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Introduction: Drug combination therapy represents a promising strategy for
addressing complex diseases, offering the potential for improved efficacy while
mitigating safety concerns. However, conventional wet-lab experimentation for
identifying optimal drug combinations is resource-intensive due to the vast
combinatorial search space. To address this challenge, computational methods
leveraging machine learning and deep learning have emerged to effectively
navigate this space.

Methods: In this study, we introduce a Calibrated Deep Feature Aggregation
(CDFA) framework for screening synergistic drug combinations. Concretely,
CDFA utilizes a novel cell line representation based on the protein information
and gene expression capturing complementary biological determinants of drug
response. Besides, a novel feature aggregation network is proposed based on the
Transformer to model the intricate interactions between drug pairs and cell lines
through multi-head attention mechanisms, enabling discovery of non-linear
synergy patterns. Furthermore, a method is introduced to quantify and calibrate
the uncertainties associated with CDFA’s predictions, enhancing the reliability of
the identified synergistic drug combinations.

Results: Experiments results have demonstrated that CDFA outperforms existing
state-of-the-art deep learning models.

Discussion: The superior performance of CDFA stems from its biologically
informed cell line representation, its ability to capture complex non-linear
drug-cell interactions via attention mechanisms, and its enhanced reliability
through uncertainty calibration. This framework provides a robust
computational tool for efficient and reliable drug combination screening.
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1 Introduction

Drug combination therapy has emerged as a mainstay in the clinical treatment of
various cancers (Meng et al., 2023), including lung cancer (Nair et al., 2023; Cui et al., 2024),
ovarian cancer (Kong et al., 2023), and pancreatic cancer (Jaaks et al., 2022). Compared with
monotherapy, combination therapies often demonstrate enhanced efficacy, reduced drug
resistance, and decreased toxicity. However, it is crucial to recognize that not all drug
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combinations yield synergistic effects; in fact, some combinations
may even exhibit antagonistic effects (Wang T. et al., 2023). For
instance, the concomitant administration of antibiotics inhibiting
DNA synthesis and those targeting protein synthesis can stimulate
bacterial growth (Bollenbach et al., 2009). Therefore, the precise
identification of synergistic drug pairs for specific cell types is
essential to harness the full potential of combination therapy
(Wang T. et al., 2022).

Traditional laboratory experiments to screen for synergistic drug
combinations from the vast pharmacological space are often time-
consuming and resource-intensive. Moreover, drug combination
trials can sometimes result in side effects or harmful reactions in
patients. With the growing availability of high-throughput screening
data (Jiang et al., 2024; Liu et al., 2021), computational methods have
emerged as efficient preclinical strategies for identifying synergistic
drug combinations (Cao et al., 2024).

With the accumulation of data and the advancement of related
technologies in recent decades, classical machine learning (ML)-based
approaches and deep learning (DL) techniques have been employed to
model drug combination trials, showing promising results by leveraging
a variety of drug and cell line features. As drug combination effect
prediction can be formulated as a regression or a multi-class
classification task, the early ML-based methods often used the
classical machine learning, such as logistic regression (LR) (H et al.,
2014), support vector machine (SVM), random forests (RF) (Breiman,
2001), and extreme gradient boosting (XGboost). As early as 2014,
Huang H et al. used a logistic regressionmodel to systematically predict
the drug combinations based on clinical side-effect (H et al., 2014).
Pavel Sidorov et al. predicted Synergism of Cancer Drug Combinations
by using NCI-ALMANAC Data based on RF and XGboost models
(Sidorov et al., 2019). These methods laid the groundwork for more
advanced approaches. Recently, deep learning (DL)models have shown
excellent performance in bio-sequence analysis, gene regulation, and
other areas, for extracting various data features and fusing
heterogeneous data (Wang T. et al., 2024; Zhu et al., 2025). As the
data about drugs continues to expand, most ML-based work has shifted
towards deep learning (DL)models, driven by significant advancements
in neural network architectures. One notable early DL model is
DeepSynergy (Preuer et al., 2018), which integrates genomic data
and drug information to identify drug combinations by a fully
connected neural networks. Building on this foundation, newer DL
models have emerged, leveraging advanced architectures like
Transformers (Wang T. et al., 2024), Graph Neural Networks
(GNNs) (Zhang et al., 2024), and Auto-Encoders (Zhu et al., 2025).
For instance, CCSynergy (Hosseini and Zhou, 2023), GTextSy (Yan and
Zheng, 2024), MMGCSyn (Zhang et al., 2025) and MatchMaker (Kuru
et al., 2022) are integrated DNN with drug and cell line features. Based
on Transformers models, DeepTraSynergy (Rafiei et al., 2023) and
TranSynergy (Liu and Xie, 2021) were developed to learn drug
representations and incorporate auxiliary knowledge through a novel
neural network design. MRHGNN (Chen et al., 2025) and DeepDDS
(Wang JX. et al., 2022) employ variousGNNs to extract drug features by
modeling drugs as graphs, capturing their structural properties.
Moreover, recent research has introduced hypergraph neural
networks to model complex relationships between cell lines and
drug pairs (Wang W. et al., 2024; Liu et al., 2022).

