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Reactive oxygen species (ROS) exhibit a dual regulatory role in cancer biology.
While moderate ROS levels promote tumorigenesis via DNA mutagenesis,
excessive ROS accumulation induces cancer cell death through oxidative
stress. Therefore, ROS homeostasis represents a promising therapeutic target
in oncology. Collectively, ROS exhibit context-dependent and multifaceted roles
in cancer progression. Emerging evidence highlights the anticancer potential of
traditional Chinese medicine (TCM), particularly Paris polyphylla saponin (PPS).
PPS modulates oxidative stress through precision targeting of ROS-associated
signaling pathways, thereby inducing apoptosis, cell cycle arrest, autophagy, and
ferroptosis. These mechanisms collectively suppress tumor growth, metastasis,
and angiogenesis, while concurrently mitigating inflammatory responses.
Notably, PPS potentiates the efficacy of chemotherapeutic agents by reversing
multidrug resistance in refractory cancer cells. The bioactive constituents of PPS,
polyphyllin and polyphyllinositol, exhibit potent antitumor activity in preclinical
models. This study systematically elucidates the molecular mechanisms
underlying PPS-mediated anticancer effects via ROS targeting, offering a
robust theoretical framework and translational insights for future oncology
research.
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1 Introduction

Malignant tumors represent a critical global public health challenge, significantly
compromising human health (Cronin et al., 2022; Miller et al., 2022). Cancer incidence
and mortality rates are steadily escalating, driven by population aging and cumulative
environmental risk exposure (Liao et al., 2019; Qin et al., 2018; Sparg et al., 2004; Torre et al.,
2016). Globally, an estimated 19 million incident malignancies and 10 million attributable
mortality were encompassed in 2020 (Sung et al., 2021), with projections indicating a surge
to over 30 million new cases by 2040 (Murthy et al., 2024). Although conventional therapies
(e.g., surgical resection, radiotherapy, and chemotherapy) have markedly improved patient
survival, their clinical utility is constrained by dose-limiting toxicities, acquired drug
resistance, and limited efficacy against metastatic tumors (Qin et al., 2018; Torre
et al., 2016).

Natural medicines are now regarded as promising candidates in oncology research due to
their multifaceted therapeutic potential. Multi-target strategies involving bioactive compounds
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from traditional Chinese medicine (TCM) are gaining prominence for
their dual capacity to augment therapeutic outcomes while mitigating
toxicity and overcoming chemoresistance (Xiang et al., 2019; Zhang
et al., 2021). Among TCM-derived anticancer agents, Paris polyphylla
saponins (PPS)—the core bioactive constituents of P.
polyphylla—exhibit potent antitumor activity against multiple
malignancies, including lung (Kong et al., 2010), gastric, and
colorectal carcinomas (Teng et al., 2015). Notably, PPS modulate the
redox equilibrium of reactive oxygen species (ROS), triggering tumor
cell cycle arrest, apoptotic and autophagic cell death, while concurrently
suppressing angiogenesis and metastatic dissemination. This ROS-
dependent antitumor mechanism offers a novel paradigm for
designing precision-targeted anticancer therapeutics. This review
synthesizes recent advances in PPS-mediated ROS signaling
modulation, systematically dissecting its molecular underpinnings
and evaluating its translational prospects for anticancer drug
development.

This research seeks to systematically explore the antitumor
mechanisms of PPS through ROS level modulation, with the goal of
proposing novel therapeutic strategies for cancer management. By
elucidating the molecular mechanisms, signaling networks, and
translational potential of PPS-mediated ROS generation, this research
seeks to establish a foundational framework for developing precision-
targeted antitumor agents and advancing their clinical applicability.

2 Chemical composition and bioactive
properties of PPS

The genus Paris (Liliaceae family) comprises 24 species, of which
22 are endemic to China. Paris polyphylla is the most medicinally
significant species within this genus, owing to its abundant
germplasm diversity and phytochemical richness. To date, over
320 distinct chemical constituents have been identified in P.
polyphylla, encompassing steroidal saponins (Zhou et al., 2021),
C-21 steroids, phytosterols, ecdysteroids, pentacyclic triterpenoids,
and flavonoids (Liu Y. et al., 2023). Of these,the steroidal
saponins—collectively termed PPS—represent the predominant
bioactive constituent (Ding et al., 2021).

Structurally, saponins are glycosides composed of aglycone
moieties (sapogenins) linked to sugar chains. Based on their
aglycone frameworks, they are classified into steroidal and
triterpenoid subtypes (Sparg et al., 2004). As spirostanol-type
steroidal saponins, PPS exhibit a characteristic 27-carbon
skeleton with sugar moieties attached at the C-3 and/or C-26
positions (Figure 1). Key structural variants include polyphyllin I,
II, III, VI, VII, C, and H, among which polyphyllin I, II, VI, and VII
are designated by the Chinese Pharmacopoeia as quality-control
markers due to their validated anticancer properties (Qin et al., 2018;
He et al., 2019).

FIGURE 1
Rhizoma Paridis and its anti-cancer bioactive ingredients Rhizoma Paridis saponins (RPS). Commercially available RPS include polyphyllin I/
polyphyllin D, polyphyllin II, Dioscin, polyphyllin V, polyphyllin VI, polyphyllin VII, polyphyllin B, polyphyllin C, polyphyllin E, polyphyllin F, and polyphyllin H.
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2.1 Bioactive extracts and pharmacological
properties

Extracts of Paris polyphylla rhizomes—prepared using solvents
ranging from polar (aqueous, alcoholic) to nonpolar (petroleum
ether)—demonstrate broad bioactivity. At the extract level, these
preparations exhibit antioxidant, antimicrobial, and antitumor
effects, which are primarily attributable to their PPS content
(Lepcha et al., 2019). Pharmacological studies have systematically
characterized PPS as multifunctional agents with anti-inflammatory,
analgesic, immunomodulatory (Yang L. et al., 2021), and antitumor
activities, along with hemostatic, antimicrobial (Wei et al., 2014),
and detoxifying properties (Guan et al., 2019).

2.2 Structure-activity relationships and
mechanistic insights

The bioactivity of PPS is closely linked to their chemical
architecture. For instance, the phenolic hydroxyl groups within
saponin structures contribute to antioxidant effects by scavenging
free radicals and chelating redox-active metal ions (e.g., Fe2+, Cu2+),
thereby inhibiting lipid peroxidation and hydroxyl radical
generation (Li et al., 2021). Notably, the length of sugar chains
and the configuration of glycosidic linkages critically influence
antimicrobial potency, as exemplified by the stronger activity of
polyphyllin I (PPI) compared to polyphyllin H (PPH) (Qin
et al., 2012).

