 96-well plate supplemented with complete medium and
incubating them overnight in a humidifier incubator. The next day, the
culture medium was withdrawn, and the cells were exposed to
Linagliptin at varying concentrations for 24 h. Following the
specified duration, the drug was removed, and 20 µL of MTT
(5 mg/mL in PBS) was added to the well. The well was then
incubated in the absence of light for 4 h. After 4 h, MTT was
removed, and 100 µL of DMSO was added to the wells. The
intensity of the formazan crystal was then quantified at 490 nm
using a Microplate Reader from Bio-Tek, United States. Three
repetitions of each analysis were conducted, and the cell viability
was compared to that of the untreated control group. In this work,
doxorubicin served as the positive control.

2.2.3 Morphological changes
PC3 and DU145 cells, exhibiting exponential growth, were

collected and plated in 6-well plates at a density of 1 × 105 cells
per well and incubated overnight. The cells were subsequently
incubated for 24 h with Linagliptin (IC50), while cells treated
with Doxorubicin were the positive control. Cell morphology was
analyzed using an inverted microscope (MAGNUS 10J617).

2.2.4 Scratch assay
For this assay, PC3 and DU-145 cells were seeded at a density of

1 × 105 cells per well in a 6-well plate and incubated for 24 h. A
scratch was created on the plates utilizing a 200 μL sterile pipette

tip. The plate was washed with 1XPBS to eliminate cellular debris
and subsequently treated with Linagliptin (IC50) for 24 h. Control
cells were kept untreated, while doxorubicin (3.5 μM) was the
positive control. Images were obtained at 0th and 24th-hour post-
drug administration utilizing an inverted microscope (MAGNUS
10J617). Image closure was measured using ImageJ software and
represented as %wound closure relative to the size at the 0th hour.
The percentage of wound closure is calculated as follows:

%Would Closure � Original scratch width( ) − new scratch width( )
Original scratch width

× 100

2.2.5 Transwell migration assay
The impact of Linagliptin on the migration of PC3 and

DU145 cells was further examined using a Transwell migration
experiment in 6-well Corning Transwell cell culture inserts with an
8 μm pore size. Subsequently, following treatment with Linagliptin at
IC50 concentration andDoxorubicin, the cells were trypsinized and re-
suspended in serum-free media. Subsequently, 200 μL (1 × 105 cells) of
the cell suspension was introduced into the upper compartment in
serum-free media, while 1,000 μL of complete media was supplied to
the lower chamber. Following 24 h of incubation, the non-migrated
cells from the upper surface of the insert were eliminated using a sterile
cotton swab. The migrating cells on the lower side were rinsed with
PBS and fixed in 70% ethanol for 10 min. The cells were subsequently
stained with 0.5% crystal violet for 20 min, followed by a PBS wash to
eliminate excess stain. The quantity of migrating cells was enumerated
in three distinct fields and captured using an inverted microscope
(MAGNUS 10J617).

2.2.6 Cell cycle analysis and determining apoptosis
using annexin V-FITC

PC3 and DU145 cells (1 × 105 cells/well) were treated with
Linagliptin for 24 h alongside a control group without treatment.
The cells were trypsinized and rinsed three times with 1X PBS before
being fixed in 5 mL of 70% ice-cold ethanol for 24 h on ice. The cells
were subsequently rinsed with PBS and subjected to a 10 μg/mL
RNase A (Himedia, Mumbai, India) treatment at 37 °C for 30 min.
The cells were stained with 50 μg/mL propidium iodide (Thermo
Fisher Scientific, Bangalore, India) for 20 min in the dark. The
outcomes were assessed using flow cytometry (CytoFLEX S,
Beckman Coulter). Additionally, percentage of apoptosis was
determined using annexin-V fluorescein isothiocyanate (FITC)
and propidium iodide (PI) apoptosis detection kit (BD
Biosciences) according to the manufacturer’s instructions.
Percentage of apoptotic cells (annexin+/PI+) was analysed by
flow cytometry (CytoFLEX S, Beckman Coulter).

2.2.7 AO/EtBr staining
An EtBr and AO double staining test was conducted to evaluate

Linagliptin’s impact on cellular apoptosis in PC3 and DU145 cells. The
cells were cultured on coverslips and treated with Linagliptin for 24 h.
Untreated control cells were maintained, whereas Doxorubicin served
as the positive control. Following incubation, a staining solution
comprising AO (100 mg mL-1) and EtBr (100 mg mL-1) was
administered to the cells, which were then incubated in darkness for
5 min. Using a fluorescent microscope, the cells were subsequently
analysed for their staining pattern (Weswox Optik-FM 3000).
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2.2.8 RNA isolation and RT-PCR
PC3 and DU145 cells (1 × 105 cells/well) were seeded in 6-well

plates and treated with Linagliptin at IC50 concentration and
Doxorubicin for 24 h. RT-PCR was employed to assess the
mRNA expression of target genes. RNA was extracted from cells
utilizing TRI Reagent® (Sigma Aldrich, Bangalore, India), and the
resultant RNA was quantified using a Nanodrop 2000
(ThermoFisher Scientific, Bangalore, India). cDNA synthesis was
conducted utilizing the PrimeScript™ RT reagent Kit (DSS Takara