In addition to neural network design, the fusion mechanism plays a
crucial role in drug combination synergy prediction models. Recent

studies have focused on effectively combining drug and cell line
information to improve predictive accuracy. In parallel, advances in
biological sequence classification have demonstrated the benefits of
integrating multiple types of information. For instance, the SBSM-Pro
model (WangYZ. et al., 2024) introduces a novelmultiple kernel learning
strategy to combine sequence similarity measures, significantly
enhancing classification performance. Similarly, DFFNDDS (Xu et al.,
2023) employs two distinct neural networks to fuse drug features and cell
line information from both bit-wise and vector-wise perspectives.
DualSyn (Chen et al., 2024) introduces two modules to capture high-
order and global information, enhancing the model’s ability to
understand complex interactions. SynergyX (Guo et al., 2024) utilizes
mutual-attention and self-attention mechanisms to model drug-cell and
drug-drug interactions, providing a more nuanced understanding of
these relationships. CircRDRP (Wang Y. et al., 2024) uses a graph neural
networkmodel to predict the association of circRNAwith drug resistance
by combining disease context characteristics and deep learning
techniques. MMSyn (Pang et al., 2024) and AttenSyn (Wang TS.
et al., 2023) leverage attention mechanisms to integrate multiple drug
and cell line features, allowing the model to focus on the most relevant
aspects of the data. CLCDA (Wang YT. et al., 2023) is a collaborative
deep learning-based model for predicting potential associations between
circRNA and disease. Despite these significant contributions, many of
these approaches still rely on late fusionmechanisms, where drug and cell
line features are combined at a later stage in themodel. This can limit the
model’s ability to fully capture the intricate interactions between drugs
and cell lines. To address the limitations of late fusion mechanisms, this
study proposes the Calibrated Deep Feature Aggregation (CDFA)
framework–a Transformer-based architecture that enables early-stage
integration of proteomic features and gene expression profiles to capture
intricate drug-drug-cell interactions. The design incorporates dedicated
uncertainty calibration to ensure probabilistic reliability. Experimental
validation demonstrates CDFA’s fusion efficacy: comprehensive testing
across two benchmark datasets (spanning diverse cell lines and tissue
types) confirms both the structural effectiveness and superior
generalization of our approach.

