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Objectives: In this study, we analyzed the use of the Wuwei Mingmu formula
(WMF) for treating experimental autoimmune uveitis (EAU) based on a network
pharmacology approach.

Methods: We obtained an integrated gene set between WMF and EAU using the
TCMSP database and GeneCards database. Gene Ontology (GO), Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and
protein-protein interaction (PPI) network analyses were used to elucidate
possible therapeutic mechanisms. Moreover, the relationships among the
herbal composition, active ingredients, therapeutic targets, and critical cell
signaling pathways used to treat EAU were analyzed. Molecular docking was
performed to elucidate the patterns of interactions between the active
compounds and the targeted proteins. EAU rat models were constructed to
examine the therapeutic efficacy of WMF in vivo.

Results: An integrated gene set of 30 genes was acquired. The results of the GO
and KEGG analyses indicated that WMF could regulate immune responses and
vascular functions during EAU treatment. The PPl network and subnetworks
confirmed the presence of 15 hub genes. A network pharmacology map was
drawn to understand the complex relationships among herbs, active compounds,
targets, and signaling pathways. Additionally, molecular docking was performed
on genes with the highest significance (IL-10 and IL-6), representing T-helper
activation in immune-mediated uveitis. The active compounds of WMF rapidly
docked with IL-10 and IL-6 in the grid box. The results of the in vivo assays
revealed that WMF treatment significantly attenuated the pathological changes in
EAU rat eyes and alleviated the inflammatory response. Moreover, the increase in
the level of IL-6 in EAU rats decreased after WMT stimulation, whereas the IL-10
levels increased in EAU rats after WMF treatment.
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Conclusion: WMF can be used to treat EAU as it can modulate immune responses
and vascular functions. IL-10 and IL-6 are the main therapeutic targets of WMF, and
the herbal composition of WMF can be further optimized to increase its therapeutic

efficacy.

KEYWORDS

network pharmacology, molecular docking, Wuwei Mingmu formula, experimental
autoimmune uveitis, non-infectious uveitis, IL-6, IL-10

1 Introduction

Non-infectious uveitis (NIU) is one of the leading causes of vision
loss and blindness. Researchers often use well-established
experimental autoimmune uveitis (EAU) animal models. These
models help explore the underlying mechanisms and potential
therapeutic interventions for this complex human disease. The
immune response in EAU is primarily mediated by T cells and
leads to overactivation of cytokines such as interleukins,
interferons, and vascular endothelial growth factor (VEGF) in
ocular tissues and peripheral blood (Caspi, 2003; Sun et al., 2018;
Shome et al., 2023; Goldhardt and Rosen, 2016). Therefore, EAU
treatment focuses on rapidly and effectively controlling inflammation
while suppressing excessive autoimmune reactions. The primary
objectives in EAU treatment are to control inflammation, inhibit
excessive autoimmune responses, reduce drug side effects, prevent
further damage to eye tissues, and protect visual function.

The 5 main classes of drugs used to treat EAU include
corticosteroids, ~ T-cell ~ immunosuppressants, — antimetabolites,
alkylating agents, and biologics (Knickelbein et al., 2017). These
drugs can be administered locally to ocular tissues or systemically,
and treatment may follow a step therapy approach (Foster et al., 2016).
Although the efficacy for treating this disease has significantly improved

TABLE 1 Inflammatory grading criteria for rat EAU.

over time, adverse effects such as hyperglycemia, systemic hypertension,
a decrease in bone mineral density (BMD), depression, and weight gain
are often reported (Carnahan and Goldstein, 2000). Therefore, the
treatment regimen needs to be optimized.

Traditional Chinese medicine (TCM) is recommended for treating
Non-infectious uveitis in China due to its holistic approach to treating
diseases with complex pathological mechanisms, including EAU.
However, the components of TCM are highly complex, and their
pharmacological mechanisms are challenging to elucidate. Additionally,
clinical efficacy evidence remains limited. Recently, with the
development of network pharmacology, systems biology methods
have been applied to analyze the molecular mechanisms underlying
the pharmacological effects of herbal medicines. These data-driven
approaches help answer unresolved questions and reveal new research
opportunities (Hopkins, 2007; Hopkins, 2008; Lin et al., 2021; Xia et al,,
2020; Ru et al., 2014).

In this study, we applied a network pharmacology approach to
analyze a TCM formula, known as WMF, which is used clinically at
Bethune Hospital of Shanxi Province, China, to treat non-infectious
uveitis. The composition of the WMFincludes Cassia obtusifolia L.
(Juemingzi, JMZ), Paeonia lactiflora Pall. var. Trichocarpa (Chishao,
CS), Atractylodes lancea (Thunb.) Dc. (Cangzhu, CZ), Lycium
barbarum L. (Gougizi, GQZ)and Astragalus complanatus R. Br.

