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Pancreatic fibrosis (PF), the primary pathological hallmark of chronic
pancreatitis (CP), is recognized as a pivotal driver of CP progression.
Currently, no therapies are approved by the U.S. Food and Drug
Administration (FDA) specifically for PF treatment, highlighting an urgent
need for novel therapeutic strategies. Emerging evidence positions
Traditional Chinese Medicine (TCM) as a promising multi-target approach
against PF. This paper summarizes the pathogenesis of PF and provides a
detailed review and comprehensive analysis of the mechanisms underlying
Chinese herbal formulas and active ingredients investigated for PF prevention
and treatment in existing experimental studies. Numerous studies indicate
that TCM combats PF by inhibiting pancreatic stellate cells (PSCs) activation,
requlating extracellular matrix (ECM) breakdown, suppressing macrophage
infiltration and polarization, and inhibiting pancreatic acinar cell apoptosis.
Current basic research predominantly focuses on PSC activation and
associated signaling pathways, particularly key pathways such as TGF-p/
Smad, MAPK, NF-kB, and Hedgehog. This work thus offers novel insights
and approaches for PF treatment and further research.

KEYWORDS
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1 Introduction

Chronic pancreatitis (CP) is a multifactorial fibroinflammatory disorder characterized
by recurrent pancreatic inflammation, culminating in extensive fibrotic tissue replacement.
This process leads to chronic pain, exocrine and endocrine pancreatic insufficiency (Beyer
etal., 2020). The annual incidence of CP is estimated at 5-14 per 100,000 individuals, while
its prevalence ranges from 120 to 143 per 100,000 annually (Kleeff et al., 2017; Lévy et al.,
2014). Pancreatic fibrosis (PF) is recognized as a central driver in CP pathogenesis. PF
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GRAPHICAL ABSTRACT

represents a chronic, progressive pancreatic pathology marked by
extensive fibroblast proliferation and excessive accumulation of
extracellular matrix (ECM) rich in connective tissue components
(Ceyhan and Friess, 2015). This fibrotic cascade results in pancreatic
parenchymal scarring, functional tissue loss, acinar cell atrophy,
pancreatic ductal alterations, and inflammatory cell infiltration.
Current management of CP primarily involves symptomatic
interventions, including analgesia and pancreatic enzyme
supplementation, with suboptimal outcomes (Kichler and Jang,
2020). Endoscopic procedures, such as endoscopic retrograde
cholangiopancreatography (ERCP) and surgical interventions,
may provide sustained symptom relief. However, they neither
restore pancreatic exocrine function nor halt the progression of
PF (Dumonceau et al, 2019). Endoscopic approaches aim to
ductal

including sphincterotomy, stricture dilatation, stenting, stone

reestablish  pancreatic drainage through techniques
extraction, and extracorporeal shock wave lithotripsy (ESWL).
When endoscopic and conservative management fail, surgical
intervention is indicated. Common procedures include
longitudinal pancreaticojejunostomy, decompressive pancreatico-
intestinal anastomoses, and various pancreatic head resections
(Shimizu et al., 2022).

While traditional Chinese medicine (TCM) does not possess a
direct pathological correlate to PF, its characteristic clinical
manifestations, such as epigastric or abdominal pain, nausea,
vomiting, anorexia, and diarrhea, align with TCM syndrome
categories of “abdominal pain” and “diarrhea” Therapeutic
strategies in TCM emphasize fortifying spleen qi, soothing liver
qi stagnation, clearing heat, activating blood circulation, and
resolving stasis. In contrast to Western medicine, which often
focuses on specific symptoms or complications, TCM adopts a
holistic approach centered on syndrome differentiation and
TCM offers advantages

including clinical efficacy, reduced recurrence rates, and a

pattern-based treatment. potential

favorable safety profile, making it a promising therapeutic avenue
(Chen S et al,, 2023; Huang et al,, 2025). Recent pharmacological
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studies have increasingly demonstrated that TCM, which includes
both TCM formulas and active ingredients, can inhibit the
2019).
comprehensive review that synthesizes these advances is still

progression of PF (Liu C. et al, However, a
lacking. This study aims to review contemporary research
progress on TCM interventions for PF and to provide novel
insights and approaches for its treatment and further investigation.

2 Methods and literature
search strategy

A systematic literature search was conducted to identify all
TCM-derived
compounds and formulas for PF and CP. The electronic
databases PubMed, Web of Science Core Collection, and Google
Scholar were searched from their inception until 1 February 2025.

relevant  preclinical ~ studies  investigating

The search strategy combined keywords and Medical Subject
Headings (MeSH) terms related to: (1) Intervention: (“traditional
Chinese medicine” OR “Chinese herbal medicine” OR “natural
product” AND (2)
“pancreatic fibrosis”). Inclusion criteria were: (1) in vitro or in

Disease:  (“chronic  pancreatitis” OR
vivo studies; (2) studies investigating defined TCM compounds

or chemically characterized extracts; (3) studies reporting
outcomes related to PF mechanisms (e.g., PSC activation, ECM
deposition, macrophage polarization). Exclusion criteria were: (1)
reviews, editorials, or conference abstracts; (2) studies using
undefined crude mixtures; (3) studies not published in English.
Two investigators independently screened titles and abstracts,
followed by a full-text review of potentially eligible articles. Any
discrepancies were resolved through discussion with a third
investigator.

In addition, literature should be excluded that includes “pan
assay interfering compounds” (Magalhaes et al., 2021). Readers may
consult the original publications for precise statistical tests and exact

p-value thresholds via the hyperlinked references.
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All herbal medicines derived from plants have undergone

taxonomic  verification  (http://mpns.kew.org/mpns-portal/) and

include  complete species names (including authoritative
nomenclature and taxonomic classification). As the MPNS covers
only plant-derived medicines, any medicines derived from fungal or

animal are referred to by their standard names throughout this article.

3 Mechanisms of PF

Recent research indicates that the PF microenvironment comprises
three principal cell types: pancreatic acinar cells, macrophages, and
pancreatic stellate cells (PSCs) (Apte et al., 2011; Hu et al.,, 2020; Xue
etal, 2015). Among these, PSC activation is pivotal to the initiation and
progression of CP, with activated PSCs playing a major role in PF
development (Masamune et al.,, 2009). Established risk factors for CP
include smoking, heavy alcohol consumption, genetic disorders,
pancreatic duct obstruction, recurrent acute pancreatitis, and
autoimmune pancreatitis (Shimizu, 2008; Singh et al, 2019).
Smoking and excessive alcohol intake induce acinar cell damage,
triggering inflammatory cells (including macrophages) to secrete
pro-inflammatory cytokines such as interleukin (IL)-1, IL-6, IL-8,
tumor necrosis factor-a (TNF-a), transforming growth factor-
(TGF-B), and platelet-derived growth factor (PDGF) (Chang et al.,
2023; Mews et al,, 2002). These cytokines stimulate quiescent PSCs via
paracrine signaling. Furthermore, damaged acinar cells directly release
damage-associated molecular patterns (DAMPs) that facilitate PSC
activation (An et al, 2023). Evidence also suggests that factors
including smoking, heavy alcohol intake, and oxidative stress may
directly activate quiescent PSCs (Chang et al.,, 2023; Fu et al,, 2018).
Upon activation, PSCs undergo a phenotypic transition characterized
by a-smooth muscle actin (a-SMA) expression, enhanced proliferation
and migration, and increased synthesis and secretion of ECM
components (Apte et al, 1999; Bynigeri et al, 2017). Critically,
activated PSCs secrete cytokines that perpetuate their activation
through autocrine signaling. This cascade promotes excessive ECM
deposition over degradation, ultimately driving PF pathogenesis (Jin
et al, 2020). Collectively, these 3 cell types interact within the
pathological

microenvironment,  synergistically promoting the

progression of PF.

