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Solid tumors, accounting for around 90% of human cancers, present unique
challenges due to antigen heterogeneity, immunosuppressivemicroenvironments,
and limited accessibility for conventional pharmacotherapies. Immunotherapies,
particularly engineered immune cell therapies, exploit the immune-tumor
interplay, offering novel pharmacological strategies for solid malignancies.
Genetic engineering enhances adoptively transferred cells, such as T cell
receptor therapy, chimeric antigen receptor (CAR)-T cells, tumor-infiltrating
lymphocytes (TILs), natural killer cells, and CAR-macrophages, by optimizing
their targeting and effector functions. Clinically, TIL delivery has shown
significant responses in advanced melanoma, with lifileucel gaining
United States FDA approval as a pioneering TIL therapy for solid tumors.
Ongoing trials further explore these approaches, revealing promising
outcomes in overcoming immunosuppressive barriers. However, challenges
persist, including optimizing combination therapies, streamlining manufacturing
for off-the-shelf accessibility, and mitigating pharmacotoxicity. This review
synthesizes recent advances in engineered immune cell therapies for solid
tumors, emphasizing their pharmacological mechanisms, clinical efficacy, and
translational potential. By addressing current hurdles, such as enhancing tumor
penetration and minimizing adverse effects, this article outlines future
directions to refine these therapies as safe, effective pharmacological tools
in oncology.
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1 Introduction

Cancer-associated mortality rates are increasing globally every year (Maalej et al., 2023).
In the United States, 2,001,140 new cancer cases and 611,720 cancer deaths were reported in
2024 alone. Conventional cancer therapies including chemotherapy, radiation therapy, and
surgery, possess many drawbacks and numerous recurrent and metastatic cancer patients
still through dismal outcomes (Albano et al., 2021). On the other hand, various systemic
therapies such as immune checkpoint inhibitors, targeted therapies, and chemotherapy are
used to treat metastatic solid tumors. However, most of the patients with metastatic solid
tumors are treated with available and incompetent conventional therapies, thus requiring
additional therapeutic options. The occurrence of solid cancers or solid tumors is very high,
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where it is estimated that around 80% of all types of tumors originate
from a subset of solid organs such as the ovary, colon, lung, prostate,
and breast (Najafi et al., 2021).

Solid tumors are derived mostly from epithelial tissue and play a
major role in mortality and morbidity worldwide, wherein solid
tumors are responsible for around 90% of human cancers (Li et al.,
2020; Oh et al., 2020). In 2018 alone, the four leading cancers
responsible for deaths include lung, liver, colorectal, and stomach
(Najafi et al., 2021). Standard-of-care therapies can well control
early-stage solid cancers of non-lymphoreticular origins. Recurrent,
resistant, or metastatic tumors are most commonly surgically
unresectable and are usually nonresponsive to chemotherapies or
radiation (Fousek and Ahmed, 2015). In recent times, alternative
approaches including engineered immune cell-based therapies have
shown promise in solid tumor treatment.

In solid malignancies, there is a growing interest in
immunotherapies owing to the peculiar interaction between
tumor complex and the immune system (Slaney et al., 2014).
Indeed, the immune system plays a dual role by mediating
antitumor properties through CD4+ and CD8+ T cells and their
immune-activating cytokines, wherein conversely protecting the
tumors from death via activating T regulatory cells as well as
their immunosuppressive cytokines. Immunotherapies have
greatly advanced in recent times in terms of cancer treatment via
modifying the immune system to improve its capacity to detect and
eradicate neoplastic cells (Papaioannou et al., 2016; Maalej et al.,
2023). Adoptive cellular therapy (ACT) has a great potential and
therapeutic promise in the treatment of various cancers (Grimes
et al., 2021). So far, ACT has been mostly performed by utilizing
3 major cellular immunotherapies including genetically engineered
tumor infiltrating lymphocytes (TILs), T-cell receptors (TCRs)
T cells, and chimeric antigen receptor (CAR)-T cells (Tan
et al., 2021).

ACT involves the derivation of mononuclear cells directly or
peripherally from a patient’s tumor samples to expand and/or
genetically modify the lymphocytes to ameliorate tumor-fighting
abilities before returning the cells to the patient. So far, ACT has
been performed mainly via utilizing three strategies including CAR-
T cells, TCRs, and TILs (Grimes et al., 2021). FDA has approved the
first TIL therapy lifileucel (Amtagvi) on February 2024 to treat
advanced melanoma. Afamitresgene autoleucel (Tecelra) was the
first engineered T cell therapy to gain US Food and Drug
Administration (FDA) accelerated approval on August 2024 to
treat patients with solid tumor. These approved therapies have
the ability to harness the TCR on lymphocytes to detect and
destroy cancer cells. However, there are multiple challenges
involved in the usage of T cell therapies in solid tumor treatment
(Fousek and Ahmed, 2015). Biotechnology industries are looking
toward various approaches to overcome these challenges.

Radiotherapy is a well-established cancer treatment, which has
the capacity to modulate the tumor microenvironment (TME) and
mediate immune cell infiltrations (He et al., 2023). In addition,
radiotherapy can trigger the release of various chemokines, improve
the recognition as well as activation of NK cells, and increase the
expression of various tumor-specific surface antigens (He et al.,
2023). The combination of CAR T cell therapy and radiotherapy is
emerging as a potential approach to improve cancer control and
enhance patient outcomes (Zhong et al., 2023). It has been observed

that radiotherapy can foster a TME favorable to CAR T cell
infiltration. Moreover, radiotherapy can regulate this TME by
decreasing the number of immunosuppressive cells (for example-
M2 macrophages and regulatory T cells), and elevating the level of
pro-inflammatory signals, therefore improving CAR T cell functions
and infiltration (Chang et al., 2024). On the other hand, small
molecule-based advanced cancer immunotherapies have been
advanced in recent years. These small molecules have the ability
to target specific molecular cascades within immune cells and make
it easier to target the specific components of TME, which can
decrease systemic toxicities and off-target effects (Bedard et al.,
2020). Furthermore, the combination of immunotherapy and small
molecule modulators can synergistically improve the suppressive
effect of tumor progression by empowering the immune system to
precisely modify responses within the TME, boosting its ability to
detect and eradicate cancer cells (Singh et al., 2023).