2 Materials and methods

2.1 Synergy datasets

We assessed our method using two publicly available datasets:
O’Neil (O’Neil et al., 2016) andNCI-ALMANAC (Holbeck et al., 2017).
The O’Neil dataset comprised 23,062 drug combination samples
involving 38 drugs and 39 human cancer cell lines. The NCI-
ALMANAC dataset was relatively larger, containing 304,549 data
points across 104 drugs and 60 cell lines. The synergy value for
each sample is represented by the Loewe and combination scores
for O’Neil and NCI-ALMANAC, respectively. The characteristics of
the cell lines were represented by 651 gene expression values obtained
from the COSMIC database (Forbes et al., 2015). Following established
preprocessing steps (Liu et al., 2022), the final datasets included
18,950 and 74,139 drug-drug-cell line combinations for O’Neil and
NCI-ALMANAC, respectively. Figure 1 depicts the distribution of
synergy scores for both datasets. Notably, the left side of the
distribution, centered around 30, constitutes more than half of the
dataset. These values correspond to the negative pairs that exhibit either
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additive or antagonistic effects, indicating that a significant portion of
the drug combinations do not show a synergistic benefit over the
individual effects of the drugs. This observation underscores the
complexity of identifying truly synergistic drug pairs and highlights
the importance of systematic screening and computational approaches
to optimize drug combination therapies.

To train and evaluate the model, we began by randomly selecting
90% of drug pairs and cell lines from each dataset to conduct three
different experimental settings: random setting, cold cell line setting,
and cold drug pair setting. The remaining 10% of the samples were
set aside as an independent test set to evaluate generalization
performance. For the random splitting setting, we divided the
samples into five equal subsets. One subset served as the test set,
while the remaining four were further split into training and
validation sets in a 9:1 ratio. In the cold cell line setting, all the
unique cell lines were divided into five equal groups randomly. The
related samples which contain the cell line from one of these groups
were used for testing, while the remaining samples were split into a 9:
1 ratio as the training set and validation set. This ensured that the
test set included only cell lines not present in the training set. For the
cold drug pair setting, drug pairs were similarly partitioned into five
equal groups. Four groups were used for training, with the test set
containing only those drug pairs not seen during training. This
ensured that the model was tested on an entirely new pair of drugs.

2.2 Problem formulation

In this study, we formulate the synergy prediction problem as a
regression task. LetXtrain � {di1, di2, ci}Ni-1 denote the set of the training
samples where di1, d

i
2 denote the drug pair and ci is the cell lines, and

N denotes the number of training samples. Also, the corresponding
synergy effect is represented by the label Ytrain � {yi}Ni�1. The paper
aims at learning a drug combination function f(·), given a drug pair
and a cell line, f(·) can generate the target value ŷ.

2.3 Drug and cell line representations

A variety of molecular representations have been employed for
drug combination prediction tasks. Fingerprints, such as ECFP and
MHFP, are commonly used to encode compound structures. In this
study, we adopted the MinHashed Atom-Pair fingerprint extended
to four bonds (MAP4) as our molecular representation. MAP4 offers
a versatile approach to representing diverse chemical structures.

Gene expression profiles have been commonly employed to
represent cell lines in drug combination prediction tasks. In this
study, we utilized gene expression data extracted from COSMIC,
represented as 651-dimensional vectors (g), where each element
corresponds to the expression level of a specific gene. In the most of
the deep learning-based models treat the gene expression g as a
vector which does not satisfy the biomedical meaning which each
gene expression should be treated separately. In the bio-mechanism
of drug synergy, only a part of genes contributes to the synergy
effect. So, we treat the 651-dimensional vectors (g) as a matrix
H � {hj}651j�1 ∈ R1×651. In the following work, we use the CNN to
extract the important genes to simulate the bio-mechanism.

2.4 Feature encoder

The weighted gene expression representation of a cell line is fed
into a cell line feature encoder to learn abstract cell line
representations. This encoder comprises three convolutional
layers interleaved with pooling layers. The initial convolutional
layer transforms the input into feature maps, which are
subsequently downsampled using max-pooling. This process is
repeated three times.

The MAP4 vector representing a drug is input into a drug
feature encoder to extract high-level abstract features. The encoder
consists of two fully connected (FC) layers followed by Gaussian
Error Linear Units (GELU) (Hendrycks and Gimpel, 2016) and

FIGURE 1
The distribution of synergy scores in the O’Neil and NCI-ALMANAC datasets. The vertical axis represents sample frequency counts, while the
horizontal axis displays synergy scores. (a) O’Neil dataset. (b) NCI-ALMANAC dataset.
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batch normalization. The resulting features serve as essential inputs
for subsequent fusion operations. The formulation of the drug
feature encoder can be summarized as follows (Equation 1):

Fi
o � BN GELU FC1024 BN GELU FC2048 xi

o( )( )( )( )( )( ) (1)
where xi

o is one of the input features and Fi
o denotes the

corresponding generated feature. BN represents 1day batch
normalization. FCn(·) represents an FC layer with n neurons.
During the feature extraction stage, we project drug features and
cell line feature into the same dimension to obtain higher-quality
information for use in the subsequent modules.

