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Background: Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an
inherited cardiac disorder characterized by sodium channel dysfunction.
However, the clinical management of ARVC remains challenging. Identifying
novel compounds for the treatment of ARVC is crucial for advancing drug
development.

Purpose: In this study, we aim to identify novel compounds for treating ARVC.

Methods: Machine learning (ML) models were constructed using proteins
analyzed from the scRNA-seq data of ARVC rats and their corresponding
protein-protein interaction (PPI) network to predict binding affinity (BA). To
validate these predictions, a series of experiments in cardiac organoids were
conducted, includingWestern blotting, ELISA, MEA, andMasson staining to assess
the effects of these compounds.

Results: We first discovered and identified SCN5A as the most significantly
affected sodium channel protein in ARVC. ML models predicted that
Kaempferol binds to SCN5A with high affinity. In vitro experiments further
confirmed that Kaempferol exerted therapeutic effects in ARVC.

Conclusion: This study presents a novel approach for identifying potential
compounds to treat ARVC. By integrating ML modeling with organoid
validation, our platform provides valuable support in addressing the public
health challenges posed by ARVC, with broad application prospects.
Kaempferol shows promise as a lead compound for ARVC treatment.
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GRAPHICAL ABSTRACT

1 Introduction

Arrhythmogenic right ventricular cardiomyopathy (ARVC) is
an inherited cardiac disorder with a prevalence ranging from 1:
2000 to 1:5000, predominantly affecting males (Pilichou et al., 2016).
The structural defects of ARVC are characterized by fibrofatty
infiltration and replacement of the myocardium, leading to
ventricular dysfunction, life-threatening ventricular arrhythmias,
and heart failure (Basso et al., 2012). As a familial susceptibility
disease, mutations in desmosomal genes are the primary pathogenic
factors. Plakophilin 2 (PKP2), has recently been identified as the
most commonly affected gene in ARVC, with over 40% of the ARVC
population respectively (Austin et al., 2019). Previous studies
indicate that PKP2 mutations are strongly associated with
sodium channel dysfunction (Cerrone and Delmar, 2014; Shaw,
2013). Therefore, focusing on ARVC associated with
PKP2 mutations and sodium channel alterations is of
considerable importance.

The clinical management of ARVC remains challenging.
Current strategies primarily focus on symptomatic relief or
lifestyle modifications, including exercise restriction,
pharmacological interventions, and invasive measures such as
catheter ablation, implantable cardioverter-defibrillator, and heart
transplantation (Sayed et al., 2020; Krahn et al., 2022). While
antiarrhythmic drugs are commonly used, their therapeutic
efficacy remains suboptimal. In recent years, gene therapy,
particularly adeno-associated virus vector (AAV) - mediated gene
therapy, has garnered significant attention. However, biosafety
concerns must be carefully addressed (Wilton-Clark and Yokota,
2023). To date, no approved therapies exist to treat myocardial
fibrosis in ARVC (Krahn et al., 2022; Al-Aidarous et al., 2024).
However, due to the complexity of the disease and the limited size of
patient cohorts, exploring compounds to treat ARVC presents
significant challenges.

The protein-protein interaction (PPI) network consists of
proteins and their interactions, providing a foundation for
systematically investigating potential treatment efficacy and
contributing to specific biological functions. PPI networks related
to major sodium channel proteins can facilitate systematic
investigations into drug treatments (Szklarczyk et al., 2019).
However, traditional experimental methods for testing the targets
within these PPI networks are time-consuming and costly (Jia et al.,
2009). Recently, network-based approaches have been increasingly
utilized in drug discovery, and machine learning (ML) technologies
have gained significant traction in drug discovery and development
(Gao et al., 2020a). These tools enable computational prioritization
of high-value compounds, thereby substantially reducing both time
and costs while addressing ethical concerns (Gao et al., 2020b; Qiu

Abbreviations: AAV, adeno-associated virus; ARVC, arrhythmogenic right
ventricular cardiomyopathy; BA, binding affinity; CETSA, Cellular Thermal
Shift Assay; ECG, electrocardiogram; GBDT, gradient-boosting decision
tree; hiPSCs, human induced pluripotent stem cells; IF,
Immunofluorescence; KA, Kaempferol; MEA: multiple microelectrode
arrays; ML, machine learning; MRI: Magnetic Resonance Imaging; MST,
Microscale Thermophoresis; NLP, natural language processing; ODN,
Oridonin; PBMCs, peripheral blood mononuclear cells; PFA,
paraformaldehyde; PPI, protein-protein interaction; PKP2, plakophilin 2;
RMSD: root mean square deviation; scRNA-seq, Single-cell RNA-sequence;
ST, SMILES Transformer; ROCK I, rho kinase inhibitor; UMAP, Uniform
manifold approximation and projection.
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and Wei, 2023). Consequently, ML approaches were employed in
this study to perform large-scale predictions.