This review article aims at useful and latest reports regarding
potential engineered immune cell therapies that can be beneficial in
the treatment of solid tumors, their clinical outcomes, and current
challenges that need to be addressed to optimize their safety
and efficacy.

2 Conventional therapies vs.
immunotherapies in the treatment of
solid tumors

Various treatment options are provided to cancer patients
following their diagnosis. Several factors need to be considered
while developing a suitable management plan including the
patient’s physiological status, sites of cancer, and cancer type.
Typical cancer treatments include radiation, chemotherapy,
surgery, or a combinatorial approach. In selected scenarios,
surgical resection is potentially curative, however patients with
most advanced solid tumors are not suitable candidates for this
approach. Multidisciplinary approaches such as radiation and
chemotherapy are needed for most patients with advanced solid
tumors (Guha et al., 2022). Cytotoxic chemotherapy drugs have a
major limitation of causing serious side effects because of the lack of
specificity, thus they attack both tumor and normal cells. On the
other hand, radiation therapy is commonly utilized as part of a
combination with surgery or chemotherapy, as radiation therapy
alone cannot cure most cancer types (Baskar et al., 2012). Common
adverse effects of radiation therapy include fatigue, stiffness, skin
swelling, itchy skin, and dry skin (Cheng et al., 2019). Increasingly,
cancer immunotherapies are being integrated into multidisciplinary
cancer care because of their capacity to mediate promising and
durable disease management. In order to include more types of solid
tumors in the immunotherapy treatment regimen, more studies and
advances are needed to overcome critical challenges associated with
targeted delivery and immunosuppression (Guha et al., 2022).

The immune system has a significant contribution in
tumorigenesis, thus the contribution of immunotherapy in the
treatment of different tumor types has gained a lot of attention.
Several cancer immunotherapies have already been approved in the
21st century to treat different cancer types (Guha et al., 2022). ACT
has been used for a long time in the treatment of cancer and various
other diseases. Indeed, the adoptive transfer of ex vivo expanded T
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lymphocytes has exhibited limited antitumor effectiveness, since
these T lymphocytes have a deficiency of specificity against tumor
cells (Restifo et al., 2012). In order to improve the effectiveness of
ACT, the infusion of TILs with specificity against the tumor cells in
individuals with preconditioning regimens markedly ameliorated
the therapeutic effectiveness (Li et al., 2019). Following the cloning
of the TIL’s TCR gene, now it is possible to endow T cells with
definite selectivity through the transfer of cloned TCR gene (Shafer
et al., 2022). In cancer treatment, engineering of T cells engineered
via using viral vectors to express the TCR gene with defined
selectivity has shown a substantial benefit (Kalos and June 2013).

3 Potential engineered immune cell
therapies in the treatment of
solid tumors

3.1 T cell receptor therapy (TCR-T)

TCR-T uses autologous T cells derived from peripheral blood
mononuclear cells via leukapheresis, which is followed by TCR gene
transduction (typically by using lentivirus or various other gene
delivery approaches) as well as T-cell expansion. TCR-T doses are
typically transfused back to cancer patients following
lymphodepleting chemotherapy with cyclophosphamide and
fludarabine (to mediate the delivery of cytotoxic T-lymphocytes)
followed by administration of interleukin (IL)-2 (Tsimberidou et al.,
2021). TCR-T has already proved its durability, effectiveness, and
safety in various solid tumors such as synovial sarcoma, melanoma,
and human papillomavirus-associated tumors (Ma et al., 2024).
Varying success rates were obtained in a number of TCR-based
trials. A objective response rate (ORR) of 61% was obtained among
individuals with soft tissue sarcomas, particularly the individuals
with with resistant synovial sarcomas expressing New York
esophageal squamous cell carcinoma-1 (NY-ESO1) (Robbins
et al., 2015). On the other hand, an ORR of 20%–60% was
observed in the case of melanomas, while an ORR of 17%–64%)
was observed in the case of hepatocellular carcinoma as per the
patient status as well as target (hepatitis B virus [HBV] or alpha-
fetoprotein antigen-targeted) (Ma et al., 2024). An enhanced disease
control rate (DCR) of around 80% was observed in the trials that
primarily targeted esophageal cancers, non-small-cell lung cancer,
and head and neck squamous cell carcinoma (Ma et al., 2024). In
addition, TCR-T exhibited its durability and effectiveness in several
solid tumor niches.

Conventional first-line anthracycline-based chemotherapies
showed a 3-year survival of less than 20% and only 26% ORR in
the case of soft tissue sarcoma, whereas a specific antigen-based
TCR-T performed better in heavily treated conditions (Judson et al.,
2014). In the case of metastatic synovial sarcoma, an ORR of 35.7%–
66.7% was observed with NY-ESO1-specific TCR-T, along with 5-
and 3-year survival rates of 14% and 38%, respectively. In addition,
this NY-ESO1-specific TCR-T was found to perform better as
compared to the programmed death-1 (PD-1) inhibitor, which
had an ORR of 10% only (Robbins et al., 2015; Tawbi et al.,
2017; Hong et al., 2020). Metastatic human papillomavirus
(HPV)-related cancers are typically standard therapy-resistant
and incurable, a DCR of 83.3% and ORR of 50% were observed

with the HPV E7-targeted TCR-T, which further extends the
applications of TCR-T for carcinomas induced by viruses
(Nagarsheth et al., 2021). Even in tumors like refractory
malignant pleural mesothelioma that are targetable by TCR-T
and CAR, gavocabtagene autoleucel (a novel cell therapy based
on autologous, genetically engineered T cells) showed a DCR of
100% and ORR of 50% in interim analysis, in comparison with the
results of a phase I clinical trial of mesothelin-targeted CARs and
PD-1 antibody (a DCR of 68.8%) (Adusumilli et al., 2021).

