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Introduction: Among diverse chemical profile of Cannabis sativa L., over
100 phytocannabinoids have been identified. The major cannabinoids Δ-9-
THC and CBD are well-studied, with approved palliative and therapeutic
applications such as appetite stimulation, antiemetic therapy, pain
management and epilepsy treatment. However, Δ-9-THC’s psychotropic
effects limit its broader use. Minor cannabinoids exhibit therapeutic promise
for a variety of conditions, potentially offering therapeutic potential without the
adverse effects of Δ-9-THC.

Methods: We explored 14 cannabinoids with an inverse molecular docking
approach, docking each cannabinoid into > 50000 human protein structures
from the ProBiS-Dock database. We validated our inverse molecular docking
protocol using retrospective metrics (ROC AUC, BEDROC, RIE, enrichment
factors, total gain). We apply the novel inverse molecular docking fingerprint
method to better analyze the binding patterns of different cannabinoids and
extend the methodology to include hierarchical clustering of fingerprints.

Results: Our analysis of the inverse molecular docking results identified high
scoring targets with potential as novel protein targets for minor cannabinoids, the
majority associated with cancer, while others have connections with neurological
disorders and inflammation. We highlighted GTPase KRas and hematopoietic cell
kinase (HCK) as very promising potential targets due to favorable docking scores
with almost all investigated cannabinoids. We also find multiple matrix
metalloproteinases among the top targets, suggesting possible novel
therapeutic opportunities in rheumatic diseases. An analysis of inverse
molecular docking fingerprints shows similar binding patterns for
cannabinoids with similar structures, minor structural differences still suffice to
change the affinity to specific targets. Hierarchical clustering of inversemolecular
docking fingerprints revealed two main clusters in protein binding pattern
similarity, the first encompassing THC-class and similar cannabinoids, as well
as CBL-class cannabinoids, while the second contained CBD, CBC, and CBG-
class cannabinoids. Notably, CBL-class cannabinoids exhibited binding patterns
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more similar to THC-class cannabinoids than their CBC-class precursors, possibly
offering potential therapeutic benefits akin to THCwith fewer psychotropic effects.

Discussion: This study highlights the therapeutic potential of minor cannabinoids
and identifies their potential novel protein targets. Moreover, we demonstrate the
utility of inverse molecular docking fingerprinting with clustering to identify
compounds with similar binding patterns as well as identify pharmacophore-
related compounds in a structurally agnostic manner, paving the way for future
drug discovery and development.

KEYWORDS

cannabinoids, Cannabis sativa, inverse molecular docking, inverse molecular docking
fingerprints, mode of action, virtual screening, drug design

1 Introduction

The significant potential for beneficial health effects of Cannabis
use represents a major research topic. Cannabis sativa L. is widely
distributed in various environments and has been applied as a source
of folk medicines, textile fibers, and as a psychoactive agent for over
6,000 years (Atakan, 2012). Cannabis extracts include a large variety
of chemical compounds, with over 500 substances already isolated.
Over 100 of these compounds represent phytocannabinoids, unique
secondary metabolites of Cannabis sharing similar structural
features (ElSohly and Gul, 2014; Hanuš et al., 2016).

Phytocannabinoids, hereinafter referred to as cannabinoids,
include meroterpenoids typical of Cannabis sativa L. Their
defining structural feature is a resorcinyl core decorated with
para oriented terpenyl and alkyl groups. The length of the side-
chain alkyl group distinguishes between different classes of
cannabinoids. The most common cannabinoids fall into the
olivetoid class, distinguished by a five-carbon side chain. Less
frequent are viridinoids (three-carbon chain), orcinoid (one
carbon, rare in Cannabis), and cannabinoids with aralkyl side
chains (Hanuš et al., 2016). The decarboxylated olivetoid
cannabinoids are typically identified by the three-letter
abbreviation (e.g., CBD (cannabidiol)), while the acidic version
includes an additional “A” (e.g., CBDA (cannabidiolic acid)). For
viridinoids, a “V” is added (e.g., CBDV (cannabidivarin)), while
acidic viridinoids are designated with “VA” (e.g., CBDVA
(cannabidivarinic acid)).

Cannabinoid biosynthesis in planta begins with cannabigerolic
acid (CBGA), the common cannabinoid precursor of other
(olivetoid) cannabinoids. CBGA undergoes oxidative cyclase
activity via three distinct pathways with specific enzymes, to
form cannabichromenic acid (CBCA), cannabidiolic acid
(CBDA), or tetrahydrocannabinolic acid (THCA), see Figure 1.
Neutral cannabinoids, such as cannabigerol (CBG),
cannabichromene (CBC), cannabidiol (CBD), or Δ-9-
tetrahydrocannabinol (Δ-9-THC), are primarily formed through
the non-enzymatic decarboxylation of their carboxylated
counterparts. Poor oxidative stability of Δ-9-THC can result in
conversion to cannabinol (CBN), or in isomerization to Δ-8-THC
(or Δ-10-THC). Cannabicyclolic acid (CBLA) and cannabicyclol
(CBL) result from the UV-induced cycloaddition of CBCA and
CBC, respectively. (Pellati et al., 2018; Hanuš et al., 2016) (Figure 1).

Research into cannabinoid (Δ-9-THC) physiological and
pharmacological effects began with the discovery of cannabinoid

receptors, and their endogenous ligands endocannabinoids. Derived
from long-chain polyunsaturated fatty acids, endocannabinoids
anandamide (AEA) and 2-arachidonoylglycerol (2-AG) represent
lipid mediators that replicate many of the pharmacological effects of
Δ-9-THC (Maccarrone and Finazzi-Agro, 2003). The
endocannabinoid system (ECS) is the network of interactions of
cannabinoid receptors, endocannabinoids, and enzymes that
generate, transform, and degrade them. Cannabinoid receptor 1
(CB1) is found primarily in the central nervous system, while CB2 is
present mostly in immune-related tissues (Lu and Mackie, 2021;
Finn et al., 2021). Cannabinoids also interact with G-protein-
coupled receptors (e.g., GPR55 and GPR18), transient receptor
potential (TRP) channels, and peroxisome proliferator-activated
receptors (PPARs). TRP channels represent ionotropic channels
that are primarily activated by physical, thermal, and
electrochemical stimuli. PPARs are nuclear receptors, which
function as ligand-inducible transcription factors (Atakan, 2012;
Alexander, 2016; Fraguas-Sánchez and Torres-Suárez, 2018; Walsh
et al., 2021). Studies have predominantly focused on major
cannabinoids Δ-9-THC and CBD, while the less abundant minor
cannabinoids have remained relatively understudied. Minor
cannabinoid pharmacology is not yet fully understood, however,
evidence demonstrates they act as agonists or antagonists on
multiple targets, such as cannabinoid receptors, and the above-
listed targets (Walsh et al., 2021). The currently known mechanisms
of action and therapeutic potential of different minor cannabinoids
were reviewed by Ref. Walsh et al. (2021).

Besides plant-derived phytocannabinoids and endogenous
endocannabinoids, synthetic cannabinoids have also been
developed and studied. They are often developed as
modulators of CB receptors, possessing stronger biological
activity than Δ-9-THC. However, the anticipated stronger
psychoactive effects and the perception of lower risk of
synthetic cannabinoid application can lead to abuse and
represents a rising health concern (Mills et al., 2015; Alves
et al., 2020; Roque-Bravo et al., 2023).