3.1 PSCs and PF

PSCs, the principal fibroblast population in the pancreas,
reside in periacinar and interlobular regions. Like hepatic stellate
cells, PSCs store retinol and fatty acid retinyl esters and express
desmin (Bachem et al., 1998). These pluripotent cells constitute
approximately 4%-7% of pancreatic parenchymal cells and are
essential for maintaining connective tissue architecture (Xue
et al,, 2018).Under physiological conditions, PSCs maintain a
quiescent state characterized by expression of nestin, vimentin,
glial fibrillary acidic protein (GFAP), and desmin. Quiescent
PSCs exhibit distinctive features, including large perinuclear
lipid droplets, specific molecular markers (cytosolic bead
proteins and lipophilic proteins), and limited capacities for
proliferation, migration, and ECM synthesis (Nielsen et al,
2017). PSCs become activated by diverse inflammatory stimuli
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within the pancreatic microenvironment, primarily originating
from macrophages and damaged acinar cells in CP. Upon
PSCs myofibroblast-like
phenotype, characterized by the depletion of cytoplasmic lipid

activation, transition into a
droplets and the concomitant upregulation of a-smooth muscle
actin (a-SMA), various cytokines, and extracellular matrix
(ECM) components, including collagen type I (Col-I), collagen
type IIT (Col-III), hyaluronic acid (HA), and fibronectin (FN).
Concurrently, their proliferative and migratory capacities
increase. This activation drives excessive ECM deposition,
resulting in interlobular and intralobular fibrosis.PSCs exhibit
significant plasticity, capable of bidirectional transition between
quiescent and activated states. Evidence suggests PF may be
reversible in early stages (Apte et al, 2011; Kisseleva and
Brenner, 2021). Given that PSCs activation is central to
pathological fibrosis in CP, suppressing PSCs activation and
promoting reversion to quiescence

represent promising

therapeutic strategies for PF management.

3.2 Pancreatic acinar cells and PF

Pancreatic acinar cells, responsible for secreting digestive
enzymes, constitute a critical cell population within the
pancreas and are intimately linked to CP pathogenesis (Saluja
etal.,, 2019). Aberrant intra-acinar trypsinogen activation leading
to acinar cell necrosis is considered a key initiating event in CP.
These necrotic cells release DAMPs, promoting PSCs activation,
macrophage infiltration, and polarization, thereby accelerating
PF progression (Hoque et al, 2011; Kang et al, 2014).
Consequently, injured acinar cells may directly stimulate PSCs
or indirectly activate them through the secretion of profibrotic
mediators (An et al., 2023). Furthermore, acinar cells can actively
remodel the microenvironment to sustain persistent PSC
activation (Liu J. et al., 2019). Supporting a direct role in
fibrosis, acinar cells were identified as the primary collagen-
producing cells in a caerulein-induced rat model of acute
pancreatitis (Gong et al., 2013).

Pancreatic acinar cells exhibit significant regenerative capacity
following injury. During inflammation, they undergo morphological
changes, which involve a transition from tall, columnar cells to
flattened configurations, and frequently encircle ductal structures.
Phenotypically, this shift involves a conversion from predominantly
amylase-positive acinar cells to cytokeratin 19 (CK19)-positive duct-
like cells, defining acinar-to-ductal metaplasia (ADM), a hallmark
feature of CP (Ma et al., 2022; Schlesinger et al., 2020). Macrophages
have been implicated as key regulators driving this phenotypic
alteration in acinar cells (Liou et al., 2013).

3.3 Macrophages and PF

The progression of PF is characterized by inflammatory cell
infiltration, primarily consisting of macrophages along with
lymphocytes and neutrophils, which collectively represent the
dominant immune population invading the pancreas during
CP (Michalski et al., 2007; Treiber et al., 2011). Pancreatic
tissue injury triggers substantial macrophage recruitment
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When
damaging stimuli persist and inflammation becomes chronic,

and activation, initiating inflammatory cascades.
sustained macrophage activation within the inflammatory milieu
drives their polarization into distinct functional phenotypes in
response to chemokines and cytokines. These polarized
macrophage subsets exert divergent regulatory effects on PF
progression.

Macrophages undergo functional polarization, which is a
process of differentiation into distinct phenotypes dictated by
microenvironmental cues and signaling molecules (Luo et al,
2024). Two principal polarization states are recognized: Ml
and M2

macrophages

(classically  activated) (alternatively  activated)

macrophages. M1 are characterized by pro-

inflammatory  responses and  anti-tumor while

M2 macrophages promote

activity,
angiogenesis, anti-inflammatory
mediator release, fibrosis, and tissue repair/wound healing
(Gordon and Martinez, 2010). Emerging evidence demonstrates
that activated PSCs stimulate macrophage polarization toward
the pro-fibrotic M2 phenotype, thereby contributing to PF

pathogenesis (Xue et al., 2015).

4 Molecular mechanisms and current
research on TCM for PF

Research suggests that compound formulas and bioactive
constituents derived from TCM exhibit multi-target potential
against PF. Experimental studies on PF indicate that TCM
demonstrate anti-fibrotic properties in  preclinical models.
Mechanistic studies show these agents may counteract PF by
inhibiting  PSCs mitigating ECM  accumulation,

suppressing macrophage infiltration/polarization, and mitigating

activation,

pancreatic acinar cells apoptosis.PSCs activation involves multiple
signaling pathways, including Smad, PI3K/Akt, mitogen-activated
protein kinase (MAPK), nuclear factor-kB(NF-«B), Janus tyrosine
Kinase (JAK)/Signal Transducer and Activator of Transcription
(STAT), and Hedgehog (Hh). Pharmacological evidence indicates
that defined TCM compounds primarily modulate TGF-{/Smad,
MAPK, NF-kB, and Hh pathways (Jin et al, 2020). Emerging
findings suggest targeting NLRP3 inflammasome activation and
autophagy modulation represents a potential strategy to inhibit PSC
activation and attenuate PF progression. The following sections detail
the specific molecular mechanisms by which chemically characterized
TCM, including active ingredients, herbal extracts and TCM formulas,
exert their anti-fibrotic effects.The schematic diagram of the relevant
treatment mechanisms of TCM in PF is shown below (Figures 1, 2).

4.1 Inhibition of PSCs activation

4.1.1 TGF-p/Smad signaling pathway

TGF-p is a fundamental signaling protein that modulates
physiological
proliferation, differentiation, apoptosis, and ECM synthesis. Its

numerous processes and is crucial in cell
receptors consist of three types: Transforming Growth Factor-f
Type I Receptor (TPRI), TPRII, and TPRIIL. TGEF-B facilitates
downstream signaling through binding to certain receptors,

which activates various Smad proteins. Smad2 and Smad3 serve
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crucial functions in signaling as receptor-regulated proteins.
Smad7 fulfills its negative regulatory function (Yan et al, 2016).
TGF-B is a pivotal modulator of fibrogenesis and significantly
contributes to the activation of PSCs and the accumulation of
ECM (Biernacka et al, 2011). Preliminary experiments indicate
that in PSCs, TGF-P1 enhances the expression of Smad3 while
suppressing Smad7 expression; the inhibition of TGF-{ signaling by
Smad7 mitigates caerulein-induced PF in mice, whereas the absence
of a functional Smad?7 gene results in exacerbated damage in CP (He
et al., 2009; Li et al., 2016; Qian et al., 2010).

Flavonoids: Luteolin (Table 1) is a natural flavonoid found in
glycosylated forms in vegetables, botanical drugs, and fruits. It has
been reported to have therapeutic effects on a variety of fibrotic
diseases (Li et al., 2015; Lv et al., 2025; Ren et al., 2023). Luteolin
downregulates TGF-B1 and exerts a beneficial effect on PF in the
context of trinitrobenzene sulfonic acid (TNBS)-induced CP (Yu
et al., 2018). Catechin, polyphenolic flavonoids found in foods like
apples and tea, has shown health benefits and efficacy against
diseases, including hepatic fibrosis (Braganga de Moraes et al.,
2014). It is reported that catechin hydrate (CH, Table 1) had
prophylactic and therapeutic effects on CP and protected against
the progression of PF by inactivating the TGF-p/Smad2 signaling
pathway (Kweon et al, 2023). Epigallocatechin gallate (EGCG,
Table 1), a principal constituent of green tea extract recognized
for its antifibrotic activities across various organs, regulates the
equilibrium between Smad3 and Smad7 and suppresses TGF-p1-
induced activation of PSCs (Meng et al., 2007).