Advantages in terms of efficacy and safety were also observedwith
TCR-based bispecific protein as compared to standard therapy
(Nathan et al., 2021; Olivier and Prasad, 2022). In the case of
hepatocarcinoma, a median overall survival of 33.5 months was
observed with the HBV antigen-targeted TCR-T, where a median
overall survival of 10.7 months was observed with sorafenib and a
median progression-free survival of only 5 months was observed with
CD133 CAR-T (Wang et al., 2018). A specific TCR-T therapy’s The
safety profile mainly relies on its on-target, off-tumor (OTOT) activity
or off-target toxicity. These unwanted toxicities were carefully
circumvented via preclinical investigations and optimizing target
selection in the most recent clinical trials. Side effects commonly
associated with ACT include cytokine release syndrome (CRS) and
immune effector cell-associated neurotoxicity syndrome, which were
found to be milder in association with the TCR-T as compared to
CAR-T. In general, TCR-T-associated side effects were found to be
better tolerated because of recent developments, thus a higher
tolerable dosage can be administered to ameliorate effectiveness
(Ma et al., 2024). As compared to ACTs, the benefits of using
TCR-T in vivo have been validated via exploring clinical and pre-
clinical data in terms of the mechanism of action. When aimed at the
same target, synthetic TCRs and antigen receptors showed earlier and
improved tumor infiltration than CAR-T, which was found to be
linked with enhanced antitumor effectiveness at the preclinical level
(Liu et al., 2021). However, there is a lack of clinical data in terms of
direct comparisons of TCR-Ts with ACTs (Ma et al., 2024).

3.2 Induced pluripotent stem cell
(iPSC) therapies

Indeed, iPSCs have been identified as a promising source of
engineered off-the-shelf allogeneic cell therapies because of their
ability for clonal selection following genetic modification,
comparatively easier genetic engineering, unlimited expansion
capacities, and removal of the necessity to collect cells from a
donor at any given time (Zhu et al., 2018; Yamanaka, 2020;
Zhou et al., 2022). Over the past decade, iPSCs technology has
progressed substantially and demonstrated its application in
malignant solid tumors. It has been observed that iPSCs obtained
from readily available cells have the ability to expand indefinitely
and can also differentiate into all specialised cell types, which can
provide an unlimited and strong source for the generation of
differentiated cells. Moreover, iPSCs obtained from individuals
with an inherited predisposition towards cancer development
might mimic the early stage of tumor development and can
facilitate the understanding of tumor progression (He et al., 2023).

There is a growing interest in cancer cells reprogramming into
iPSCs for resetting the identification of malignant cells without
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modifying the cell genome sequence. Various studies have already
induced the transformation of malignant solid tumor cells, such as
low-grade gliomas (Liu et al., 2019), sarcoma (Zhang et al., 2013),
prostate cancer (Zhang et al., 2020b), lung cancer (Mahalingam
et al., 2012), and human germ cell tumors (Taguchi et al., 2021), into
a pluripotent state via utilizing targeted transcription factors. This
iPSC technology has confirmed the capacity to markedly decrease
the tumorigenicity of the original parental cancer cells (He et al.,
2023). It has also been revealed that solid tumor cells are flexible,
thus the cells can be reprogrammed by utilizing iPSCs technology to
reverse the malignant tumor phenotypes. Furthermore, this
technology has motivated novel approaches in the treatment of
malignant tumor (He et al., 2023).

3.3 Chimeric antigen receptor (CAR)-
T cell therapies

In the past few decades, CAR-T cell-based therapies have
revolutionized cancer therapy, since they are capable of
producing durable and effective clinical responses (June et al.,
2018). It is now well-known that CARs are engineered synthetic
receptors that can redirect T cells to detect and eradicate the cells
that express targeted antigens (Sterner and Sterner, 2021). There are
3 major functional domains present in the CAR structure including
the intracellular domain, transmembrane domain, and extracellular
domain (Figure 1). An intracellular domain containing only CD3ζ is
present in first-generation CARs, while they lack co-stimulatory
signals (Lindner et al., 2020). In contrast, a co-stimulatory domain
like CD28 or 4-1BB is present in second-generation CARs, while 2 or

more co-stimulatory domains are involved in third-generation
CARs. On the other hand, the fourth-generation CARs were
developed as per the second-generation CAR, which includes
expressions of certain cytokines. Finally, co-stimulatory domains
activating various other signalling cascades are incorporated in the
fifth-generation CARs (Chen et al., 2024).

The use of CAR-T is well-established in cancer treatment, thus
the use of CAR engineering to alter other types of immune cells has
greatly motivated researchers (Figure 2). In the case of solid tumors,
most of the earlier phase clinical trials utilized second-generation
CAR T-cell-based therapies, however limited antitumor properties
were observed as compared to what was observed in blood cancers
(Srour and Akin, 2023). Therefore, two costimulatory domains were
incorporated in third-generation CARs to enhance the antitumor
properties (Sadelain et al., 2013). Remarkable outcomes obtained
with CAR T-cell-based therapies in blood cancers encouraged an
expectation for similar outcomes in the case of solid tumors. A
growing number of preclinical and clinical studies over the past few
years have explored the mechanisms and applications of CAR
T-cells in the case of solid tumors (Dhaliwal et al., 2024). Even
though their effectiveness in solid tumor treatment is yet to be
demonstrated, numerous tumor-linked neoantigens and antigens
have been detected as potential targets (Keshavarz et al., 2022).