The present study constructed an ML platform to identify the
therapeutic compounds of ARVC. The PPI networks of the 8 major
sodium channel proteins identified in ScRNA-seq were obtained
from the STRING database. Potential compounds with
experimentally determined binding affinities were sourced from
the ChEMBL database, and ML models were constructed.
Compounds were represented by molecular fingerprints using
SMILES Transformer and paired with the gradient-boosting
decision tree (GBDT) algorithm to develop binding affinity (BA)
predictors. These compounds were subsequently tested in ARVC
cardiac organoids. Our platform holds promise for advancing drug
development for ARVC treatment.

2 Materials and methods

2.1 Generation of PKP2+/− animals

The PKP2mutation (PKP2+/−) rat as well as their wild type (WT)
littermates (30-week-old) were obtained from Prof. Wang Xin (East
China Normal University, Shanghai, China). All rats were fed in the
Laboratory Animal Center of Putuo Hospital, Shanghai University
of Traditional Chinese Medicine. The environment was set to
maintain a relative humidity of 45%–55% under a controlled
room temperature of 22°C–24°C with a 12–12 h light-dark cycle.

2.2 ECG and Magnetic Resonance
Imaging (MRI)

ECG was conducted as previously described (Bradford et al.,
2023). Briefly, rats were anesthetized with pentobarbital (20 mg/kg)
during the experiment, and the chest hair was removed. Rats
(30 weeks old) were placed on a heated pad and fixed in a dorsal
position. Needle electrodes were inserted subcutaneously into the
limbs. Electrical activity was recorded by the IX-BIO4 system
(iWorx Systems, Inc., USA) for 20 min. The MRI was conducted
on a BioSpec 94/30 USR (Bruker BioSpin MRI GMBH, Germany) as
previously described (Liang et al., 2021).

The animal experiments were performed according to the
Guidelines for Care and Use of Laboratory Animals. All
experiments were approved by the Animal Ethic Committee of
Putuo Hospital (approved number: DWEC-A-22024-02-2-72).

2.3 Protein analysis

Western blot analysis was performed as previously described.
Oridonin (ODN) (ChemFaces, 28957-04-2) or Kaempferol (KA)
(Aladdin, 520-18-3) at indicated concentrations (5 μM, 10 μM,
20 μM or 1 μM, 3 μM) was added to the PKP2+/− cardiac organoids
and incubated for 48 h. The cardiac organoids were then collected
and washed in cold sterile PBS and the total protein extract was
isolated via the protein extraction kit (KeyGEN BioTECH, China).

Immunodetection of PKP2 (Abcam, ab223757), Nav1.5
(SCN5A) (CST, 14421), and GAPDH (Abcam, ab181602) was

done as previously described (Lyon et al., 2014). Briefly, the
cardiac organoids’ proteins were loaded onto the 12% SDS-
polyacrylamide gel electrophoresis (SDS-PAGE) gels and then
transferred to PVDF membranes. After being blocked in 5%
non-fat milk in TBS-T at room temperature for 1 h, the
membranes were incubated overnight at 4°C with primary
antibodies. Then, the HRP-labeled goat anti-rabbit secondary
antibody (H + L) (Beyotime, A0208) was used. The Clarity
Western ECL Substrate kit was used for visualization. Tanon-
4600 and ImageJ software (NIH, Bethesda, MD) were used to
analyze the immunoblots.

2.4 Histological analysis

The rat hearts or cardiac organoids were fixed with 4% PFA
(Servicebio, G1101) overnight and were embedded in the O.C.T.
Compound (Sakura, 4583). Then, the frozen sections were cut to
5 µm thickness and restored to room temperature. Next, the slices
were stained with the Masson dye solution set (Servicebio, G1006)
according to the manufacturer’s instructions. Images were acquired
with the NIKON ECLIPSE E100.

2.5 Single-cell RNA-sequence (scRNA-seq)

2.5.1 Preparation of the single cardiac cell
suspension

Fresh 3 cardiac tissue was collected from each group with a
surgical scissor to isolate single cells. The tissues were cut into small
pieces of 0.5 mm3 in prechilled PBS with surgical scissors and
digested with collagenase type II (Gibco, 17101015) in a constant
temperature incubator at 37 °C andmixed inversely every 5min. The
digested cell suspension was filtered with a 40 μm cell screen (Falcon,
352340) 2 times and centrifuged at 4°C and 300 g for 5 min. The
supernatant was discarded, and the precipitate was resuspended in
100 μL of 10% FBS/DMEM, and the cell concentration and viability
were calculated by Luna cell counter. Dead cell removal was
performed according to the MACS Dead Cell Removal Kit
(MACS, 130-090-101) operating instructions. In brief, the cell
suspension was added with 100 μL of magnetic beads and
incubated at room temperature for 15 min. Then the suspension
was passed through the column. The eluted cell suspension was
centrifuged at 4°C and 300 g for 5 min and resuspended with 100 μL
medium, and detected by Luna cell counter (Logos
Biosystems, Korea).