Major cannabinoids have proven successful in clinical practice,
for example, Δ-9-THC (Dronabinol, sold under Syndros®,
Marinol®), is approved in the U.S. as an appetite stimulant for
AIDS patients and as an antiemetic alongside chemotherapy.
However, the medicinal use of Δ-9-THC is limited by its
psychotropic effects (Kaufmann et al., 2010). Moreover, pure,
plant derived CBD (Epidiolex®) is approved for use in patients
with resistant epileptic syndromes (Fraguas-Sánchez and Torres-
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Suárez, 2018). Besides applications of pure cannabinoids, a large
body of research focuses on therapeutic use of cannabinoid enriched
extracts of the Cannabis plant (Fadda et al., 2004; Lakhan and
Rowland, 2009; Hussain et al., 2015; Schrot and Hubbard, 2016;
Schonhofen et al., 2018; Zagórska-Dziok et al., 2021). According to
several studies, the therapeutic potential of cannabinoids is
enhanced when they are alongside other bioactive compounds in
Cannabis, often named the “entourage effect” (Worth, 2019; André
et al., 2024). The term entourage effect refers to the synergistic effects
of several compounds from Cannabis, namely, cannabinoids,
terpenes, and flavonoids, leading to the enhanced therapeutic
effects when compared to the effects of individual compounds
(André et al., 2024). Two different types of entourage effects
have been reported for cannabis-derived compounds, namely,
intra-entourage effect, which refers to the interactions among
cannabinoids or terpenes, and inter-entourage effect, involving to
interactions between cannabinoids and terpenes (Koltai and
Namdar, 2020).

As an example of intra-entourage effects, Nabiximols (Sativex®),
a roughly 1:1 formulation of Δ-9-THC and CBD, has been approved
in Canada, Mexico, and several European countries for treating

spasticity associated with multiple sclerosis (Fraguas-Sánchez and
Torres-Suárez, 2018). Although heavy chronic and recreational use
of Nabiximols (Sativex®) can lead to addiction estimated at about 9%
among all (recreational) Cannabis users (Panlilio et al., 2015),
medical controlled applications indicate therapeutic potential and
offer the potential for systematic analysis of cannabis use disorder.
On the other hand, the inter-entourage effect might be relevant only
for very specific combinations of phytocannabinoids and terpenes.
According to the literature, inter-entourage effect may be significant
despite the fact that terpenes represent a minor component of the
total secondary metabolites in Cannabis extracts (≈10%–20%,
depending on the extraction method). However, the molecular
mechanisms of an inter-entourage effects involving terpenes is
still unknown (Namdar et al., 2019).

Clinical studies have not identified psychotropic properties in
any cannabinoids other than Δ-(8)9-THC. Consequently, minor
cannabinoids show promise based on preclinical studies and initial
clinical research (neuropathic pain, neurodegenerative diseases,
epilepsy, cancer and skin disorders) (Schonhofen et al., 2018;
Walsh et al., 2021). In this context, further research is necessary
to bridge the gap in our understanding of minor cannabinoid

FIGURE 1
Overview of the major classes of cannabinoid compounds and the three main pathways of their biosynthesis. CBGA and CBGVA serve as common
precursors, with neutral cannabinoids primarily forming through non-enzymatic decarboxylation. The table outlines the R groups of cannabinoids used in
this study: R1 distinguishes neutral from acidic cannabinoids, and R2 differentiates olivetoid from viridinoid cannabinoids. Note that for CBL and CBC-class
cannabinoids, both enantiomers occur naturally.
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mechanisms of action and pharmacological effects to fully harness
their potential in medical applications.

Cannabinoids are known to interact with a multitude of targets,
making them a challenge for in-vitro biological evaluations. As an
example, studies report Δ-9-THC activity against at least 12 targets
(Morales et al., 2017). Previous in silico studies explored the
currently known cannabinoid targets, their molecular
mechanisms, possible synthetic or plant-derived ligands, or the
effect of cannabinoids on specific targets and associated
conditions (Durdagi et al., 2010; Aviz-Amador et al., 2021;
Hourfane et al., 2023). While there are examples of studies
focusing on the broader modes of actions of cannabinoids which
identify novel targets, they are generally limited to the major
cannabinoids (Bian et al., 2019). The present work is therefore
focused on the interactions of selected major and minor
cannabinoids with a large library of human proteins using
inverse molecular docking fingerprints. In inverse molecular
docking, a promiscuous ligand is docked against a database of
target protein structures, reversing the typical high-throughput
virtual screening workflow where a database of ligands is docked
into a single protein target. Inverse molecular docking has been
successfully applied to obtain mechanistic insights into the adverse
side effects of natural compounds (Chen and Ung, 2001; Kores et al.,
2021). Moreover, it has proven successful in establishing modes of
action and in identifying potential novel targets of natural
compounds (Furlan et al., 2018; Lešnik and Bren, 2021; Kores
et al., 2022), as well as in drug repurposing (Chen, 2014; Wang
et al., 2019; Pinzi et al., 2024; Tanoli et al., 2025). Furthermore, the
novel approach of inverse molecular docking fingerprinting has
been devised to identify approved drugs with comparable effects on
protein targets from the Coronaviridae family (Jukič et al., 2021). To
the best of our knowledge, the inverse docking studies on a set of
cannabinoids against human protein targets has not been
conducted yet.

Therefore, the objectives of this study are to further develop the
inverse molecular docking fingerprinting method with hierarchical
clustering, apply the method on cannabinoids, and suggest novel
molecular targets for the studied compounds. We hypothesize that
applying inverse docking fingerprinting method will enable us to
analyze the similarities and differences in cannabinoid binding
patterns and identify structural patterns without prior chemical
structure analysis and comparison. We also hypothesize that using
this approach, we can suggest potential novel protein targets of
cannabinoids and speculate on their mechanisms of action, paving
the way for potential novel pharmacologic uses of cannabinoids.

2 Methods

2.1 Inverse molecular docking

Inverse molecular docking was performed with the ProBiS-Dock
(Fine et al., 2020; Konc et al., 2022) software, which employs a
hierarchical approach to reconstruct small molecules within protein
binding sites, utilizing generalized statistical scoring functions and
graph theory. The algorithm begins by fragmenting a ligand into
smaller components, which are then docked into protein binding
sites using knowledge-based scoring functions. Optimal poses of

these fragments are identified and assembled using a fast maximum
clique algorithm (Depolli et al., 2013). Throughout this process,
iterative dynamics adjusts amino acid conformations to account for
protein flexibility and to ensure accurate ligand placement. Finally, a
conformation optimization step refines the ligands’ fit in the protein
binding cavity. Docking scores, expressed in arbitrary units,
approximate relative binding free energies. ProBiS-Dock also
incorporates solvent, metal ions, and cofactor interactions, often
overlooked by traditional docking methods (Fine et al., 2020; Konc
et al., 2022). Inverse molecular docking with the ProBiS-Dock
algorithm has been thoroughly validated in previous research
through retrospective metrics and redocking studies (Furlan
et al., 2018; Kores et al., 2019; Jukič et al., 2021; Lešnik and Bren,
2021; Kores et al., 2021; Kores et al., 2022; Konc et al., 2022). Despite
this, the limitations of molecular docking approaches in rank
ordering ligand affinity due to simplified, computationally fast
statistical scoring functions are well known and also apply in
inverse molecular docking. High scoring targets identified in
this study should thus be considered appropriately, as an
enriched set of potential novel targets for cannabinoids, requiring
further more detailed computational or experimental study to
establish cannabinoid affinity and a place in cannabinoid modes
of action.