Alkaloids: Matrine (Table 1), an alkaloid derived from the roots of
Sophora flavescens Aiton, has been shown in modern research to
possess anti-inflammatory, immunomodulatory, and anti-fibrotic
properties (Gao et al, 2012; Zhang et al,, 2006). Matrine decreased
the expression of TGF-B1, Smad2, and TGF-p receptors (TRL TPRII),
indicating its inhibitory effect on PF in rats through modulation of
TGF-B/Smad signaling (Liu et al., 2019¢). Piperine (Table 1), a natural
alkaloid derived from black pepper, is known for its anti-inflammatory,
antioxidant, and antitumor properties (Srinivasan, 2007). Additionally,
studies have demonstrated its protective effects against acute
pancreatitis (Bae et al, 2011). Piperine mitigates PF by obstructing
TGF-p/Smad 2/3 signaling during CP (Choi et al., 2019). Berberine (BR,
Table 1), a natural isoquinoline alkaloid, is extracted from the roots and
rhizomes of various medicinal plants, including Berberis species and
Coptis chinensis. Reportedly, BR exhibited protective effect on AP and
hepatic fibrosis (Choi et al,, 2017; Wang et al,, 2021; Wang et al,
2024).BR has promising protective effects against cerulein-induced CP
by attenuating pancreatic inflammation, PSCs activation and ECM
deposition. The protective effects of BR against cerulein-induced CP
may be mediated through AMPK-dependent suppression of TGF-f/
Smad signaling pathway and inhibition of M2 macrophage polarization
(Bansod et al., 2020).

Coumarin: Scoparone (Table 1), the principal bioactive
constituent of Artemisia capillaris Thunb., is a multifunctional
compound with antioxidant and anti-inflammatory properties
that exhibits hepatoprotective properties along with various other
health benefits (Atmaca et al.,, 2011; Jang et al., 2006).Scoparone
suppressed PSCs activation and PF by inhibiting a-SMA, collagen I,
oxidative stress through TGF-f/Smad pathway modulation.

Herbal extracts and TCM formulas: Arecae pericarpium (ARP),
a traditional herbal medicine, is used to treat constipation,
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FIGURE 1

The anti-fibrotic effects of TCM through inhibiting PSCs activation and mitigating ECM accumulation. Mat, Matrine; Lut, Luteolin; ARP, Arecae
pericarpium; (+)-CH, Catechin; Pip, Piperine; EGCG, Epigallocatechin gallate; Sco, Scoparone; BR, Berberine; ILG, Isoliquiritigenin; Pue, Puerarin; GJ,
Gardenia jasminoides; Cur, Curcumin; EA, Ellagic acid; Res, Resveratrol; Rhe, Rhein; Emo, Emodin; Bai, Baicalin; Eru, Eruberin A; SSA, Saikosaponin A; SSd,
Saikosaponin d; TFPGL, Total flavonoids from Psidium guajava leaves; MEMARB, Methanolic extract of Morus alba root bark; PA, Pachymic acid; DD,
Dahuang Danshen decoction; CGGD, Chaihu Guizhi Ganjiang Decoction; DCHD, Dachaihu decoction; XCHT, Xiao Chai Hu Tang; MXD, Modified

Xiaochaihu Decoction.

abdominal distension, and edema (Tey et al, 2021). ARP water
extract (Table 1) shown antifibrotic properties in CP by obstructing
TGF-B signaling via the inhibition of Smad2 phosphorylation
(Kweon et al,, 2022). Modified Xiaochaihu Decoction (MXD,
Table 2), a Chinese herbal complex prescription, has been used
in the treatment of CP for more than 10 years. MXD protected the
pancreas from chronic inflammation and fibrosis and enhances
exocrine function in a rat CP model induced by DBTC. This
likely occured through inhibiting overexpression of TGF-fl,
TPRII, and Smad3 in the TGF-B1/Smads pathway (Zhang
et al., 2013).

A series of active ingredients and TCM formulas demonstrate
significant potential in alleviating PF primarily by modulating the
TGF-B/Smad signaling pathway. Flavonoids like luteolin, catechin,
and EGCG, alkaloids including matrine, piperine, and BR, the
coumarin scoparone and herbal extracts such as ARP water
extract and MXD all converge on inhibiting this core fibrogenic
pathway, thereby reducing activation of PSCs, ECM deposition, and
key markers like a-SMA and collagen. Notably, compounds like
exhibit additional involving AMPK

and immunomodulation (e.g.,

berberine mechanisms

activation suppressing

M2 macrophage polarization).

4.1.2 MAPK signaling pathway

The MAPK pathway is a crucial signaling path in eukaryotic
cells. In reaction to external stimuli, MAPKs influence various
cellular processes, including proliferation, apoptosis, and survival,
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and can enhance the expression of inflammatory cytokines in the
pancreas (Pearson et al., 2001). Three extensively researched MAPK
signaling pathways include Extracellular regulated protein kinases
(ERK)1/2, c-Jun N-terminal kinase (JNK), and p38 MAPK. In a
mouse model of CP, there is an elevation of ERK, JNK, and
p38 MAPK, with PSCs identified as the source of MAPK
production (Xu et al., 2018). The canonical signaling cascade for
ERK1/2 is Ras-Raf-MEK-ERK. The ERK pathway influences the
migration, activation, and matrix formation of PSCs (Schwer et al.,
2012). Mitogen-activated protein (MEK) inhibitors mitigate
pancreatic inflammatory damage and fibrosis caused by caerulein,
thereby affirming the significant regulatory function of the MAPK
signaling pathway in PF (Halbrook et al., 2017).

Flavonoids: Puerarin (Table 1), the principal bioactive flavonoid
compound derived from the traditional Chinese herb Radix
Puerariae. Accumulating evidence from recent studies has
demonstrated its therapeutic efficacy in attenuating fibrotic
progression across multiple organ systems, including hepatic,
pulmonary, renal, and cardiac fibrosis (Li et al., 2020; Zhang
et al,, 2019; Zhou et al,, 2017). Puerarin markedly suppressed the
phosphorylation of MAPK family proteins (JNK1/2, ERK1/2, and
P38 MAPK) in PSCs in a dose-dependent manner for the treatment
of CP (Zeng et al.,, 2021). Isoliquiritigenin (Table 1), a bioactive
chalcone-type flavonoid derived from Glycyrrhiza uralensis Fisch.,
possesses diverse pharmacological properties, including antioxidant,
anti-inflammatory, and hepatoprotective activities (Jin et al., 2016;
Na et al., 2018). Isoliquiritigenin exerted therapeutic effects against
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The anti-fibrotic effects of TCM through inhibiting macrophage infiltration and polarization, and inhibiting pancreatic acinar cell apoptosis. ILG,
Isoliquiritigenin; BR, Berberine; Bai, Baicalin; Tau, Taurine; DCHD, Dachaihu decoction

AP by suppressing oxidative stress (Liu et al., 2018). Isoliquiritigenin
notably alleviated PF and infiltration of macrophages in a model of
caerulein-induced murine CP. In vitro investigations using human
PSCs demonstrated that Isoliquiritigenin significantly suppressed
both proliferation and activation of human PSCs, potentially
through its inhibitory effects on ERK1/2 and JNKI1/2 signaling
pathways (Wang et al., 2020).