Bio India Pvt. Ltd., Bangalore, India). RT-PCR was done using
SYBR® Premix Ex Taq™ (DSS Takara Bio India Pvt. Ltd., Bangalore,
India). Each real-time PCR utilized 100 ng of RNA. The quantitative
RT-PCR was conducted utilizing the Light Cycler 2.0 (Applied
Biosystems® StepOne RT-PCR equipment, Bangalore, India). A
melting curve study was conducted post-amplification utilizing
LightCycler software (A.B. Biosystems, India). Beta-actin served
as an internal standard, and the results were presented as fold
change over relative control. Primer list is added in Table 1.

TABLE 1 Primers list.

Gene Name Forward Primer (5′-3′) Reverse Primer (5′-3′)

PIK3CA GGTTGTCTGTCAATCGGTGACTGT GAACTGCAGTGCACCTTTCAAGC

AKT1 TTCTGCAGCTATGCGCAATGTG TGGCCAGCATACCATAGTGAGGTT

PTEN GGTTGCCACAAAGTGCCTCGTTTA CAGGTAGAAGGCAACTCTGCCAAA

FGF17 GTGTTCACGGAGATCGTGCTG GAACTGCTTCTGCTTCTCGGC

PDGFRA GACTTTCGCCAAAGTGGAGGAG AGCCACCGTGAGTTCAGAACGC

COL4A1 TGTTGACGGCTTACCTGGAGAC GGTAGACCAACTCCAGGCTCTC

COL9A2 TGGAGTGGAAGGACCAAGAGGA GTGCTGATCTGTCGGTGCTCTA

Beta-Actin AGTCCTGTGGCATCCACGAA GATCCACACGGAGTACTTGC

FIGURE 1
Distribution of SNV’s in the Whole Genome Sequence (WGS), (A) Identified types of SNV’s variations (B) Landscape of Missense mutations across
Chromosomes, (C) Fractions of mutations across whole genome, (D) Types of exonic mutations: Characterization of Missense mutations, Left:
Percentage of mutations that are probably damaging, possibly damaging and benign; Right: Percentage of mutations that are deleterious and neutral;
Bottom: Location of mutations.
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2.2.9 DPP4 activity assay
DPP4 activity assay kit (MAK088) was obtained from Sigma-

Aldrich, Bangalore, Karnataka, India. Cells were treated as
previously described. DPP4 activity was performed based on the
kit protocol.

2.2.10 Statistical analysis
GraphPad Prism 8.0 was used to do statistical analysis. The

results are expressed as mean ± SD of three independent
experiments. One-way ANOVA with Bonferroni’s multiple
comparisons was used to evaluate differences. P < 0.05 is
considered significant.

2.2.11 Western blot analysis
Western blot analysis was performed using PC3 cells and

DU145 cells, both treated with varying concentrations of Linagliptin
(0, 20, and 40 µM for PC3 and 0, 20, and 60 µM for DU145) for 24 h.
After treatment, total protein was extracted by resuspending the cells
and lysing them for 1 h at 4°C in RIPA (radioimmunoprecipitation
assay) buffer (Cat. No. R0278) with protease and phosphatase inhibitor
cocktail. The cell lysates were then centrifuged at 12,000 rpm for 30min
at 4°C, and the Bradford assay was used to determine the protein
concentration. An equal volume of 20 µg protein lysate from each
sample was subjected to SDS-PAGE and subsequently transferred onto
a nitrocellulose membrane (Bio-Rad, cat. no. 1620112). The membrane
was blocked with 5% skimmed non-fat dry milk and incubated
overnight at 4°C with various antibodies: anti-FGF17 (1:2000), anti-

PI3K p-85α (1:1,000), anti-AKT (1:2000), anti-p-AKT (1:2000), anti-
GAPDH (1:2000), and anti-Actin (1:1,000). Following this, the
membranes were rinsed three times with TBS (Tris buffered saline),
each for 10 minutes, and then incubated with HRP-conjugated
secondary anti-mouse or anti-rabbit antibodies (diluted to 1:5000)
for 1 h at room temperature. They were washed three more times
with TBST (Tris buffered saline containing Tween-20, pH 7.5). Finally,
the immunoblots were visualized using ECL substrate (Clarity™
western ECL substrate Cat# 170-5061) under the ChemiDoc MP
Imaging System (Bio-Rad). All experiments were conducted in
triplicates.

3 Results

3.1 In-silico

3.1.1 Variant calling
To obtain the full set of SNV data, we retrieved the whole

genome sequence of a human adult male prostate tumor sample
bearing the SRP250789 from ENA at https://www.ebi.ac.uk/ena/
browser/view/SRP250789. We initially performed variant calling to
identify the SNVs and the reads were aligned with the reference
sequence. A total of reads with a quality score of <100 were retained
and used for further analysis. These SNVs were mapped to the genes
using BioMart (Kinsella et al., 2011), and we identified
20,326 mutated genes (MutG).