One of the main challenges of inverse molecular docking
represents obtaining a database of locations of protein binding
sites, as limiting the docking space to specific sites streamlines
the protocol, reducing both its computational time and
complexity (Campbell et al., 2003; Hendlich et al., 2003). We
obtained binding-site locations from the human subset of the
ProBiS-Dock database (Konc et al., 2021), which automatically
prepares non-redundant protein small-molecule binding-sites.
The database is constructed from 100% sequence similarity
clusters of protein structures from the RCSB PDB (Berman
et al., 2000), in which small-molecule binding-sites are
identified by binding site comparison using the ProBiS
algorithm (Konc and Janežič, 2010; Konc and Janežič, 2017)
and by further clustering of results to discern binding-site
locations. The ProBiS-Dock database, and the algorithm behind
its construction, have been previously successfully applied in
inverse molecular docking studies (Kores et al., 2021; Kores er
al., 2022; Jukič et al., 2021), and have inspired further tools for the
identification of conserved water molecules or metal binding sites
in proteins (Jukič et al., 2017; Ravnik et al., 2023). Our study
included 55,008 receptor structures and locations of small-ligand
binding-sites from the human subset of the database. While the
limitations in the composition of the ProBiS-Dock database (which
is largely limited by the availability of experimental protein
structures) results in certain protein families being over or
under-represented (e.g., human GPRs involved in the ECS lack
experimental structures), this does not discount the value of an
inverse docking experiment on the currently available human
structures, the results of which may include some bias towards
more highly researched protein families, but should still yield
relevant high scoring targets. Protein structures were taken as-is
from the ProBiS-Dock database, which retains metallic cofactors
but omits organic ones, as well as water molecules. This limits the
validity of docking results for enzymes dependent on organic
cofactors and presents a future optimization point.
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Fourteen cannabinoid compounds are included in this study,
representing both major cannabinoids and commonly occurring
minor cannabinoids. These include: Δ-9-tetrahydrocannabinol
(Δ-9-THC), tetrahydrocannabivarin (THCV), Δ-8-
tetrahydrocannabinol (Δ-8-THC), cannabinol (CBN),
tetrahydrocannabinolic acid (THCA), tetrahydrocannabivarinic
acid (THCVA), cannabicyclol (CBL), cannabichromene (CBC),
cannabichromenic acid (CBCA), cannabigerol (CBG),
cannabigerolic acid (CBGA), cannabidiol (CBD), cannabidivarin
(CBDV), cannabidiolic acid (CBDA), and cannabidivarinic acid
(CBDVA). We note that both stereoisomers of CBC and CBL-
class cannabinoids are produced in Cannabis plants (Hanuš et al.,
2016), while only a single enantiomer of CBL and CBC is used in the
study (Figure 1). The latter were selected for study due to their
biological relevance, chemical diversity, and commercial availability.
They encompass the most prominent compounds in the cannabis
plant, including THC, CBD, and CBG, as well as their precursors
(THCA, CBDA, CBGA) and cannabivarin analogs (THCV, CBDV),
which offer distinct pharmacological profiles. This series covers a
spectrum of psychoactive and non-psychoactive compounds,
degradation products, and biosynthetic intermediates.
Compounds in this series are among the most researched and
provide a foundation for both in silico and experimental
future research.

Cannabinoid structures were prepared by enumeration of chiral
centers, major tautomeric structure selection, removal of structural
faults, ionization at the pH of 7.4 and minimization (using OPLS3e
force-field) to generate the final 3D conformations used as docking
input structures. For this step, LigPrep tool by Schrödinger (Release
2023–4, Schrödinger, LLC, New York, NY, 2025) was employed.
Inverse molecular docking results were analyzed using RCSB PDB
(Berman et al., 2000) data, mapping PDB IDs and chain identifiers to
corresponding UniProt IDs. Since a UniProt ID uniquely represents a
specific protein (UniProtConsortium, 2023), we grouped our
structures by their UniProt ID and used the best docking score for
each ligand if multiple structures shared the same UniProt ID. We
note that this is essentially the same methodology as in previous
inverse molecular docking studies (Furlan et al., 2018; Kores et al.,
2019; Jukič et al., 2021; Lešnik and Bren, 2021; Kores et al., 2021; Kores
et al., 2022), except we performed the grouping by protein identity
step explicitly before presenting the data. This grouping resulted in
3,888 unique protein targets, with a mean of 13.1 structures per target,
and a median of 4. The variation in structure counts per target arises
from factors such as structures containing multiple identical chains or
minor sequence differences, like length variations or mutations, not
captured by 100% sequence identity clustering. Utilizing a larger
database of binding sites and consolidating it into unique protein
targets may introduce some bias, as targets with more representatives
exhibit greater conformational sampling. However, we believe the
docking was sufficiently exhaustive to minimize this effect and
produce valuable enrichment as we demonstrate with retrospective
metric validation of our results. This observation can also enhance the
creation of future inverse docking libraries to focus on highly non-
redundant sets and de-duplication. For each cannabinoid ligand, we
calculated the average and standard deviation of the docking score
across all protein targets. For reader clarity, we presented the results in
terms of Z-scores, where a negative Z-score represents a stronger
interaction, instead of arbitrary docking score units, since the target

docking score distribution for each individual ligand can be well
described by a normal distribution (see SI). In this manner, the
context of the whole dataset scores can be inspected, as different
ligands exhibit different average scores, and thus an absolute docking
score value is better understood in the context of the whole dataset.
Data analysis was performed with the pandas python library (Wes,
2010; pandas development team, 2024). For detailed results in terms
of specific structures (PDB ID and chain) as well as docking scores, see
the Supplementary SI. Figure 2 depicts a schematic representation of
the applied methodology.

We thoroughly analyzed the best-scoring targets in the study,
emphasizing those that display consistently favorable Z-scores
across several cannabinoids as putative biological targets. We
evaluated their potential as promising candidates for further
computational or experimental exploration by exploring their
therapeutic potential and disease relevance in literature.
Furthermore, we have estimated their druggability with the
DoGSiteScorer method (Volkamer et al., 2012). DoGSiteScorer is
an in silico tool used to evaluate binding pockets on protein surfaces
by combining geometric and physicochemical analyses. It applies a
Difference of Gaussian (DoG) filter and characterizes pockets based
on size, shape, depth, and hydrophobicity. Each predicted pocket is
then scored (0–1; high values representing high druggability) to help
researchers prioritize targets for structure-based drug design.

2.1.1 Inverse molecular docking fingerprints
While the inverse molecular docking methodology has been

previously validated and successfully applied for identifying
promising protein targets of different ligands (sometimes referred
to as target fishing) (Chen and Ung, 2001; Rollinger et al., 2009;
Kores et al., 2021; Furlan et al., 2018; Lešnik and Bren, 2021; Kores
et al., 2022; Chen, 2014; Wang et al., 2019; Jukič et al., 2021), the
authors acknowledge the need for further computational or
experimental studies to confirm the relevance of the identified
protein targets. Thus, we apply the novel inverse molecular
docking fingerprints (Jukič et al., 2021) method as a
complementary approach to the traditional inverse molecular
docking. As originally introduced, the method applies docking
scores on a set of targets to identify similar binding patterns. It
examines the binding scores of top scoring targets, and employs
them as fingerprints for each compound. The fingerprints are
presented as heatmaps where color intensity corresponds to
Z-score strength, allowing easy identification of ligand-target
binding patterns (see Figure 2 bottom right). For each of the
14 investigated cannabinoids, we selected the top 10 best-scoring
targets (combined in a list and removed duplicates) for each
cannabinoid to highlight the most biologically relevant
interactions, balancing computational manageability and
interpretability.