We refer to these generated drug pair features as (Fd1, Fd2) ∈ RD

and cell line feature as Fc ∈ RL×D.

2.5 Deep feature aggregation module

Given the drug pair features (Fd1, Fd2) ∈ RD and extracted
feature of weight gene expression of cell line Fc ∈ RL×D, we first
use a global max pooling operation to obtain the global cell line
feature as Gc ∈ RD. We treat the drug pair features and global cell
line feature as whole global features G � Fd1, Fd2, Gc{ } ∈ R3×D and
the Fc as the local cell line feature. The deep feature aggregation
module can be decomposed into two parts: 1) global feature fusion,
and 2) global to local feature fusion. Details are discussed
as follows:

Global feature fusion: This process aims to integrate drug and
early cell line features, followed by reinforcing the fused global
features back into the local cell features. We employ a transformer
encoder for global feature fusion. The core idea of the transformer
encoder is the attention mechanism. An attention function maps
queries (Q), keys (K), and values (V) to an output o as follows
(Equation 2):

Attention Q,K,V( ) � softmax
QKT��

d
√( )V (2)

where
��
d

√
is the dimensionality of the query vector.

The multi-head attention mechanism consists of multiple
attention heads, with each head conducting a linear
transformation on the input vectors before performing the
attention operation. Each attention head has its own set of
trainable parameters, allowing it to potentially model an
independent relationship between the input vectors. This is
achieved by utilizing different parameters in the linear
transformation step.

Then, for the h head, three weight matrices
WQh,WKh,WVh ∈ Rdf×dp are used to project Q, K, and V,
respectively, to a lower dimension dp; then, an attention function
is performed (Equation 3).

Ah � Attention Qh, Kh, Vh( ) (3)

wherein Qh � QWQh, Kh � KWKh, Vh � VWVh.
Then, the output of the multi-head attention mechanism is the

linear transformation of the concatenation of the output vectors
acquired from the attention heads (Equation 4):

MultiHead Q,K,V( ) � Concat A1, A2,/, AH( )WO (4)

where H is the number of heads and WO is a trainable
weight matrix.

Besides the attention mechanism, the transformer encoder
also contains the residual and feed-forward neural network.
Formally, the global feature fusion can be defined as follows
(Equation 5):

AG � LN G +MultiHead G,G, G( )( )
FG � LN AG + FFN AG( )( ) (5)

where LN(·) and FFN(·) represent layer normalization and feed-
forward neural network, respectively.

Global to local cell line feature fusion: Inspired by recent
findings that drugs can influence the synergistic or antagonistic
effects of drug combinations through modulating key gene
expression (Wu et al., 2023), we incorporate a global-to-local
cell line feature fusion network to simulate drug-induced gene
regulation effects. The local cell line feature is enhanced through
multi-head attention where global features (FG)are incorporated
using a Transformer decoder. This enables adaptive re-weighting
of gene expressions based on cross-tissue biological patterns, with
layer normalization and residual connections stabilizing feature
refinement. This process can be mathematically expressed as
follows (Equation 6):

FG � LN Fc +MultiHead Fc, Fc, Fc( )( )
CG � LN Fc +MultiHead Fc, FG, FG( )( )

Fc � LN Cc + FFN Cc( )( ) (6)

2.6 Synergy prediction module

The final synergy value of a drug combination is predicted using
the output of the global feature fusion network (FG) and the global-
to-local cell line feature fusion network (Fc). Specifically, FG is
flattened into a 1D vector, and global max pooling is applied to Fc to
obtain another 1D vector. These vectors are then fed into separate
multi-layer fully connected layers to refine their abstract features.
Finally, the refined features are concatenated and passed through a
final FC layer to predict the synergy value ŷ.