FIGURE 2
Integration of WGS and Trascriptomic data through PPI network analysis, (A) Common genes among Deleterious mutated genes, Differentially
Expressed Genes andMutated genes (B) Protein–Protein interaction of 357 common genes. (C)Hub genes identification by overlapping between the top
50 gene ranks based on four topological algorithms. (D) 22 hub genes.
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3.1.2 Characterising the SNVs identified
To further investigate the SNVs identified in the whole genome

sequence, we annotated them using PolyPhen2 based on
chromosomal position and discarded multi-mutations SNVs.
Only 2.88% of single-nucleotide variants (SNVs) were found in
exons, which are dispersed in CDS and non-sense UTRs while a
large portion was located in introns (52.09%) and intergenic regions
(45.05%). These areas may contain mutations in regulatory
elements, such as enhancers, silencers, and non-coding RNAs.
Our main goal is to identify genes that change the protein
sequence through missense, nonsense, or frameshift mutations,
which can disrupt protein function and lead to cancer. Although
mutations in non-coding regions (introns) can affect gene
expression and may contribute to cancer, we further integrated
exonic mutations with the differentially expressed genes (DEGs)
from the TCGA-PRAD dataset. We identified that 39.54% (16,202)
of the exonic mutations were missense mutations (Figure 1B), with
C>G and G>C transitions being the most prevalent (Figure 1A).
These missense mutations were annotated to 16,055 genes with at
least one missense mutation. They were distributed across the
chromosomes, with chromosome one having the most missense
SNVs (Figure 1C). Out of these genes, we identified that 18.72%,
37.60%, and 46.68% were possibly damaging, benign, and probably

damaging at the functional level, respectively. We observed that
61.48% of the mutated genes were affected by deleterious mutations
that impaired protein functionality (Figure 1D). In this analysis, we
focused on 3,806 unique genes that had mutations that deleteriously
affected protein function (DMutGs), allowing us to gain insights
into the potential genetic causes of PCa and identify potential
therapeutic targets.

3.1.3 Common genes identification
To identify the most optimal key candidate gene with potential

therapeutic implications, we obtained a list of 3,015 (PRAD)
differentially expressed genes (DEGs) with tissue code: PRAD of
GEPIA2 database using the limma differential method, with log2FC
cut off >1 and q-value cut off <0.01. We combined the MutGs,
DMutGs and DEGs and identified 357 genes (Supplementary Table
S1) present in all three sets, as shown in Figure 2A.

3.1.4 PPI network construction and hub selection
We utilized the Cytoscape STRING (Shannon et al., 2003)

plugin to construct a PPI network for the list of 357 genes, with
an interaction score set to 0.4. The network includes proteins that
physically interact with at least one other member consisting of
239 nodes and 575 edges, as shown in Figure 2B. We then used

FIGURE 3
Functional enrichment of Hub genes, (A (i) Classification summary diagram of the top 30 KEGG pathways. A (ii) KEGG pathway enrichment for the
identified 22 hub genes, A (iii) KEGG pathways network interaction (Edge cut-off = 0.2 and FDR p-value cut-off = 0.05), (B) Gene Ontology (GO)
enrichment analysis of 22 hub genes.
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cytoHubba to rank the top 50 genes based on four topological
algorithms scoring values Supplementary Table S2 (i.e., MCC,
degree, closeness, and betweenness) to identify the hub genes in
the PPI network. We found that 22 hub genes overlapped within the
four topological algorithms. This gene set was used for further
analysis, as shown in Figure 2C. The identified hub genes are
Collagen type IV alpha two chain (COL4A2), Dystrophin (DMD),
Receptor tyrosine kinase (KIT), Sarcoglycan alpha (SGCA),
Neurotrophic receptor tyrosine kinase 1 (NTRK1), Actin alpha
2 smooth muscle (ACTA2), Caveolin-1 (CAV1), Lipase E (LIPE),
Integrin Subunit Alpha 5 (ITGA5), Calcium channel, voltage-
dependent, T type alpha 1H subunit (CACNA1H), Twist-related
protein 1 (TWIST1), Progesterone receptor gene (PGR), Fibroblast
growth factor 17 (FGF17), Nerve Growth Factor Receptor (NGFR),
Bone morphogenetic protein 1 (BMP1), Keratin 8 (KRT8),
Heparansulfate proteoglycan 2 (HSPG2), Platelet-derived growth
factor receptor alpha (PDGFRA), Collagen type IX alpha one chain
(COL9A1), Dipeptidyl peptidase 4 (DPP4), Matrix metallopeptidase
9 (MMP9), and Protein disulfideisomerase family A, member
3 (PDIA3) Figure 2D.