We further manually curated the list and removed non-target
proteins that do not represent druggable targets (see SI). Alongside
the top scoring targets, we added the known targets of cannabinoids
present in the docked database (cannabinoid receptors (CBRs),
peroxisome proliferator-activated receptors (PPARs), and
transient receptor potential (TRP) channels) to the list (Mackie,
2006). We applied the resulting list of docking Z-scores as the
fingerprints of a particular cannabinoid and presented them as a
scoring heatmap (Figure 2 bottom right).
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This work expands the inverse molecular docking fingerprint
methodology by applying agglomerative clustering (Nielsen and
Nielsen, 2016) for ligand fingerprint comparison. For this
analysis, a ligand fingerprint is derived from docking Z-scores
across all targets, instead of focusing solely on the top-ranked
ones, as including a larger set improves statistical robustness. The
fingerprint for each ligand l, is represented by the array of Nt

Z-scores, Zl, where Nt is the total number of protein targets and
Zl(i) represents the Z-score for ligand l with the i-th target. While
the order of targets in Zl is arbitrary, consistency across ligands is
crucial. To compare the ligand fingerprints, we calculate an all-
against-all root-mean-square deviation (RMSD) matrix R for each
l, k ligand pair, where elements of R represent the RMSD between
the Z-scores of different ligands, given by Equation 1.

R l, k( ) � RMSD l, k( ) �

�������������������
1
Nt

∑Nt

i�1
Z l i( ) −Zk i( )( )2

√√
(1)

The RMSD matrix, R, was clustered using agglomerative
hierarchical clustering with Ward (minimum variance) linkage

(Nielsen and Nielsen, 2016), which was selected because studies
often identify it as the best performing on model datasets (Saraçli
et al., 2013). The resulting dendrogram reveals clusters of ligands
with similar binding patterns (see Figure 2, bottom left). The
clustering was carried out using SciPy (Virtanen et al., 2020).

The inverse molecular docking fingerprinting methodology is
still in its infancy, and we believe that future studies can expand on
the methodology to study different classes of natural and synthetic
compounds, and gain valuable insight into the bioactivity trends in
the examined chemical space, leading to the repurposing of existing
drugs or discovery of novel mechanisms of action.

2.1.2 Method validation
Method validation was carried out using established

retrospective metrics, such as receiver-operating characteristics
(ROC) curves, enrichment factors (EF10%) (Sheridan et al.,
2001), robust initial enhancement (RIE) (Sheridan et al., 2001),
Boltzmann-enhanced discrimination of ROC (BEDROC) (Truchon
and Bayly, 2007), and total gain (TG) (Empereur-Mot et al., 2015)
scores. ROC curves represent a plot of the true (TPF, y-axis) versus
the false (FPF, x-axis) positive fractions across threshold values. The

FIGURE 2
Schematic depiction of the applied methodology. Cannabinoids from Cannabis Sativa L. were inversely docked into human protein binding-sites
from the ProBiS-Dock database using the ProBiS-Dock. Binding-sites were grouped by UniProt ID, with the best score used for each protein target. Top-
scoring proteins were identified as potential novel targets of cannabinoids. Inverse molecular docking fingerprints were applied to compare ligand
binding patterns through a heatmap of top-scoring target docking-scores and through clustering based on the RMSD of fingerprints across all
protein targets.
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area under the ROC curve (AUC) measures the overall predictive
performance, with values above 0.5 indicating performance better
than random guessing. The RIE, EF10%, TG, and BEDROC scores
all quantify the early recognition of experimentally relevant
protein targets.

We retrieved data on targets validated through experimental
studies of cannabinoid ligands from the ChEMBL database (Zdrazil
et al., 2024). We selected representative neutral cannabinoids from
different structural classes due to their well-established
pharmacological activity and sufficient experimental validation
data availability. Therefore, we performed validation for neutral
cannabinoids of different classes (Δ-9-THC, CBD, CBG, CBC). We
considered targets with a pChEMBL1 score greater than 4 as
experimentally relevant (Hofmarcher et al., 2019). The RDKit
(Landrum, 2023) python library was used to calculate enrichment
curves, ROC AUC, enrichment factors, RIE, and BEDROC
(Truchon and Bayly, 2007) (α � 20) scores, while TG was
calculated via the Screening Explorer web-server (Empereur-Mot
et al., 2016), the authors of which introduced the metric. These
validation metrics collectively ensure robust predictive performance
of our inverse molecular docking approach, increasing confidence in
the pharmacological relevance of the identified cannabinoid targets.

3 Results and discussion

3.1 Inverse molecular docking fingerprints

To compare the protein targets of different cannabinoids, we
employed the inverse molecular docking fingerprint method
proposed by Jukič et al. (2021). We combined the top 10 best-
scoring protein targets for each of the 14 studied cannabinoids into a
single list, removing duplicates. Three non-drug targets were
excluded through manual curation (SI). We incorporated nine
known cannabinoid targets from the ECS (cannabinoid receptors
(Shahbazi et al., 2020), transient receptor potential channels (Muller
et al., 2019), and peroxisome proliferator-activated receptors
(O’Sullivan, 2016) found in the ProBiS-Dock database, resulting
in a curated list of 64 targets. The fingerprint of a cannabinoid is
defined as the docking Z-scores against the curated top targets,
visualized as a heatmap, Figure 3.

Examining the inverse molecular docking fingerprints heatmap
reveals the fingerprints are unique for each compound, hinting at the
diversity in target reach across different cannabinoids.
Cannabinoids within the same class (Figure 1), which differ only
slightly in their chemical structure, exhibit fingerprints with similar
binding patterns in certain regions, while other sections of
fingerprints remain unique to each individual cannabinoid.

While cannabinoids with variations in alkyl side-chain length
(for instance olivetoid vs viridinoid) exhibit highly similar
fingerprints, distinct target-specific binding differences are
evident. Published research supports this, as shown in a
computational docking and molecular dynamics study where

Δ-9-THC and THCV displayed similar interactions with CB1
(Jung et al., 2018). However, the main difference was the pentyl
side-chain of Δ-9-THC protruding into a secondary pocket, forming
an interaction absent in the shorter propyl chain case of THCV,
possibly contributing to its reduced CB1 affinity (Jung et al., 2018).
Previous experimental research revealed that the THC side-chain
length remains crucial for the activity of THC derivatives, with a
shorter alkyl chain reducing the affinity of the compound for the
cannabinoid receptor (CB1, CB2) (Martin et al., 1999). This shows
that subtle structural differences between cannabinoids can result in
a significant difference in protein targets, suggesting further study of
the mechanisms of action of individual cannabinoid ligands
is warranted.

Here we expanded on the inverse molecular docking fingerprint
methodology, and provided a quantitative metric of fingerprint
comparison, namely, the RMSD between fingerprints, as
described above in the Methods section. For greater statistical
robustness, RMSD was calculated using docking Z-scores across
all docked protein targets, rather than across a subset of top targets.
The “all-against-all” fingerprint RMSD matrix, R, was analyzed by
agglomerative clustering with Ward linkage.

The resulting dendrogram (Figure 4) shows two larger clusters
of cannabinoid ligands, separated by RMSD> 1.5. The first major
cluster contains CBL, Δ-9-THC, Δ-8-THC, and CBN-class
cannabinoids, while CBD, CBC, and CBG-class cannabinoids
form the second major cluster. We refer to the clusters after their
major cannabinoid representative, as the THC cluster and the CBD
cluster, respectively.

The THC cluster primarily consists of Δ-9-THC-class
compounds and their non-enzymatic conversion products (Δ-8-
THC, CBN). Notably, CBL-class cannabinoids, although derived
from CBC-class precursors found in the CBD cluster, display inverse
molecular docking fingerprints more similar to THC-class
compounds. CBL-class cannabinoids are among the least studied
cannabinoid compounds, for example, the ChEMBL database
contains a single experimental publication for CBL, in which
CBL was tested alongside a number of other cannabinoids
(Consroe et al., 1982). More recent studies have flagged CBL as a
compound of interest in the treatment of breast cancer (Almeida
et al., 2024), as well as an inhibitor of SARS-CoV-2 spike-protein-
mediated membrane fusion (Classen et al., 2024). CBL was originally
assumed to have a close structural relationship with THC, the
compound was therefore designated as THC-III (Korte and
Sieper, 1964). Subsequent research, however, revised its structure
and traced its origin to the CBC-class compounds (Hanuš et al.,
2016). This corroborates our observation that the inverse molecular
docking fingerprints of CBL-class cannabinoids are similar to those
of THC-class compounds. CBL stands out as particularly promising
compound for further study, as the identified binding patterns may
lead to some beneficial pharmacological effects similar to THC,
while potentially avoiding its adverse side effects (Amin and Ali,
2019) as the little data we have on CBL suggests it lacks narcotic
properties (Hanuš et al., 2016). However, the results of this study are
preliminary, further research is needed to describe and understand
the effects of beneficial or adverse pharmacological effects of CBL.