2.3 Specific bioactive compounds

Among characterized PPS monomers, PPI emerges as a
multifunctional candidate. It alleviates oxidative stress via
activation of the SIRT3/SOD2/ROS signaling axis, while also
demonstrating the highest antimicrobial activity against
pathogens such as Cutibacterium acnes and Staphylococcus
aureus (Firlej et al., 2022). In contrast, PPH exhibits reduced
efficacy, highlighting the importance of structural features such
as sugar moiety composition for bioactivity (Qin et al., 2012).
Furthermore, PPI and related saponins exert antitumor effects
through ROS-mediated mechanisms, suppressing proliferation,
inducing apoptosis, and reversing multidrug resistance in lung,
breast, colorectal, and hepatocellular carcinomas.

3 Role of ROS in tumors

ROS primarily originate from mitochondrial oxidative
phosphorylation (Cheung and Vousden, 2022; Forman et al.,
2014). While regulating cellular homeostasis, ROS induce
cytotoxicity via DNA, lipid, and protein damage (Halliwell,
2022; Ismail et al., 2019). This duality drives ROS-mediated
tumor promotion and cell death. Cancer cells exploit ROS by
dynamically balancing their production, activating oncogenic
pathways (e.g., MAPK/NF-κB), and suppressing antioxidants,
collectively enhancing tumor progression (Aggarwal
et al., 2019).

3.1 ROS generation and regulation

Mitochondria represent the predominant intracellular ROS
source through electron transport chain (ETC.) activity during
oxidative phosphorylation (Figure 2). Approximately 1% of
molecular oxygen undergoes partial reduction at complexes I and
III, generating superoxide (O2

−) that partitions into the
mitochondrial matrix (Complex I) or intermembrane space
(Complex III) (Okoye et al., 2023; Murphy, 2009). These radicals
are converted to H2O2 by MnSOD (matrix) and Cu/ZnSOD
(cytosol), with cytosolic transfer mediated by mitochondrial
permeability transition pores (MPTP).

NADPH oxidases (NOXs) constitute another major ROS-
generating system. NOX isoforms (NOX1-5/DUOX1-2) utilize
NADPH (maintained by NADK and regulated by MESH1/
Nocturnin phosphatases) to produce O2

− or directly generate
H2O2 (NOX4) through coordinated action of regulatory subunits
(Racphox, p47phox, etc.) (Bedard and Krause, 2007; Ding et al.,
2020; Schild et al., 2021; Takac et al., 2011).

ROS signaling exhibits spatiotemporal specificity: Physiological
H2O2 diffuses via aquaporins (AQP3/8) to activate redox-sensitive
targets, while pathological overproduction disrupts
compartmentalization, causing oxidative damage and cell death
(Edmondson and Binda, 2018; Pak et al., 2020). Beyond
mitochondrial and NOX-derived ROS, secondary sources include
endoplasmic reticulum (ER) stress (protein misfolding) (Tu and
Weissman, 2002; Haynes et al., 2004), inflammatory cytokines
(TNF-α/IL-1β), and hypoxia signaling (Cheung and Vousden,
2022). This dynamic network integrates diverse stimuli to
regulate redox homeostasis in health and disease.

3.2 The double-edged role of ROS

ROS exhibit concentration-dependent duality in
cancer—promoting tumorigenesis at physiological levels through
oncogene activation and metabolic reprogramming (Szatrowski and
Nathan, 1991), while triggering apoptosis/ferroptosis when
exceeding cellular antioxidant thresholds (Wang et al., 2021) This
spatiotemporal dynamic positions ROS as both oncogenic drivers
and therapeutic targets. Figure 3 delineates their dual roles in
homeostasis and tumor progression (Figure 3).

3.2.1 Tumor-promoting effects of ROS
ROS exhibit multifaceted roles in tumorigenesis and cancer

progression (Cheung and Vousden, 2022). Chronic oxidative
stress induces DNA damage and genomic instability, hallmarks
of carcinogenesis (Huang et al., 2022). ROS modulate redox-
sensitive signaling pathways in cancer cells through post-
translational modifications of cysteine residues in regulatory
proteins. These redox-regulated proteins orchestrate pro-
tumorigenic processes, including proliferation, metabolic
adaptation, invasion, and metastatic dissemination—key drivers
of cancer aggressiveness.

3.2.1.1 ROS promotes cell proliferation
ROS play a crucial role in driving cellular survival and

proliferation, acting as signaling intermediates in growth factor-
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FIGURE 2
Main generation and modulation of ROS.ROS are primarily generated by mitochondria and cellular membrane NOXs, and their metabolism is
regulated by multiple mechanisms. SOD converts O2·- into H2O2. H2O2 has two metabolic fates:① it can react with Fe2+ through the Fenton reaction to
produce hydroxyl radical (OH·), resulting in oxidative injury to cellular macromolecules such as DNA, proteins, and lipids;② it can be reduced to water by
the antioxidant system composed of PRXs, GPXs, and CAT, thereby regulating the intracellular oxidative balance.

FIGURE 3
Effects of ROS on cells: physiological function, cancer development, and cell demise.In normal cells, ROS production, antioxidant responses, and
cellular repair processes are tightly balanced, maintaining ROS at optimal levels to restrict excessive cell persistence and multiplication. Elevated ROS
concentration can induce cellular harm; however, tumor cells often exhibit increased antioxidant capacity and adapt through metabolic reprogramming
and hypoxia-induced signaling pathways, supporting tumor-promoting effects. Nevertheless, when ROS surpass a critical threshold, oxidative stress
causes irreversible cellular damage, overwhelms adaptive mechanisms, and ultimately triggers tumor cell death.

Frontiers in Pharmacology frontiersin.org04

Liu et al. 10.3389/fphar.2025.1611911

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1611911


mediated pathways, particularly through PI3K/Akt/mTOR and
MAPK/ERK pathways, which are central to proliferation and
survival (Moloney and Cotter, 2018a). ROS further modulate the
nuclear factor kappa B (NF-κB) pathway (Lingappan, 2018) and
induce oxidative modifications of transcription factors (e.g., Nrf2,
p53), altering their stability and activity in cancer-related processes
(Humpton et al., 2022). Collectively, ROS are master regulators of
oncogenic signaling networks.