Given a training dataset, that contains N samples with ground-
truth synergy scores y and the corresponding values ŷ predicted by
our method, we can train the deep learning model in an end-to-end
fashion using the mean squared error (MSE) loss as the
loss function.

2.7 Uncertainty quantification

We use an ensemble method to further enhance generalization
and quantify the uncertainty of the CDFA. Specifically, we trained
M distinct model replicas. Each replica shares the same neural
network architecture and settings but uses a different initial
random seed for parameter initialization. This ensures that
while the models are structurally identical, they develop unique
parameter values during training, leading to diverse predictions
and a more robust uncertainty estimation. For every input drug
combination, each model generates a predicted synergy value,
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denoted as ŷ
(di1 ,di2 ,ci)
k . The final synergy prediction, μ(di1, di2, ci), is

determined by averaging these individual predictions. Meanwhile,
the uncertainty associated with this prediction, σ(di1, di2, ci), is
quantified by calculating the standard deviation of the
individual predictions from the ensemble.

2.8 Uncertainty recalibration

Calibration errors (Mervin et al., 2021) in probability estimates
compromise reliability by creating discrepancies between
predicted and true probabilities. Specifically, they refer to the
discrepancy between the model’s predicted confidence and the
actual observed frequency of correctness at that confidence level.
For example, if a model assigns 80% confidence to a set of
predictions, but only 70% of them are correct, this indicates a
calibration error in that confidence range. Such miscalibration
reduces the effectiveness of uncertainty estimates as indicators of
trustworthiness in predictions.

To address this issue, a common strategy is to learn a
recalibration function that adjusts the predicted uncertainties to
better align with the true underlying probabilities. The recalibration
function is often a non-linear uncertainty scaling function, learned
using a hold-out validation dataset to create a calibrationmap, and is
often assessed using metrics like Expected Calibration Error (ECE).
In our method, we adopt a simple yet effective single-parameter
scaling approach that adjusts only the uncertainty component σ(·).
We achieve this by multiplying σ(·) with a scaling factor r, while
keeping the predicted synergy value μ(·) unchanged. This choice is
motivated by the fact that μ(·), as the model’s point estimate, already
captures the optimal synergy prediction and should not be altered
during post-hoc calibration. Instead, we rescale σ(·) by a positive

scalar factor r, resulting in the recalibrated output μ(·), rσ(·). The
scaling factor r is optimized using Brent’s method (Brent, 1971) to
ensure that the recalibrated uncertainties accurately reflect the true
probability of correctness. The objective is to minimize the
miscalibration, quantified by ECE, on a separate validation set.
This optimization ensures that the adjusted uncertainties more
accurately reflect the true likelihood of correct predictions across
confidence levels. The result is an uncertainty estimate that is better
aligned with the model’s empirical behavior and more trustworthy
for downstream decision-making.

3 Results

3.1 Overview of the CDFA framework

CDFA is an ensemble deep learning framework for predicting
the potential synergy effects of drug combinations based on the
drugs’ molecular information and the cells’ gene expression. The
overall architecture of CDFA is shown in Figure 2. It consists of three
main components: the feature encoders for the drug pair and cell
line, the feature aggregation module, and the synergy prediction
module. First, MAP4 is used to represent diverse chemical structures
of the paired drugs. Gene expression profiles are employed to
represent cell lines in drug combination prediction tasks. Then,
feature encoders are used to extract these three types of features
separately. A novel feature aggregation network is involved based on
the Transformer which tries to capture the intricate interactions
between drug pairs and cell lines. Finally, the aggregated features are
connected to another synergy prediction module. The subsequent
sections of this section provide detailed evidence of the superiority of
this computational framework.