3.1.5 Enrichment analysis
The top 10 gene sets were enriched for biological process (BP),

molecular function (MF), cellular component (CC) (log10FDR
p-value <0.05), and KEGG pathways were identified using the
online tool ShinyGO and illustrated the signal pathway classification.
The 22 hubs were found to be enriched for various processes, including

extracellular matrix organization, extracellular structure organization,
external encapsulating structure organization, muscle structure
development, cellular response to growth factor stimulus, vasculature
development, response to growth factor, blood vessel development,
animal organ morphogenesis and anatomical structure formation
involved in morphogenesis (BP). (CC) analysis revealed enrichment
for anchoring junction, cell-cell junction, cell-substrate junction,
membrane micro-domain, membrane raft, sarcolemma, dystrophin-
associated glycoprotein complex, plasma membrane protein complex,
cell surface and glycoprotein complex. (MF) analysis showed
enrichment for signaling receptor binding, endopeptidase activity,
protein tyrosine kinase activity, growth factor binding, growth factor
receptor binding, transmembrane receptor protein tyrosine kinase
activity, nitric-oxide synthase binding, Platelet-derived growth factor
receptor binding, neurotrophin binding and nerve growth factor
binding (Figure 3B). KEGG pathway analysis revealed that hubs
gene enrichment majorly in PI3K/Akt pathway, pathways in cancer,
focal adhesion, protein digestion and absorption, and ECM-receptor
interaction (log10FDR p-value <0.05) (Figure 3Aii). Interaction between
the enriched KEGG pathways (Edge cut-off = 0.2 and FDR p-value cut-
off <0.05) are depicted in Figure 3Aiii and predominantly involves
human disease pathways such as the cancer pathways and
proteoglycans in cancer (Figure 3Ai).

3.1.6 Overall Survival analysis of hub genes
To explore the prognostic value and clinical outcome of the hub

genes, we used UALCAN (database) – to perform Kaplan-Meier

FIGURE 4
Clinical significance of DPP4, (A) Kaplan-Meier (KM) overall survival analysis of DPP4 using UALCAN database TCGA-PRAD cohort (log-rank
p-value <0.001). (B) Top 10 mutated genes among 22 hub genes, (C) DPP4 gene expression TCGA-PRAD-GEPIA2 database, (D) Survival map of hazard
ratio (HR) for the hub genes across cancers types with at least one significant HR (log10 (HR) p < 0.05).
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overall survival analysis using TCGA–PRAD cohort, wherein the
population was stratified into high–and low–expression groups
based on the median hub genes expression level, ensuring an
unbiased and biologically relevant comparison. The findings
suggest that only DPP4 was significantly upregulated in PCa and
affected patients’ overall survival (log-rank p-value <0.001) while the
other 21 hub genes did not show any significant association
Figures 4A,C (Supplementary Figure S3) summarises these
findings. Further heat map of survival hazard ratio log10 (HR)
p < 0.05 of hub genes depicted using GEPIA2.0 found that only
DPP4 was significant, depicting prognostic implication in PRAD
(Figure 4D). It was also found that DPP4 was among the top
10 highly mutated hub genes as depicted in Figure 4B.

3.1.7 Tumor infiltration analysis
The tumor microenvironment (TME) is essential for cancer

progression, supporting tumor growth and invasion. Our survival
analysis showed that higher DPP4 levels correlate with worse
outcomes. We analyzed tumor infiltration to determine if
DPP4 promotes or suppresses tumor growth and affects the TME

through immune cell activity, suggesting DPP4 as a potential
therapeutic target in PCa. Using the TIMER2.0 database, we
explored the relationship between DPP4 expression and tumor-
infiltrating immune cells in the prostate adenocarcinoma cohort
(PRAD). The results revealed a significant positive correlation
between DPP4 expression and the levels of various immune cells:
CD8+ T cells (rho = 0.399, p-value = 2.57e-17), myeloid-derived
dendritic cells (rho = 0.131, p-value = 7.57e-03), macrophages
(rho = 0.228, p-value = 2.86e-04), and neutrophils (rho = 0.146,
p-value = 2.76e-03), as shown in Figure 5A. Additionally, we
performed a correlation analysis between DPP4 and the expression
of class IA PIK3/Akt pathway components (PIK3C3, PIK3CA, PIK3CB,
PIK3CD, PIK3CG) and the AKT family (AKT1, AKT2, AKT3), as
revealed by pathway enrichment analysis. This analysis demonstrated a
positive correlation with PIK3 (rho = 0.423, p-value = 2.68e-23), (rho =
0.337, p-value = 1.05e-14), (rho = 0.372, p-value = 8.14e-18), (rho =
0.114, p-value = 1.09e-02), and (rho = 0.261, p-value = 3.23e-09).
Further, we observed positive correlations for AKT (rho = 0.256,
p-value = 7.29e-09), (rho = 0.267, p-value = 1.4e-09), and (rho =
0.343, p-value = 3.12e-15), as shown in Figures 5B,C.