The Akt pathway promotes cell survival by inhibiting pro-
apoptotic proteins (e.g., Bad, Bax) and Foxo transcription factors
(Essers et al., 2004). ROS-mediated activation of the PI3K/Akt
survival pathway represents an early driver of oncogenesis in
multiple malignancies. Negative modulators of the PI3K/Akt
pathway, including PTEN and PTP1B, contain redox-sensitive
cysteine residues in their catalytic sites. Oxidative modification of
these residues by H2O2 inactivates phosphatase activity, resulting in
constitutive pathway activation and enhanced tumor cell survival
(Hu et al., 2019). This mechanism is observed in various cancer types
(Guo et al., 2020).

The MAPK pathway, activated through a three-tiered kinase
cascade, regulates proliferation, growth, differentiation, apoptosis,
and tumorigenesis. The ERK1/2 branch drives proliferation via
growth factor receptors and K-Ras (Khavari and Rinn, 2007).
ROS activate ASK1(a member of three-tiered kinase cascade), by
oxidizing thioredoxin (TRX), leading to its dissociation from ASK1
(Liu et al., 2000). Beyond upstream regulation, ROS sustain MAPK
activation by oxidizing JNK’s cysteine residue to sulfenic acid,
preventing dephosphorylation (Son et al., 2011).

ROS can drive drug resistance in tumors. ROS enhance tumor
survival via NF-κB/Nrf2 activation, upregulating antioxidant (SOD)
and anti-apoptotic (Bcl-2) mediators, directly driving
chemoresistance.

3.2.1.2 ROS-driven metastatic progression
ROS drive the process of tumor metastasis: (1) stimulating

angiogenesis through vascular endothelial growth factor(VEGF)
upregulation, and (2) enhancing tumor cell invasion and
metastasis via mitochondrial membrane potential (MMP)
activation.

ROS drive pathological angiogenesis in cancer through hypoxia-
inducible factor-1α (HIF-1α) stabilization, inducing pseudohypoxic
HIF complex formation. This activates angiogenic pathways via
VEGF upregulation (Catrina and Zheng, 2021; Arbiser et al., 2002;
Chatterjee and Chatterjee, 2020; Gerald et al., 2004; Zhao et al.,
2023),promoting tumor neovascularization. Beyond angiogenesis,
ROS also promote metastasis through integrin/FAK (focal adhesion
kinase)-mediated tumor-endothelial adhesion (ten Kate et al., 2006).
Paradoxically, targeted suppression of melanoma cells in the
microvasculature may elevate endothelial ROS to cytotoxic
thresholds, triggering tumor cell apoptosis—a potential
antimetastatic strategy (Wang et al., 2000).

ROS activate matrix metalloproteinases (MMPs) (Nelson and
Melendez, 2004)to degrade extracellular matrix (ECM) (Mori et al.,
2019), enabling tumor invasion. Aggressive epithelial cancers
undergo epithelial-mesenchymal transition (EMT) (Brabletz,
2012), imparting migratory and invasive capacities.ROS-driven
EMT enables metastatic colonization. (Wu et al., 2014; Lambert
and Weinberg, 2021; Pastushenko et al., 2021).Figure 4.

3.2.2 Carcinogenic effects of ROS
ROS accumulation exhibits dual cytotoxic/mutagenic effects,

mediating tumorigenesis and cell death. This causes oxidative
macromolecular damage (DNA/proteins/lipids) (Bekeschus,
2023), while activating tumor-suppressive programmed cell death
(PCD) pathways, including apoptosis, ferroptosis, etc., as intrinsic
tumor suppression (Hengartner, 2000). Therapeutically elevating
ROS induces tumor-specific PCD (Figure 5) (Liu et al., 2022; Loke
et al., 2023).

3.2.2.1 ROS promote apoptosis via extrinsic pathway
regulation

Apoptosis (type I PCD) proceeds via extrinsic (death receptor)
and intrinsic (mitochondrial) pathways. Extrinsic apoptosis initiates
through death receptor (TNFR1/Fas) ligation, recruiting adaptor
proteins (e.g., FADD, TRADD) and procaspase-8 to form the death-
inducing signaling complex (DISC) (Pan et al., 2022). Procaspase-8
undergoes autocatalytic activation within the DISC, initiating a
caspase cascade that executes apoptosis (Wang et al., 2008),
counteracted by cellular FLICE inhibitory protein (c-FLIP)
through competitive DISC binding. DISC contains death
domains (DD/DED), adaptor proteins (FADD/TRADD), and
procaspase-8 (Medina et al., 2020). ROS promote this pathway
via c-FLIP degradation, enhancing caspase-8 activation (Wilkie-
Granth et al., 2013).

The mitochondrial pathway represents the primary ROS-
mediated apoptotic route, regulated through MPTPs. ROS
oxidize within MPTP components—voltage-dependent anion
channel (VDAC), adenine nucleotide translocase (ANT), and
cyclophilin D (CypD)—increasing membrane permeability
(Madesh and Hajnóczky, 2001). This leads to ΔΨm collapse
and cytochrome c release (Halliwell, 2022), triggering
apoptosome-mediated caspase activation (Bock and Tait, 2020;
Kagan et al., 2005; Moloney and Cotter, 2018b; Zuo et al., 2009;
Stennicke et al., 1999).

Intrinsic apoptosis is regulated by Bcl-2 family proteins. ROS
induce Bcl-2 degradation via ubiquitination-proteasome pathways
and upregulate Bax/Bad (Kalkavan et al., 2022; Li et al., 2004).
Additionally, ROS activate JNK/p38/MAPK pathways to promote
apoptosis (Cadenas, 2004; Liou and Storz, 2010), a mechanism
exploited by targeted anticancer therapies (Dimitrov and Marks,
2009). For instance, imatinib triggers ROS-dependent apoptosis in
glioblastoma through JNK activation and mitochondrial
membrane potential (ΔΨm) collapse (Liu et al., 2019).
Similarly, rituximab elevates ROS levels, suppresses Bcl-2, and
inhibits p38 MAPK to induce apoptosis in B-cell lymphoma (Alas
et al., 2002).

Beyond the extrinsic and intrinsic pathways, ROS modulate
apoptosis via the ER stress pathway, which is mediated by cysteine-
dependent proteases such as caspase-12. ER stress induced by ROS
activates caspase-12 through unfolded protein response (UPR),
triggering a caspase cascade that ultimately executes apoptotic
cell death (Oppenheim et al., 2001).