Within the CBD cluster, CBG-class cannabinoids are further
separated from CBC and CBD-class compounds (RMSD ≈ 0.9),
while the differences between CBD and CBC-class compounds are

1 pChEMBL score is defined in the ChEMBL database as: log10(molar IC50,

XC50, EC50, AC50, Ki, Kd or Potency).
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less pronounced (RMSD ≈ 0.75). We hypothesize that the rigidity
of the cannabinoid scaffold plays a role in the observed clustering.
The THC cluster contains polycyclic, rigid compounds (THC-class
and similar compounds exhibit three condensed rings, while CBL-
class compounds exhibit four rings). In contrast, the CBD cluster
contains less rigid cannabinoids (CBD and CBC-class cannabinoids
feature two rings, while CBG-class compounds feature a single ring).
We observed a similar trend in the number of rotatable bonds
(excluding the acid group or alkyl side-chain), CBL and THC-class
compounds possess four rotatable bonds, CBD-class six, CBC-class
seven, and CBG-class ten. These structural differences align well
with the observed fingerprint clustering, where more rigid CBL and
THC-class compounds form a unified cluster, while more flexible
CBD, CBC, and CBG-class form a separate cluster. Moreover,
monocyclic CBG-class compounds show a higher RMSD than
bicyclic CBD and CBC-class cannabinoids. However, additional
future in-vitro biological evaluation and in silico research is
needed to confirm this assertion.

Further analysis of the fingerprint RMSD shows the
compounds with the most similar fingerprints differ only in
alkyl side-chain length. We have newly observed this trend is
also evident in the fingerprint heatmap. Interestingly, the
differences in fingerprints between olivetoid and viridinoid
cannabinoids are more pronounced for CBD-class compounds
(RMSD ≈ 0.6) than for the THC-class cannabinoids
(RMSD ≈ 0.4). This suggests that the alkyl side-chain length
exhibits a larger effect on the potential protein targets of CBD-
class cannabinoids.

The novel inverse molecular docking fingerprints, paired with
clustering, provide a powerful tool for future studies to identify
compounds that bind similarly to numerous protein targets and
filter out the most promising compounds and avoid “over-
experimentation” with all.

Fingerprint clustering can also be applied to smaller sets of
curated targets. For example, clustering fingerprints using the
curated top targets (Figure 3) still produce a clear THC-CBD
cluster division, but the internal cluster relationships vary from
the full database fingerprint clustering (see SI, Figure 2).

3.2 Potential novel targets of cannabinoids

In addition to examining cannabinoid binding profiles, we
analyze and discuss protein targets with highly favorable docking
Z-scores as potential novel cannabinoid targets. Table 1 lists all
protein targets where at least three cannabinoids exhibit Z-scores
below −2.58 (99.5th percentile). We explore the biological and
therapeutic relevance of these top-scoring targets and assess their
druggability using DoGSiteScorer (Volkamer et al., 2012), reporting
the corresponding Drug scores. We report 24 high scoring targets
within the Z-score cutoff, all with moderate to high estimated
druggability scores (0.72–0.84), and discuss their pharmacological
relevance below.

Two targets stand out among the other high scoring targets,
exhibiting very favorable interactions with 12 out of the 14 studied
cannabinoids, as well as high druggability scores, namely,
hematopoietic cell kinase (HCK) and GTPase KRas, both
promising anticancer therapeutic targets. HCK represents a non-

receptor tyrosine-protein kinase from the SRC family, primarily
found in the B-lymphocyte line and myeloid cells. It is involved in
numerous processes, including cell differentiation, migration, and
proliferation, as well as in regulating cellular homeostasis and the
innate immune response via activation of the MAP3K-MAP2K
cascade (Chuang et al., 2016). It interacts with the JAK/STAT,
RAF/MEK/ERK, PI3K/AKT, CXCL12/CXCR4, among other
cellular signaling pathways. Increased HCK activity or
dysregulation are linked to the onset or progression of various
forms of cancer, including leukemia and solid tumors such as
breast, colon, and stomach tumors, indicating HCK represents a
promising therapeutic target. Several HCK inhibitory compounds
have been identified and studied in vitro and in vivo, but to date,
none of them entered clinical trials (Poh et al., 2015; Luo et al., 2023;
Zeng et al., 2024). GPTase KRas serves as a regulator of cellular
processes, including cell survival, growth, and differentiation (Yang
et al., 2020). The binding of GDP (guanosine diphosphate) or GTP
(guanosine triphosphate) serves to switch between the inactive and
active forms of KRas, respectively (Zeppa et al., 2024). When
activated, KRas triggers downstream signaling cascades, including
the RAL, RAF/MEK/ERK, and PI3K/AKT pathways. As a significant
oncogenic protein, KRas mutations are present in ≈ 25% of human
cancers, including pancreatic, colorectal, and lung cancers (Kim
et al., 2021). KRas was long deemed “undruggable” despite
significant research efforts to develop effective anti-KRas
therapies (Moore et al., 2020). Recently, studies have identified
selective small molecule inhibitors of the K-RAS G12C mutant
variant, the most prevalent KRas mutation (Uprety and Adjei,
2020). Future studies are needed to determine potential
interactions between cannabinoids and mutant KRas variants.

Besides HCK and KRas, other high scoring proteins are also
involved in regulating the cell cycle and are connected with tumor
growth and, as such, could present important targets in cancer
therapy (O’Reilly et al., 2023; Zhong et al., 2023; Laezza et al., 2006).
Serine/threonine-protein kinase PIM-1 and cyclin-dependent kinase
2 (CDK2) represent serine/threonine kinases important in cytokine-
induced signal transduction (Tadesse et al., 2018; Tursynbay et al.,
2016; Zhao et al., 2022). Mutations of estrogen receptor alpha
(ESR1) are involved in the majority of breast cancer cases
(Grinshpun et al., 2023; Takeda et al., 2013). Furthermore, Lysine
methyltransferases EHMT1 (Huang et al., 2010) and KMT5A Lin
et al. (2019), as well as arginine methyltranseferase CARM1 (Jin
et al., 2023) all exhibit favorable docking scores. They act on histones
and can play roles in gene expression and cell cycle progression, and
thus represent promising anticancer therapeutic targets. Other
highly scoring targets with connections to cancer pathologies
include Ubiquitin-conjugating enzyme E2 N (UBE2N; Ubc13), a
member of the E2 ubiquitin-conjugating enzyme family. UBE2N is
specialized in forming K63-linked polyubiquitin chains, which do
not target proteins for degradation. Instead, these chains regulate
signaling pathways (Dósa and Csizmadia, 2022; Du et al., 2021; Bui
et al., 2021). Despite a lower estimated druggability score (0.72),
UBE2N inhibition remains a promising new strategy for anticancer
drug development (Schwalen et al., 2025). Phosphodiesterase 4B
(PDE4B), another high scoring target, controls cyclic adenosine
monophosphate (cAMP) levels. The latter is an important second
messenger, elevated levels of which have effects on apoptosis and cell
cycle progression in cancer cells (Kim et al., 2019).
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Cancer cells require substantial energy to support their
proliferation and survival, marking metabolic reprogramming an
established hallmark of cancer (Hanahan, 2022). Among the high
scoring targets, one finds important metabolic proteins such as
glutaminase (GLS), a key enzyme in glutamine metabolism
(glutaminolysis), involved in breast cancer (Masisi et al., 2020).
Another high scoring target is pyruvate kinase (PKM), which
controls the rate limiting step of glycolysis, is expressed in
virtually all human cancers (Israelsen and Vander Heiden, 2015).
Liver glycogen phosphorylase (PYGL) also features high docking
scores with cannabinoids, and is involved in glycogen catabolism
and upregulated in glioblastoma (Zois et al., 2022; He et al., 2023).
Last but not least, fructose-1,6-bisphosphatase controls
gluconeogenesis and acts as a tumor suppressor in breast cancer
(Lu et al., 2020).