FIGURE 5
Tumor infiltration analysis of DPP4 using TIMER2.0 database, (A) Scatter plots that show significant positive correlations of DPP4 expression with the
infiltrating levels of T cell CD8+, macrophage, dendritic cell, and neutrophils. (B) Scatter plots that showing DPP4 expression significant positive
correlations with class IA PIK3 expressions. (C) Scatter plots that showing DPP4 expression significant positive correlations with AKT. expressions. The
Spearman’s correlation value and the estimated statistical significance are displayed as the legends for each scatter plot (p-value< 0.05 (positive);
p-value >0.05 (negative)).
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3.2 In-vitro

3.2.1 In-vitro cytotoxicity and DPP4 activity
Typically, minimal cytotoxicity to noncancerous cells and

targeted elimination of malignant cells are essential criteria for an
optimal antineoplastic agent. Quantitatively assessing
mitochondrial integrity with a 3-(4, 5-dimethylthiazol-2-yl)-2, 5-
diphenyltetrazolium bromide (MTT) assay is an excellent method
for detecting the cellular proliferation index in various cytotoxic
compounds. Linagliptin treatment for 24 h in PC3 and
DU145 effectively reduced cell viability in a dose-dependent
manner with an IC50 value of 40 μM in PC3 (Figure 6A) and
60 μM in DU145 cells (Figure 6B) with less to moderate toxicity in
normal human embryonic kidney cells. Further, we assess the
morphological change induced by Linagliptin using an inverted
microscope. As shown in Supplementary Figure S1, Linagliptin at
IC50 concentration significantly altered cell morphology.
Specifically, cells appeared to have a rounded shape with
subsequent detachment from the surface. However, in normal
untreated control, cells showed an intact morphology without
cellular death, which suggests that Linagliptin at this particular
concentration can induce cellular death and subsequently change
the morphology of PCa cells. Further, we validated the effect of
Linagliptin on cellular DPP4 activity in its IC50 values in PC3 and
DU145. As depicted in Figure 6C, both the PCa cells exhibited a
higher DPP4 activity; however, after Linagliptin treatment, the

activity had reduced significantly as hypothesized (P < 0.001).
Further studies have been performed to confirm Linagliptin’s
molecular mechanism of action to induce cellular death in
cancer cells.

3.2.2 Linagliptin decreased PI3K/Akt gene
expression in PCa cells

To further confirm our hypothesis, we checked the expression
level of PI3K and AKT along with PTEN in Linagliptin-treated
PC3 and DU145 cells. Linagliptin treatment at IC50 concentration
significantly reduced the expression of PI3KA and AKT expression
in PC3 and DU145 cells. We have also checked the PI3K negative
regulator PTEN status, which acts as a tumour suppressor, and
various studies have shown that the expression of PTEN influences
the activation of the PI3K/Akt pathway. Our study revealed that the
expression of PTEN after Linagliptin treatment significantly
increased in both the cell lines, similar to Doxorubicin,
suggesting PI3K/Akt inactivation, inhibition of cell proliferation
and cell survival (Figure 7A).

3.2.3 Linagliptin induces cell cycle arrest in both
PC3 and DU145 PCa

Due to inadequate DNA repair mechanisms, the administration
of chemotherapeutic agents typically halts the cell cycle and induces
apoptosis in cancer cells. To ascertain if Linagliptin influences any
cell cycle phase of PC3 and DU145 cells, we monitored the cell cycle

FIGURE 6
Cell cytotoxicity evaluation of Linagliptin against different cell lines, (A) PC3 and (B) DU145 prostate cancer cells. (C) DPP4 enzyme activity based in
the Linagliptin treatment with respective IC50 values in PC3 andDU145. The results are expressed inmean ± SD of three independent experiments. ***P <
0.001 vs. Control, *P < 0.05 vs. Control.
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in four phases: Sub G0, G0/G1, S, and G2/M in the treated
population using flow cytometry following propidium iodide
(PI) staining.

Linagliptin influences cell cycle progression in PC3 and DU145
(Figures 7B,C). 24 h of Linagliptin treatment significantly increased
cellular arrest in the G0/G1 phase by 13% and S phase by 4% for
PC3 cells; whereas in DU145, Linagliptin induced cell cycle arrest in the
G0-G0/G1 phase by 6% followed by the S phase by 5% compared to the
control group. Further the doses of Linagliptin were given to PC3 and
DU145 cells for 24 h. Apoptotic cell death was determined by flow
cytometry using the annexin V-FITC/PI kit. Doses of Linagliptin-40 µM
- PC3, 60 µM - DU145, had significantly increase percentages of
apoptotic cells in PC3 and DU145 respectively (Figure 12).

3.2.4 Cellular migration after Linagliptin treatment
Metastasis entails disseminating cancer cells from the primary

tumor to secondary locations, facilitated by cellular migration and
invasion within circulatory systems and the tissue matrix. We
examined the impact of Linagliptin on the migratory capacity of
PC3 and DU145 cells in vitro by a wound healing migration test.
Transwell migration assay illustrates that Linagliptin impeded the
migratory capacity of PC3 and DU145 cells, as indicated by the
in vitro cytotoxicity reduction in the rate of wound closure relative to
the control cells Figures 8A,B. The transwell migration assay
revealed a significant reduction in the number of migrated cells
in those treated with Linagliptin compared to the untreated control.
This suggests that Linagliptin can impede the cellular migration of
PC3 and DU145 cells in vitro, hence altering the metastatic potential
of this aggressive prostate cancer cell type Figures 9A,B.