3.2.2.2 ROS modulate oncogenesis through autophagy
regulation

ROS exhibit dual roles in autophagy, either suppressing or
promoting tumorigenesis based on stress intensity (Scherz-
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Shouval and Elazar, 2011). Autophagy (type II programmed cell
death) acts as a cytoprotective mechanism under mild stress but
triggers cell death under persistent damage (Debnath et al., 2023;
He et al., 2009). Three canonical autophagy forms are recognized:
macroautophagy, selective autophagy (e.g., mitophagy), and the
microautophagy (Rake et al., 2022). Among its subtypes, selective
autophagy (e.g., mitophagy) recruits receptors like p62/
SQSTM1 to degrade DAMPs(damage-associated molecular
patterns)-marked organelles (Kuchitsu and Taguchi, 2024;
Wang et al., 2023). ROS enhance autophagosome accumulation
by inhibiting ATG4B-mediated LC3-II delipidation (Perillo et al.,
2020). ROS induce autosis through synergism with agents such as
2-mercaptoethanol (2-ME) (Chen et al., 2008).
Mechanistically,ROS activate AMPK to suppress mTORC1 (43),
thereby initiating ULK1/2-dependent autophagosome formation
(Alexander et al., 2010; Poillet-Perez et al., 2015). For instance,
H2O2 combined with the polycyclic ammonium ion sanguinarine
amplifies mitochondrial ROS via NOX to induce glioma cell
autophagic death (Li et al., 2012). Furthermore, co-targeting
mTORC1 (e.g., rapamycin) and HSP90 exacerbates

mitochondrial dysfunction, augmenting ROS-driven autophagy
against RAS-driven tumors (De Raedt et al., 2011).

3.2.2.3 ROS modulate oncogenesis through ferroptosis
regulation

Ferroptosis, an iron-dependent regulated cell death driven by
ROS-induced lipid peroxidation (Dixon et al., 2012). This process
selectively oxidizes membrane polyunsaturated fatty acids (PUFAs).
Its progression depends on iron overload and glutathione (GSH)
depletion (Jiang et al., 2015; Jiang et al., 2021; Tang et al., 2021).
PUFA oxidation compromises membrane integrity through bilayer
destabilization (Dixon and Stockwell, 2019). Cysteine/glutamate
anti-transporter - system Xc- and GPX4 - glutathione peroxidase
four constitute the major ferrocytic defence axis (Kuang et al., 2020;
Liao et al., 2024; Liu K. et al., 2023; Wang et al., 2024).System Xc−
imports cystine for GSH synthesis, while GPX4 detoxifies lipid
peroxides. Pharmacological inhibitors (e.g., erastin, RSL3)
targeting this axis induce ferroptosis (Jang et al., 2021; Kim et al.,
2020).Parallel ferroptosis-suppressing pathways include:1)FSP1-
CoQH2 axis: FSP1(ferroptosis suppressor protein 1)regenerates

FIGURE 4
As signaling molecules, ROS participate in the PI3K/Akt/mTOR and MAPK/ERK pathways, modulate NF-κB activity, and are associated with
Nrf2 mutations. By inhibiting PHD2 and stabilizing HIF-1α, ROS facilitate tumor cell motility and invasiveness.HIF-1α activation induces the expression of
lactate dehydrogenase and pyruvate dehydrogenase kinase 1, suppresses antioxidant genes involved in GSHmetabolism, and reducesmitochondrial ROS
production, thereby promoting extracellular matrix degradation and invasive behavior. Furthermore, HIF-1α-driven signaling facilitates VEGF-
mediated angiogenesis, while ROS accelerate tumor metastasis through MMP-mediated breakdown of ECM proteins, enhancing both vascularization
and metastatic spread.
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reduced coenzyme Q10 (CoQH2), mitigating lipid radical
accumulation. 2)DHODH-CoQH2 system: Mitochondrial
dihydroorotate dehydrogenase (DHODH) sustains CoQH2 pools
independent of GPX4. 3)GCH1-BH4 pathway: GTP cyclohydrolase
1 (GCH1) synthesizes tetrahydrobiopterin (BH4), protecting
phospholipids from peroxidation (Mao et al., 2021; Mishima
et al., 2022; Soula et al., 2020).

Iron serves as a catalytic redox center in ferroptosis by driving
lipid peroxidation (Galy et al., 2024). Labile iron pools amplify ROS
via Fenton reactions and lipoxygenase (LOX) activation, sustaining a
pro-ferroptotic cycle (Conrad and Pratt, 2020; Mishchenko et al.,
2021; Yan et al., 2021). Ferroptosis-inducing agents (FIAs), such as
erastin, selectively target tumors with iron dysregulation by
inhibiting system Xc−, depleting GSH, and elevating
mitochondrial ROS (Dolma et al., 2003; Yagoda et al., 2007).
While ROS-mediated ferroptosis represents a promising
anticancer strategy, emerging evidence cautions its context-
dependent effects—e.g., ferroptosis induction combined with
macrophage infiltration may paradoxically accelerate pancreatic
cancer progression (Dai et al., 2020).

4 Anti-tumor mechanism of PPS
through regulation of ROS

4.1 PPS-induced apoptosis via ROS
modulation

Apoptosis, a tightly regulated form of programmed cell death,
serves as an important mechanism for maintaining tissue stationary
and eliminating malignant cells. PPS demonstrate potent pro-
apoptotic activity across multiple cancer cell lineages, thereby
validating their therapeutic potential as natural anticancer agents.
PPS orchestrate apoptotic signaling via dual regulatory mechanisms:
modulation of intracellular ROS homeostasis through both intrinsic
(mitochondrial) and extrinsic (death receptor-mediated) pathways.

4.1.1 Mitochondrial activation pathway
The mitochondrial pathway is a primary mechanism through

which PPS induce apoptosis. Polyphyllin II (PPII), a major bioactive
component of PPS, activates the mitochondrial apoptotic pathway
by elevating ROS levels, triggering cytochrome c discharge, and

FIGURE 5
ROS mediate antitumor effects by triggering RCD pathways, including apoptosis, autophagy, necroptosis, and ferroptosis. ROS act on the MPTP,
reducing the mitochondrial membrane potential (MMP), which prompts the release of Cyt-c into the cytoplasm, where it binds to APAF-1 and
procaspase-9, initiating the caspase-9 cascade reaction and triggering apoptosis.The ROS also enhance the extrinsic apoptosis pathway by degrading
c-FLIP and activate RIP1 and RIP3 to induce necroptosis. ROS inactivate the autophagy-related gene Atg4, increase LC3-associated
autophagosomes, and promote autophagy, while the inhibition of mTORC1 and the activation of AMPK negatively regulate autophagy. Ferroptosis is an
ROS-driven, iron-dependent form of programmed cell death characterized by lipid peroxidation. The Fenton reaction enhances the activity of
lipoxygenase and the production of ROS. Erastin disrupts the XC− system, damaging the GPX antioxidant mechanism.Elevated ROS levels disrupt the
integrity of the outer mitochondrial membrane, while RSL3 induces ferroptosis by suppressing GPX activity.
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initiating caspase cascade initiation. For instance, PPII suppresses
proliferation and induces apoptosis in human gastric cancer MGC-
830 cells via caspase-3 activation, mediated by ROS-dependent
cytochrome c upregulation. Experimental evidence indicates that
polyphyllin VII (PPVII) treatment in bladder cancer cells markedly
elevates intracellular and mitochondrial ROS levels, directly linking
oxidative stress to mitochondrial apoptosis (Guo et al., 2018).