2.5.2 Single-cell transcriptome capture, RNA-Seq
library construction, and sequence

The single-cell suspension was adjusted to 700–1200 cells/μL
according to the 10 × Genomics ChromiumNext GEM Single Cell 3ʹ
Reagent Kits v3.1 (No.1000268) Operation manual for computer
and library construction. The constructed library was sequenced
using the Illumina Nova 6000 PE150 platform.

2.5.3 Single-cell RNA-Seq data analysis
Seurat software was used for clustering and visualization

processing. Firstly, the gene expression matrix of each sample
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was read and converted into a Seurat object. In the subsequent
analysis, the cells were excluded with mitochondrial UMI (Unique
Molecular Identifier) which accounted for more than 35% and fewer
than 50 genes. After logarithmic normalization based on the total
UMI count of cells, the data was scaled according to the UMI count,
and principal component analysis (PCA) was performed based on
the top 2000 highly variable features. Subsequently, the data was
clustered and visualized by Unified Manifold Approximation and
Projection (UMAP) under the resolution of 0.5. Feature plots were
used to visualize the expression of specific genes in each cluster.

2.5.4 Cell annotation
The FindAllMarkers function combined with the Wilcoxon test

was used to calculate the specific markers for each cell cluster under
the following criteria: log2 fold change >0.25, min. pct >0.25. A large
amount of transcriptome data in Cell Taxonomy (https://ngdc.cncb.
ac.cn/celltaxonomy/) and CellMarker (http://117.50.127.228/
CellMarker/) were used to annotate cell types for each cell cluster.

2.6 Machine-learning analysis

2.6.1 Datasets
The compound database was collected from the CHEMBL

database to investigate the proteins with major changes in
sodium channels. Since machine-learning models largely rely on
a sufficient set of data points, we require the size of the collected
dataset to be at least 100. A total of 27 datasets were then obtained.
IC50 was used as the data point to calculate binding affinity (BA),
with the formula BA � 1.3633 × log 10(IC502 ) (kcal/mol), and was
then used to construct machine learning models as previously
described (Feng et al., 2023; Kalliokoski et al., 2013).

2.6.2 Molecular embeddings
The molecular representation of the 27 collected datasets is

2D SMILES strings. The molecular fingerprints were used to
build machine-learning models in this study. SMILES
Transformer (ST) is an unsupervised pre-training method that
can learn the syntax and semantic information in SMILES strings
(Mswahili and Jeong, 2024; Honda et al., 2019). The molecular
fingerprints were generated by pre-trained models based on ST
and sequence-to-sequence autoencoder (Winter et al., 2019). The
model built an encoder-decoder network with 4 Transformer
blocks for each with PyTorch. Each Transformer block has 4-
head attentions with 256 embedding dimensions and 2 linear
layers. Pre-training of ST was performed by 861000 unlabeled
smiles randomly sampled in ChEMBL24. A 1024-dimensional
fingerprint for each molecule was obtained through the
maximum pooling output of the transformer model. By
constructing the sequence-to-sequence language model, the
efficiency and accuracy of molecular characterization were
highly improved.

2.6.3 Machine-learning models
The gradient boosting decision tree (GBDT) algorithm version

0.24.1. (Scikit-learn library), was deployed to build our machine-
learning models. The GBDT algorithm can effectively combine the
decision tree with the integration idea with the advantage of

robustness against overfitting, insensitiveness to hyperparameters,
and ease of implementation. Through the bootstrap method for
resampling, GBDT generated multiple decision trees and combined
the output of these decision trees through the integration method to
reduce error.

We collected 27 datasets with at least 100 data points in each
dataset. It is preferable to utilize GBDT in building machine-
learning models for these datasets. As previously described,
molecular fingerprints generated by SMILES Transformer were
adopted to represent compounds. The 27 machine-learning
models were constructed by integrating molecular fingerprints
with the GBDT algorithm. To alleviate the effect of randomness,
each GBDT model was trained five times with different random
seeds. The average of the five predictions (Pearson correlation
coefficients and RMSE) was regarded as the final result of
each model.

2.6.4 Molecular docking
The PDB database (https://www.rcsb.org/) was used to obtain

the protein’s three-dimensional structure (resolution<3A), and the
TCMSP database (https://old.tcmsp-e.com/tcmsp.php) was used to
obtain the active ingredient’s three-dimensional structure. The water
molecules and tiny molecular linkages were then eliminated using
the “PyMOL” program. Using the “AutoDockTools” program,
protein and medication ingredients were transformed into
PDBQT format files, allowing for the identification of active
pockets. Lastly, molecular docking was performed using the
“vina” software. The 3D binding interactions of co-crystal
structures created by receptors interacting to ligands were
depicted using PyMOL.

2.6.5 Molecular dynamic simulation
To explore the stability of the protein–ligand interactions in

greater depth, molecular dynamics (MD) simulations were
performed on two complexes: SCN5A-Kaempferol, SCN5A-
Oridonin, using GROMACS 2024.3 software. The AMBER99SB
force field and SPC water model were utilized, with the system
temperature set at 300 K and the simulation time at 100 ns. The
energy minimization phase employed the steepest descent method,
followed by energy equilibration to stabilize the system before
completing the MD simulation.