3.4 Tumor infiltrating lymphocyte
(TIL) therapy

TIL therapy is an outstanding immunotherapeutic approach,
which provides prospects for the management of difficult cancers

FIGURE 1
Structural components of five generations of chimeric antigen receptor (CAR)-T cells. The first-generation CAR-T cells only contain CD3ζ, an
intracellular domain, while they lack co-stimulatory signals. Second-generation CAR-T cells, contain a co-stimulatory domain like CD28 or 4-1BB, while
2 or more co-stimulatory domains are involved in third-generation CAR-T cells. The fourth-generation CAR-T cells include expressions of certain
cytokines. Co-stimulatory domains activating various other signalling cascades are incorporated in the fifth-generation CAR-T cells.
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FIGURE 2
Mechanisms of commonly used CAR-T cells mediated killing processes of tumor cells. Various commonly used CAR-T cells including CAR-T, CAR-
NK, and CAR-macrophage (CAR-M) possess the capacity exhibit strong antitumor properties through several mechanisms [Abbreviations: GzmB,
granzyme; -γ, interferon-gamma; TNF-related apoptosis-inducing ligand; ADCC, antibody-dependent cellular cytotoxicity; IFNKAR, killer activation
receptor; KIR, killer inhibitory receptors; PFN, perforin; TRAIL-R, TNFα, tumor necrosis factor-alpha]. Reproduced with permission from Elsevier,
(Zhang et al., 2024).
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(Hong et al., 2024). TILs are mononuclear cells that occur naturally
and infiltrate the solid TME, which play roles as part of the broader
group of immune cells at the sites of tumors (Savas et al., 2016;
Mohammad Hossein et al., 2022). In the case of TIL therapy,
lymphocytes are extracted from a tumor and then expanded
outside of the body (ex vivo), which are then reintroduced to
improve immune responses against tumor cells (Betof Warner
et al., 2024). TILs efficiently eradicate cancer cells and have less
chance to cause injury to normal cells, offering greater therapeutic
potential with fewer side effects, therefore they have superior
therapeutic properties along with lesser side effects (Hong et al.,
2024). In humans, the first use of TIL therapy resulted in a 60%
regression in the case of metastatic melanoma (Dhaliwal et al., 2024).

Solid tumors were found to be highly heterogeneous and they
often do not contain an ideal tumor marker, notwithstanding blood
cancers along with lineage-specific markers (Roshandel et al., 2021;
Wang et al., 2021). Interestingly, TILs are polyclonal cells containing
various receptors thus able to detect multiple tumor-associated
antigens, therefore TILs as genetically-modified immune cells
show superiority in the treatment of solid tumors. Immune
escape and heterogeneity of tumors can be overcome by TILs,
which can offer better clinical responses as compared to CAR-T
cell-based therapies in the treatment of solid tumors with greater
mutation rates, for example, melanoma (Titov et al., 2021). In
addition, within the TME, TILs show greater tumor-specificity
and have the capacity to target even unknown tumor
neoantigens, which removes the need for previous understanding
regarding major histocompatibility complex (MHC) restriction or
tumor-associated antigens (Fernandez-Poma et al., 2017).

Stromal TILs (sTILs) and intratumoral TILs (iTILs) are the
major types of TILs. It has been observed that sTILs are easily
detectable and commonly found in the tumor stroma, while iTILs
are rarely found in tumor cell clusters thus their identification
process is complex (Savas et al., 2016). Most of the TILs are
effector memory T cells that show high effectiveness in
antitumor properties and proliferation, which are activated by
tumor-associated antigens in vivo and can also proliferate in vitro
up to 105 times. Since TILs have the capacity to infiltrate TME, thus
they contain chemokine receptors that are required for migration
toward the TME following administration (Fernandez-Poma et al.,
2017). Lower off-target toxicity is another advantage provided by
TILs as compared to CAR-T cells, which perhaps owing to the
negative selection of TCRs during T cell maturation (Wang
et al., 2021).

3.5 Mesenchymal stem cells (MSCs)

MSCs are self-renewing, versatile cells that can be obtained from
various sources, for example, bone marrow, amniotic fluid, adipose
tissue, and umbilical cord (Zhang et al., 2020a). MSCs has shown
promising outcomes in cancer immunotherapy via providing
oncolytic immunotherapy and increasing CAR-T cell activities,
thus being able to exert substantial antitumor actions. Exosomes
derived from MSCs might possess similar properties (Hombach
et al., 2020). Nonetheless, varying research outcomes have been
observed regarding the capacity of MSCs to modify CAR-associated
products. Perplexingly, the role of MSCs has also been indicated in

mediating metastasis and tumor growth in certain scenarios
(Holthof et al., 2021). MSCs are currently being investigated as a
delivery vehicle for various therapies including oncolytic viruses
(Zhu et al., 2017) and tumor necrosis factor (TNF)-related
apoptosis-inducing ligands (Shaik Fakiruddin et al., 2018).

Former studies involving tumors and MSCs were mainly
associated with the exploration of the effects of naive
(unmodified) MSCs (N-MSCs) on tumors. It has been observed
that N-MSCs can be isolated from various natural tissue sources and
can be homed to tumors to efficiently target the TME and assess
their uses as antitumor agents. In addition to this, N-MSCs can be
co-cultured with in vitro tumor cells, which may suppress the
proliferation of tumor cells (Shams et al., 2023). In a study, it
was confirmed that N-MSCs may avert in vitro proliferation of
solid tumors and leukemia cell lines (Ramasamy et al., 2007).
Furthermore, the suppressive effect of N-MSCs was found to be
dose-dependent, and the suppression rate was decreased at higher
proportions of N-MSCs (Ramasamy et al., 2007). Future studies
should optimize their engineering, clarify the contribution of MSCs
in tumor growth, and explore them as part of combination therapies
(D’Avanzo et al., 2024).

3.6 Natural killer (NK) cell therapy

Unlike T cells, NK cells have the capacity to detect and target
various abnormal or stressed cells without preceding sensitization,
such as metastatic and MHC-I-deficient tumor cells (Laskowski
et al., 2022). In recent times, NK cell engagers have markedly
advanced NK cell therapy, which can direct NK cells precisely to
tumors (Vivier et al., 2024). Methods on ex vivo cytokine induction
are also utilized to increase NK cell activities and offer a memory-
like phenotype, such as feeder cell approaches by utilizing soluble IL-
12, -15, and −18 and membrane-bound IL-15 (Terrén et al., 2022).
In the case of solid tumors, there is a high chance of the occurrence
of abnormal tumor vasculature, where solid stress caused by the
growing tumor may compress tumor vasculature to reduce blood
flow into the tumor bed (Figure 3) (Portillo et al., 2023). Another
drawback of using NK cell-based therapies is the shorter duration,
which can decrease their long-term therapeutic effectiveness and
might necessitate repeated administrations (Terrén et al., 2022).