3.2.5 DPP4 inhibition regulates hub genes in
PC3 and DU145 cell line

Our study further confirms the status of hub genes, which
regulate the PI3K/Akt pathway. Interestingly, Linagliptin regulates
not all but most of the hub genes at the transcription level.
Treatment with Linagliptin (DPP4i) for 24 h decreased the
expression of FGF17 and PDGFRA in transcription level.
FGF17 and PDGF are two major growth factors that regulate the
PI3K/Akt pathway and are associated with its activation during
cancer progression. A decrease in their expression inevitably
decreased the activation of the PI3K/Akt pathway. Moreover,
Linagliptin downregulated the expression of COL4A1 and
COL4A2, which encodes collagenase in the tissue (Figure 10A).
However, Linagliptin was found to have no role in KIT expression,
which encodes tyrosine kinase receptors. The possible interaction of
DPP4 with PDGF, FGF17, COL4A1 and COL9A2 is depicted
in Figure 10B.

3.2.6 Linagliptin induces apoptosis in PCa
To visually confirm cellular death induced by Linagliptin in

PC3 and DU145 cells, we performed AO/EtBr dual staining. The
principle behind dual staining is to distinguish between different
stages of apoptosis. AO stains live cells green; however, loss in the
cellular membrane integrity leads EtBr to enter and stain cells as red.
Moreover, the stages can be divided into live cells in green color,
early apoptotic cells in green with fragmented chromatin, late
apoptotic cells in orange, and necrotic cells in bright red (Liu
et al., 2015). As shown in Figure 11A, Linagliptin treatment has
increased the number of early and late apoptotic cells in the field

FIGURE 7
RT-PCR gene expression and cell cycle arrest. (A) PI3K/AKT/PTEN expression in PC3 and DU145 cell lines (B)DPP4 inhibitionwith Linagliptin induces
of Cell cycle arrest in PC3 and DU145 cell lines. The results are expressed in mean ± SD of three independent experiments. ***P < 0.001 vs. Control, *P <
0.05 Vs. Control. (C) Bar graph representing the quantitative of the different cell cycle stages in both PC3 and DU145.
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FIGURE 8
(A) Wound healing assay on prostate cancer cells (PC3 and DU145) treated with Linagliptin and Doxorubicin (Positive Control), (B) Bar graph
representing the quantification of the wound healing. Results were presented graphically and the results are expressed in mean ± SD of three
independent experiments. ***P < 0.001 vs. Control, **P < 0.01 Vs. Control, *P < 0.05 Vs. Control.

FIGURE 9
Transwell cell migration assay. (A) Representative photographs of migratory PC3 and DU145 treated with Linagliptin and Doxorubicin. (B) The results
are expressed in mean ± SD of three independent experiments. ***P < 0.001 vs. Control.
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compared to non-treated control cells. On the other hand, the
positive control drug doxorubicin produced more necrotic cells
than Linagliptin-treated cells, suggesting the probability of
inducing future inflammation. To further confirm the initiation
of apoptosis, we checked the expression level of pro and anti-
apoptotic proteins. Linagliptin significantly reduced the

expression of anti-apoptotic BCL-2 compared to the untreated
control group and significantly increased the pro-apoptotic Bax
and Bad expression. Linagliptin showed a better apoptotic induction
than Doxorubicin (Figures 11B–D). In addition to microscopy and
protein expression analysis, Annexin V-FITC/PI flow cytometry was
performed to quantitatively assess apoptosis induction by

FIGURE 10
Effect of Linagliptin onHub genes (A) Expression of FGF17, COL4A1, PDGFRA, COL9A1 (B) Red dotted lines indicate possible interaction of DPP4with
FGF17, COL4A1, PDGFRA, COL9A1. The results are expressed in mean ± SD of three independent experiments. ***P < 0.001 vs. Control.

FIGURE 11
Linagliptin induces apoptosis in PC3 and DU145 prostate cancer cells. (A) AO/EtBr double staining assay–live cells and early apoptotic cells in green,
with fragmented chromatin late apoptotic cells in orange and necrotic cells in bright red. (B) Bax expression (C) Bad expression (D) Bcl-2 expression. The
results are expressed in mean ± SD of three independent experiments. ***P < 0.001 vs. Control, **P < 0.01 vs. Control, *P < 0.05 Vs. Control.
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Linagliptin. Flow cytometry data revealed a dose-dependent increase
in apoptotic cell population, with the maximum apoptotic response
up to 11.70% observed at 40 µM Linagliptin in PC3 cells, whereas
20.65% was observed in DU145 cells at 60 µM with early and late
apoptotic cell populations significantly increased in both cell lines,
confirming Linagliptin-induced apoptotic cell death (Figure 12).