Score Inflammatory manifestations

0 No inflammation; normal retinal red reflex
0.5 Mild dilation and congestion of iris vessels

1 Moderate dilation and congestion of iris vessels, with miosis

2 Slight anterior chamber turbidity, with diminished retinal red reflex

3 Severe congestion of iris, moderate anterior chamber turbidity, still visible pupil, and dim retinal red reflex

4 Severe congestion of iris, severe anterior chamber turbidity or hypopyon, closed pupil, absence of retinal red reflex, and proptosis

TABLE 2 Scoring EAU histopathologically in the rat.

Grade Area of retinal section affected Criteria
0 None No disease, normal retinal architecture
0.5 <1/4 Mild inflamatory cell infiltration of the retina with or without photoreceptor damage
1 >1/4 Mild inflammation and/or photoreceptor outer segment damage
2 >1/4 Mild to moderate inflammation and/or lesion extending to the outer nuclear layer
3 >1/4 Moderate to marked inflammation and/or lesion extending to the inner membrane layer
4 >1/4 Severe inflammation and/or full-thickness retinal damage
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FIGURE 1

Network of active compounds and their predicted targets in WMF. The central circular nodes represent active compounds. The upper and lower
circular nodes represent predicted targets. Edges represent compound-target interactions. Node size is proportional to the degree of connectivity; edge

color reflects betweenness centrality.

(formerly referred to as Astragali Complanati Semen, Shayuanzi, SYZ).
Based on the findings of this study, we can identify the effective targets
of TCM components for treating EAU, analyze the mechanisms
underlying their pharmacological effects at the molecular level, and
validate the binding interactions between selected targets and active
components using molecular docking technology simulations.

2 Materials and methods

2.1 ldentification of active compounds and
target genes of WMF

We acquired the active compounds and target genes of WMEF

through  the Traditional Chinese Medicine Systems
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Pharmacology (TCMSP) database (https://www.tcmsp-e.com/).
The database comprises 499 types of Chinese herbs registered in
the Chinese pharmacopeia and provides essential in silico
absorption, distribution, metabolism, and excretion (ADME)-
related properties, as well as the drug targets and associated
diseases of each active compound. We investigated the chemical
compounds by retrieving the name of each herb in WMF,
including Juemingzi, Chishao, Cangzhu, Gouqizi, and
Shayuanzi. Next, we filtered the pharmacokinetic indices for
active compounds whose oral bioavailability was greater than
30% and whose drug-likeness was greater than 0.18. The
corresponding target proteins of the active compounds were
screened using the TCMSP database. Subsequently, the target
proteins were converted into standard gene symbols using
UniProt (http://UniProt.org).
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Noninfectious Uveitis

FIGURE 2
Venn diagram identifying the overlapping targets between WMF and NIU.

2.2 Therapeutic genes for EAU

To identify therapeutic genes relevant to non-infectious uveitis,
we utilized the GeneCards database a comprehensive, searchable,
and integrated resource consolidating gene-centric information
from over 150 sources (https://www.genecards.org/). Since our
TCM formula is specifically designed to treat this condition, we
used “non-infectious uveitis” as the search keyword. This choice
reflects the experimental context, as EAU models are widely
employed in animal studies of the disease. By focusing on the
human disease terminology, we maintain consistency with
clinical relevance and align with the majority of publications in
this field.

2.3 Integrated gene set between WMF
and EAU

The overlapping gene set between WMF target genes and EAU
therapeutic genes was obtained by intersecting these 2 gene lists.
This process was performed using the online tool Venny 2.1 (http://
bioinfogp.cnb.csic.es/tools/venny/).

2.4 Enrichment analysis

The DAVID database version 6.8 (https://david.ncifcrf.gov/)
and the KEGG database (Kyoto Encyclopedia of Genes and
Genomes, http://www.kegg.jp/) were used to perform enrichment
analysis,  including Ontology  (GO)
analysis—Biological Process (BP), Cellular Component (CC), and
Molecular Function (MF) —and KEGG pathway analysis. The
species was limited to Homo sapiens. The threshold value was set

Gene functional
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179
(44. 2%)

as p < 0.05. This process was implemented by applying the Org.
Hs.eg.db (Version 3.8.2) and ClusterProfiler (Version 3.9) packages
in R software version 4.0.3.

2.5 Pharmacological network of active
compound, target genes, and
keysignaling pathways

Based on the active compounds of WMF, the overlapping gene
set, and KEGG pathway analysis, we constructed a network
integrating active compounds, their target genes, and signaling
pathways using Cytoscape version 3.6.1.

2.6 Analysis of the PPl network

The STRING database was used to construct the PPI network.
The integrated gene set between WMF and EAU was submitted to
the STRING database online. We selected H. sapiens as the
organism. The minimum required interaction score was set to
moderate confidence (0.400). The PPI network image was
downloaded in PNG format from the STRING database for
visualization. The network data were then imported into
Cytoscape version 3.6.1. Following the MCC method, the core
subnetworks were identified using the MCC method within
theCytoHubba plugin.