Furthermore, the therapeutic effectiveness of NK cells is largely
determined by their sources, where functional heterogeneity can
influence clinical outcomes. In recent times, NK cells derived from
cord blood have indicated this issue, which confirmed that a higher
level of effector-related genes is present in NK cells derived from
optimal cord blood units (CBUs) and showed enhanced activities
than NK cells derived from suboptimal CBUs (Marin et al., 2024).
Still, there is a debate regarding the requirement for conditioning
regimens in the case of allogeneic NK cell therapies, therefore more
clinical trials are needed to elucidate their requirement (Kerbauy
et al., 2021). More studies are also essential to improve the trafficking
of NK cells, effector capacity, and metabolic profiles (Laskowski
et al., 2022; Berrien-Elliott et al., 2023; Marin et al., 2024). Other
important areas that need to be considered include maintaining cell
viability after cryopreservation and the development of a scalable
manufacturing process. Along with CAR-NK cell therapy, novel
approaches are also emerging, for example, the combination of a
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bispecific CD30/CD16 antibody along with blood-derived NK cells
and cytokine-activated cord blood (Kerbauy et al., 2021).

Cytokine-induced killer (CIK) cells also have already
demonstrated their effectiveness and an outstanding safety profile

in several clinical trials, even across HLA barriers in an allogeneic
setting (Magnani et al., 2020; Wu and Schmidt-Wolf, 2022). CIK
cells showed strong anti-tumor ability against several solid and
hematological malignancies (Sharma et al., 2024). In addition to this,

FIGURE 3
The effect of tumor microenvironment (TME) on natural killer (NK) cell infiltration and activities at the solid tumor sites (Portillo et al., 2023) (A) Solid
tumors are usually composed of immunosuppressive immune cells, tumor cells, and cancer-associated fibroblasts (CAFs), which can suppress the
activities and infiltration of NK cells. CAFs mainly generate the components needed for the extracellular matrix (ECM). Different components such as
laminin, hyaluronic acid, proteoglycans, and collagen are present in the ECM, which play a role in solid stress and tumor stiffness. Tumor vasculature
can be obstructed by solid stress, which can result in a hypoxic condition in the TME. In addition, the high energy necessities of rapidly proliferating tumor
cells can result in a poor supply of nutrients in the TME, which can further reduce the metabolic fitness and anti-tumor properties of NK cells.
Immunosuppressive elements including prostaglandin E2 (PGE2) and transforming growth factor beta (TGF-β) are also present in TME, which can further
suppress the functions of NK cells via reducing the signalling and expression of activation receptors. (B)Hypoxia in the TME can result in the generation of
various pro-angiogenic factors such as vascular endothelial growth factor (VEGF)-A and basic fibroblast growth factor (bFGF), which can decrease the
expressions of adhesion molecules on endothelial cells via weakening extravasation of NK cells into the sites of tumors. Following the migration of NK
cells towards tumors, NK cells are shielded from tumor cells through the stiff and dense ECM surrounding the tumor core (Portillo et al., 2023). Integrins
including very late activation antigen-4 (VLA-4) and Lymphocyte function-associated antigen 1 (LFA-1) are found to be expressed on the surface of NK
cells that bind with intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) to mediate strong binding with the
endothelium, followed by extravasation into the tissues (Harjunpää et al., 2019).
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CIK cells show a heterogenous T cell population with a mixed NK
cell phenotype and combine adaptive T cell-mediated with MHC-
unrestricted functions of the innate immune system (Moser et al.,
2025). CIK cells were found to be compatible with nearly all kinds of
immune checkpoint inhibitors, epigenetic drugs, and CAR-CIK
therapy. It has been reported that CAR-CIK therapy is at least as
effective as CAR-T cells. In addition, CAR-CIK therapy has
favorable allogeneic applicability and a safety profile (Moser
et al., 2025).

3.7 Dendritic cell (DC) therapies

Various endogenous danger signals can trigger an immune
response, including fragments of dying cells and microbial
products (known as pathogen-associated molecular patterns).
These danger signals are detected by various immune cells (Li
and Wu, 2021). Among them, DCs play a role as the major link
between adaptive and innate immune responses. It has been
observed that pulsing DCs with whole tumor cell lysates in vitro
and in vivo can trigger therapeutic antitumor immune responses
following vaccination (Rosenblatt et al., 2011). Nonetheless, there
are several challenges (such as antigen loading and method
optimization for DC generation) that need to be addressed before
using DC-based therapies to treat solid tumors (Jung et al., 2018;
Sheykhhasan et al., 2025). Interestingly, blocking suppressive
molecules like PD-1, cytotoxic T-lymphocyte-associated protein 4
(CTLA-4), and programmed death-ligand 1 (PD-L1) on immune
and tumor cells restored tumor-specific T cell functions (Baumeister
et al., 2016; Vreeland et al., 2016). In a clinical trial, administration of
a combination of radiotherapy (35 Gy) and in situ DC therapy
utilizing GM-CSF in individuals with metastatic solid tumors
triggered an abscopal effect in 11 of 41 participants, which was
markedly greater than the abscopal effects mediated by radiotherapy
alone (Golden et al., 2015).

There are several approved checkpoint inhibitors that are used
in solid tumor treatments owing to their outstanding clinical
outcomes such as anti-PD-L1 (avelumab, durvalumab, and
atezolizumab), anti-CTLA-4 (durvalumab and ipilimumab), and
anti-PD-1 (nivolumab and pembrolizumab), It has been reported
that effectiveness of these checkpoint inhibitors, particularly the
monoclonal antibodies that block PD-L1, usually linked with the
mutational burden, expression of PD-L1 in the TME, and the
number of TILs (Snyder et al., 2014; Tumeh et al., 2014;
Dammeijer et al., 2017; Fennell et al., 2018; Yi et al., 2018). DC-
based therapies enhance the infiltration of CD8+ T cells that are
specific to tumors and increase the expressions of PD-1 on these
TILs, which maymake tumors with lower numbers of TILs receptive
to anti-PD-L1 therapy (Antonios et al., 2016). Most of the DC-based
clinical trials were successful in producing tumor-specific CTLs in
individuals with cancers, however the activities against most solid
tumors were found to be rather disappointing (Butterfield, 2013).
There are several factors that can result in insufficient efficacy of DC
vaccine-mediated immune responses against solid tumors. One such
factor is the inadequate number of CD8+ CTL induction in response
to DC vaccination alone (Lou et al., 2004). CTLs produced in this
manner might contain suboptimal antitumor properties in vivo,
perhaps because of inadequate migration or weak activation at the

tumor sites. The responsiveness of such cells to host-derived
regulatory processes also seems to be an issue (Jung et al., 2018).