A prominent group within the top scoring targets are matrix
metalloproteinases (MMPs), which include representatives from
multiple subgroups: collagenases MMP-1 and MMP-13,

stromelysin MMP-3, gelatinase MMP-9, and MMP-12 (Sekhon,
2010). MMPs play a key role in modifying tissue structural
integrity and in processing various molecules, including growth
factors, proteinases, and their inhibitors, receptors, and adhesion
molecules, positioning them as crucial regulators of physiological
and pathological processes (Cauwe and Opdenakker, 2010). Studies
have shown that changes in MMP levels can exert a large effect on
the invasive behavior and formation of tumor metastases (Pytliak
et al., 2012). MMPs also play a key role in inflammatory rheumatoid
arthritis and osteoarthritis, as their expression is greatly increased in
arthritic joints, leading to connective tissue destruction (Burrage
et al., 2006). Our results predict multiple cannabinoids exhibit
strong interactions with MMPs, CBC and CBL being the most
notable, each featuring four MMPs among their ten highest-
ranked protein targets (Mustafa et al., 2022; Cabral-Pacheco
et al., 2020; Raffetto and Khalil, 2008) (SI). Another high scoring
protein target with links to cancer metastasis is E-cadherin, a cell
adhesion protein playing an important role in controlling epithelial

FIGURE 3
Heatmap of the inverse molecular docking fingerprints of cannabinoids. Yellow regions represent negative Z-scores, indicating predicted favorable
interactions. Protein targets are categorized by class, with general classifications above and specific classifications below the heatmap. For more details
about the specific targets and numerical values of docking scores, see the Supplementary Material (Supplementary SI; Supplementary Tables S1, S2).
Protein classification abbreviations: STK: Serine/threonine-protein kinase, TK: Tyrosine-protein kinases, MTase: Methyltransferase, MMP: Matrix
metalloproteinases, SP: Serine proteases, CBR: Cannabinoid receptors, PPAR: Peroxisome proliferator-activated receptors, TRP: Transient receptor
potential channels.
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cell adhesion, movement, and proliferation. It has been shown to
play an important role in HP positive gastric cancer and represents a
promising therapeutic target, despite only a moderate druggability
score (0.73) (Zeng et al., 2015).

The majority of identified top-scoring cannabinoid protein
targets are linked to cancer pathologies. To date, cannabinoids
have primarily been used as a part of palliative care in cancer
patients, and evidence suggests they are effective in alleviating
pain and in relieving chemotherapy induced nausea or vomiting
(National Academies of Sciences Engineering Medicine, 2017). In
conjunction with palliative care, there is a growing body of evidence
that cannabinoids exhibit antitumor effects.

The mechanism of action of cannabinoids in cancer is not fully
understood. This is especially evident for minor cannabinoids and
their actions on targets besides those described for major
cannabinoids. Studies on Δ-9-THC suggest a cannabinoid
receptor-dependent mechanism of inducing apoptosis and
cytotoxicity, while CBD and other cannabinoids act through
alternative pathways in the endocannabinoid system. Commonly
proposed CBD anticancer mechanisms include the increased
production of reactive oxygen species (ROS), leading to cell death
via autophagy, preventing the degradation of the endocannabinoid
anandamide (AEA), which leads to the inhibition of fatty acid amide
hydrolase (FAAH), as well as interactions with other types of
receptors (GPR55, TRPV1, TRPV2, TRPM8) (Śledziński et al.,
2018; Dariš et al., 2019; Moreno et al., 2019).

While we could not find any current literature evidence for
direct interactions between the high scoring targets presented here
and cannabinoids, we can identify of them as important contributors
in cannabinoid anticancer mechanisms. For example, the PI3K/AKT
pathway is an important cell survival mechanism and is regarded
among the most common molecular human cancer hallmarks.
Research has reported PI3K/AKT inhibition via CB1 receptor
interaction with Δ-9-THC (Faiz et al., 2024). Both HCK kinase
and GPTase KRAS, which feature very favorable docking scores with
most studied cannabinoids, are involved in the PI3K/AKT pathway.
CBD and CBN, as well as some synthetic cannabinoids have been
shown to induce cell cycle arrest in tumor cells through decreasing

levels of key cell cycle components, including CDK2 (O’Reilly et al.,
2023; Zhong et al., 2023), for which our results show very favorable
docking scores with both CBD and CBN. Δ-9-THC and other
synthetic cannabinoids have exhibited regulation of MMP-2 and
MMP-9 activity, inhibiting angiogenesis as well as the migratory and
invasive capability of cancer cells (Vecera et al., 2020; Pagano et al.,
2021). MMP-9 is commonly featured among the top targets in this
work, showing very favorable docking scores with Δ-8-THC,
CBC, and CBL.

The heterogeneous nature of cancer further complicates this
field of study, since different tumor types have been shown to exhibit
differing levels of cannabinoid receptors and ECS components
(Mangal et al., 2021). The majority of the evidence for anticancer
cannabinoid effects comes from studies of the major cannabinoids,
while minor cannabinoids remain far less explored (Mangal et al.,
2021). The lack of knowledge of minor cannabinoid action, as well as
the incomplete understanding of major cannabinoid antitumor
activity, provides fertile ground for the exploration of new
anticancer cannabinoid targets, which were identified by our
inverse molecular docking approach.

Alongside targets involved in cancer pathologies, another group
of high-scoring targets could be more broadly related to different
neurological diseases. Studies have investigated the involvement of
the endocannabinoid system and the effects of cannabinoids on a
variety of neurological disorders and find endocannabinoid
signalling is altered in most. CBD has recently found success in
the treatment of epilepsy (Borowicz-Reutt et al., 2024), while other
cannabinoids and ECS components are investigated in a number of
neurological disorders including multiple sclerosis, Alzheimer’s, and
Parkinson’s diseases (Friedman et al., 2019; Cristino et al., 2020).
Among the high scoring targets identified in this study we find
MMP-12, which plays a detrimental role in central-nervous system
diseases, such as spinal cord injury, stroke, and multiple sclerosis,
contributing to their pathogenesis through inflammatory
mechanisms (Chelluboina et al., 2018). PDE4B is another high-
scoring target, which regulates a range of important functions in the
brain, making it a promising therapeutic target for a variety of
neurological conditions due to its involvement in modulating
neuronal signaling pathway (Blauvelt et al., 2023), interaction
with the disrupted-in-schizophrenia 1 (DISC1) protein (Tibbo
and Baillie, 2020) and modulation of microglial activity, leading
to reduced synaptic loss (Rombaut et al., 2024). Our results show
favorable docking scores for EHMT1, studies have found that its
inhibition can exert beneficial effects on Alzheimer’s disease (Zheng
et al., 2019). Another high scoring target is monoamine oxidase-B
(MAOB), which is widely distributed throughout the brain,
primarily localized within astrocytes, and is believed to maintain
the homeostasis of monoamine neurotransmitters and metabolites
in the brain, as well as mediating astrocyte reactivity. MAOB is a key
protein in neurodegenerative diseases such as Alzheimer’s and
Parkinson’s diseases (Nam et al., 2024; Nam et al., 2022). Beta
secretase 1 (BACE1) is the final high scoring target with a
connection to neurological disease. It is a membrane-associated
aspartic protease involved in the formation of myelin sheaths in
peripheral nerves. It cleaves the amyloid precursor protein (APP)
and is responsible for the generation of amyloid-β peptides (Aβ),
which aggregate in the brains of patients with Alzheimer’s disease
(Moussa, 2017).