Polyphenols: Resveratrol (Table 1), is a natural polyphenolic
constituent found in grapes, berries, knotweed and many other food
products, and has been widely reported to have antioxidant and
antitumor properties (Burns et al., 2002). The beneficial effects of
trans-resveratrol are supported by extensive research, particularly
in vitro studies (Lagouge et al., 2006). Trans-resveratrol suppressed
PSCs activation, reducing fibrogenesis severity, and alleviated acinar
injury by downregulating Akt and p38 MAPK pathways and
attenuating RORyt activity (Xia et 2018).
(Table 1), derived from Curcuma longa Linn (turmeric), exhibits

al, Curcumin
anti-inflammatory, antioxidant, and antifibrotic properties. It
protects against AP in rats, bleomycin-induced pulmonary
fibrosis in mice, and carbon tetrachloride-induced liver fibrosis
(Gukovsky et al, 2003; Kang et al., 2002; Punithavathi et al,
2000). Curcumin effectively suppressed IL-1p- and TNF-a-
induced activation of MAPK signaling pathways, including ERK,
JNK, and p38 MAPK, thereby inhibiting the activation of PSCs
(Masamune et al., 2005a). Ellagic acid (Table 1) is a plant-derived
polyphenol found in fruits and nuts such as raspberries,
strawberries, walnuts, grapes, and black currants (Priyadarsini
et al,, 2002), and has been shown in pharmacological studies to
have a protective effect against a variety of fibrotic diseases (Chen J
etal, 2023; Li et al,, 2021; Mannino et al., 2023). Ellagic acid inhibits
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pancreatic stellate cell activation by inhibiting all three classes of
MAP kinases (Masamune et al., 2005b).

Herbal extracts and TCM formulas: Gardenia jasminoides (GJ,
Table 1), an evergreen flowering plant belonging to the Rubiaceae
family, has a longstanding history of application in China, widely
utilized as a traditional herbal remedy for managing inflammatory
conditions and fever (Hou et al., 2024). Previous research has
substantiated the anti-inflammatory efficacy of GJ in the context
of AP (Jung et al,, 2008). The study showed that GJ extract could
attenuate the severity of CP and PF by inhibiting ERK and JNK
activation during CP (Choi et al, 2020). Dahuang Danshen
decoction (DD, Table 2) consists of Rheum palmatum L. stem
and Salvia miltiorrhiza Bge. It has the effect of activating blood
circulation and removing blood stasis. Studies have demonstrated
the protective effect of Rheum palmatum L. stem and Salvia
miltiorrhiza Bge. against acute pancreatitis (Feng et al, 2024).
DD reduces diethyldithiocarbamate (DDC)-induced CP fibrosis
by modulating inflammatory mediators, relieving oxidative and
ER stress, and inhibiting PSCs activation via suppressing JNK
and MKK3/p38 pathways (Liang et al, 2021). Dachaihu
decoction (DCHD, Table 2) is a traditional Chinese medicine
formula that comes from the classic medical book Shang Han
Lun written by Zhonging Zhang of the Eastern Han Dynasty.
DCHD has been widely used in the clinical treatment of AP.
Recently, it was used to treat patients with CP, with studies
showing it effectively alleviates CP symptoms. DCHD might
alleviate pancreatic inflammatory cell infiltration and fibrosis by
regulating the MAPK signaling pathway (Li et al., 2025).

Numerous active ingredients and TCM formulas demonstrate
potent anti-fibrotic effects in CP primarily through suppression of
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TABLE 1 A list of herbal extracts and active ingredients in treating PF.

Source
(verified in
MPNs)

Dose and
mode

Effects and
mechanisms

10.3389/fphar.2025.1609569

Target/Pathway

Luteolin Reseda odorata L TNBS-induced SD In vivo: Both a-SMA, TGF-p1, IL-1p, TGEF-p/Smad signaling Yu et al.
rats; primary rat 12.5,50 mg/kg i.g IL-6, TNF-a] pathway (2018)
PSCs In vitro:
12.5 mM
Matrine Sophora flavescens =~ TNBS-induced SD | 100 mg/kg i.p In vivo a-SMA,TGF-1, Col-I, TGF-B/Smad signaling Liu et al.
Aiton rats Smad2, TARI, TPRII] pathway (2019a)
Piperine Piper nigrum L cerulein-induced In vivo: 1, 5, Both a-SMA, FN 1, Col-I, Col- = TGF-p/Smad signaling Choi et al.
C57BL/6 mice 10 mg/kg i.g 111, TGF-B/SMAD2/3, pathway (2019)
In vitro: 10, TNF-a, IL-1p, IL-6,
20, 50 uM CCL2, CXCL2|
Arecae pericarpium Areca catechu L cerulein-induced In vivo: 50, 100, = Both a-SMA, Col-I, FN1, TGF-p/Smad signaling Kweon et al.
water extract C57BL/6 mice; 200 mg/kg i.p PPP2R2A, Smad2| pathway (2022)
PDGEF-BB or TGF- | In vitro:
B -induced primary = 250 pug/mL
mouse PSCs
Catechin hydrate Senegalia catechu cerulein-induced In vivo: 1,5 and | Both a-SMA, FN 1,Col-I, Col- = TGF-p/Smad signaling Kweon et al.
(L.f) P.J.H.Hurter = C57BL/6 mice; 10 mg/kg i.p III,COL4A1L, pathway (2023)
& Mabb. PDGF-BB or TGF- | In vitro: 150, p-Smad2/3|
B -induced primary = 200 and 250 uM
mouse PSCs
Scoparone Artemisia DBTC-induced SD | In vivo:30, Both SOD, E-cadherin, TGF-p/Smad signaling Xu et al.
capillaris Thunb rats; primary rat 60 mg/kg, i.g Smad7T pathway (2016)
PSCs In vitro: MDA, a-SMA, Col-I,
0.1,0.2 and TGE-f, vimentin,
0.4 mM p-Smad2/3|
Berberine Coptis chinensis cerulein-induced In vivo: Both p-AMPKa, p-AMPKp, TGF-f/Smad signaling Bansod et al.
Franch Swiss albino mice; | 3,10 mg/kg i.p p-ACC, Smad7, pathway (2020)
TGF-B1 -induced In vitro: 3, E-cadherin|
RAW 264.7 10 and 30 pM TNF-a, IL-6, IL-1,
TGF-B1, a-SMA, Col-1,
Col-IIL, FN, Snail, Slug,
p-Smad2/3, CD206]
Epigallocatechin Camellia sinensis DDC-induced 50, 100, In vivo Smad77 a-SMA, TGF- TGF-p/Smad signaling Meng et al.
gallate (L.) O. Ktze Wistar rats 200 mg/kg i.g 1, Smad 3| pathway (2007)
Puerarin Pueraria montana  cerulein-induced In vivo: Both GFAPT MAPK signaling pathway | Zeng et al.
var. thomsonii C57BL/6 mice; 100 mg/kg i.g a-SMA, Col-1, EN, TNF- (2021)
(Benth.) M.R. PAF-induced In vitro: 25, 50, a, IL-6, JNK 1/2, ERK 1/
Almeida human primary 100 nM 2, p38 MAPK|
PSCs
Isoliquiritigenin Glycyrrhiza cerulein-induced In vivo: 20, Both DUSP5, DUSP10T MAPK signaling pathway | Wang et al.
uralensis Fisch. C57BL/6 mice; 40 mg/kg i.p PDGFR, ERK1/2, JNK1/ (2020)
ex DC. TGF-f -induced In vitro: 5, 2, FN, CCL2, CCL5,
human primary 10 and 20 pM CXCLI, IL-1, IL-6,
PSCs; LPS and IL- TNF-a, IL-4, IL-13,
4-induced RAW TGF-p1,CD68, F4/80|
264.7
Gardenia jasminoides =~ Gardenia cerulein-induced In vivo: 0.1, Both a-SMA, Col-I, Col-1V, MAPK signaling pathway | Choi et al.
extract Jjasminoides J.Ellis ~ C57BL/6 mice; 1 g/kg ip FN1, p-ERK, p-JNK| (2020)
PDGEF-BB -induced = In vitro:
primary mouse 0.5 mg/mL
PSCs
Curcumin Curcuma longa L.~ PDGF-BB, IL-1 or | 10, 25 uM In vitro a-SMA, Col-I, MCP-1, MAPK signaling pathway | Masamune
TNF-a-induced AP-1, p-ERK, p-JNK, p- et al. (2005a)
primary mouse p38 MAPK|
PSCs
TGF-B-induced 20 uM In vitro a-SMA, Col-I, FN1, NF- = NF-kB signaling pathway | Lin et al.
LTC-14 PSCs KkBp65| (2015)
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TABLE 1 (Continued) A list of herbal extracts and active ingredients in treating PF.