3.8 Chimeric antigen receptor (CAR)
macrophages (CAR-Ms)

Multiple limitations of CAR-T cell-based therapies include graft
versus host disease, OTOT toxicity, immune effector cell-associated
neurotoxicity syndrome, CRS, time-consuming production, and
high cost (Bonifant et al., 2016; Yadav et al., 2020). In solid
tumor treatment, CAR-T cell has limited effectiveness because of
various reasons including high complexity of TME, incompetent
homing and infiltration, limited T cell fitness, antigen escaping, and
heterogeneity (Wagner et al., 2020). Macrophages have the capacity
to exert various effector activities that can mediate support tumor
clearance. In recent times, CAR-Ms have been generated by the
genetic engineering of macrophages to express targeted
proinflammatory transgenes (Brempelis et al., 2020; Gardell et al.,
2020; Kaczanowska et al., 2021). CAR-M has emerged as a potential
therapy and its use can prove beneficial in the solid tumor treatment
(Hadiloo et al., 2023). In the case of both in vitro and in vivo studies,
CAR-Ms have resulted in great results in the of solid and blood
cancer treatment. Indeed, CAR-Ms were found to possess strong
anti-cancer properties as compared to macrophages alone or various
other macrophage-based therapies (Liu et al., 2022). Several studies
demonstrated significant outcomes of cytotoxicity in the CAR-
manner through multiple target antigens including CD19
(Morrissey et al., 2018), mesothelin (Anderson et al., 2022),
human epidermal growth factor receptor 2 (HER2) (Klichinsky
et al., 2020), transmembrane glycoprotein mucin 1 (MUC1)
(Eisenberg et al., 2021), and GD2 (Zhang et al., 2023).

CAR-Ms and their killing capacity can regulate and modify the
immune system and associated factors to enhance their anti-cancer
properties. CAR-Ms can directly cause cytotoxicity in tumor cells
(Figure 4). Macrophages activated by lipopolysaccharide were found
to release various harmful substances that can cause the
disintegration of tumor cells, such as nitric oxide, reactive oxygen
species, and TNF (Lu et al., 2024). A number of preclinical studies of
CARM cells confirmed substantial anti-tumor properties in the case
of both in vitro and in vivo studies. For instance, CAR M exerted
anti-tumor properties on leukemia cells through luciferase reporter
assays or ovarian cancer cell line HO8910 expressing a high level of
mesothelin in vivo (Zhang et al., 2020a). On the other hand, MUC1-
targeting CAR-Ms exhibited strong anti-tumor activities via
phagocytosis and release of various pro-inflammatory cytokines
including TNFα, IL-8, and IL-1β in the presence of
MUC1 expressing tumor cells from malignant pleural effusions
or solid lung tumors (Eisenberg et al., 2021). Despite their
therapeutic promises, there are several limitations of CAR-Ms in
terms of solid tumor treatment because of the complex TME and
unique features of solid tumors. Even though CAR-Ms showed good
outcomes in several preclinical studies, multiple problems were
faced afterwards including cell exhaustion, the suppressive
activities of TME, antigen escape, and tumor heterogeneity.
Nonetheless, human cancer-associated TMEs possess a more
complex scenario as compared to animal models (Kochneva
et al., 2020; Toor et al., 2020).
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4 Clinical trials of engineered immune
cell-based therapies in the treatment of
solid tumors

Cellular immunotherapies involve several approaches for the ex
vivomanipulation of immune cells, such as TILs, TCR-T cells, CAR-
T cells, iPSCs, MSCs, NK cells, DCs, and CAR-Ms (Albarrán-
Fernández et al., 2025). Delivery of unselected TILs have the
capacity to exert clinically significant responses in advanced
melanoma (Table 1), even in individuals refractory to anti-PD-
1 antibodies (Martín-Lluesma et al., 2024). In addition, lifileucel is
an FDA-approved TIL therapy for the treatment of solid tumors.

TIL-based therapies also exhibited promising outcomes against
various other malignancies, such as cervical cancer (Stevanović
et al., 2019) and non-small cell lung cancer (Creelan et al., 2021).
Candidates for TIL-based therapies go through resection of tumor
lesions, from which T cells are derived, expanded as well as reinfused
after lymphodepletion, typically followed by administration of
systemic IL-2 to mediate in vivo survival and expansion of
T cells (Yossef et al., 2023). A number of clinical trials are
currently ongoing that are exploring the potential of a range of
engineered immune cell therapies in the treatment of solid tumors.
Some of the clinical trials are already showing promising results,
however there is a general lack of substantial clinically significant

FIGURE 4
Killing mechanisms of chimeric antigen receptor (CAR) macrophages (CAR-Ms) (Lu et al., 2024). (a) CAR-Ms show direct cytotoxic properties via
secreting releasing nitric oxide (NO), reactive oxygen species (ROS), and tumor necrosis factor (TNF). (b)CAR-Ms can cause direct cytolysis of tumor cells
via antibody dependent cellular cytotoxicity (ADCC) and antibody dependent phagocytosis (ADP) by binding with Fc receptor (FcR) expressed on its
surface to antibodies coated on the tumor cell membranes. (c) Extensive communication between CAR-Ms and other immune components
including helper T cells have a significant contribution in tumor clearance. CAR-Ms can play a role as an antigen-presenting cell by presenting tumor
antigens to prime T cells. In addition, CAR-Ms can enhance intratumoral infiltration of various tumor infiltrating cells including antitumoral neutrophils, T
helper 17 (Th17) cells, natural killer (NK) cells, T helper 1 (Th1) cells, and cytotoxic T cells (CTL) via releasing C-C motif chemokine ligand 5 (CCL5), and
C-X-C motif chemokine ligand (CXCL)-8, -9, -10, and -11. (d)Macrophages can exert different roles depending on the CAR design. CCL19-CAR-Ms can
mediate the engulfment of C-C chemokine receptor type 7 (CCR7)-positive tumor cells to slow down tumor progression as well as metastasis. Human
epidermal growth factor receptor 2 (HER2) CAR-Ms modified with a cluster of differentiation 147 (CD147) can induce matrix metalloproteinase (MMP)
release to damage the extracellular matrix, which can ultimately lead to the infiltration of more immune cells (Lu et al., 2024).
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responses and occurrence of OTOT toxicity. A summary of
currently ongoing clinical trials evaluating engineered immune
cell therapies has been provided in Table 2.