2.7 Molecular docking

Computational analysis predicted that Quercetin (3,3,4,5,7-
pentahydroxyflavone; TCMSP ID: MOL000098), wogonin (5,7-

frontiersin.org
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FIGURE 3

Herb-compound-target network for WMF in EAU treatment. The network exhibits a concentric layout, with inner-ring nodes representing active
compounds and outer-ring nodes representing target proteins. Edges connect compounds to their respective targets. The size of a node is proportional

to its degree of connections within the network.

dihydroxy-8-methoxyflavone; TCMSP ID: MOL00173), and
paeoniflorin (TCMSP ID: MOL001924). directly interact with IL-
6 or IL-10. Three-dimensional crystal structures of human IL-6
(PDB ID: 1ALU) and IL-10 (PDB ID: 2ILK) were obtained from the
RCSB Protein Data Bank (https://www.rcsb.org/). Subsequently,
three-dimensional ligand structures were obtained from the
TCMSP database (https://www.tcmsp-e.com/).

All docking calculations were performed with AutoDock 4.2.
Briefly, water molecules and heteroatoms were removed from the
protein structures. Polar hydrogens and partial Gasteiger charges
were added, and non-polar hydrogens were merged using
AutoDockTools (ADT, version 1.5.6). Rotatable bonds of the
ligands were defined with AutoDockTools (ADT). A grid box
(60 x 60 x 60 A with 0.375 A spacing) was centered on the
active site of each protein, which was determined based on
known binding site residues. The Lamarckian genetic algorithm

Frontiers in Pharmacology

(GA) was employed with 10 independent runs for each complex.
The lowest-energy conformation for each ligand-protein complex
was selected as the final docking pose. Binding affinities were
expressed as binding energies in kcal/mol.

2.8 Preparation and administration of WMF

The crude herbal materials of Juemingzi, Chishao, Cangzhu,
Gougizi, and Shayuanzi were purchased from the Pharmacy of
Shanxi Traditional Chinese Medicine Hospital, with all herbs
authenticated by the pharmacy. The herbs were combined at a
fixed mass ratio of 3:3:2:3:3 and subjected to aqueous decoction. The
resulting decoction was filtered, concentrated under reduced
pressure, and lyophilized to obtain a dry powder. To ensure
experimental consistency throughout the study, a single, large
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batch of the freeze-dried powder was prepared at the outset. This
entire batch was then portioned into single-use aliquots for the
entire duration of the animal experiments. This strategy effectively
eliminates inter-batch variability and guarantees consistent
chemical exposure for all subjects. The aliquots were stored in
light-resistant glass vials at —80 °C until use. For administration,
the powder was reconstituted in distilled water to form a suspension
at a concentration equivalent to 0.315 g of crude herb per milliliter.
The total daily dose was administered to rats via oral gavage in two

divided doses.

2.9 Animal experiments

This study protocol was approved by the Ethics Committee of
Shanxi Bethune Hospital. Healthy Lewis rats (Rattus norvegicus)
(6-8 weeks old, 160-180 g), with equal numbers of males and
females, were obtained from Beijing Vital River Laboratory Animal
Technology Co., Ltd. [license No.: SCXK (Beijing) 2021-0006]. Rats
were randomly assigned to three groups (n = 8 per group): the Sham
group, the EAU group, and the EAU + WMF group. To establish the
EAU model, an emulsion was prepared by mixing interphotoreceptor
retinoid-binding protein (IRBP) peptide and complete Freund’s
adjuvant (CFA; Sigma-Aldrich) at a 1:1 (v/v) ratio. The mixture
was supplemented with 5 mg/mL heat-inactivated Mycobacterium
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tuberculosis H37Ra (ATCC, United States) and then emulsified in PBS
to a final volume of 300 pL. All anesthetized via intraperitoneal
injection of sodium pentobarbital (80 mg/kg). Subsequently, for
immunization, rats in the EAU and EAU + WMF groups received
approximately 100 pL of the IRBP-containing emulsion, equally
divided among 5 subcutaneous injection sites: both hind footpads
(10 pL per site), both flanks (20 pL per site), and the dorsal midline
(40 pL). Rats in the Sham group received injections of an identical
emulsion without IRBP at the same sites and volumes.

To evaluate the effects of WMF on experimental autoimmune
uveitis (EAU), rats in the EAU + WMF group received a daily oral
gavage of WMF suspension at a dose of 630 mg/kg. This dose was
derived from the human clinical dose of 70 g per day (for a 60 kg
adult) converted according to body surface area using a standard
conversion factor of 0.018, equivalent to 1.26 g per day for a 200 g rat
(630 mg/kg). Rats in the EAU control group were administered an
equal volume of normal saline daily via oral gavage.

Following immunization, clinical signs of anterior segment
inflammation in rats were monitored using a Genesis-D camera.
The clinical manifestations were then scored on a scale from 0
(normal) to 4 (severe inflammation), according to the grading
criteria established by Caspi et al. (which comprises a total of
6 distinct grades), as detailed in Table 1. On day 18 post-
immunization, pupils were dilated with 0.5% tropicamide eye
drops, photographed, and then the rats were euthanized.
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overlapping targets identified in this study.