2.7 Cardiac organoid culture

The WT and PKP2+/− iPSCs were generated in collaboration
with Cellapy (Beijing, China). The differentiation of cardiac
organoids started when iPSCs reached 80 ~ 95% of confluency.
The iPSCs were digested by Gentle Cell Dissociation Reagent
(STEMCELL Technologies, 07174), and were seeded into a
U-shaped ultralow-attachment 96-well plate (Corning, 7007) in
mTeSR Plus medium (STEMCELL Technologies, 05825)
supplemented with 10 μM Rho kinase inhibitor Y-27632
(Beyotime, SC0326) at a density of 9000 cells per well. The plate
was centrifuged at 300 g for 5 min. After 24 h incubation, the
medium was changed into differentiation medium A, which
contains CHIR-99021, BMP-4, LY294002, Activin A, and insulin.
48 h later, the differentiation medium B containing BMP4, IWR1,

Frontiers in Pharmacology frontiersin.org04

Zhu et al. 10.3389/fphar.2025.1611342

https://ngdc.cncb.ac.cn/celltaxonomy/
https://ngdc.cncb.ac.cn/celltaxonomy/
http://117.50.127.228/CellMarker/
http://117.50.127.228/CellMarker/
https://www.rcsb.org/
https://old.tcmsp-e.com/tcmsp.php
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1611342


Retinoic acid, FGF2, and insulin was replaced. 4 days later,
differentiation medium C contained FGF2, and insulin was
replaced daily for 5 days. Lastly, the organoids were cultured in a
maintenance medium supplemented with insulin, and the medium
was replaced daily.

2.8 Immunofluorescence (IF) analysis

Organoids were fixed with 4% PFA at 4°C overnight. After
O.C.T. embedding, the slides were cut to 5 µm thickness and
immersed in the EDTA antigen retrieval buffer (Servicebio,
G1206) for antigen retrieval. Then, 3% BSA was added to block
the non-specific binding for 30 min. After being stained with
primary antibody: rabbit anti-alpha smooth muscle (1:500,
Abcam, ab5694) or rabbit anti-cTnT (1:200, Abcam, ab209813)
overnight at 4°C, the secondary antibody was added and incubated at
room temperature for 1 h under dark conditions. Nuclei were
stained with DAPI (VECTOR, USA) for 10 min at room
temperature. After three times washing with PBS, the images
were visualized under a fluorescence microscope (Ortho-
Fluorescent Microscopy, Nikon).

2.9 Cell viability assay

Cell viability was detected with CCK-8 assay. In brief, cardiac
organoids were cultured in U-shape 96-well and incubated with
different concentrations of KA or ODN for 48 h. After incubation,
the supernatant was discarded, and each well was supplemented
with 10% CCK-8 reagent, followed by 1 h incubation at 37°C as
previously described (Chen X. et al., 2023). Then, cell viability was
measured at 450 nm using a spectrophotometer. Each group had at
least five replicates.

2.10 MEA assay

The MEA assay was conducted to evaluate the therapeutic effect
of the KA on electrophysiological properties in cardiac organoids.
Briefly, the WT and PKP2+/− cardiac organoids were seeded into the
Matrigel-coated CytoView MEA plates, with one organoid per well
for electro-activity recording. After being treated with KA for 48 h,
the electro-activities were recorded for 5 min. The MEA data
including the Beat Means Periods, Spikes Amplitude, and Field
Potential Duration were analyzed and visualized using the Maestro
Pro multi-well MEA platform and cardiac analysis tool (Axion
BioSystems, USA).

2.11 Statistical analysis

All graphs were plotted by GraphPad Prism 9.0 software
(GraphPad, Avenida, CA, United States). All data were presented
as the means ± S.E.M. (standard error of measurement). Ordinary
one-way ANOVA followed by the Dunnett post hoc test or Student’s
t-test was performed to analyze the differences in variables. P <
0.05 was considered statistically significant.

3 Result

3.1 SCN5A serves as a key element in ARVC
with PKP2 mutation

The ARVC rat model was generated using CRISPR-Cas9-
mediated genome editing, introducing a frameshift mutation with
a 5-base pair (bp) knockout in the PKP2 gene. Founder rats were
screened by Sanger sequencing to confirm the precise 5-bp deletion
(Supplementary Figure S1A). Next, ECG analysis, MASSON’s
staining, Western blotting, and MRI were conducted to confirm
the absence of functional PKP2 protein (Supplementary Figures
S1B–E). A widened QRS complex and lower PKP2 expression were
observed in PKP2+/− rats compared to the littermate WT controls,
consistent with previous findings in mice (Kyriakopoulou et al.,
2023) (Supplementary Figures S1B,C). Additionally, Masson’s
trichrome staining and MRI revealed significant myocardial loss,
fibrosis, fatty tissue replacement, and right ventricular (RV) dilation
in PKP2+/− rats compared to WT controls (Supplementary Figures
S1D,E). Together, these results indicate that the ARVC model has
been successfully constructed.