5 Current challenges in solid tumor
treatment with engineered
immune cells

Solid tumors show startling tumor-associated antigen
heterogeneity and an immunosuppressive TME, which imposes a
challenge for immune cells that attempt to penetrate tumors.
Furthermore, solid tumors are well-supported by a complex TME
capable of inhibiting immune responses and they often occur in
regions within the body that are difficult to access for treatment. In
order to overcome these challenges, more sophisticated engineered
immune cells are required for solid tumor treatment (Fousek and
Ahmed, 2015).

In general, therapies targeting a tumor profile instead of a
specific tumor-associated antigen might prove more beneficial in
the treatment of solid tumors. In contrast with blood tumors,
solid tumors often occur in severely restricted regions within the
body. For example, gliomas and various other central nervous
system tumors are often challenging to treat, since systemically
infused cells ought to have capacity to penetrate the blood-brain
barrier to gain access to the tumor. Thus, the dose of the therapies
efficiently reaching the tumor sites might be markedly decreased
from the dose originally administered. Therefore, studies are
increasingly focusing on the homing ability of T cells via
expressing various chemokine receptors (ClinicalTrials.gov,
2012). As the engineered immune cells improve, tumors can
also adapt, which can lead to immune evasion. Furthermore,
tumor cells can inhibit an immune response via elevating their
expressions of important anti-inflammatory signals. Therefore,
extensive and continuous studies are required to overcome this
tumor adaptation and to enable engineered immune cell

therapies to continuously exert their antitumor properties
(Fousek and Ahmed, 2015).

The use of T cells expressing transgenic T cell receptors (tgTCR)
resulted in early success in the treatment of solid tumor, however
clinical reports involved OTOT toxicity (Morgan et al., 2010; Linette
et al., 2013). The safety profile of next-generation T cell-based
therapies can be significantly improved by eliminating overly
activated cells, controlling CRS, and including new systems into
CAR molecules to avert OTOT toxicity (Fousek and Ahmed, 2015).
More studies involving these safety measures are likely to result in
widespread usage of CAR-T cell therapies in the treatment of
solid tumors.

In the case of melanoma and myeloma, a high-affinity TCR
targeting melanoma-associated antigen 3 showed an unwanted
cross-reactivity via detecting titin, a giant muscle protein
expressed in both cardiac muscles, which eventually led to
cardiotoxicities and resulted in the death of two patients (Linette
et al., 2013). Similar adverse effects were also observed with CAR-T
cell therapy, as revealed by clinical reports (Morgan et al., 2010;
Maus et al., 2013). Several doses of mesothelin-targeted CARs were
developed by using an RNA-based platform to administer in an
individual with pancreatic adenocarcinoma and 3 individuals with
malignant pleural mesothelioma (Maus et al., 2013). Among them, a
patient developed anaphylaxis to the administered cells upon
infusion of the third dose. It was concluded that anaphylaxis
occurred due to the generation of CAR-specific IgE antibodies,
thus more studies are required with the dosing schedules that
involve repeated administrations of CAR-T cells (Maus et al.,
2013). In order to avoid such catastrophic events, it is important
to select a suitable target tumor-associated antigen.

In addition, optimizing the specificity and affinity of the CARs
or tgTCRs, preparatory regimens, and doses before the immune cell
therapies (Fousek and Ahmed, 2015). CRS is a potentially life-
threatening complication, which is observed with certain
immunotherapies, predominantly CAR T-cell therapy. CRS can
be fairly well controlled through the administration of targeted

TABLE 1 Selected successful clinical trials with engineered immune cell therapies in the treatment of solid tumors.

Therapy type Indications Study type Number of
study
participants

Study outcome FDA approval
status

Clinical
trial
number

TCR-engineered T
(TCR-T) cell
therapy
(Afamitresgene
autoleucel)

Ovarian or urothelial,
melanoma, non-small cell
lung, head and neck, gastric,
esophagogastric junction
(EGJ), esophageal, and
endometrial cancers

Ongoing Phase
1 trial

120 Exhibited acceptable safety
profile; antitumor activities
have been observed in
individuals with head and
neck cancer and EGJ cancer

FDA-approved for
unresectable or
metastatic synovial
sarcoma

NCT04044859

Tumor infiltrating
lymphocytes (TILs)
(lifileucel)

Advanced melanoma Multicohort,
prospective, phase
II, multicenter
study

153 TILs exhibited a clinically
significant role in heavily
pre-treated individuals with
advanced melanoma with an
advanced disease and high
tumor burden

FDA approved for
melanoma

NCT02360579

Autologous
dendritic cell
vaccine
(sipuleucel-T)

Metastatic, asymptomatic,
hormone-refractory prostate
cancer

Double-blind,
randomized,
placebo-controlled,
phase III trial

98 Patients receiving the
sipuleucel-T were found to
have three times more
activated T cells in
prostatectomy specimens
than the control group

FDA approved for
metastatic castrate-
resistant prostate
cancer

NCT01133704
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immunosuppressive agents, steroid therapy, or tocilizumab (an anti-
IL-6 antibody) (Lee et al., 2014).