To balance tissue requirements with statistical power, tissue
samples from eight animals within each experimental group were
pooled in equal amounts. This homogenized pool was subsequently
divided equally into three aliquots (hereafter termed composite
three
representing the pooled sample of the experimental group.

samples), thereby generating technical  replicates

Each of the three composite samples generated per experimental
group underwent quantitative reverse transcription-polymerase
chain reaction (qRT-PCR), enzyme-linked immunosorbent assay
(ELISA), and Western blot analysis.

To minimize technical variation and enhance measurement
precision, each analytical assay (QRT-PCR, ELISA, Western blot) was
performed in triplicate on each composite sample. The average of the
three technical replicates for each composite sample was calculated,

representing the final quantitative value for that biological replicate.

2.10 Histopathological analysis

The rats were anesthetized with pentobarbital (50 mg/kg) and
sacrificed 18 days after immunization. Their eyes were excised and fixed
in 4% paraformaldehyde solution for 24 h in a 12-well plate. After
fixation, the eyes were dehydrated, embedded in paraffin, and sectioned
at 4 pum thickness. Subsequently, these sections were stained use
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hematoxylin and eosin (Beyotime, Shanghai, China). Finally, the
images were obtained under a light microscope at 200 x
magnification. Histopathological changes in the retina were scored
on a scale of 0-4 according to the established grading system for EAU
(Caspi, 2003), which comprises a total of 6 distinct grades, where
0 represents no inflammation and 4 represents full-thickness retinal
destruction (Table 2). Histopathological evaluation was independently
performed by two certified pathologists under blinded conditions. The
images were scored separately by both evaluators, with any
discrepancies resolved through consultation to reach a consensus.

2.11 ELISA

The concentrations of inflammatory cytokines (IL-10 and IL-6)
in the lymph node, spleen, and eye samples were determined by
ELISA. Briefly, the samples were homogenized in RIPA lysis buffer
and centrifuged at 2000 g for 10 min at 4 °C. The supernatant was
collected, and levels of IL-10 and IL-6 were assessed using
commercial Rat Interleukin 10 (IL-10) ELISA Kit (F3071-A,
FANKEW, Shanghai, China) and Rat Interleukin 6 (IL-6) ELISA
Kit (F3066-A, FANKEW, Shanghai, China) in accordance with the
manufacturer’s instructions. Absorbance was measured using a DR-
200Bs microplate reader (Diatek).
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TABLE 3 Key signaling pathways enriched by the 30 targets.

10.3389/fphar.2025.1614561

ID Description GeneRatio pvalue p.Adjust qvalue Count

hsa04933 AGE-RAGE signaling pathway in diabetic complications 13/29 4.08E-18 6.82E-16 2.11E-16 13
hsa05142 Chagas disease 12/29 3.63E-16 3.03E-14 9.36E-15 12
hsa04657 IL-17 signaling pathway 11/29 8.37E-15 4.66E-13 1.44E-13 11
hsa05144 Malaria 9/29 5.64E-14 2.05E-12 6.32E-13 9
hsa04668 TNF signaling pathway 11/29 6.13E-14 2.05E-12 6.32E-13 11
hsa05164 Influenza A 12/29 2.06E-13 5.74E-12 1.77E-12 12
hsa05418 Fluid shear stress and atherosclerosis 11/29 6.90E-13 1.65E-11 5.08E-12 11
hsa04620 Toll-like receptor signaling pathway 10/29 1.30E-12 2.72E-11 8.40E-12 10
hsa05133 Pertussis 9/29 3.03E-12 5.61E-11 1.73E-11 9
hsa05163 Human cytomegalovirus infection 12/29 5.49E-12 9.17E-11 2.83E-11 12
hsa05152 Tuberculosis 11/29 1.20E-11 1.82E-10 5.61E-11 11
hsa05167 Kaposi sarcoma-associated herpesvirus infection 11/29 2.56E-11 3.56E-10 1.10E-10 11
hsa04625 C-type lectin receptor signaling pathway 9/29 5.48E-11 7.04E-10 2.17E-10 9
hsa05145 Toxoplasmosis 9/29 1.08E-10 1.28E-09 3.97E-10 9
hsa05140 Leishmaniasis 8/29 1.70E-10 1.89E-09 5.85E-10 8
hsa05135 Yersinia infection 9/29 6.63E-10 6.92E-09 2.14E-09 9
hsa05323 Rheumatoid arthritis 8/29 7.94E-10 7.59E-09 2.34E-09 8
hsa05134 Legionellosis 7/29 8.18E-10 7.59E-09 2.34E-09 7
hsa05169 Epstein-Barr virus infection 10/29 1.00E-09 8.82E-09 2.72E-09 10

2.12 RT-qPCR

TRIpure Total RNA Extraction Reagent (ELK Biotechnology,
Wuhan, China) was used for total RNA isolation, and cDNA was
subsequently synthesized using EntiLink™ first Strand c¢DNA
Synthesis Super Mix (ELK Biotechnology). PCR analysis was
conducted using EnTurbo™ SYBR Green PCR SuperMix (ELK
Biotechnology) QuantStudio 6 Flex System (Life
Technologies). The 2¢**“Y method was used to quantify relative

on a

gene expression, and ACTIN was used as an internal reference. The
sequences of primers used in this study are as follows.