Increased ROS accumulation reduce mitochondrial membrane
potential (ΔΨm), thereby promoting cytochrome c release from
mitochondria into the cytosol. This cytosolic cytochrome c activates
caspase-9, which subsequently cleaves and activates executioner
caspase-3, culminating in apoptosis (Kshetrimayum et al., 2023).
Furthermore, PPS activates ROS-generating signaling pathways,
including the MAPK and PTEN/p53 axes. These pathways drive
ROS accumulation beyond cellular antioxidant capacity, initiating
apoptosis through oxidative stress overload. In a cellular model of
human hepatocellular carcinoma (HepG2 cells), Zhang et al.
systematically evaluated the anti-tumor effects of PPS. After
PPVII treatment, JC-1 staining revealed a dose-dependent
increase in green/red fluorescence ratio, indicating that PPVII
increased ΔΨm collapse and mitochondrial permeability
transition pore opening. Concurrently, DCFH-DA fluorescence
intensity surged, confirming PPVII-induced ROS overproduction.
Western blot analysis demonstrated significant phosphorylation
enhancement of MAPK pathway components—JNK, ERK, and
p38. These findings mechanistically link PPVII-induced
mitochondrial dysfunction and ROS overgeneration to MAPK/
PTEN-p53 pathway activation, establishing a cascading pro-
apoptotic signaling network (Zhang et al., 2016).

4.1.2 Activation of death receptor pathways
PPS additionally modulate intracellular ROS to activate extrinsic

apoptotic pathways in cancer cells. PPS upregulates death receptor
expression (e.g., Fas/CD95, TNFR) on tumor cell surfaces, initiating
extrinsic apoptosis (Hengartner, 2001). Liu and his teams
demonstrated that Paris polyphylla saponin VI (PPVI) suppresses
HepaRG cells viability through Fas-dependent apoptosis. Western
blot analysis revealed PPVI-induced upregulation of Fas, caspases-3/
8/9, and Poly (ADP-ribose) polymerase (PARP) cleavage,
confirming activation of the extrinsic pathway. PPVI treatment
elevated intracellular ROS levels, inducing oxidative stress that
triggered Fas overexpression and caspase-8 activation. Caspase-8
subsequently activated executioner caspase-3, culminating in
apoptosis.These findings indicate that PPVI triggers apoptosis in
HepaRG cells via the Fas-dependent extrinsic pathway (Liu et al.,
2018). Similarly, PPI dose and time-dependently elevated ROS
levels, disrupted mitochondrial membrane potential (ΔΨm), and
promoted cytochrome c release in HepG2 cells. Concurrently, PPI
upregulated Fas, p53, and p21 expression, increased Bax/Bcl-
2 ratios, and activated caspases-3/8/9, leading to PARP cleavage
and apoptosis (Zeng et al., 2020). Lin et al. have provided additional
evidence that resorcinolic acid saponins activate the extrinsic
apoptotic pathway to induce cancer cell death in an
A549 xenograft model. Treatment with saponin fractions PPVI
and PPVII elevated intracellular ROS concentrations, thereby
initiating oxidative stress and upregulating death receptor
expression. Western blot analysis of both cultured cells and
xenograft tumor tissues revealed that PPVI/PPVII treatment

upregulated pro-apoptotic regulators (p53, p21WAF1/CIP1),
death receptors (DR3, DR5, Fas), and apoptosis execution
markers (cleaved PARP, caspase-3), while downregulating cell
cycle promoters cyclin B1 and decoy receptor DcR3. These death
receptors (DR3, DR5, Fas) initiate proteolytic cascades that activate
executioner caspases (-3, -8, -9), mechanistically linking TRAIL- and
Fas-mediated apoptosis pathways (Lin et al., 2015).Furthermore, Ke
et al. validated the pro-apoptotic effects of PPS in tongue squamous
cell carcinoma, demonstrating ROS-dependent activation of the
caspase-8/caspase-3 axis as the principal mechanism. As the
initiator caspase in extrinsic apoptosis, caspase-8 activation
represents a critical regulatory node governing programmed cell
death. Through formation of the death-inducing signaling complex
(DISC), caspase-8 catalyzes proteolytic activation of downstream
effectors, committing cells to apoptosis (Ke et al., 2016).

4.1.3 Endoplasmic reticulum stress and
Other pathways

ER stress-induced apoptosis is a key mechanism by which PPS
exert their effects on oxidative stress regulation. Previous studies
have shown that polyphylla saponins induce apoptosis in lung
cancer cells through modulation of ER stress, resulting in
significantly increased intracellular oxidative stress and ROS
accumulation. Researchers conducting cDNA microarray analysis
on polyphylla saponin-treated lung cancer cells observed significant
upregulation of multiple ER stress-associated genes. Western blot
analysis confirmed the elevated expression of ER stress markers
including BiP/GRP78, PDI, and HSP70, demonstrating ER stress
activation and its association with apoptosis induction (Siu et al.,
2008). In a seminal study, Tan’s team established the inhibitory
effects of polyphylla saponin on nasopharyngeal carcinoma cells
using in vitro models. Quantitative Western blot analysis revealed
both enhanced PERK phosphorylation and upregulated expression
of ER stress mediators including CHOP, BiP, PDI, ERO1α, and
IRE1α, thereby confirming ER stress activation. Consistent with the
established pro-apoptotic role of ER stress, morphological analysis
revealed characteristic apoptotic features in CNE-2 cells post-
treatment, including nuclear fragmentation, chromatin
condensation, and cytoplasmic shrinkage. Flow cytometry with
Annexin V-FITC/PI staining quantitatively demonstrated
increased apoptotic cell populations, thereby providing
multimodal evidence for ER stress-mediated apoptosis (Tan
et al., 2019).