The heart tissues were collected from WT and PKP2+/− rats
above, digested, and analyzed for ScRNA-seq. The unsupervised
clustering of the 32326 cardiac cells using UMPA (Uniform
Manifold Approximation and Projection) revealed a high
correlation among the 23 obtained clusters (Figure 1A), allowing
individual cells to be classified as homogeneous states. According to
the significant expression of established lineage markers and
representative genes (Figure 1B), the clusters were defined as
Fibroblast (cluster 0, 11), Endothelial cell (cluster 1, 2, 4, 9, 13),
Macrophage (cluster 3, 18, 20, 21), Cardiomyocyte (cluster 5, 6, 10),
Pericyte (cluster 7, 12), T cell (cluster 8), Smooth muscle cell (cluster
14), Neutrophil (cluster 15), unknown (cluster 16,17,19,22) (Figures
1C,D). Each color expressed different cell types (Figure 1E). In
addition, in the PKP2+/− group, there was a significant increase in the
cluster of fibroblasts, which was in accordance with the previously
found in ARVC (Supplementary Figures S1C,D).

The gene analysis of the ScRNA-seq indicated significant
differences in sodium channel between WT and PKP2+/− groups
(Figure 1F): Fibroblast (Scn1b, Scn4b, Scn3b), Endothelial cell
(Scn1b, Scn1a, Scn3a, Scn4b, Scn5a), Macrophage (Scn1b, Scn7a,
Scn4b), Cardiomyocyte (Scn1b, Scn4b), Pericyte (Scn1b, Scn3b,
Scn8a), T cell (Scn1b), Neutrophil (Scn7a). Next, the differential
gene expression between PKP2+/− and WT in the whole tissue was
further analyzed. Among the above 8 sodium ion-related genes, only
Scn5a exhibited a significant downregulation in the PKP2+/− group
(Figure 1F), which was in accordance with the proteomics
(Supplementary Figure S2 and Supplementary File S4). In
summary, these results suggest that Scn5a may play a crucial
role in ARVC.

Next, the human cardiac organoid model was subsequently
employed to further validate the findings observed in rats. Firstly,
WT and PKP2+/− hiPSCs were induced to undergo directed
differentiation into cardiac organoids, and the
immunofluorescence staining was conducted to characterize the
cardiac organoids. As shown in Figure 2A, the myocardial marker
cTnT, the endothelial cell markers CD31, and the fibroblast marker
α-SMA were highly expressed in organoids. Then, Western blot
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FIGURE 1
Identification of cell populations of rat cardiac tissue. (A) Uniform manifold approximation and projection (UMAP) analysis integrating 54828 single
cells fromWT and PKP2+/− ventricles. (B) Dot plot visualization of top marker genes used to identify clusters. The color and size of the dots represent the
relative average expression levels in each population and the percentage of cells expressing the gene, respectively. (C) Fraction of cell types. (D)Bar plot of
the percentage contributions of each cluster in the scRNA-seq samples. (E) UMAP of single cells colored by clusters in WT (n = 2 ventricles) and
PKP2+/−(n = 2 ventricles). Nine clusters represented by colors are marked with the presumed cell types. (F) Expression bubble plot of sodium channel-
related genes in different cell types. (G) Violin plot of Scn5a expression between groups.
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analysis was performed to investigate the SCN5A (Nav1.5)
expression. The results revealed that PKP2 expression was
significantly reduced in PKP2+/− cardiac organoids compared to
WT organoids, consistent with previous reports (Kyriakopoulou
et al., 2023). Additionally, the expression of SCN5Awas aligned with
the results from ScRNA-Seq and proteomics in rats (Figure 2B).
Taken together, these findings suggest that SCN5A plays a key role
in ARVC associated with PKP2 mutations.

3.2 Machine-learning analysis of sodium
channel proteins-based
interactome networks

Sodium channel proteins and their interactions play a critical
role in specific biological functions (Feng et al., 2023; Gao et al.,
2021). To ensure a sufficient dataset for machine learning models,
we selected the 8 proteins related to sodium ion channels in ScRNA-
seq as targets for PPI analysis by inputting these protein names into
the STRING database. In each network, there is a core subnetwork
with proteins that interact directly with each sodium channel
protein, while additional proteins with interactions collectively

form the global network as shown in Figure 3A and
Supplementary File S1.