IL-10: sense: 5'- ACTGCTATGTTGCCTGCTCTTAC-3/,
antisense: 5'-CAGTAAGGAATCTGTCAGCAGTATG-3%
IL-6: sense: 5'-TTCTCTCCGCAAGAGACTTCC-3/,
antisense: 5'-GTGGGTGGTATCCTCTGTGAAG-3’;
ACTIN: sense: 5'-CGTTGACATCCGTAAAGACCTC-3',
antisense: 5'-TAGGAGCCAGGGCAGTAATCT-3’.

2.13 Western blotting

The concentrations of inflammatory cytokines (IL-10 and IL-6) in
the lymph node, spleen, and eye samples were determined by Western
blot analysis using specific antibodies from Santa Cruz Biotechnology (IL-
6 Antibody, sc-57315; IL-10 Antibody, sc-365858). The spleen, lymph
nodes, and eye tissues of the rats preserved at —80 “C were collected, and
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total protein was extracted from the tissues after treatment with RIPA
lysis buffer. The proteins were quantified, separated by electrophoresed,
and transferred to a membrane. The membrane was incubated at room
temperature with blocking buffer for 3 h, after which it was incubated
with antibodies against RORyt (1:1000), Foxp3 (1:1000), RhoA (1:1000),
ROCKI1 (1:1000), and GAPDH (1:1000) at 4 “C overnight. HRP-
conjugated goat anti-rabbit secondary antibodies (1:2000) were added
to the membrane, which was incubated at room temperature for 3 h.
After the protein bands were developed with an ECL reagent, gray values
of the protein bands were analyzed using the Image] software.

2.14 Statistical analysis

All statistical analyses were conducted using SPSS 25.0.
Normality of the distribution was assessed with the Shapiro-Wilk
test (appropriate for small samples), and homogeneity of variances
was evaluated with Levene’s test. Continuous data were presented as
mean + standard deviation (mean * SD). Differences among
multiple groups were analyzed by one-way analysis of variance
(ANOVA). When ANOVA indicated a statistically significant
difference, Tukey’s HSD post hoc test was applied for pairwise
comparisons. The overall comparison among multiple groups
was analyzed using the Kruskal-Wallis test, followed by Dunn’s
test for multiple comparisons. The significance level was set at a =
0.05. To visualize statistical differences, graphs were generated using
GraphPad Prism 10.0. Alternatively, online plotting tools from
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A multi-scale network map of WMF’s action. This integrated network visualizes the therapeutic mechanism across four levels: herbs — compounds
— targets — pathways, arranged in concentric circles from the center outward. Node size represents the degree of connectivity within the network.

Xiantao Academic (www.xiantao.love) were also utilized for their
accessibility and ease of use. Statistical significance using asterisks:
*p < 0.05, **p < 0.01, **p < 0.001, ***p < 0.0001. The asterisk
notation used is defined in the legend of each figure.

3 Results

3.1 Screening the active compounds and
therapeutic targets

Using the TCMSP database, we obtained 65 active compounds after
removing duplicates. These compounds were then combined with the
search results (Figure 1). We identified 209 related targets associated
with these compounds (Figure 1). Additionally, 226 non-infectious
uveitis-related genes were obtained from GeneCards database. We
determined the integrated gene set representing the intersection of
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gene targets related to WMF and EAU using Venny 2.1 software. The
integrated gene set comprised 30 genes (Figures 2, 3). 16 active
compounds were identified as potentially treating EAU (Figure 3).

3.2 GO enrichment analysis

In total, GO enrichment analysis was performed on the 30 genes.
We identified 1,441 significantly enriched GO terms. The top GO
terms are shown in Figure 4. The results indicated that the 30 genes
were enriched the following categories.

o BP: response to lipopolysaccharide, T-cell activation, and
regulation of the inflammatory response;

« CC: membrane rafts, membrane microdomains, and

membrane regions;

o MEF: cytokine receptor binding and cytokine activity.
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Protein-protein interaction (PPI) network of the 30 overlapping targets. The network was constructed using the STRING database (confidence
score >0.4). Nodes represent proteins, and edges represent predicted functional associations.

3.3 KEGG enrichment analysis

KEGG pathway enrichment analysis was employed to clarify
the key signaling cascades through which the 30 overlapping
targets of WMF mediate therapeutic effects in EAU. These
targets were significantly enriched in 124 pathways (p < 0.05)
(Figure 5) and could be grouped into 2 major functional clusters:
(1) immune-inflammatory pathways, exemplified by IL-17, TNF,
and Toll-like receptor signaling pathways; and (2) pathways
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related to vascular dysfunction, highlighted by the involvement
of the AGE-RAGE axis (Figure 6). Importantly, IL-6 and IL-10
were common to both clusters and represented 2 pivotal targets
whose strong binding affinity to WMF constituents was predicted
by molecular docking. Collectively, WMF alleviated EAU by
concurrently modulating inflammatory cascades and vascular
dysfunction, the two central pathological drivers of the disease.
We also provided the IDs and names of crucial signaling pathways
in Table 3.
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FIGURE 9

Identification of hub genes from the PPI network. The top 15 hub
genes were identified using the CytoHubba plugin with the MCC
algorithm. Node color intensity corresponds to the rank order of
importance.