FIGURE 2
The overview network of CDFA. Data flows sequentially from input to output through three core components: (1) feature encoders for drug pairs and
cell lines, (2) feature aggregation module, and (3) synergy prediction module.
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3.2 Comparison with existing models

To evaluate CDFA’s performance, we compared it with nine
existing drug combination synergy prediction models:
HypergraphSynergy, DeepSynergy, DTF, CombFM, Celebi’s
method, PermuteDDS, MatchMaker, GTextSyn and MMGCSyn.
We employed three common regression evaluation metrics to assess
the performance of these methods: root mean squared error
(RMSE), coefficient of determination (R2), and Pearson’s
Correlation Coefficient (PCC).

As Table 1 shows, we compared CDFA’s performance with
several models using the O’Neil dataset across three different
experimental setups. In the random split scenario, where data is
divided without specific constraints, the CDFA model outshone
others with the lowest RMSE at 13.522, alongside the highest R2 at
0.651 and PCC at 0.808. When tested on unseen cell lines (cold cell
line setting), HypergraphSynergy led with the highest R2 of

0.252 and the lowest RMSE of 19.537. However, CDFA
maintained a competitive edge despite not leading in every
metric. For the cold drug pair setting, where models predict
outcomes for drug combinations not encountered during
training, CDFA performed exceptionally well, achieving the
lowest RMSE (15.976), highest R2 (0.511), and a PCC of 0.717,
demonstrating its strength in handling unseen drug pairs.

As shown in Table 2, the consistent superiority of CDFA has also
been demonstrated on the NCI-ALMANAC dataset. In the random
split setup, CDFA exhibited the best performance with the lowest
RMSE of 41.893, highest R2 of 0.552, and highest PCC of 0.746.
Under the cold cell line condition, HypergraphSynergy performed
best with an RMSE of 53.398, R2 of 0.273, and PCC of 0.538. In the
cold drug pair scenario, CDFA once again stood out, achieving the
lowest RMSE (50.522), sub-optimal R2 (0.346), and highest PCC
(0.593), underscoring its effectiveness in predicting responses for
novel drug combinations.

TABLE 1 Performance comparison on the O’Neil dataset. Bold values indicate the best performance.

Randon split Cold cell line setting Cold drug pair setting

RMSE R2 PCC RMSE R2 PCC RMSE R2 PCC

CDFA 13.522 0.651 0.808 19.597 0.25 0.53 15.976 0.511 0.717

PermuteDDS 13.721 0.641 0.801 19.668 0.243 0.522 16.152 0.501 0.709

HypergraphSynergy 14.727 0.586 0.775 19.537 0.252 0.533 17.346 0.42 0.656

DeepSynergy 14.87 0.584 0.765 23.89 0.195 0.426 17.28 0.433 0.663

ComboFM 16.86 0.451 0.702 20.82 0.142 0.396 18.62 0.376 0.635

DTF 14.73 0.594 0.775 21.11 0.132 0.535 17.37 0.429 0.671

Celebi’s method 16.34 0.5 0.708 20.6 0.179 0.473 19.1 0.309 0.572

MatchMaker 17.4948 0.4162 0.6466 28.5376 −0.7616 0.3628 17.7172 0.399 0.6332

GTextSyn 16.231 0.497 0.709 20.866 0.144 0.457 18.186 0.367 0.625

MMGCSyn 17.138 0.439 0.69 25.754 −0.342 0.316 18.837 0.317 0.605

TABLE 2 Performance comparison on the NCI-ALMANAC dataset. Bold values indicate the best performance.