On the other hand, the manufacturing methods for CAR-T cells
require major alterations by focusing on enhanced and streamlined
production (Ramamurthy et al., 2024). At present, the
manufacturing process of autologous CAR-T cell products
includes genetic alteration of a patient’s T cells with viral vectors
and successive ex vivo expansion in bioreactors with a range of
cytokines including IL-2, IL-7, and IL-15, and anti-CD3/
CD28 beads (Ramamurthy et al., 2024). Nonetheless, this
technique involves limitations in scaling up CAR-T cell-based
manufacturing because of its high cost, complexity, and
customized nature (Li et al., 2020; Papathanasiou et al., 2020).

The clustered regularly interspaced short palindromic repeats
(CRISPR) technology has revolutionized various fields including
immunology and cancer. CRISPR-based screening and gene editing
have empowered direct genomic manipulation of a range of immune
cells, which has mediated unbiased functional genetic screens.

Indeed, these screens have facilitated the discovery of novel
factors that control and reprogram immune responses, thus
providing novel drug targets (Zhou et al., 2023). On the other
hand, developments in micro-/nano-technology, nanomedicine,
and biomaterials have mediated the development of improved
local delivery systems for cancer immunotherapy, which can
further improve treatment efficacy while lessening toxicity.
Moreover, locally administered cancer therapies combining
immunotherapy with phototherapy, radiotherapy, or
chemotherapy have the potential to attain synergistic antitumor
actions (Abdou et al., 2020).

6 Future directions

Complex manufacturing process, higher economic costs, and
need for advanced equipment are the major challenges associated
with the use of engineered immune cells in the treatment of solid

TABLE 2 A summary of selected ongoing clinical trials with engineered immune cell therapies in the treatment of solid tumors.

Therapy type Indications Study type Estimated
participants

Estimated
completion

Clinical trial
number

Chimeric antigen receptor (CAR)-
T cell therapy

Paediatric patients with high
risk and/or relapsed and/or
relapsed/refractory
neuroblastoma

Phase I and phase II trials 42 February 2027 NCT03373097

Dendritic cells vaccine and
atezolizumab

Epithelioid malignant pleural
mesothelioma

Single arm phase I/II trial 15 October 2026 NCT05765084

Autologous tumor infiltrating
lymphocytes

Solid tumors Multi-cohort, multicenter
prospective, non-randomized,
open-label, Phase II study

178 August 2029 NCT03645928

EGFR806 CAR-T cell
immunotherapy

Children and young patients
with refractory or recurrent
solid tumors

Non-randomized phase I,
open-label, trial

44 June 2040 NCT03618381

CAR-T cell therapy Advanced sarcoma Interventional phase 1 trial 36 July 2032 NCT00902044

CAR-T cell therapy Children and young patients
with refractory or recurrent
solid tumors

Open-label, non-randomized,
phase I trial

68 December 2040 NCT04483778

CAR-T-EGFR-IL13Ra2 Recurrent glioblastoma (GBM) Open-label, phase I trial 18 December 2039 NCT05168423

CAR modified T cells Multiple Myeloma Phase I trial 17 August 2025 NCT04555551

Glypican 3 (GPC3)-specific CAR
expressed in T cells

Pediatric solid tumors Phase I trial 10 February 2037 NCT02932956

Autologous CAR-T cell therapy Pediatric solid tumors Phase I trial 32 March 2027 NCT04897321

Interleukin (IL)-
15 and −21 armored GPC3-specific
CAR expressed in T cell therapy

Pediatric solid tumors Phase I trial 24 July 2041 NCT04715191

P-MUC1C-ALLO1 Allogeneic
CAR-T cell therapy

Metastatic or advanced solid
tumors

Phase I trial 180 April 2039 NCT05239143

IL-15 and IL-21 armored GPC3-
specific CAR expressed in T cell
therapy

Pediatric solid tumors Phase I trial 24 February 2040 NCT04377932

EGFR/B7H3 CAR-T therapy Triple-negative breast cancer
and lung cancer

Phase I trial 30 May 2035 NCT05341492

Claudin 6 (CLDN6) -specific CAR-
T therapy

Relapsed or refractory solid
tumors

Multicenter, Phase I, open-
label, dose escalation trial

145 January 2040 NCT04503278
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tumors. Centralized manufacturing at specialized institutions might
help in regulatory compliance, however this process needs
cryopreservation of the products for extensive inter-center
coordination and transportation (Albarrán-Fernández et al.,
2025). Alternatively, the point-of-care manufacturing process is
can be implemented by allowing the local manufacturing of
advanced cell therapies, which will significantly increase
accessibility and lower production costs. Nonetheless, unlike
native cells, the capacity of immune cells to be genetically
engineered with various environment-responsive and controllable
functions allows immune cell therapies to make alterations in the
TME, which cannot be attained by conventional therapies.
Moreover, extensive studies focusing on engineering immune cell
therapies directly in vivo or using engineered off-the-shelf third-
party cell sources might remove some or all of the cell therapy-
associated practical challenges (Kirtane et al., 2021). A diverse
scientific collaborative effort is required to unleash the full
potential of engineered immune cell therapies. Remarkable
advances are continuously being achieved through extensive
research in molecular biology, synthetic biology, oncology, and
immunology. As the outcomes of clinical trials continue to be
revealed, there is a scope for using computational modelling for
predictions of important parameters to be optimized in cell therapy
as well as machine learning-based data analysis. The interactions of
engineered immune cell therapies with the nervous system and
endogenous immune system, and the impact of microbiome on the
outcomes of cell therapies are the areas that might lead to novel
discoveries (Kirtane et al., 2021; Schupack et al., 2022).

7 Conclusion

Genetic engineering empowers the enhancement of adoptively
transferred cells by modifying their phenotypes and functionality
through a range of mechanisms. In recent times, cell engineering
approaches have advanced in modifying the TME, preventing tumor
escape, enhancing tumor-targeting specificity, and improving the
antitumor properties of engineered immune cells. Several
engineered immune cells exhibited promising outcomes in
clinical trials and numerous clinical trials are ongoing as well.
However, there are several challenges in improving their efficacy
in the treatment of solid tumors including identification of optimal
combination approaches, optimization of the manufacturing

process, development of true off-the-shelf therapies, and
mitigation of side effects.
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