FIGURE 4
Dendrogram of agglomerative hierarchical clustering with Ward
linkage of the all against all ligand-docking Z-score RMSD matrix, R.
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Beyond oncological and neurological targets, an analysis of top
targets highlights several proteins with relevance to inflammation.
Cannabinoids are known to inhibit inflammatory responses in
conditions such as arthritis and multiple sclerosis, mainly by
reducing cytokine and chemokine production. They also
modulate brain inflammation, although most existing research
has centered on major cannabinoids (Klein, 2005; Zurier and
Burstein, 2016; McKenna and McDougall, 2020). The most
prominent anti-inflammatory group among identified top targets
are MMPs, due to their strong link to arthritis. Studies have

highlighted the involvement of the endocannabinoid system,
especially the CB2 in the pathophysiology of rheumatoid
arthritis. CB2 activation may affect arthritis by inhibiting the
production of proinflammatory cytokines and MMPs (Gui et al.,
2015). MMP-12 also contributes to tissue remodeling in
inflammatory respiratory diseases such as chronic obstructive
pulmonary diseases (COPD), and represents a promising target
for therapies aimed at inflammatory lung diseases (Lagente et al.,
2009). A potential anti-inflammatory novel target is HCK kinase,
which plays a role in inflammatory processes through

TABLE 1 Potential novel cannabinoid targets.

UniProt ID Name Connection with disease Ligands (Z-score < − 2.58) Drug
scorea

P08631 Hematopoietic cell kinase (HCK) Cancer CBC, CBD, CBDA, CBDV, CBDVA, CBG, CBGA,
CBLA, CBN, THCA, THCV, THCVA, Δ-9-THC

0.81

P01116 GTPase KRas Cancer CBC, CBDA, CBDV, CBDVA, CBG, CBL, CBLA,
CBN, THCA, THCV, THCVA, Δ-8-THC,Δ-9-THC

0.80

P11309 Serine/threonine-protein kinase pim-1 Cancer CBC, CBDV, CBG, CBN, Δ-8-THC 0.80

P61088 Ubiquitin-conjugating enzyme E2 N Cancer CBC, CBD, CBDV, CBL, Δ-8-THC 0.72

Q07343 3′,5′-cyclic-AMP phosphodiesterase 4B Cancer, Neurological diseases,
Inflammation

CBLA, CBN, THCA, Δ-9-THC 0.80

P24941 Cyclin-dependent kinase 2 Cancer CBD, CBN, THCV 0.81

P03372 Estrogen receptor (Breast) Cancer CBDA, CBL, CBN, Δ-8-THC, Δ-9-THC 0.81

Q9H9B1 Histone-lysine N-methyltransferase
EHMT1

Cancer, Neurological diseases THCA, THCVA, Δ-9-THC 0.80

Q86X55 Histone-arginine methyltransferase
CARM1

Cancer CBD, CBDA, CBDVA 0.81

Q9NQR1 N-lysine methyltransferase KMT5A Cancer CBGA, CBN, THCV 0.78

P14618 Pyruvate kinase PKM, isozyme M2 Cancer CBDA, CBDVA, CBL, THCA 0.81

O94925 Glutaminase kidney isoform,
mitochondrial

Cancer CBD, CBDV, CBG, CBGA, CBN 0.79

P06737 Glycogen phosphorylase, liver form Cancer CBD, CBDA, CBDVA, CBN 0.81

P09467 Fructose-1,6-bisphosphatase 1 Diabetes, Cancer CBN, THCV, THCVA 0.84

P03956 MMP1 – Interstitial collagenase Cancer, Arthritis CBC, CBDA, CBN, THCA, THCV, THCVA, Δ-8-
THC, Δ-9-THC

0.81

P45452 MMP13 – Collagenase 3 Cancer, Arthritis CBC, CBD, CBDV, CBG, CBGA, CBL, THCV,
Δ-8-THC

0.84

P08254 MMP3 – Stromelysin-1 Cancer, Arthritis CBC, CBD, CBDV, CBDVA, CBG, CBL, CBLA 0.75

P14780 MMP9 – Matrix metalloproteinase-9 Cancer, Arthritis CBC, CBL, Δ-8-THC 0.81

P12830 E-cadherin Cancer CBD, CBDV, CBG 0.73

P39900 MMP12 – Macrophage metalloelastase Inflammatory diseases, Neurological
diseases

CBC, CBGA, CBN, THCV, Δ-8-THC, Δ-9-THC 0.74

P27338 Amine oxidase [flavin-containing] B Parkinson’s disease, Alzheimer’s
disease

CBD, CBDA, CBDVA, CBG, THCV, Δ-9-THC 0.81

P56817 Beta-secretase 1 Alzheimer’s disease CBD, CBDV, CBG, CBL, THCA 0.80

P00742 Coagulation factor X Blood coagulation CBDV, CBDVA, CBN, THCA, THCV, THCVA,
Δ-8-THC

0.74

P00746 Complement factor D Complement-driven diseases CBDVA, CBN, THCA, THCVA, Δ-9-THC 0.80

aDrug score calculated for the primary protein binding site by the DoGSiteScorer Volkamer et al. (2012) web server.
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NLRP3 inflammasome activation, which promotes the maturation
and release of pro-inflammatory cytokines, linking it to the
development of inflammatory conditions like type 2 diabetes,
atherosclerosis, and Muckle-Wells syndrome (Kong et al., 2020).
PDE4B is another potential anti-inflammatory high scoring target. It
influences inflammatory response by controlling cAMP levels,
which affect production of pro-inflammatory cytokines. It is a
critical player in injury-induced neuroinflammation, and its
inhibition has been leveraged in approved therapies for
inflammatory skin disorders (Tibbo and Baillie, 2020; Blauvelt
et al., 2023; Aringer et al., 2024).

Other identified high scoring protein targets include
complement factor D, a key player in the alternative complement
pathway, one of the three pathways of the complement system, the
body’s front-line defense against pathogens. Complement factor D,
as the rate-limiting enzyme in the alternative pathway, emerges as a
promising target for conditions marked by excessive or dysregulated
complement activation (Barratt andWeitz, 2021). Blood coagulation
factor X (FX) is another high scoring protein target, which plays a
key role in all three pathways of the coagulation cascade, serving as
an important driver of thrombin generation and a promising
therapeutic target for modulating thrombin production, despite a
moderate druggability score (0.74) (Camire, 2021).

The above discussion has demonstrated the pharmacological
relevance of the identified high-scoring targets to a variety of
conditions: cancer, neurological, and inflammatory disorders. We
focus on these particular targets predicting favorable interactions, as
well as moderate to high druggability scores. Despite the limitations
inherent to the molecular docking methodology, these targets show
the potential as novel targets of cannabinoids, and present a
possibility for further research to discover new cannabinoid
modes of action (MOA). It is important to note that the targets
presented here were determined by an arbitrary cutoff, and relevant
pharmacological targets may exist beyond it. We therefore provide
lists the top targets of individual investigated cannabinoids, as well
as comprehensive. csv files of docking scores for all targets in the SI.
The Supplementary Material contains a short chapter each
individual target in Table 1, the Z-scores of each cannabinoid
with the target, and gathered Reactome (Milacic et al., 2024)
pathway data. Additionally, lists of top targets of individual
investigated cannabinoids, as well as comprehensive. csv files of
docking scores for all targets are also included in the SI.