10.3389/fphar.2025.1609569

Source Dose and Effects and Target/Pathway
(verified in mode mechanisms
MPNs)
Rhein Rheum TGF-B-induced 20 uM In vitro a-SMA, Col-I, FN1, NF- = NF-kB signaling pathway | Lin et al.
palmatum L LTC-14 PSCs kBp65] (2015)
cerulein-induced In vivo: Both FN1, a-SMA, Col-I, IkB- | NF-kB signaling pathway | Tsang et al.
C57BL/6 mice; 50 mg/kg i.g al Hedgehog signaling (2013)
TGF-f-induced In vitro: 1, 10, SHH/GLI1, NF-xB| pathway
LTC-14 PSCs 100 uM
Resveratrol Reynoutria TGF-pB-induced In vivo: Both Akt, p38 MAPK, a-SMA, = MAPK signaling pathway = Xia et al.
Jjaponica Houtt LTC-14 PSCs and 20 mg/kg i.g FN1, TNF-a] (2018)
cerulein-induced In vitro: 50 uyM
AR42] acinar cells
TGF-B-induced 20 uyM In vitro a-SMA, Col-I, FN1, NF- = NF-«B signaling pathway = Lin et al.
LTC-14 PSCs kBp65| (2015)
TGF-B-induced 10, 20, 50 pM In vitro a-SMA, Col-I, FN1, NF- | NF-kB signaling pathway | Tsang et al.
LTC-14 PSCs KB, p-AKT (2015a)
Ellagic acid Rubus idaeus L PDGEF-BB, IL-1 or | 10, 25 uM In vitro a-SMA, Col-I, MCP-1, MAPK signaling pathway | Masamune
TNF-a-induced AP-1, p-ERK, p-JNK, p- et al. (2005b)
primary mouse p38 MAPK|
PSCs
Baicalin Scutellaria cerulein-induced In vivo: Both a-SMA, F4/80, NF-«kB, NF-kB signaling pathway | Fan et al.
baicalensis Georgi ~ C57BL/6 mice; 100 mg/kg i.p MCP-1, Col-I, TBRI, (2021)
TGF-f -induced In vitro: p-TAK1]|
primary mouse 50 pug/mL
PSCs; primary
mouse Bone
Marrow-Derived
Macrophages
Eruberin A Pronephrium TGF-f-induced 1, 5, 10, In vitro a-SMA, FN1, SHH, GLI1 = Hedgehog signaling Tsang et al.
penangianum LTC-14 PSCs 20 pg/mL pathway (2015b)
(Hook.) Holtt
Pachymic acid Poria cocos (Schw.) = cerulein-induced In vivo: Both a-SMA, Col-I, FN, NF- = NLRP3 inflammasomes Li et al.
Wolf* C57BL/6 mice; 20 mg/kg i.p kB/NLRP3,IL-18, IL-1B| (2022)
TGF-p -induced In vitro: 15 uM
primary mouse
PSCs
The extract of total Psidium guajava L cerulein-induced 0.372, In vivo NLRP3, caspase-1,IL-1B, = NLRP3 inflammasomes Zhang et al.
flavonoids from C57BL/6 mice 0.186 g/kg i.g 1L-18, Col-1, Col-III, (2021a)
Psidium guajava a-SMA|
leaves
methanolic extract of = Morus alba L cerulein and 300 mg/kg i.g In vivo GSH/GSSGT NLRP3 inflammasomes Yuvaraj and
Morus alba root bark ethanol-induced HSP70, NF-xB, NLRP3, Geetha
‘Wistar rats ASC, caspase-1, IL-1, (2018)
IL-18]
Saikosaponin A Buplerum primary rat PSCs 5, 10 pg/mL In vitro MMP137 AMPK/mTOR signaling Cui et al.
chinense DC. a-SMA, EN, Col-1, Col- | pathway (Autophagy) (2020)
111, TIMP1, TIMP2, NLRP3 inflammasomes
Atg5, Beclin-1, LC3B,
NLRP3, Caspase-1, IL-
16, IL-18]
Saikosaponin d Buplerum DBTC-induced In vivo: 2 mg/kg | Both p-PI3K, p-Akt, PI3K/Akt/mTOR Cui et al.
chinense DC. Wistar rats; ig p-mTOR,MMP2/ (Autophagy) (2019)

primary rat PSCs

In vitro: 5,10 uM

TIMP2, MMP13/
TIMP1,Smad7, P621
a-SMA, EN, Col-I,
beclin-1, Atg5, LC3-I1I/
LC3-1, TGEF-p1,
p-Smad3 |

TGEF-B/Smad signaling
pathway
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TABLE 1 (Continued) A list of herbal extracts and active ingredients in treating PF.

Model Dose and

mode

Source
(verified in
MPNSs)

Effects and
mechanisms

Target/Pathway

Taurine Bos taurus DBTC-induced In vivo: 10%
domesticus Gmelin =~ Wistar rats; DBTC- | taurine diet
(bile)* induced AR42] cells = In vitro: 0.8 mM

DBTC-induced
Wistar rats; PDGF-
induced primary rat
PSCs

In vivo: 1%
taurine diet
In vitro: 0.8 mM

Both Bcl-2T — Matsushita
Bad| et al. (2012)
Both — Shirahige

et al. (2008)

|: downregulation; T: upregulation.
* medicines derived from fungi or animals.

TABLE 2 A list of TCM formulas in treating PF.

Composition (verified

Effects and Target pathway

in MPNs) mechanisms
Modified Bupleurum falcatum L., Scutellaria =~ DBTC-induced = 10 g/kg i.g In vivo TGF-B1, TPRIL, Smad3| TGF-p/Smad signaling Zhang
Xiaochaihu baicalensis Georgi, Pinellia Wistar rats pathway et al.
Decoction ternata (Thunb.) Makino, (2013)

Glycyrrhiza uralensis Fisch. ex DC.,

Prunus persica (L.) Batsch DBTC-induced = 10 g/kg i.g In vivo MMP13, TIMP17T — Zhang

‘Wistar rats Col-I, Col-1IT| et al.
(2017a)
Dahuang Rheum palmatum L., DDC-induced 1.37, 2.74, In vivo GSH, SOD, Nrf2, NQOI1, MAPK signaling pathway  Liang
Danshen Salvia miltiorrhiza Bunge SD rats 5.48 g/kg i.g GPX1, HO-1T et al.
decoction a-SMA, Col-I, Col-III, (2021)
TNF-q, IL-6, ROS, Keap-1,
GRP, JNK, MMK-3/p38|

Dachaihu Bupleurum falcatum L., Scutellaria  cerulein- 5.5, 11, In vivo a-SMA, Col-LfIL-6, MCP- | MAPK signaling pathway | Li et al.
decoction baicalensis Georgi, Citrus x induced 22 g/kg i.g 1, TNF-a, p-JNK, p-ERK, (2025)

aurantium L., Paeonia lactiflora C57BL/6 mice p-P38, JNKI, ERK1, P38

Pall., Pinellia ternata (Thunb.)

Makino, Rheum palmatum L., L-arginine- 14 g/kg i.g In vivo IL-6, MCP-1, MIP-1a, FN| = — Duan

Zingiber officinale Roscoe, induced et al.

Ziziphus jujuba Mill KunMing mice (2017)
Xiao Chai Hu | Bupleurum falcatum L., Scutellaria = cerulein- 15, 30, In vivo VD3, VDRT NLRP3 inflammasomes Zhang
Tang baicalensis Georgi, Pinellia ternata  induced 60 g/kg i.g Col-I, Col-III, a-SMA, et al.