Randon split Cold cell line setting Cold drug pair setting

RMSE R2 PCC RMSE R2 PCC RMSE R2 PCC

CDFA 41.893 0.552 0.746 53.819 0.259 0.536 50.522 0.346 0.593

PermuteDDS 43.053 0.527 0.726 54.128 0.242 0.519 51.58 0.318 0.569

HypergraphSynergy 43.89 0.508 0.719 53.398 0.273 0.538 52.609 0.291 0.543

DeepSynergy 44.44 0.491 0.701 54.56 0.23 0.322 53.5 0.262 0.526

ComboFM 48.27 0.399 0.651 54.67 0.245 0.531 53.89 0.267 0.526

DTF 47.03 0.43 0.678 54.73 0.223 0.517 53.47 0.263 0.531

Celebi’s method 47.31 0.423 0.653 53.49 0.259 0.516 55.83 0.196 0.456

MatchMaker 51.7316 0.3168 0.5642 64.6824 0.3644 −0.0652 55.7034 0.2028 0.4588

GTextSyn 47.425 0.426 0.657 56.369 0.187 0.479 55.511 0.208 0.483

MMGCSyn 47.793 0.417 0.659 60.353 0.067 0.454 54.523 0.519 0.236
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The 10% of the samples of the O’Neil and NCI-ALMANAC
datasets were set aside as an independent test set to evaluate
these models’ generalization performance. In the independent
test data section of the O’Neil and NCI-ALMANAC datasets,
the superior performance of CDFA has been once again proven.
As Table 3 shows, it illustrates the performance of various
methods when applied to the independent test datasets. For
the O’Neil dataset, CDFA demonstrates superior accuracy with
the lowest RMSE of 15.111 and the highest R2 of 0.660.
PermuteDDS trails closely behind with similarly strong
results, showing almost no difference from CDFA. On the
NCI-ALMANAC dataset, CDFA retains its leadership by

achieving the best RMSE at 42.307 and the highest R2 value
at 0.508, confirming its robustness in both precision and
explanatory capability. Although PermuteDDS performs well,
it still lags slightly behind CDFA across all metrics. The
remaining methods exhibit higher RMSE figures and lower
R2 values, suggesting they are less precise and less effective
compared to our method.

Overall, CDFA consistently demonstrated strong performance,
particularly excelling in the random split and cold drug pair settings.
However, the poor performance of all methods in the cold cell line
setting suggests that future research should focus on improving
models’ ability to generalize to new cell lines.

TABLE 3 Performance comparison on the independent test datasets. Bold values indicate the best performance.

Randon split Cold cell line setting

RMSE R2 PCC RMSE R2 PCC

CDFA 15.111 0.660 0.818 42.307 0.508 0.713

PermuteDDS 15.144 0.659 0.821 43.338 0.484 0.696

HypergraphSynergy 16.710 0.585 0.788 43.730 0.474 0.693

DeepSynergy 16.840 0.578 0.765 45.325 0.435 0.670

ComboFM 16.080 0.541 0.754 46.370 0.457 0.685

DTF 16.150 0.548 0.752 49.860 0.372 0.700

Celebi’s method 16.500 0.529 0.728 45.860 0.469 0.688

MatchMaker 20.725 0.361 0.6466 51.259 0.2778 0.5282

GTextSyn 18.931 0.466 0.686 48.026 0.366 0.612

MMGCSyn 19.834 0.412 0.647 48.312 0.358 0.619

FIGURE 3
Raincloud plots of MSE for O’Neil independent test dataset. The horizontal axis quantifies mean squared error (MSE) between true synergy scores
and model predictions.
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3.3 Tissue-specific analysis

Both previous studies and our own experiments have
consistently demonstrated that model performance deteriorates
significantly under the cold cell-line scenario, where test cell lines
are entirely disjoint from those seen during training. This setting
introduces substantial biological variability, making it difficult to
disentangle whether performance degradation arises from tissue-
specific effects or from the challenge of generalizing to unseen cell-
line profiles.

To avoid this confounding factor, we also conducted a tissue-
specific analysis on the O’Neil and NCI-ALMANAC datasets. The
O’Neil dataset is built on testing 38 drugs on 39 cell lines
representing multiple cancer types from six tissue origins. The
NCI-ALMANAC dataset covers 104 drugs in 60 cell lines from
nine tissue origins. As illustrated in Figures 3, 4, our analysis
employs raincloud plots to visualize the distribution of MSE for
the two independent test datasets. These plots combine box plots
with kernel density estimates (’clouds’) to visualize both the shape
and central tendency of the error distributions, with outliers
indicated by diamond markers.