Within the selection of top targets, identifying specific binding
patterns between cannabinoid classes and receptors is challenging.
While some protein targets exhibit favorable scores with certain
cannabinoid types (e.g., PDE4B and EHMT1 with THC cluster
cannabinoids, and CARM1 with CBD-class cannabinoids), most
receptors do not demonstrate clear cannabinoid–binding patterns
(see SI). This further demonstrates the uniqueness of the binding
patterns of each cannabinoid. While our inverse molecular
docking fingerprints (Figures 3, 4) demonstrate general trends
in the target reach of different cannabinoids, the same trends are
more difficult to apply to specific receptors. Therefore, further
in vitro cell and in silico studies of individual (minor) cannabinoid
action is required for a more thorough understanding of their
health promoting effects and applications. While many studies
highlight the beneficial synergies between cannabinoids, as well as
synergies with the remaining components of Cannabis extracts

(entourage effect) (Fadda et al., 2004; De Petrocellis et al., 2011;
Worth, 2019; André et al., 2024), our study emphasizes the
complementary importance of understanding individual
cannabinoid targets and MOAs to effectively design tailored
cannabinoid-based therapeutic combinations. CBL-class
cannabinoids (CBL) specifically stand out as promising
candidates requiring further investigation due to the very
limited understanding of their properties and effects. Although
CBL is rare in Cannabis, advancements in (bio)synthetic methods
provide opportunities for future studies of CBL and of other less
prevalent cannabinoids (Luo et al., 2019; Nguyen et al., 2022; Alfei
et al., 2023). We note that the results of this study have focused on
binding affinity to potential targets via docking scores, we did not
address binding specificity. As cannabinoids are known for their
interactions with numerous biological targets, we argue that this
analysis can shed some light on possible novel targets which have
not been studied to date, alongside the well established targets
of the ECS.

3.3 Method validation

We evaluated the ability of the applied methodology to
distinguish confirmed protein targets of cannabinoids from non-
targets. We obtained data on the confirmed protein targets of Δ-9-
THC, CBD, CBC, and CBG from the ChEMBL database. The
calculated retrospective metrics (Figure 5; Table 2) show that the
inverse molecular docking protocol is successful in identifying drug
targets. CBD represents the ligand with the least favorable results,
with ROC AUC of 0.6 and TG of 0.09. However, other early target
detection metrics for CBD, including a RIE of 2.70, EF 10% of 2.26,
and BEDROC of 0.15, were more promising. These results,
combined with other metrics, validate the protocol’s
performance. The retrospective metrics for the remaining
cannabinoids were consistently better than for CBD (except for
BEDROC of 0.14 for Δ-9-THC).

The observed enrichment could be enhanced in future studies
via improving the database of docked structures, as well as the
docking software itself. Our docked database introduces some
bias via unequal representation of target structures, and further
de-duplication would likey result in improved enrichment.
Furthermore, the presence of mutated structures in the
database may also skew the results toward less relevant
structures, likely reducing enrichment. Including organic
cofactors, conserved water molecules, as well as thorough
assignation of protein ionization states all represent possible
methodological improvements. Besides database shortcomings,
the enrichment is limited by the sampling and scoring function of
the docking algorithm, as docking methods often prioritize speed
over precision, leading to approximations in both the sampling of
conformations and scoring, which may hinder the identification
of true positive targets. The latter is especially critical as target
bias by specific scoring functions can be introduced. We believe
future approaches should benefit by scoring function
generalisation and a consensus approach that could address
the current shortcomings.

We also examined the docking scores of cannabinoids with the
established cannabinoid targets (cannabinoid receptors, peroxisome
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proliferator-activated receptors, and ion channels, see Figure 3).
While the established targets mostly do not appear among the top
protein targets for the different cannabinoids, they still
predominantly feature favorable docking scores. Based on the
described retrospective metrics, we can indeed assert that our
methodology identifies relevant high-ranking proteins, even if
established targets are not represented among top 10 targets.

4 Conclusion

We performed an inverse molecular docking of
14 phytocannabinoid ligands to the exhaustive set of human protein
targets from the ProBiS-Dock database and assembled the inverse
docking fingerprints. We analyzed the binding patterns of
14 cannabinoids with the inverse molecular docking fingerprints by

hierarchical clustering and observed the presence of two large clusters of
cannabinoids, indicating similarities in target binding patterns. The first
cluster includes THC and related cannabinoids along with CBL-class
cannabinoids, while the second cluster comprises CBG, CBC, and
CBD-class cannabinoids. Further analysis of cannabinoid
fingerprints revealed that while structurally similar cannabinoids
share similar binding patterns, unique patterns emerge on a target
level. Therefore, while similar cannabinoids may share some affinity for
common protein targets, even minor structural differences are enough
to change the affinity to specific targets. This suggests that detailed
studies of the mechanisms of action of each individual cannabinoid are
essential. Our findings suggest that the fingerprints of CBL-class
cannabinoids resemble those of THC-class cannabinoids more than
their precursors, CBC-class cannabinoids. Due to our lack of
understanding of CBL pharmacological effects and the fingerprint
similarity with THC, we highlight CBL as a very promising
candidate for further experimental studies.

By analyzing the high scoring protein targets of the studied
cannabinoids we could speculate on potential novel human targets
of minor cannabinoids. We highlight GTPase KRas and
hematopoietic cell kinase (HCK), as well as several matrix
metalloproteinases (MMPs) as promising candidates for novel
cannabinoid targets. Due to the predictive nature of molecular
docking results the high scoring targets require further
experimental research to confirm their association with cannabinoids.

Minor cannabinoids demonstrate substantial therapeutic
potential in computational analyses, especially due to their
diverse target-binding patterns and relative underexploration

FIGURE 5
Receiver operating characteristics (ROC) curves for the inverse molecular docking of different cannabinoids.

TABLE 2 Retrospective method validation metrics for select cannabinoids.

Ligand AUC EF 10% RIE BEDROC TG Nactives

Δ-9-THC 0.82 2.86 2.72 0.14 0.37 7

CBD 0.60 2.26 2.70 0.15 0.09 31

CBC 0.72 5.00 4.93 0.25 0.23 8

CBG 0.65 2.50 4.45 0.23 0.16 8

AUC, Area under the ROC, curve; EF, enrichment factor; RIE, Robust initial enhancement.

BEDROC, Boltzmann-Enhanced Discrimination of ROC; TG, Total gain.

Nactives , Number of identified experimentally relevant targets.
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compared to major cannabinoids. However, their therapeutic
applications remain to be validated experimentally. Our results
provide insight into the similarities in binding patterns of
different minor cannabinoids and suggest potential novel
protein targets.

The expansion of the inverse molecular docking fingerprinting
method with hierarchical clustering represents a powerful tool for
future research to analyze and compare the binding patterns of
different drug candidates. Moreover, compound structural trends can
be identified independently of structural chemoinformatic analysis of
input chemical matter, providing insight into examined chemical space
and potential pharmacophores. Refining binding site databases by
narrowing structure selection criteria, taking into account the presence
of mutations, and prioritizing binding sites with experimentally
confirmed high-affinity ligands, alongside with further methodological
advancements of the inverse molecular docking fingerprinting has the
ability to lead to the discovery of novel protein targets, repurposing of
existing drugs, and discovery of novel mechanisms of action or potential
(adverse) side effects. We firmly believe that this study provides a
springboard paving the way for experimental validations in vitro and
in vivo, hopefully leading to novel therapies with cannabinoids.
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