Makino, Zingiber officinale Roscoe, =~ C57BL/6 mice NLRP3, IL-1B, TNF-a, (2023)

Panax ginseng C.A.Mey., Ziziphus IL-6]

Jjujuba Mill,, Glycyrrhiza uralensis

Fisch. ex DC.
Chaihu Guizhi  Bupleurum chinense DC., Neolitsea =~ DBTC-induced | In vivo: Both JNK/mTORT JNK/mTOR signaling Cuietal.
Ganjiang cassia (L.) Kosterm., Zingiber SD rats; 1.44 g/kg i.g a-SMA, COLI, EN, pathway (Autophagy) (2021)
Decoction officinale Roscoe, Trichosanthes primary rat In vitro: 20% MMP2,TIMP2, Atg5,

kirilowii Maxim., Scutellaria PSCs or 50% Beclin-1,LC3B|

baicalensis Georgi, Glycyrrhiza serum

uralensis Fisch. ex DC., Crassostrea CGGD

gigas (Thunberg)*

* medicines derived from animals.

the MAPK signaling pathway. Flavonoids such as puerarin and
isoliquiritigenin, polyphenols including resveratrol, curcumin, and
ellagic acid, extracts from GJ, as well as TCM formulas like DD and
DCHD all converge on inhibiting key MAPK components (ERK,
JNK, and p38), thereby attenuating PSCs activation, reducing
inflammation, oxidative stress, and ECM deposition. This
collective evidence highlights a shared mechanistic theme across
diverse natural products: targeting MAPK cascades to disrupt
fibrotic signaling networks.
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4.1.3 NF-«B signaling pathway

The NF-kB family of transcription factors serves as crucial
regulators of immunological development, immune response,
inflammation, and cancer. It has five protein monomers: p65/
RelA, RelB, c-Rel/Rel, p50/NF-kBl, and p52/NF-xB2. The
connections among NF-«kB dimers, the inhibitor of NF-kB (IkB),
and the IkB kinase (IKK) complexes form the NF-«xB signaling
pathway (Mitchell et al, 2016). Fundamental research has
demonstrated that the activation of the NF-kB pathway directly
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exacerbates the severity of CP and contributes to heightened fibrosis
(Huang et al., 2013). Nonetheless, it has been proposed that the
function of NF-«B is complex across many stages of pancreatitis,
with outcomes contingent upon the diverse experimental models
and methodologies employed by different research teams (Neesse
and Ellenrieder, 2017).

Polyphenols: Four phenolic compounds, rhein, emodin,
curcumin, and resveratrol (Table 1), reduced the expression
levels of Acta2, Col-I, FN, as well as the nuclear expression of
NF-«B in the rat PSCs line LTC-14 following TGF-f stimulation
(Lin et al., 2015). This indicates that their mechanism of action
against PF primarily involves inhibiting the activation of the NF-«xB
signaling pathway. However, this effect is limited to in vitro studies
and only impacts the NF-kB target. Another study found that
resveratrol’s antifibrotic mechanism was related to the inhibition
of NF-xB activation and the reduction of protein kinase B (Akt)
phosphorylation (Tsang et al., 2015a).

Flavonoids: Further research is needed to clarify the mechanisms
of these compounds. Baicalin (Table 1), the primary bioactive
component of Scutellaria baicalensis Georgi. It exhibits a broad
spectrum of pharmacological activities, including anti-inflammatory
and anti-fibrotic effects on organs such as the liver, kidneys, and
lungs (Dinda et al., 2017; Wang et al.,, 2015; Zaghloul et al., 2022;
Zhao et al., 2020). One finding indicated that baicalin could impede
the activation of PSCs by down-regulating the TGF-B1/TGF -BR1/
TAKI1/NF-xB signaling pathway, hence mitigating PF (Fan
et al., 2021).

Others compounds: Eruberin A (Table 1) can be extracted from
Pronephrium penangianum (Hook.) Holtt. This plant has a long
history of use as a folk medicine in Chinese traditional medicine.
Eruberin A markedly inhibited NF-«B activation and PI3K/Akt
phosphorylation, reducing fibrotic mediator expression in PSCs. Its
antifibrotic action was tied to suppressing the PI3K/Akt/NF-kB
signaling pathway (Tsang et al., 2015b).

Active ingredients exhibit anti- PF effects predominantly through
inhibition of the NF-kB pathway, though with varying mechanistic
breadth. Polyphenols, including rhein, emodin, curcumin, and
resveratrol, consistently suppress PSCs activation and reduce fibrotic
marker expression by blocking NF-kB nuclear translocation, although
evidence remains largely limited to in vitro models. Flavonoids such as
baicalin target a broader upstream spectrum, inhibiting the TGF-f1/
TPR1/TAK1/NF-kB axis. Other structurally distinct compounds like
eruberin A, and to some extent resveratrol, demonstrate enhanced
efficacy by concurrently modulating complementary pathways such as
PI3K/Akt alongside NF-B. Inhibition of NF-«B is a widely recognized
therapeutic strategy for PF.

4.1.4 Hedgehog signaling pathway

The Hh signaling pathway comprises three ligands, including
Sonic hedgehog (Shh), Indian hedgehog (Ihh), and Desert hedgehog
(Dhh), two transmembrane receptor proteins (Ptchl and Ptch2),
one signal transduction factor (Smo), and three transcription
factors, including Glioma-Associated Oncogene (Gli)1, Gli2, and
Gli3. Activated PSCs were seen to express Ptch1 and Smo (Shinozaki
et al, 2008). Thh augmented the migration of PSCs and elevated
matrix metalloproteinase (MMP)1 expression.lhh prompted the
increase of Glil in the nucleus of PSCs, indicating that Thh may
activate the Glil-dependent signaling pathway. Paracrine Hh
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signaling has been shown to activate and promote the
proliferation of myofibroblasts in pancreatic tissues, as well as
induce the formation of MMP (Bai et al., 2016). Consequently,
Hh signaling is a crucial mechanism for PSCs activation and ECM
synthesis during CP fibrosis. Inhibition of Hh signaling after
application of vismodegib, a Hh pathway inhibitor, ameliorates
L-arginine or caerulein-induced CP severity (Iyer et al., 2024).

Rhein (Table 1), a natural anthraquinone derivative extracted
from Rheum palmatum L., is a yellow crystalline compound. It has
been used as a mild laxative and astringent in Chinese traditional
medicine since ancient times. Rhein reduced a-SMA, FN1, Col-1,
and Shh expression in a caerulein-induced CP mouse model,
alleviating PF by inhibiting the Shh/Glil pathway. Shh and
Glil expression levels in pancreatic tissue were positively
correlated with PF severity, highlighting the Shh/Glil pathway’s
key role in PF development (Tsang et al., 2013).

4.1.5 NLRP3 inflammasomes

NLRP3 inflammasomes comprise a soluble pattern recognition
receptor connected to NLRP3 protein by the amino-terminal
pyridine structural domain, which links to the N-terminal end
of apoptosis-associated speck-like protein, while the C-terminal
end of ASC associates with procaspase-1; collectively, these
components constitute NLRP3 inflammasomes (Zhang et al,
2021a). This is a recently discovered cytoplasmic signaling
complex that facilitates the activation of powerful inflammatory
mediators and is especially pertinent to metabolic disorders,
multiple  sclerosis, inflammatory = bowel disease, and
autoimmune and autoinflammatory conditions (Mangan et al,
2018). NLRP3 participates in pancreatic inflammation and the
synthesis of proinflammatory cytokines. Inhibition of
NLRP3 PSCs thereby
postponing the fibrotic process in CP (Zhang G. X. et al., 2017).
Furthermore, it has been shown that inhibition of the NF-xB
pathway diminishes NLRP3 expression, therefore alleviating the
severity of CP (Kanak et al.,, 2017).