3.2.7 DPP4 inhibition downregulates
FGF17 expression, and suppresses PI3K/
AKT signaling

To validate the transcriptomic data, suppression of PI3K/Akt
signaling upon DPP4 inhibition, we performed Western blot analysis
in PC3 and DU145 cells treated with Linagliptin. DPP4 inhibition led
to a marked reduction in the levels of phosphorylated PI3K (p-PI3K)
and phosphorylated Akt (p-Akt), indicating suppression of the PI3K/
Akt signaling axis (Figures 13A,B). Total Akt protein levels remained
unchanged, suggesting that the observed decrease was due to reduced
pathway activation rather than total protein depletion. GAPDH and
β-actin were used as loading controls and showed consistent
expression across all samples. These results confirm that
DPP4 inhibition attenuates PI3K/Akt signaling at the protein level,
supporting a mechanistic link between DPP4 activity and oncogenic
pathway activation in PCa (Figure 13).

This study clearly demonstrates that Linagliptin, a well-known
DPP-4 inhibitor, can regulate the progression of prostate cancer cells
by modulating the PI3k/Akt pathway and its key genes, as illustrated
in the schematic presentation (Figure 14). Consequently, it induces
apoptosis in prostate cancer cells in vitro. This highlights the in vitro
molecular mechanism underlying Linagliptin’s anti-proliferative
efficacy in prostate cancer.

4 Discussion

Prostate cancer (PCa) remains a significant clinical challenge
due to its complex molecular heterogeneity and variable
treatment responses. Our integrated genomic-transcriptomic
investigation has systematically identified DPP4 as a critical
molecular regulator of PCa progression through modulation of
the PI3K/Akt signaling pathway. These findings provide novel
mechanistic insights that advance our understanding of PCa
pathogenesis and potential therapeutic interventions. The
central role of PI3K/Akt signaling in PCa development and
progression has been extensively documented (Wise et al.,
2017). Our study builds upon this foundation by employing a
comprehensive systems biology approach to identify 22 hub
genes (Figures 2A–D) of which 8 genes (FGF17, NGFR, NTRK1,
KIT, PDGFRA, ITGA5, COL4A2, COL9A1) significantly enriched in
this pathway (Figures 3A–D). The frequent loss of PTEN, a key
negative regulator of PI3K/Akt signaling observed in 40%–60% of
advanced PCa cases (Jamaspishvili et al., 2018), Cross talk pathway
analysis for those hub genes further confirms their role in the
Androgen receptor (AR) and Mitogen-Activated Protein Kinase
(MAPK) signaling pathways Supplementary Figure S2. Previous
studies have reported DPP4’s involvement in AR signaling and
MAPK pathways. For example, DPP4 has been shown to influence
AR signaling and contribute to progression of castration-resistant PCa
(Russo et al., 2018), as well as modulate MAPK-related FGF signaling
(Wesley et al., 2005). According to Hashemi et al., 2023, PI3k/Akt
pathway is frequently activated in advanced prostate cancer. Further
DPP4 and PI3k/Akt pathway in prostate cancer is an area of
ongoing research.

FIGURE 12
Apoptosis assay was performed with flow cytometry using PI and Annexin V-FITC double staining. Linagliptin induced apoptosis in PC3 and
DU145 cells in a concentration-dependent manner.
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TCGA-PRAD cohort analysis revealed a strong association
between elevated DPP4 expression and poor clinical outcomes
was observed through overall survival analysis (Figures 4A–D), a
finding that aligns with previous reports of DPP4 overexpression in
metastatic PCa (Lu et al., 2022). However, our study significantly
extends these observations by demonstrating that this prognostic
association may be mechanistically linked to DPP4-mediated
activation of PI3K/Akt signaling (Figures 5A–C). This connection
provides a plausible explanation for the aggressive phenotype
observed in DPP4-high tumors and suggests potential therapeutic
vulnerabilities that could be exploited in clinical settings.

Treatment with the DPP4 inhibitor Linagliptin resulted in
marked suppression of PI3K/Akt signaling pathway. The
observed dose-dependent effects included: (i) significant
downregulation of PI3K and AKT expression (Figure 7Aii
associated upregulation of PTEN, (Figure 7Aiii) induction of G1/
S cell cycle arrest (Figures 7B,C). This result strongly supports
DPP4’s role as a key upstream regulator of this oncogenic
signaling cascade in PCa.

Linagliptin’s anti-metastatic properties demonstrated
superior efficacy compared to doxorubicin in both wound
healing (Figures 8A,B) and transwell migration assays
(Figures 9A,B), suggesting that DPP4 inhibition may
represent a promising strategy for preventing or treating
metastatic PCa. The molecular basis for this activity appears

to involve DPP4’s regulation of extracellular matrix components
and growth factor signaling pathways, particularly through
modulation of FGF17 and PDGFRA expression. The
downregulation of FGF17 and PDGFRA (Figures 10A, 13A,B)
following DPP4 inhibition provides important context to
previous studies linking these growth factors to PCa
progression (Teishima et al., 2019). From Figure 10A,
DPP4 inhibition also affects collagen genes (COL4A1,
COL9A2) offers new insights into potential mechanisms of
tumor microenvironment remodeling in PCa, a process that
has been increasingly recognized as critical for cancer
progression (Zhang et al., 2023). The shift in apoptotic
balance we observed (decreased BCL2 with increased BAX
expression Figures 11B,C) following DPP4 inhibition further
supports the growing recognition of DPP4’s role in cell
survival pathways.