To evaluate the binding effect of the potential compounds to
sodium channel proteins in the PPI networks, we collected
compounds from the ChEMBL database. Next, the machine
learning model is established by combining the molecular
fingerprint trained by the ST algorithm with cross-target BA
predictions. We assembled 27 datasets in total and built 27 ML
models, with sufficient data points (>100) for the proteins in the
respective PPI networks. The details about the collected datasets can
be found in Supplementary File S2. The diagonal elements
represented the Pearson correlation coefficient (R) of the 5-fold
cross-validation of the Machine-Learning BA predictions for the
corresponding protein database. The off-diagonal elements
indicated the maximal BA values predicted by other models. The
horizontal axis notations corresponded to the 27 datasets, while the
vertical axis notations represented the 27 ML models. The intensity
of cross-target BA was indicated by the color of off-diagonal
elements, with darker shades corresponding to weaker BA. 3 of
the 27 models have R values >0.8, with the lowest R-value being
0.62 for the Kcna5 model (Figure 3B). Additionally, the RMSE
values of these models fell within a reasonable range of [0.722, 1.686]

FIGURE 2
The generation and characterization of WT and PKP2+/− iPSC-derived cardiac organoids. (A) Immunofluorescence staining for cardiac cell marker
cTnT, endothelial cell marker CD31, and myofibroblast cell marker α-SMA of cardiac organoids. Scale bars, 100 μm. (B) Representative immunoblots and
quantifications for PKP2 and Nav1.5 in WT and PKP2+/− cardiac organoids. GAPDH was used as a loading control. Two-tailed unpaired t-test. The results
are presented as the percentage of means ± S.E.M. (n = 3–6). *P < 0.05, **P < 0.01, ***P < 0.005, ****P < 0.001 vs. Control group.
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FIGURE 3
A Protein-protein interaction network of sodium channel-associated genes. (A) Protein-protein interaction network of sodium channel-associated
genes (Full names of the proteins in the eight core networks are provided in the Supplementary Material). (B) The heatmap of cross-target binding
affinities (BA) predictions reveals the specificity of each dataset and other protein targets. The notations below the heatmap show the machine-learning
models, while those on the right of the heatmap denote all the datasets. The diagonal elements in the heatmap indicate the Pearson correlation
efficiency (R) of five-fold cross-validation for all the predictive models. The off-diagonal elements in each row represent the highest BA values of
medicine in one predicted by 28 machine-learning models. (C) The BA value of the drug predicted by 28 machine-learning models. (D) Venn diagram of
sodium channel differential gene andmachine learningmodel. (E) Binding energy heatmap ofmolecular docking of proteins (SCN5A, SCN1A, SCN3A) and

(Continued )
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kcal/mol as shown in Supplementary File S3. Overall, these models
demonstrated high prediction accuracy and proved reliable for BA
predictions.

3.3 Screening potential compounds by using
the ML models

There have been no reported compounds with agonist effects on
sodium channel proteins in ARVC, hence prompting us to explore
potential compounds that may bind to these sodium channel
proteins. Since heart failure is a distinct end-stage symptom of
ARVC (Lu et al., 2022), we used the above 27 ML models to screen
several compounds reported to have therapeutic effects on heart
failure (Lin et al., 2022; Iqbal et al., 2023; Du et al., 2018; Chen K.
et al., 2023; Xu et al., 2023). The results indicated that the BA values
between compounds and sodium channel-related proteins were
high, with a mean range of [-7.823, 7.204]. Among them,
Kaempferol (KA) had a BA value of −7.823, indicating a strong
affinity. Concurrently, we included Bupivacaine, an SCN5A
inhibitor (Schwoerer et al., 2015), as a positive control. Its high
binding affinity (BA = −7.343 kcal/mol) confirmed successful model
validation (Figure 3C). Interestingly, SCN1A, SCN5A, and SCN3A
were identified as the overlapping proteins between the
8 differentially expressed genes from scRNA-seq and the
27 sodium ion channel proteins used in the ML model
construction (Figure 3D). To further assess the interactions,
molecular docking was performed to evaluate the binding energy
between the compounds and these proteins. The result showed
higher binding energy between Kaempferol (KA), Oridonin (ODN),
and SCN5A (Figure 3E). The interaction diagram of molecules and
proteins shows that KA is hydrogen-bonded to SCN5A (Figure 3F).

In order to further explore the stability of protein-ligand
interaction, molecular dynamics (MD) simulations were carried
out on two kinds of protein-ligand complexes: SCN5A-
Kaempferol and SCN5A-Oridonin. The root mean square
deviation (RMSD) value is used to evaluate whether the
simulation system has reached a stable state. The RMSD value
within 1 nm indicates the relative stability of protein-ligand
interaction in a physiological environment. As shown in
Figure 3G, the RMSD values of the two complexes quickly
stabilized at 0.75 ± 0.17 nm and 1.00 ± 0.19 nm, respectively.
Root mean square fluctuation (RMSF) analysis confirmed the
flexibility of amino acid residues, and the overall fluctuation of
the system was not significant, which were 0.41 ± 0.26 and 0.34 ±
0.22, respectively. The radius of gyration (Rg) was analyzed to
evaluate the tightness of receptor-ligand binding. As shown in
Figure 3G, the Rg value of the complex remained stable during
the whole simulation process, which was 1.84 ± 0.13 and 1.68 ± 0.11,

respectively. The number of hydrogen bonds reflected the strength
of protein-ligand binding, and SCN5A-Oridonin showed high
hydrogen bond density and strength. These results indicated that
Kaempferol and oridonin have good data performance in molecular
docking and molecular dynamics simulation.