Active ingredients: Saikosaponin A (SSa, Table 1) is one of the

activation  suppresses activation,

main active ingredients of Buplerum chinense DC., which possesses a
variety of pharmacological activities including anti-inflammation
(Piao et al,, 2020). SSa inhibits autophagy in PSCs and suppresses
NLRP3, indicating a link between autophagy and NLRP3 during the
suppression of PSCs (Cui et al., 2020). Pachymic acid (PA, Table 1),
a triterpenoid derived from Poria cocos, exhibits anti-inflammatory
and anticancer properties (Cheng et al., 2015). PA repressed cerulein
or TGF-B-induced activation of NF- xB/NLRP3 inflammasome
activation to mitigate PSCs activation and PF (Li et al., 2022).
Herbal extracts and TCM formulas: Psidium guajava is a well-
known traditional medicinal plant widely used in folk medicine.
Animal studies have shown that extracts of guava leaves can
inhibiting effects on chronic inflammation (Jayachandran et al,
2018; Luo et al., 2019). The extract of total flavonoids from Psidium
guajava leaves (TFPGL, Table 1) markedly diminished the
production of caspase-1, IL-1B, and IL-18, indicating that it
mitigates pancreatic inflammation and fibrosis via inhibiting
NLRP3 activation (Zhang et al., 2021b). Morus alba L., or white
mulberry, native to northern China, has significant ethno medicinal
value. Its root bark contains bioactive compounds with antibacterial,
antiviral, and antioxidant properties (Chan et al., 2016). The
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methanolic extract of Morus alba root bark (MEMARB, Table 1)
may prevent CP via influencing heat shock protein 70 (HSP70) in
relation to NF-kB and NLRP3 activation (Yuvaraj and Geetha,
2018). Xiao Chai Hu Tang (XCHT, Table 2) also comes from
Shang Han Lun. In Shang Han Lun, XCHT addressed symptoms
like poor appetite, nausea, vomiting, and upper abdominal pain,
akin to CP symptoms (Zhang et al., 2023). It reported that XCHT
suppressed PF and chronic inflammation in a caerulein-induced CP
model by augmenting VD3/VDR expression and reducing the
release of NLRP3-associated inflammatory mediators.

Multiple active ingredients and TCM formulas exert anti-PF
effects primarily by inhibiting the NLRP3 inflammasome
pathway. TFPGL and SSa suppresses NLRP3 activation, while
SSa additionally inhibits autophagy. PA and MEMARB target
both NF-kB/NLRP3 pathways. XCHT enhances VD3/VDR
expression to suppresses NLRP3 activation. These findings
underscore NLRP3 inflammasome inhibition as a common
mechanistic target across diverse compounds, though further
in vivo and clinical studies are warranted to confirm efficacy and
explore additional mechanisms.

4.1.6 Autophagy and PF

Autophagy is a conserved catabolic mechanism that sequesters
cytoplasmic constituents within a double-membrane vesicle known
as an autophagosome, which is then transported to lysosomes for
breakdown and recycling (Eskelinen, 2019). Autophagy is a dynamic
process governed by a collection of proteins expressed by
autophagy-related genes (Atg). Previous work has established that
autophagy plays a role in the activation of PSCs, and that the
inhibition of autophagy in PSCs concurrently suppresses their
activation (Li et al., 2018). It is postulated that PSCs may destroy
cytoplasmic lipid droplets via autophagy to supply raw materials and
energy for quiescent PSCs, hence facilitating their activation (Sousa
etal,, 2016). The mammalian target of rapamycin (mTOR) is crucial
for controlling protein synthesis, cell cycle distribution, cell
proliferation, and apoptosis, and serves as a central hub for
modulating cellular autophagy activity. Inhibition of mTOR
promotes autophagy, whereas activation of mTOR suppresses the
beginning of autophagy (Jung et al., 2009).

Active ingredients: Saikosaponin d (SSd, Table 1), another active
component of Buplerum chinense DC., prevented PF by inhibiting
PSCs autophagy via the PI3K/Akt/mTOR pathway, which interacted
with the TGF-B1/Smads pathway (Cui et al.,, 2019). SSA inhibited
PSCs inhibiting PSCs the
NLRP3 inflammasome via the Adenosine 5'-monophosphate-
activated protein kinase (AMPK)/mTOR pathway.

Herbal extracts and TCM formulas: Chaihu Guizhi Ganjiang
Decoction (CGGD, Table 2) is a TCM formula that was first
described by Zhongjing Zhang in “Shang Han Lun”. It has been
widely used in the clinical treatment of digestive in TCM. CGGD
suppressed autophagy by down-regulating Atg5, Beclin-1, and
LC3B, while enhancing the phosphorylation of mTOR and JNK
in pancreatic tissues and PSCs. CGGD mitigated PF and the
activation of PSCs by suppressing PSCs autophagy via the JNK/

activation by autophagy and

mTOR signaling pathway (Cui et al., 2021).

Together, these results emphasize the importance of mTOR
mediated inhibition of PSCs autophagy as a shared antifibrotic
mechanism among active ingredients and complex TCM formulas.

Frontiers in Pharmacology

11

10.3389/fphar.2025.1609569

4.2 Mitigating ECM accumulation

In pancreatic injury, PSCs are stimulated to generate substantial
quantities of ECM for tissue repair and regeneration at sites of
fibrogenesis; however, an imbalance between ECM synthesis and
degradation may induce fibrosis of the pancreatic parenchyma,
ultimately causing irreversible morphological damage to the
organ. Consequently, equilibrating the synthesis and breakdown
of the ECM is regarded as an effective approach for addressing PF
(Schneider et al,, 2001). The degradation of ECM is primarily
governed by the regulation of degradative enzyme systems within
the organism. Among these, MMPs are capable of selectively
degrading various ECM components. The activity and expression
levels of MMPs are subsequently inhibited by tissue inhibitors of
metalloproteinases (TIMPs). Therefore, modulating the expression
of MMPs or TIMPs, as well as regulating the activity of MMPs/
TIMPs-related signaling pathways, can influence ECM degradation.

Certain active ingredients and TCM formulas address PF by
restoring the critical balance between ECM synthesis and
degradation, primarily by modulating the MMP/TIMP system.
The triterpenoid saponin SSd enhances ECM breakdown by
increasing the ratio of MMPs to TIMPs (Cui et al, 2019).
Similarly, the TCM formula MXD promotes collagen degradation
specifically by upregulating the expression of MMP13 (Zhang et al.,
2017b). These interventions highlight a distinct therapeutic strategy
focused not on suppressing PSCs activation directly, but on
facilitating the clearance of accumulated fibrotic tissue, thereby
contributing to the resolution of fibrosis and restoration of
pancreatic architecture.

4.3 Inhibiting macrophage infiltration and
polarization and pancreatic acinar
cell apoptosis

While PSCs activation is a central focus in PF research, emerging
evidence highlights the critical roles of macrophages and acinar cells in
its pathogenesis. Macrophages contribute to PF by secreting TGF-p to
activate PSCs and by sustaining a pro-inflammatory microenvironment
(Michalski et al., 2007; Schmid-Kotsas et al., 1999). Beyond immune
cells, acinar cell apoptosis-releasing DAMPs like high mobility group
box 1 (HMGBI) exacerbates pancreatic injury (Zhan et al., 2019).

The alkaloid berberine inhibits both TGF-f1/Smad signaling and
M2 macrophage polarization via AMPK (Bansod et al., 2020); the
flavonoid baicalin reduces macrophage recruitment by blocking MCP-1
release from PSCs (Fan et al, 2021); and another flavonoid,
isoliquiritigenin  suppresses M1 macrophage polarization by
inhibiting NF-kB (Wang et al, 2020). The TCM formula DCHD
also attenuates PF by suppressing macrophage infiltration (Duan
et al, 2017). The amino acid derivative taurine, extracted from ox
bile, is a TCM with over two millennia of use in treating fever,
inflammation, and gallbladder issues. Taurine suppressed apoptosis
of pancreatic acinar cells and mitigated PF in experimental CP
(Matsushita et al., 2012). These findings underscore a multi-cellular
therapeutic strategy, where active ingredients concurrently target PSCs,
macrophage-driven inflammation to disrupt the progression of PF.

The pathogenesis of PF is orchestrated by intricate cross-talk
among acinar cells, macrophages PSCs, which converge on shared
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signaling pathways. Notably, TCM interventions target this
multicellular crosstalk through a system-level approach. Active
ingredients from TCM, such as berberine and isoliquiritigenin
simultaneously modulate multiple nodes within this network:
they suppress macrophage M1 or M2 polarization, and inhibit
PSCs activation, primarily through downstream regulation of
converging pathways TGF-B/Smad or MAPK. By targeting
multiple cell types and pathways synergistically, TCM offers a
holistic strategy to disrupt the vicious cycle of pancreatic
fibrogenesis, representing a unique therapeutic advantage over
conventional single-target agents.