TABLE 4 The rank of the top 15 nodes based on CytoHubba.

1 IL-10
1 IL-6

1 CXCL8
1 IL1B

5 VEGFA
6 ICAM1
6 CCL2
8 IENG
9 CASP3
10 AKT1
11 1L2
12 1L4
13 CXCL10
14 MPO
15 SELE

3.4 The herb—compound-target—critical
signaling network

Figure 7 presents an integrated “herb-active compound-key
target-core pathway” network, comprising 5 herbs: Juemingzi
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(JMZ), Chishao (CS), Cangzhu (CZ), Gougqizi (GQZ), and
Shayuanzi (CZ); 16 active compounds; 30 overlapping targets;
and 20 major KEGG pathways. Node size reflects degree, which
is defined as the number of connections, while edge color indicates
betweenness centrality. Notably.

« SYZ and GQZ display the largest nodes, indicating that their
constituents interact with 26-27 targets each and target all
15 hub proteins.

o Central nodes IL-6 and IL-10 are directly linked to multiple
inflammatory and vascular pathways, including IL-17, TNF,
and AGE-RAGE.

This visualization highlights the multi-component, multi-target,
and multi-pathway characteristics of WMF, thereby providing a
theoretical basis for subsequent mechanistic validation.

3.5 Analysis of the PPl network

Figure 8 shows the overall protein-protein interaction network
of the 30 overlapping targets (obtained from STRING with
confidence >0.4). Figure 9 further extracts the top 15 hub genes
using the CytoHubba plug-in, employing the MCC algorithm, and
lists their ranks in Table 4. IL-6, IL-10, CXCLS8, IL-1pB, and other
high-degree nodes occupy the central part of the network. This
suggests that these hub genes may play pivotal regulatory roles
during WMF intervention in EAU.

3.6 Molecular docking

Based on the network pharmacology results, three representative
active compounds—quercetin (MOL000098), wogonin
(MOL000173), and paeoniflorin (MOL001924) —were selected
for docking against the hub targets IL-6 and IL-10. All three
ligands dock efficiently into the binding pockets of both proteins
(Figure 10). The lowest binding energies are summarized in Table 5.
Quercetin binds IL-10 at —4.74 kcal/mol and IL-6 at —6.11 kcal/mol.
Wogonin and paeoniflorin bind IL-6 with energies of —5.59 kcal/mol
and —5.20 kcal/mol, respectively. These values indicate favorable
interactions and support the predicted regulatory roles of these
compounds in modulating IL-6/IL-10-mediated immune responses.

3.7 Effects of WMF treatment on EAU in vivo

The EAU rat models were established to investigate the effects of
WMEF in vivo. Inflammation worsened in the EAU group from days
6-12, characterized by congestion and dilatation of the iris vessels
and severe hypopyon in the anterior chamber after immunization
(Figure 11). From days 12-18, these symptoms gradually improved.
Compared to the control group, the inflammatory response in the
EAU + WMF group was reduced, and clinical scores were lower.
Hematoxylin and eosin (HE) staining revealed inflammatory cell
exudation and infiltration, narrowing of the anterior chamber angle,
and disorganization of the retinal layer structure in the retina and
anterior segment of the EAU group. These pathological changes
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FIGURE 10
Representative molecular docking poses of WMF active compounds with IL-6 and IL-10. The 3D structures show the predicted binding modes of
quercetin with IL-10, quercetin with IL-6, wogonin with IL-6, and paeoniflorin with IL-6

TABLE 5 Docking scores of the molecules.

Docking score (kcal/mol)

IL-10 and MOL000098 (quercetin) —4.74
IL-6 and MOL000098 (quercetin) -6.11
IL-6 and MOL000173 (wogonin) -5.59
IL-6 and MOL001924 (paeoniflorin) -5.20

were significantly alleviated following WMEF administration
12A) of
histopathological scores (Figure 12B).

(Figure and confirmed by quantitative analysis

The levels of inflammatory cytokines, including IL-6 and IL-10,
in the rat spleen, lymph nodes, and eye tissues were measured by
ELISA. IL-6 concentration were significantly elevated in the EAU
group across all three tissues; this elevation was reversed after WMF
treatment (Figure 13). In contrast, IL-10 concentration were higher
in the EAU group compared to the control group and increased
further following WMF treatment (Figure 13). These findings
suggest that WMF treatment modulates inflammatory responses
by decreasing pro-inflammatory IL-6 levels while enhancing anti-
inflammatory IL-10 levels.

Furthermore, RT-qPCR analysis showed that IL-6 expression
was elevated in the lymph nodes, spleen, and eye samples of EAU
model rats but decreased after WMF treatment (Figure 14).
Similarly, IL-10 expression, which was increased in the EAU
group, was further upregulated by WMF treatment (Figure 14).
Western blot analysis corroborated these results, showing increased
IL-6 expression in the lymph nodes of EAU rats that decreased in eye
tissues following WMF treatment (Figure 15). IL-10 levels, elevated
in the EAU group, were further increased by WMF treatment
(Figure 15). Overall, these results indicated that WMF alleviated
pathological changes and modulates the inflammatory response
in EAU rats.