Our results strongly support the oncogenic function in
primary PCa through PI3K/Akt activation, while some studies
have suggested that the DPP4 role is influenced by tissue type,
disease stage, and treatment context. DPP4 is found at higher
levels in malignant prostate tissue compared to benign or normal
prostate tissue. This increased expression is associated with PCa
progression and correlates with factors such as prostate-specific
antigen (PSA) levels, tumor size, and overall stage of the disease.
The reasons behind these varying levels may be connected to the

FIGURE 13
The effect of Linagliptin on FGF17, PI3K/Akt signaling pathway in PCa, A, B Expression of FGF17, PI3K/AKT in PCa, PC3 and DU145 both treated with
varying concentrations of Linagliptin (0, 20, and 40 µM for PC3 and 0, 20, and 60 µM for DU145) for 24 h and cell lysates were subjected to western blot
analysis with FGF17, PI3K, p-AKT and AKT anti-bodies, followed by sequential re-probing against GAPDH and beta-actin. The bar graph depicts
densitometric expression analysis of FGF17, PTEN, PI3K, p-AKT and AKT. All the experiments were performed in triplicates and the data expressed as
Mean ± SD. *P < 0.05, **P < 0.01, ***P < 0.001.
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tumor microenvironment and how the tumor interacts with
different growth factors and signaling pathways.

In the localized stage of prostate cancer, DPP4 activity may be
relatively high, while in advanced metastatic disease, its activity can
be reduced. This reduction in activity in advanced disease may be
due to a low-molecular-weight inhibitor, suggesting a potential
difference in the role of DPP4 in different stages of the disease.
Large population-based studies indicate that DPP4 inhibitors confer
a survival advantage across various disease stages.

Particularly after treatments like androgen deprivation therapy,
this emphasizes the need for a nuanced understanding of its biological
context in different phases of PCa. Various treatments, including
chemotherapy, androgen deprivation therapy, prostatectomy, and
radiation therapy, suggesting that the benefit is not limited to a
specific subgroup. DPP4 inhibitors, commonly used for type
2 diabetes, have shown potential in treating advanced prostate
cancer in some contexts by improving overall survival. However,
the enzyme’s role can shift depending on the progression of the
disease and the treatment. Furthermore, studies suggest that
DPP4 may act as a tumor suppressor gene in the AR pathway,
and its inhibition could potentially accelerate prostate cancer
progression, particularly after androgen deprivation therapy.

These findings highlight the importance of considering tissue-
specific expression, disease stage and treatment context when
evaluating DPP4-targeted therapies in prostate cancer, as their
efficacy appears closely tied to the unique biology of this tumor
type (Russo et al., 2018; Shah et al., 2019; Mangoura et al., 2024).
Such context-dependent behavior underscores the importance of
careful patient selection in potential clinical applications of

DPP4-targeted therapies. While Linagliptin was chosen for its
relevance and specificity to DPP4, though we recognize the
limitations of using a single agent and the possibility of off-
target effects. Future studies will employ complementary
methods, like DPP4-specific siRNA knockdown, and other
DPP4 inhibitors, to better confirm DPP4’s role in PI3K/Akt
signaling and ensure the observed effects are due to
DPP4 inhibition. The clinical implications of our findings are
particularly significant given that DPP4 inhibitors are already
FDA-approved for diabetes management. Our results provide a
strong mechanistic rationale for re-purposing these agents in PCa
treatment, building upon epidemiological studies suggesting
improved outcomes in diabetic PCa patients taking
DPP4 inhibitors (Pan et al., 2021). The multi-modal effects
suggest that DPP4 inhibitors could offer comprehensive
therapeutic benefits in PCa management.

5 Conclusion

To understand the PCa heterogeneity, we integrated whole
genome SNV data with transcriptomic profiles from TCGA-
PRAD. Although the majority of SNVs were located in non-
coding regions, a subset of exonic mutations, primarily missense
variants were functionally annotated, revealing 3.806 genes with
deleterious effect on protein function. Integration of these
deleterious mutation genes with differentially expressed genes
identified 357 common genes, including 22 hub genes, with
significant enrichment in PI3K/Akt pathway. Among these hubs,

FIGURE 14
Systemic representation of DPP4 inhibitor downregulating FGF17and PDGF Prostate cancer progression via PI3K/AKT pathway.
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DPP4 was found to modulate key regulators of this pathway, such as
FGF17, PDGFRA, COL4A1 and COL9A2. Our findings suggest that
DPP4 inhibition via (Linagliptin) may suppress regulate PI3K/Akt
signaling thereby impacting the cell survival and potentially
suppressing PCa metastasis. These results highlight DPP4 as a
promising therapeutic target for PCa, warranting further in-vivo
validation and mechanistic studies.
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