5 Comparison with modern anti-
fibrotic therapies

Pirfenidone and nintedanib are established as first-line therapies for
idiopathic pulmonary fibrosis and progressive pulmonary fibrosis
(Raghu et al,, 2022). However, clinical studies have reported that
these agents are associated with considerable adverse effects,
including photosensitive rash and gastrointestinal disturbances,
which can substantially impair patient quality of life, contribute to
economic burden, and often lead to treatment discontinuation
(Spagnolo et al, 2021). In contrast, TCM offers a multi-targeted
therapeutic strategy with emerging potential in the management of
fibrotic diseases. For instance, Shengxian Decoction, a classic formula
has
demonstrated efficacy comparable to pirfenidone in key metrics of

documented in authoritative Chinese materia medica,
pulmonary fibrosis at a medium dose (78 mg/kg/d), suggesting its
promise as an alternative treatment (Liang et al, 2024). Similarly,
Elephantopus scaber L., an herb used in TCM for heat-clearing and
detoxification, mitigated bleomycin-induced pulmonary inflammation
and fibrosis in vivo by attenuating neutrophil infiltration and reducing
fibroblast foci, showing effectiveness similar to pirfenidone (Jia et al,
2024). These examples underscore the potential of TCM in treating
fibrotic conditions. In the specific context of PF, although pirfenidone
and nintedanib have been validated in pulmonary settings, their efficacy
remains uncertain for pancreatic applications, owing to a narrow focus
on isolated pathways such as growth factor inhibition. Conversely,
TCM employs a holistic approach that simultaneously addresses
multiple pathological processes, including chronic inflammation,
oxidative stress, PSCs activation, and immune dysregulation. This
broad mechanistic engagement may not only inhibit fibrosis but also
promote tissue repair. Nevertheless, TCM faces significant challenges,
such as lack of standardization, undefined pharmacokinetics, and
insufficient evidence from large-scale randomized controlled trials
targeting PF. Therefore, while TCM represents a promising
complementary strategy with multi-modal mechanisms, its clinical
translation requires further rigorous validation to achieve the
reproducibility and regulatory approval accorded to conventional

antifibrotic agents.

6 Critical appraisal and future directions

First, although numerous active ingredients demonstrate
efficacy in modulating key pathways such as TGF-f/Smad,
MAPK, and NF-xB, the molecular mechanisms underlying their
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actions remain incompletely elucidated. For many agents, including
multi-target compounds like berberine and baicalin, direct
molecular targets, binding affinities, and precise
pharmacodynamic relationships are still poorly defined. To
establish links, should

incorporate advanced approaches such as chemical proteomics,

causal mechanistic future studies
target deconvolution strategies, and genetic perturbation models
(e.g, CRISPR/Cas9 or RNAi). Clarifying these mechanisms is
essential for distinguishing primary targets from downstream
effects and for rational optimization of lead compounds.
Moreover, while the discussed phytochemicals (such as berberine,
baicalin, and curcumin) are widely used within the TCM system, it
must also be acknowledged that they are widely present in nature.

Second, a major obstacle to clinical translation is the frequent

disconnect ~ between  pharmacokinetic =~ properties  and
pharmacodynamic effects. Promising in vitro activities of
constituents such as resveratrol and curcumin are often

compromised by poor bioavailability (e.g., curcumin’s <1% oral
bioavailability), rapid metabolism, and insufficient accumulation in
pancreatic tissue (Wang et al., 2022). Effective concentrations in
cell-based assays commonly exceed physiologically achievable
plasma levels. To bridge this Pharmacokinetic-Pharmacodynamic
gap, the development of advanced drug delivery systems, such as
nanoparticles, liposomes, or phytosomes engineered for pancreatic
targeting, is critical to enhance biodistribution and achieve
therapeutically relevant exposure profiles.

Third, heavy reliance on rodent models induced by caerulein or
DBTC constitutes another significant limitation. These models produce
acute pancreatic injury and accelerated fibrosis that may not fully
recapitulate the chronic, low-grade inflammatory and metabolic
dysregulation characteristic of human CP. Moreover, conventional
monocultures of PSCs fail to capture the multicellular complexity of
the pancreatic microenvironment. There is a compelling need to adopt
more physiologically relevant models, such as patient-derived
organoids, 3D heterotypic spheroids incorporating PSCs, acinar cells,
and macrophages, and genetically engineered mouse models that better
mimic human disease progression.

Finally, the translational gap between encouraging preclinical
results and demonstrated clinical efficacy. A notable scarcity of high-
quality clinical trials investigating TCM for PF persists; existing
studies are predominantly published in Chinese and are typically
limited by small sample sizes (Durgaprasad et al, 2005).
Furthermore, no interventions based on TCM have advanced to
clinical trials approved by the U.S. Food and Drug Administration
(FDA) for CP or PF. Barriers to clinical advancement include
lack of
pharmacokinetic data for active ingredients, undefined dosing

insufficient characterization of TCM formulas, a
regimens, and incomplete safety profiles. Future research must
prioritize extract standardization, innovative formulation design
to improve bioavailability and targeting, and the execution of
rigorously controlled, biomarker-driven early-phase clinical trials.

7 Conclusion

Currently, no single pharmacological agent has received
approval from the FDA to reverse PF. TCM offers a unique and
valuable approach to combating PF, characterized by their multi-
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target mechanisms, ability to modulate complex pathological
networks, and favorable safety profiles. These achievements
highlight the potential of TCM as a source of novel therapeutic
candidates for PF. However, to fully translate these promising
findings from bench to bedside, the field necessitates a paradigm
shift from phenomenological observation to mechanism-driven,
pharmacokinetically-aware, and clinically-relevant pharmacological
research. By addressing these critical gaps, it will establish an
essential scientific foundation for optimizing clinical strategies in PF
prevention and treatment.
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Glossary

ADM Acinar-to-Ductal Metaplasia

Akt Protein kinase B

AMPK Adenosine 5'-monophosphate-activated protein kinase
AP Acute pancreatitis

Atg Autophagy-related genes

CK Cytokeratin

Col-I Collagen type I

Col-II1 Collagen type III

CP Chronic pancreatitis

DAMP Damage-associated molecular pattern

DDC Diethyldithiocarbamate

Dhh Desert hedgehog

ECM Extracellular matrix

ERCP Endoscopic retrograde cholangiopancreatography
ERK Extracellular regulated protein kinases

ESWL Extracorporeal shock wave lithotripsy

FDA U.S. Food and Drug Administration

Gli Glioma-Associated Oncogene

HA Hyaluronic acid

Hh Hedgehog

HMGBI1 High mobility group box 1

HSP70 Heat shock protein 70

Thh Indian hedgehog

IKK Inhibitor of nuclear factor kappa-B kinase

IL Interleukin

IxB Inhibitor of Nuclear factor-kB

JAK Janus tyrosine Kinase

JNK c-Jun N-terminal kinase

MAPK Mitogen-activated protein kinase pathway
MCP-1 monocyte chemotactic protein 1

MEK Mitogen-activated protein

MMP Matrix metalloproteinase

mTOR Mammalian target of rapamycin

NF-kB Nuclear factor-xkB

NLRP3 Nod-like receptor family pyrin domain containing 3
PDGF Platelet-derived growth factor

PF pancreatic fibrosis

PI3K Phosphoinositide 3-kinase

PSCs Pancreatic stellate cells

Shh Sonic hedgehog

STAT Signal Transducer and Activator of Transcription
TCM Traditional Chinese medicine
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TGF-p
TIMPs
TNBS
TNF-a
TPR

a-SMA

10.3389/fphar.2025.1609569

Transforming Growth Factor-p

Tissue inhibitors of metalloproteinases
Trinitrobenzene sulfonic acid

Tumor necrosis factor-a

Transforming Growth Factor-p receptor

a-smooth muscle actin
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