4 Discussion

Even in developed countries, Non-infectious uveitis accounts for
10%-15% of all cases of blindness, with a higher incidence in
developing countries (Fan et al., 2021; Lin et al,, 2014). Although
corticosteroids have been used to treat NIU since the 1950s and
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multiple other drugs have been developed, corticosteroids remain
the primary treatment for this disease (Woods, 1950; Gordon et al.,
1951). Multisystem side effects occur with long-term corticosteroid
administration despite the use of protective adjunct therapies
(Ormaechea et al, 2019). TCM is effectively used in China to
alleviate multisystemic side effects. However, the reliability of
TCM for treating non-infectious uveitis validation through
requires rigorous clinical and experimental studies. To address
this need, bioinformatics methods can be used to improve the
efficiency of such research.

In this study, a network diagram of active compounds, targets,
and signaling pathways was constructed. We identified 16 active
ingredients and 30 targets of WMF for treating EAU. GO
enrichment analysis revealed that WMEF could regulate the
activation of multiple cytokines and receptor binding. KEGG
enrichment analysis showed that WMF regulates multiple
inflammation-related signaling pathways and vascular endothelial
functions. PPI networks and critical subnetworks revealed 15 hub
genes out of 30 genes. The core proteins IL-6 and IL-10 were selected
for molecular docking with the related active components of WMF
to verify the correlation. The bioinformatics results revealed that the
WMF influenced the treatment of non-infectious uveitis and
preliminarily elucidated its pharmacological mechanism of action.
These findings can promote the development of new drugs for
treating non-infectious uveitis.

This study primarily investigated the mechanism of action of
WME. To ensure clinical relevance, the animal experimental dose
was derived from the clinical dose of WMF. Dose-response
optimization was not included, as optimizing pharmacological
efficacy was not the primary objective. This design rationale
allowed us to focus on elucidating the mechanism of action of
WMEF while avoiding additional variables that could complicate the
interpretation of the core mechanism.

Through bioinformatics analysis, we found that the herbal
composition of WMF used for treating non-infectious uveitis
could be simplified. The herbal composition of WMF was
formulated under the guidance of TCM theory, and includes
5 Chinese herbs, Juemingzi, Chishao, Cangzhu, Gougqizi, and
Shayuanzi. We analyzed the relationships among herbs, active
compounds, target genes, and critical signaling pathways from a
network pharmacology perspective. We found that 7 active
components of SYZregulated 27 of the 30 therapeutic targets,
including all 15 core proteins, and affect all 20 crucial signaling
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WMF ameliorates clinical signs of EAU in rats. (A) Representative slit-lamp photographs of the anterior segment. (B) Temporal changes in clinical
scores. Data are presented as box plots (n = 8 rats per group). The overall effects of treatment, time, and their interaction on the ordinal clinical scores
were analyzed using a Generalized Linear Mixed Model (GLMM). For comparisons at each individual time point, the Kruskal-Wallis H test was performed,
followed by Dunn's post hoc test for pairwise comparisons. **p < 0.01 vs Sham group; ##p < 0.01vs EAU group at the same time point.
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Kruskal-Wallis test with Dunn's multiple comparisons test

WMF treatment ameliorates retinal pathology in EAU rats. (A) Representative H&E-stained retinal sections from the Sham, EAU, and EAU + WMF
groups. (B) Quantification of histopathological scores. The EAU group showed significantly increased scores compared to the Sham group (***p < 0.001),
which were markedly reduced by WMF treatment (*p < 0.05). No significant difference was observed between the Sham and EAU + WMF groups. Data are

shown as box plots (n = 8).

pathways. Based on network pharmacology analysis, SYZ may
replace WMF to treat non-infectious uveitis. We also found that
3 active components of GQZ regulated 26 of the 30 therapeutic
targets, including 14 of the 15 core proteins, and affect all 20 crucial
signaling pathways. Thus, GQZ can also potentially substitute WMF
for treating EAU. Additionally, 1 active component of CZ regulated
9 of the 30 therapeutic targets, including 5 of the 15 core proteins,
and affect all 20 crucial signaling pathways. Therefore, CZ serves as
an accessory herb in WMF for treating EAU. We found that 3 active
components of JMZ regulated 5 of the 30 therapeutic targets,
including 2 of the 15 core proteins, and affect all 20 crucial
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signaling pathways. Hence, JMZ is also an accessory herb in
WMEF for treating EAU. We found that 3 active components of
CS regulated 10 of the 30 therapeutic targets, including 6 of the
15 core proteins, and affect 18 of the 20 crucial signaling pathways.
Thus, CS is also an accessory herb in WMF for treating EAU. We
speculate that SYZ or (and) GQZcould potentially substitute WMF
to treat non-infectious uveitis; however further experimental studies
are need to validate this speculation.