Based on these findings, we concluded that KA and ODNmight
bind to SCN5A and exert therapeutic effects on ARVC with
PKP2 mutations.

3.4 KA exerts therapeutic effects on ARVC in
cardiac organoids by binding to SCN5A

To evaluate the therapeutic effect of KA and ODN on ARVC,
Western blot, ELISA, MEA, and MASSON staining were conducted
in the WT and PKP2+/− cardiac organoids. The chemical structures
of KA and ODN were shown in Figure 4A. Both KA and ODN
increased the expression of SCN5A in a dose-dependent manner
with no effect on cell viability in PKP2+/− cardiac organoids (Figures
4B–D). Since heart failure is a distinct end-stage symptom of ARVC
(Lu et al., 2022), the expression of cTnT and NT-proBNP was
measured using the ELISA kit following pre-incubation with KA or
ODN for 2 days. The results showed that KA reduced the expression
of heart failure markers in a dose-dependent manner, whereas no
such effect was observed with ODN (Figures 5A,B). Next, Masson
staining was performed on cardiac organoids to assess the impact of
KA on cardiac fibrosis, revealing that KA alleviated cardiac fibrosis
in ARVC, particularly at the dosage of 20 μΜ (Figure 5C).
Furthermore, the MEA assay demonstrated that KA improved
the electrophysiological function of cardiac organoids by
normalizing the abnormal heart rate, shortening the prolonged
QRS waveform, and increasing myocardial contractility
(Figure 5D). Additionally, in vivo validation in PKP2+/− rats
corroborated these findings: KA (20 mg/kg/day, i.g.) can improve
the wide QRS waveform and alleviate arrhythmia
(Supplementary Figure S3).

Taken together, these results demonstrate that KA can exert
therapeutic effects on ARVC.

4 Discussion

In this study, we dedicate our efforts to identifying potential
compounds targeting sodium channel proteins that may have
therapeutic effects for treating ARVC. Using proteins analyzed
from the ScRNA-seq and proteomics data of ARVC rats and
their corresponding PPI networks, we constructed 27 machine
learning (ML) models to predict binding affinities (BA) during
the screening process. KA and ODN were predicted to bind to

FIGURE 3 (Continued)

compounds. Representative docking pattern between SCN5A and optimal binding active compounds. (F)Molecular dynamics simulation between
SCN5A and optimal binding active compounds. (G)Molecular dynamics simulation between SCN5A and optimal binding active compounds. The values of
root mean square deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration (Rg), and the number of hydrogen bonds of the two
complexes are presented.
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SCN5A with high affinity. To validate these predictions, we
performed Western blot, ELISA, MEA, and Masson’s staining on
cardiac organoids to assess the effects of these compounds. Our
functional experiments revealed that KA alleviated heart failure
symptoms, reduced cardiac fibrosis, and improved cardiac
electrophysiological function in ARVC cardiac organoids. To the
best of our knowledge, KA is the first compound identified to show
therapeutic potential for ARVC.

While ARVC is classically attributed to desmosomal mutations,
emerging evidence implicates voltage-gated sodium channel
dysfunction, particularly SCN5A-encoded Nav1.5, as a critical co-
driver of disease progression. The sodium channel dysregulation
operates not only as a phenomenon of ARVC but as a central
amplifier of electro-pathology. Focusing on this target represents a
promising strategy to break the arrhythmia-fibrosis cycle (Cerrone
and Delmar, 2014; Shaw, 2013; Delmar, 2012; Cerrone et al., 2012).

FIGURE 4
Verification of the screening model. (A) The chemical structures of KA (a) and ODN (b). (B) Results of CCK-8 assays in PKP2+/− cardiac organoids
treatedwith KA (a) orODN (b) at different doses. C andD,Western blot analysis of PKP2+/− cardiac organoids treatedwith different doses of KA (C) orODN
(D). Representative immunoblots of Nav1.5 are shown above each panel. The quantification of Nav1.5 protein levels is provided. One-way ANOVA
followed by the Dunnett test was used for data analysis. Results are presented as the percentage of means ± S.E.M. (n ≥ 3). *P < 0.05, **P < 0.01,
***P < 0.005 vs. Control group.
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FIGURE 5
Functional validation of potential compounds. (A,B), The anti-heart failure effects of different compounds in PKP2+/− cardiac organoids. The
expression levels of NT-proBNP (A) and cTnT (B) were detected by ELISA according to the manufacturer’s instructions. Cardiac organoids were treated
with KA orODN for 48 h. Then, the supernatant was collected and quantitated by BCA assay. (C) Results of Masson’s staining fromWT and PKP2+/− cardiac
organoids. Scale bars, 100 μm. (D) Results of myocardial electrophysiology in cardiac organoids by using MEA. Typical heatmap of the excitatory
firing rate (a), spike amplitude (b), and conduction (c) in WT or PKP2+/− cardiac organoids. Visualization of field potential (d), assessment of Beat Period
Means, Spike Amplitude, and Field Potential Duration (e). One-way ANOVA followed by the Dunnett test was used for data analysis. The results are
presented as the percentage of means ± S.E.M. (n ≥ 3). *P < 0.05, **P < 0.01, ***P < 0.005 vs. Control group, NS, not significant.
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Significantly, our finding that KA restores Nav1.5 expression in
PKP2+/− organoids, positioning sodium channel repair as a
therapeutic way for ARVC management.