4.2 PPS promotes cancer cell autophagy by
regulating ROS

Autophagy is a conserved intracellular degradation process that
maintains cellular homeostasis through lysosomal recycling of
superfluous or damaged cytoplasmic components (Miller and
Thorburn, 2021). The dual role of autophagy in
tumorigenesis—acting as both a pro-survival and tumor-
suppressive mechanism—is well characterized. While autophagy
may sustain cancer cell survival under metabolic stress by
replenishing energy and nutrients, it can also trigger autophagic
cell death or suppress tumor progression under specific contexts
(Gozuacik and Kimchi, 2004). Emerging evidence highlights ROS as
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critical regulators of autophagy (Chen et al., 2009). ROS
accumulation activates AMPK, a master energy sensor that
induces autophagy under low energy conditions (e.g., ATP
depletion), thereby restoring metabolic homeostasis in cancer
cells (Carling, 2017).

Luo et al. demonstrated that PPI induces autophagy in colon
cancer cells at specific therapeutic concentrations. This autophagic
activity was evidenced by an elevated LC3-II/LC3-I ratio, a hallmark
of autophagosome formation. Concurrently, PPI treatment in
SW480 cells induced ROS accumulation and suppressed AKT
phosphorylation, effects reversible by N-acetylcysteine (NAC)
cotreatment. These findings indicate ROS-dependent AKT/
mTORC1 pathway inhibition as the mechanistic basis for PPI-
mediated autophagy induction (Luo et al., 2022).Similarly, PPVII
activates autophagic flux in glioma models through LC3-II
upregulation coupled with AKT inactivation and SQSTM1/
p62 degradation (Pang et al., 2020). Notably, PPI exhibits dual
pro-death effects in temozolomide-resistant gliomas, coordinately
activating p38-JNK MAPK signaling to drive ROS-mediated
apoptosis and autophagy (Feng et al., 2024).Yuan and his team
further confirmed that PPVI triggers autophagy in U2OS
osteosarcoma cells through ROS modulation. Mechanistically,
PPVI elevates intracellular ROS via H2O2 generation, activating
the JNK signaling pathway. This cascade promotes autophagy as
evidenced by LC3-II accumulation, with JNK activation showing
direct correlation to autophagic marker upregulation, confirming its

pivotal role in PPVI-mediated autophagy (Yuan et al.,
2019).Figure 6.

4.3 ROS-mediated cell cycle arrest by PPS

Effective suppression of tumorigenesis and progression is
contingent upon arresting cancer cell proliferation. Malignant
cells evade growth-suppressive checkpoints through oncogenic
reprogramming, acquiring limitless replicative potential. Such
dysregulated proliferation imposes systemic pathophysiological
stress and disrupts tissue homeostasis.The tumor suppressor
p53 orchestrates cellular homeostasis through pleiotropic
regulation of growth arrest, DNA repair, and apoptotic pathways.
As a key p53 effector, p21 (CDKN1A) mediates cell cycle arrest by
inhibiting CDK2-cyclin complexes and modulating PCNA
functionality. p21 overexpression induces G1 phase arrest,
effectively suppressing neoplastic growth across experimental
models (Gartel et al., 1996). PPS exert antitumor effects through
pharmacologically-induced cell cycle arrest (Tian et al., 2020).

Elevated ROS levels modulate cell cycle progression by targeting
key regulatory proteins. ROS overproduction upregulates p21
expression and its downstream effector cyclin B1, a critical driver
of G2/M phase transition (Nagesh et al., 2017). Yu et al.
demonstrated that PPI induces concentration-dependent G2/M
phase arrest, an effect reversible by NAC pretreatment. Notably,

FIGURE 6
Polyphyllin triggers apoptosis and autophagy for cancer treatment by regulating reactive oxygen species levels. Paradisaponin increases intracellular
ROS levels, triggering oxidative stress, which in turn activates endogenous and exogenous apoptosis pathways, leading to the death of cancer cells. It can
elevate ROS levels in themitochondria and cytoplasm, resulting in a decrease inmitochondrial membrane potential, the release of cytochrome c, and the
subsequent activation of the Caspase cascade system, leading to PARP cleavage and DNA fragmentation, ultimately triggering apoptosis.
Paradisaponin, by increasing ROS levels, inhibits the AKT/mTOR pathway, activates the AMPK and MAPK pathways to promote LC3-II expression, and
induces autophagy in cancer cells.
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PPI selectively modulates cell cycle regulators: downregulating
cyclin B1 while upregulating p21 in a concentration-dependent
manner, without altering CDC2, p27, CDC25C, or GAPDH
expression. These findings delineate a ROS-dependent
mechanism underlying PPI-induced G2/M arrest (Yu et al.,
2018). Complementary studies in HepaRG models revealed that
PPII triggers ROS accumulation and mitochondrial depolarization,
concomitant with S-phase arrest. Antioxidant pretreatment with
NAC attenuates these effects, restoring membrane potential and
reducing apoptotic commitment (Wang et al., 2019) Figure 7.

4.4 PPS promote ferroptosis in cancer cells
by modulating ROS

Ferroptosis is a regulated cell death mechanism that relies on
iron and is marked by lipid peroxidation and excessive intracellular
iron accumulation. Excessive iron accumulation and GSH depletion
synergistically drive oxidative stress, resulting in lethal peroxidation
of PUFAs. PPS induce ferroptosis in cancer cells through ROS-
mediated mechanisms. For instance, PPI suppresses acute myeloid
leukemia progression by activating the PI3K/SREBP-1/SCD1 axis to
promote lipid oxidative damage and ferroptosis (Zhou et al.,
2024).Yang and his team demonstrated that PPI induces
ferroptosis in hepatocellular carcinoma (HCC) cells with
elevating intracellular Fe2+ and ROS levels, depleting GSH,
increasing malondialdehyde (MDA), and downregulating xCT
and GPX4 expression. In a nude mouse xenograft model, PPI
significantly suppressed tumor growth and inhibited the Nrf2/
HO-1 antioxidant axis. This suppression reduced GPX4 activity,

further amplifying ROS accumulation and iron overload, ultimately
driving HCC cells into ferroptosis (Yang et al., 2024). Feng et al.
demonstrated that PPI suppresses the Nrf2/HO-1 antioxidant
pathway in glioblastoma, thereby elevating ROS levels and
inducing ferroptosis. These results emphasize the therapeutic
potential of PPI for drug-resistant gliomas (Feng et al., 2024).
Furthermore, Zou et al. revealed that PPI modulates the ERK/
DNMT1/ACSL4 axis in castration-resistant prostate cancer
(CRPC) cells, driving ferroptosis through elevated MDA, Fe2+,
and ROS, alongside reduced GSH and GPX4 levels—a hallmark
of ferroptosis (Zou et al., 2024).