The results of the GO and KEGG analyses revealed that the
selected targets were enriched primarily in inflammation-related
immune regulation and vascular function. The biological processes
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Bars represent mean + SD, and open circles ( O) indicate individual data points.
Inter-group differences within each tissue were assessed by one-way ANOVA followed by Tukey’s post-hoc test.
Significance levels are indicated as *p < 0.05, **p < 0.01, ***p < 0.001,****p<0.0001.

FIGURE 13

WMF modulates IL-6 and IL-10 protein concentrations in EAU rats, as determined by ELISA. Protein concentrations of IL-6 and IL-10 were measured

in homogenates of lymph node, spleen, and ocular tissues at the experimental endpoint. Data are presented as column bars representing the mean, with
T-error bars indicating the standard error (n = 3 composite samples per group, each measured in triplicate). Statistical significance between groups is
indicated directly on the graphs (*p < 0.05, **p < 0.01, ***p < 0.001).
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Bars represent mean + SD, and open circles ( O) indicate individual data points.
Inter-group differences within each tissue were assessed by one-way ANOVA followed by Tukey’s post-hoc test.
Significance levels are indicated as *p < 0.05, **p < 0.01, ***p < 0.001,****p<0.0001.

FIGURE 14

WMEF regulates IL-6 and IL-10 mRNA expression levels in EAU rats, as determined by RT-qPCR. Relative mRNA expression levels of IL-6 and IL-10
were quantified using the 2724V method with ACTIN as the internal reference. Data are presented as column bars representing the mean, with T-error
bars indicating the standard error (n = 3 composite samples per group, each measured in triplicate). Statistical significance between groups is indicated
directly on the graphs (*p < 0.05, **p < 0.01, ***p < 0.001).

of the target genes are consistent with the pathological mechanisms  uveitis involves three main pathways: (1) T-helper 1 response,
of non-infectious uveitis, including the regulation of T cells. EAU is  characterized by the activation of IL-6, TNF-a, IFN-y, and IL-2;
an immune response mediated by T lymphocyte subsets and  (2)T-helper 2 response, characterized by the activation of IL-4, IL-5,
inflammatory cytokines. T-helper activation in immune-mediated ~ IL-10, and IL-13, thus stimulating B-lymphocytes and antibodies
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WMF alters IL-6 and IL-10 protein expression in EAU rats, as determined by Western blot analysis. Densitometric quantification of IL-6 and IL-10
protein levels normalized to B-Actin. Data are presented as column bars representing the mean, with T-error bars indicating the standard error (n =
3 composite samples per group). Statistical significance between groups is indicated directly on the graphs (*p < 0.05, **p < 0.01). Representative Western
blot images for IL-6, IL-10, and B-Actin in lymph node, spleen, and ocular tissues.

production; and (3) T-helper 17 response, characterized by the
activation of IL-17 and IL-23 (Caspi, 2003; Airody et al., 2016;
Weinstein and Pepple, 2018; Karkhur et al., 2019; Guo and Zhang,
2021;Jung et al., 2019). The targets of WMF may regulate these three
pathways. Subsequently, we applied the molecular docking
techniques to validate the docking score of some active
ingredients with the shared target proteinsIL-10 and IL-6. Our
results showed that the active compounds of WMF effectively
docked with IL-10 and IL-6. Furthermore, we established an
EAU rat model to evaluate the therapeutic efficacy of WMF in
vivo and found that WMF treatment significantly alleviated
inflammation in EAU rats, reversed the EAU-induced increase in
IL-6 levels, and increased IL-10 levels.

In this study, using a network pharmacology approach and
molecular docking techniques, we investigated the molecular
mechanisms underlying the therapeutic effects of WMF on EAU.
The results of in vivo assays showed that WMF attenuated
inflammation in EAU and regulated IL-10 and IL-6 expression in
an EAU rat model. These findings indicate that WMF can treat EAU
by modulating immune responses and vascular function, with IL-10
and IL-6 as the main therapeutic targets; moreover, the herbal
composition can be further optimized based on these insights.

Frontiers in Pharmacology

We also found that some active substances, such as quercetin,
may serve as effective drugs for treating EAU. However, in-depth
mechanistic studies need to be performed for further experimental
validation of our speculations.

To balance tissue requirements with statistical power, tissues
from eight rats per group were pooled equally to generate three
composite replicates. This approach maximized sample mass and
minimized inter-assay variability, but
heterogeneity among

obscured  biological
Consequently, our data
represent group-level averages and cannot infer inter-individual
variability  or should
incorporate independent biological replicates or single-animal

individuals.

extreme responders. Future work
analyses to quantify individual differences in treatment response

and validate the generalizability of current findings.

5 Conclusion

We used network pharmacology and molecular docking
methods to analyze the molecular mechanisms underlying the
therapeutic effects of WMF on EAU. The results were verified
through in vivo assays, which revealed that WMF can treat EAU
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by modulating immune processes and vascular functions.
Additionally, we identified opportunities to optimize the herbal
composition of WMF to enhance its therapeutic efficacy. These
findings provide valuable insights into the treatment of EAU and

suggest directions for future research.
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