Recent studies establish KA as a multi-mechanism
cardioprotective agent, modulating critical pathways, such as
Nrf2, NF-κB, AKT/Bcl-2, and PI3K/Akt/GSK-3β. These
interactions attenuate cardiac pathology through suppressing
oxidative stress and inflammation, reducing myocardial collagen
deposition, and inhibiting cardiomyocyte apoptosis. Additionally,
KA preserves mitochondrial function and calcium homeostasis
(Hua et al., 2022; Kamisah et al., 2023; Zhang et al., 2022).
Critically, our data extend these findings to ARVC pathogenesis,
demonstrating KA significantly reduces apoptosis in PKP2+/−

cardiac organoids (Supplementary Figure S5). Although β-
blockers remain conventional ARVC therapy, they lack KA’s
polypharmacological profile, and exhibit off-target and drug
discontinuation effects (Jacobson et al., 2016). KA thus emerges
as a promising multi-target therapeutic candidate addressing both
fibrosis and arrhythmogenesis in ARVC.

In natural language processing (NLP), transformer-based
models have demonstrated exceptional capabilities in
understanding and generating human language (Vaswani, 2017).
Recently, this architecture has been applied to computational
chemistry, particularly in the analysis of SMILES strings,
enhancing the prediction of molecular properties (Anonymous,
2019). Thus, in our study, we employed the SMILES Transformer
with sequence-to-sequence capabilities of language models to
efficiently capture the structural features of molecules. Compared
to traditional graph-based neural networks, sequence-to-sequence
models offer greater flexibility in handling the diversity of molecular
structures, thereby enhancing both the efficiency and accuracy of
feature extraction (Keneshloo et al., 2020). Additionally, we
leveraged the ChEMBL database, which contains a vast collection
of bioactive compounds and their target information, to pre-train
the SMILES Transformer (ST) models, significantly improving the
model’s generalization ability (Nowotka et al., 2017).

By using randomly sampled, unlabeled SMILES data as pre-
training input, we enhanced the model’s predictive power for
unknown compounds and mitigated overfitting. The 1024-
dimensional molecular fingerprints derived from the maximum
pooling output of the Transformer model provide a compact and
accurate representation of molecular structures in lower dimensions,
reducing information loss and improving the performance of
subsequent classification models, such as GBDT. As a powerful
ensemble learning technique, GBDT is particularly effective in
handling complex nonlinear relationships and is well-suited for
large-scale drug screening datasets (Zhang and Jung, 2021).
Combining these models not only increases prediction accuracy
but also makes the drug screening process more efficient
and reliable.

In drug screening, the cardiac organoid model offers a more
biologically relevant environment compared to traditional cell
culture and animal models, providing significant advantages in
efficacy verification (Chen X. et al., 2023). First, cardiac
organoids can replicate the pathophysiological characteristics
of heart disease at the microscopic level by simulating the
three-dimensional structure and complex intercellular
interactions of the human heart. This enhances their

applicability in drug screening and mechanistic research,
making them more physiologically relevant (Monteduro et al.,
2023). Second, compounds identified via ML modeling can be
more accurately validated for efficacy using cardiac organoid
models. These models could not only demonstrate the interaction
between drugs and their targets, but also capture the complex
effects of drugs on cardiac function, such as myocardial
contraction, signal transduction, and electrophysiological
characteristics (Figures 5D). By integrating organoid model
validation, prospective errors in drug development can be
minimized, thereby improving the success rate of candidate
compound screening (Zhu et al., 2024).

While our study establishes a novel BA prediction framework, two
key limitations warrant acknowledgment. First, the absence of
rigorous binding validation, such as Cellular Thermal Shift Assay
(CETSA) or Microscale Thermophoresis (MST), leaves compound-
target interactions reliant on computational evidence. Second, our
experimental validation was constrained to eight prioritized
candidates, reflecting the proof-of-concept scale of this work.
Nevertheless, this approach successfully identified sodium channel
binders with therapeutic potential in ARVC models, establishing a
scalable platform for future large-scale compound screening.

In summary, this study presents a robust tool for drug discovery
by integrating advanced deep learning with traditional MLmethods,
ensuring high performance across diverse molecular types and data
scales. By integrating ML modeling with organoid validation,
traditional screening methods are enhanced by modern biological
models, significantly improving the accuracy and efficiency of drug
screening processes, with broad application prospects.

5 Conclusion

Our machine-learning-based platform offers a novel approach
for identifying potential compounds to treat ARVC. By integrating
ML modeling with modern biological models, such as organoid
validation, our platform provides valuable assistance in addressing
the public health challenges posed by ARVC. KA shows promise as a
lead compound for ARVC treatment.
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