4.5 PPS in combination with drugs reverses
resistance and improves therapeutic efficacy

Clinical applications of ROS-modulating monotherapies
frequently demonstrate limited efficacy in tumor growth
suppression. However, combinatorial regimens integrating these
compounds with conventional chemotherapeutic agents not only
potentiate natural product efficacy but also reverse chemoresistance
via synergistic ROS-mediated mechanisms. Pang et al. demonstrated
that PPVII modulates the Bcl-2/Bax apoptotic rheostat, thereby
initiating mitochondrial pathway apoptosis. Mechanistically, PPVII
administration significantly suppressed phospho-AKT/
mTORC1 signaling axis activity. N-acetylcysteine (NAC)
pretreatment abolished PPVII-mediated cytotoxicity, autophagic
flux, and AKT/mTORC1 suppression, establishing ROS
overproduction as the central mechanistic driver of these
phenomena. The PPVII-TMZ combination exhibited marked

FIGURE 7
Polyphyllin exerts anticancer effects by inducing ROS-mediated cell cycle arrest in cancer cells. Polyphyllin increases ROS levels to activate the PI3K/
Akt signaling cascade and JNK/NF-κB, leading to cell cycle arrest at the G0/G1 and G1 phases The upregulation of p53 promotes the expression of p21,
which inhibits CDK2-cyclin complexes and proliferating cell nuclear antigen (PCNA), thereby blocking G1/S phase transition and inducing S phase arrest.
Additionally, Polyphyllinsuppresses cyclin B1 expression, disrupting the CDK1-cyclin B1 complex and resulting in G2/M phase arrest.
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synergism in glioma models, particularly in overcoming O6-
methylguanine-DNA methyltransferase (MGMT)-mediated
chemoresistance. This sensitization correlated with PPVII-
induced epigenetic silencing of MGMT via promoter
hypermethylation (Pang et al., 2019). Chen’s group elucidated
that PPVII-paclitaxel coadministration provokes profound ROS
burst, culminating in mitochondrial depolarization, ferroptosis
induction, and complete reversal of prostate cancer
chemoresistance (Chen et al., 2025). Zhang et al. pioneered the
discovery that Polyphyllin D (PPD) dose- and time-dependently
induces mitochondrial transmembrane potential (ΔΨm) collapse,
H2O2 accumulation, and ROS-mediated apoptosis in
chemoresistant HepG2 cells, thereby establishing PPD as a first-
in-class mitochondrial disruptor capable of bypassing hepatocellular
carcinoma chemoresistance (Cheung et al., 2005). Notably, PPS
exhibits broad-spectrum chemosensitization potential, effectively
reversing resistance to erlotinib (NSCLC), gefitinib (LUAD), and
cisplatin (TNBC) while preventing acquired resistance in these
malignancies (Lou et al., 2017; Zhang et al., 2024; Al Sawah
et al., 2015). Collectively, these findings position PPS as a
multimodal chemopotentiator that enhances conventional

chemotherapy (paclitaxel, temozolomide, cisplatin) through
three-pronged mechanisms: (1) ROS amplification, (2) p53-
PUMA-Bax apoptotic axis activation, and (3) mitochondrial
death pathway engagement.

4.6 Interaction of PPS with other signaling
pathways by regulating ROS

Signaling pathways are pivotal in cellular function, serving as
the primary mechanisms through which cells perceive external
stimuli and coordinate physiological responses. These pathways
orchestrate diverse cellular processes, including differentiation,
survival, apoptosis, migration, invasion, metabolism, stress
adaptation, and cell cycle progression. Through intricate
crosstalk within a signaling network, these pathways
collectively enable cellular adaptation to environmental
perturbations while preserving homeostasis. Beyond the
aforementioned pathways, PPS exhibit anti-tumor effects by
modulating ROS to target additional signaling cascades (Zhao
et al., 2021) Table.1.

TABLE 1 The application of PPS in cancer treatment.

Types of cancer Animals/cell types Dosage Theraputic effect Source

Hepatocellular
Carcinoma, HCC

The human hepatocellular
carcinoma cell line

Cytotoxicity tested with concentrations
ranging from 2 μM to 16 µM for 24 and
48 h
Further experiments used concentrations
of 2, 4, 6, 8, and 12 µM for 24 h

The study suggests that polyphyllin VI
has potent cytotoxic effects on HepaRG
cells, primarily through apoptosis
mediated by the Fas death pathway and
the mitochondrial pathway

Liu et al. (2018)

Colon cancer SW480 cell line IC50 values (50% inhibitory
concentration) were determined for 12 and
24 h treatment: 4.9 ± 0.1 μmol/L for 12 h
and 3.5 ± 0.2 μmol/L for 24 h

PPI markedly suppressed SW480 cell
growth in a dose-dependent fashion

Luo et al.
(2022)

Lung cancer Nude mice xenograft model with
A549 cells

PVI: 2 mg/kg, 3 mg/kg, 4 mg/kg
PVII: 1 mg/kg, 2 mg/kg, 3 mg/kg

In vitro:PVI and PVII suppress the
proliferation of A549 and NCI-H1299
cells, trigger G2/M phase cell cycle arrest,
and promote apoptosis
In vivo: PVI and PVII can significantly
inhibit the growth of xenograft tumors in
nude mice without affecting their body
weight

Lin et al. (2015)

Human osteosarcoma U2OS cell line CCK8 assay: 0, 1, 2, 4, 6, 8, 12, and 30 μM
Apoptosis and autophagy experiments: 0,
2.5, 5, and 7.5 μM
ROS and JNK experiments: 0, 2.5, 5, and
7.5 μM
H2O2 experiments: 0, 2.5, 5, and 7.5 μM

PPVI effectively triggers apoptosis and
autophagy in osteosarcoma cells through
activating the ROS/JNK signaling
pathway, thereby inhibiting cell growth
and showing potential for the treatment
of osteosarcoma

Yuan et al.
(2019)

Hepatocellular
Carcinoma, HCC

Nude mice xenograft model
(MHCC97H cells)

In vitro: 2, 4, 6, 10, 20 μM
In vivo: 1.5 mg/kg, 3 mg/kg
(intraperitoneal injection daily)

PPI induces ferroptosis in HCC cells and
causes mitochondrial structural and
functional damage by modulating the
Nrf2/HO-1/GPX4 axis, thereby inhibiting
the proliferation, migration, and invasion
of HCC cells and suppressing HCC tumor
growth