Our analysis reveals that although the MSE values of the
median, second quartile, and third quartile are low, almost all
tissues included by the two datasets have MSE values exceeding
500 and 2000, respectively. This suggests that while there is a

small number of higher error values across most tissues, the
central tendency of the error distribution may be relatively low.
This pattern indicates that the model can achieve efficient
prediction across different tissues. Our analysis confirms that
the presence of high-error predictions—though limited in
quantity—reveals significant variability in model performance.
Such findings highlight the need for further investigation into the
factors contributing to these higher errors and suggest that
improvements in model accuracy and consistency are
necessary for more reliable predictions across different
tissue types.

3.4 Uncertainty results

Figure 5 displays the calibration curves of CDFA under various
settings for both the O’Neil and NCI-ALMANAC datasets. The
figures are organized from left to right, representing random splits,
cold cell line settings, and cold drug pair settings, respectively. The
first row showcases the O’Neil dataset, whereas the second row
pertains to the NCI-ALMANAC dataset. The space between the
calibration curves and the diagonal line represents the
miscalibration area, which quantifies the extent of uncertainty
calibration. As illustrated in Figure 5, CDFA’s recalibration
algorithm successfully shifts the calibration curves closer to the

FIGURE 4
Raincloud plots of MSE for NCI-ALMANAC independent test dataset. The horizontal axis quantifies mean squared error (MSE) between true synergy
scores and model predictions.
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FIGURE 5
Calibration curves of CDFA. On the x-axis, it plots the expected confidence level, while the y-axis shows the observed proportion of correct
predictions. A perfectly calibrated model lies on the diagonal line, where the observed proportion of correct outcomes exactly matches the stated
confidence at every interval.

FIGURE 6
Relationship between model error and uncertainty of all test datasets. The vertical axis represents the prediction errors, while the horizontal axis
displays uncertainty measured as the standard deviation (std).
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diagonal line, thereby reducing the miscalibration area and
improving the reliability of the predictions.

Figure 6 illustrates the relationship between prediction error and
uncertainty, with uncertainty measured as the standard deviation
(std). In this figure, red points indicate errors that do not fall within
two standard deviations, while black and blue points represent
errors that fall within one and two standard deviations,
respectively. It is evident that the majority of the observed errors
lie within two standard deviations, reflecting a reasonable alignment
between the model’s predicted uncertainty and its actual
prediction error.

4 Conclusion

This study introduces an ensemble deep learning framework for
predicting the potential synergy effects of drug combinations,
showcasing superior performance relative to existing methods. A
key innovation is the dual-level feature fusion mechanism, which
integrates deep semantic features from various network modules,
enhancing the model’s ability to capture complex interactions. The
model leverages convolutional processing of the gene expression
matrix to identify key gene signals relevant to drug response.
Combined with a Transformer-based attention mechanism, this
architecture enables context-aware re-weighting of gene
importance under specific drug–cell interactions. This design
emulates biological processes where only a subset of genes
contribute significantly to the synergistic effect of drug
combinations. Furthermore, the model’s prediction errors
demonstrate robust generalization across tissues, as reflected in
the consistent error distributions observed across different tissue
types. Isolated high-error samples may correspond to biologically
unique or complex cell lines, offering potential avenues for future
investigation. Uncertainty estimation is integrated into the model,
providing a critical safeguard against biased or overconfident
predictions. This feature is especially valuable in guiding both the
refinement of known synergies and the exploration of novel drug
combinations. Additionally, the uncertainty estimation is integrated
into the model, providing a critical safeguard against biased or
overconfident predictions. This feature is especially valuable in
guiding both the refinement of known synergies and the
exploration of novel drug combinations. The uncertainty
quantification and recalibration processes ensure that the model’s
predictions are not only accurate but also reliable, offering a
balanced approach to decision-making. While the experimental
results demonstrate excellent performance on two datasets,
further investigation is needed to assess the model’s robustness
and generalization capabilities, particularly in scenarios involving
new cell lines. Enhancing the interpretability of the model is another
important area for future research, as it can provide deeper insights
into the mechanisms underlying drug synergy and facilitate broader
acceptance.
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