Yang et al.
(2024)

Hepatocellular
carcinoma (HCC)

human liver cancer cell lines PPVII was tested at various
concentrations, with the IC50 value for
HepG2 cells at 1.32 ± 0.04 μM for 24 h

PPVII demonstrated strong anticancer
activity against HepG2 cells through
multiple mechanisms, including
apoptosis induction, mitochondrial
dysfunction, ROS production, and
activation of PTEN/p53 and MAPK
signaling pathways

Zhang et al.
(2016)
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5 Other bioactivities of PPS

The NF-κB signaling pathway is a central transcriptional regulator
of inflammatory responses. Macrophages activate NF-κB through Toll-
like receptors (TLRs), triggering the secretion of pro-inflammatory
factors, including NO, prostaglandin E2 (PGE2), COX-2, MMPs, TNF-
α, IL-1β, and IL-6. These mediators attract immune cells to sites of
infectious sites or injured tissue (Mussbacher et al., 2019; Moncada,
1999). In canonical NF-κB activation, stimuli like lipopolysaccharide
(LPS), interferon-γ (IFN-γ), and TNF-α induce IκB kinase (IKK)
complex activation. IKK phosphorylates specific serine residues (e.g.,
Ser32/36) on IκBα, marking it for proteasomal degradation. IκBα
degradation liberates NF-κB, enabling its nuclear translocation and
subsequent transcription of pro-inflammatory genes (e.g., TNF-α, IL-
1β, IL-6, iNOS) (Fearon et al., 2016).

PPS exert multi-faceted anti-inflammatory effects by targeting key
nodes in this pathway.PPS exhibit dose-dependent anti-inflammatory
activity by suppressing key pro-inflammatory mediators, including
TNF-α (Zhu et al., 2019), IL-1β (Yang S. et al., 2021), NO, IL-1α, IL-6,
and IL-8. In collagen-induced arthritis (CIA) murine models, PPI
alleviates joint inflammation by inhibiting NF-κB-dependent
inflammatory cytokine production in macrophages. These findings
highlight the therapeutic potential of PPI for rheumatoid arthritis
(RA) management (Wang et al., 2018). PPVII suppresses LPS-
triggered macrophage activation primarily through NF-κB pathway
inhibition. LPS stimulation induces IκB-α phosphorylation and
degradation, enabling NF-κB p65 nuclear translocation and
subsequent transcription of pro-inflammatory genes. PPVII
attenuates this cascade by stabilizing IκB-α and blocking NF-κB
p65 nuclear translocation, thereby reducing pro-inflammatory
mediator synthesis. Furthermore, PPVII inhibits LPS-activated
JNK, ERK, and p38 MAPK signaling, suggesting an additional
mechanism to suppress IκB-α degradation (Zhang et al., 2019).

In addition to the above inflammation-related diseases, PPS can
also play an anti-tumor role by regulating inflammatory factors,
Chen et al. elucidated that PPII suppresses NF-κB activation via
blockade of IKKβ/p65 nuclear translocation, thereby suppressing
colorectal cancer progression (Chen et al., 2019). Studies have
demonstrated PPI concentration-dependently enhances
HepG2 cell chemosensitivity to cisplatin.Mechanistically, PPI
dose-dependently attenuates basal phosphorylation of the NF-κB
p65 subunit and downregulates downstream oncogenic targets (Bcl-
2, c-Myc, VEGF), priming HepG2 cells for chemotherapy response
(Han et al., 2015). In translational models, PPI potently suppressed
CRPC growth and induced G1/S phase arrest in both xenograft
models and primary cell cultures.PPI concomitantly reduced
p65 phosphorylation, mucin 1 (MUC1) oncoprotein levels, and
long non-coding RNA HOTAIR expression.These findings
establish PPI as multimodal inhibitors that disrupt NF-κB/p65-
MUC1 signaling crosstalk in stroma-rich prostate tumors (Xiang
et al., 2018).

In summary, inflammation and cancer exhibit bidirectional
crosstalk, forming a self-amplifying pathological cycle. Tumor
cells perpetuate inflammation through pro-inflammatory cytokine
secretion, whereas chronic inflammatory microenvironments
promote oncogenesis, tumor progression, and therapeutic
resistance. As a dual anti-inflammatory and anti-neoplastic agent,
PPS suppress NF-κB signaling and attenuate inflammatory cytokine

activity, thereby disrupting the inflammation-cancer axis and
suppressing tumor progression.

6 Conclusion and outlook

In conclusion, preclinical studies of PPS in cellular and animal
models demonstrate promising antitumor efficacy; however, clinical
translation remains limited by critical challenges: 1) Low bioavailability:
The poor aqueous solubility of PPS limits gastrointestinal absorption,
resulting in suboptimal systemic exposure and heterogeneous tissue
distribution. 2) Rapid hepatic metabolism: PPS undergoes extensive
first-pass metabolism, generating inactive or potentially toxic
metabolites that compromise therapeutic efficacy. 3) Drug-drug
interactions: PPS may interfere with cytochrome P450 enzymes,
altering the pharmacokinetics of co-administered therapeutics. 4)
Dose-limiting toxicity: While PPS exhibits potent in vitro antitumor
activity, in vivo studies report hepatotoxicity, nephrotoxicity, and
myelosuppression at elevated doses, necessitating rigorous safety
profiling. 5) Insufficient translational data: Gaps in pharmacokinetic-
pharmacodynamic (PK/PD) modeling and early-phase clinical trials
hinder rational dose optimization and risk-benefit assessment.

In future research, the following strategies should be prioritized to
address these limitations: 1) Pharmacokinetic optimization: Advanced
nano-delivery platforms (e.g., liposomes, exosomes) require systematic
development to overcome the poor aqueous solubility and limited
bioavailability of PPS. 2) Toxicity mitigation: Structural engineering
approaches, such as site-specific glycosylation or prodrug design,
should be investigated to alleviate dose-dependent hepatotoxicity while
preserving bioactivity. 3) Clinical translation: Phase I/II clinical trials must
be initiated to establish safety profiles, determine optimal dosing regimens,
and validate therapeutic efficacy in human populations, building upon
current preclinical evidence. 4) Combinatorial therapy exploration:
Synergistic regimens integrating PPS with immune checkpoint
inhibitors or targeted therapies could enhance therapeutic indices while
minimizing systemic toxicity. 5) Biomarker-driven stratification:
Identification of predictive biomarkers (e.g., Nrf2 expression, ROS
levels) may enable personalized dosing and patient selection.
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