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Background: Combination therapies play a crucial role in the treatment of
complex diseases, such as cancer. They enhance efficacy, minimize
resistance, and reduce toxicity by leveraging synergistic effects. However,
identifying effective combinations is challenging due to the vast number of
possible pairings and the high-priced costs of experimental validation.
Machine learning (ML) and deep learning (DL) models have advanced drug
synergy prediction by integrating diverse datasets and modeling the
interactions between drugs and cell lines. Despite these advancements, most
algorithms primarily rely on drug-specific features, such as chemical structures,
with limited incorporation of functional drug information and cellular
content features.

Methods: We propose a novel approach that integrates Drug Resistance
Signatures (DRS) as a biologically informed representation of drug information.
This approach provides a more comprehensive framework for identifying
effective combination therapies. We evaluated the predictive power of DRS
features across various machine learning models (LASSO, Random Forest,
AdaBoost, and XGBoost) and the deep learning model SynergyX. We
compared their performance with that of conventional drug signatures and
chemical structure-based descriptors.

Results: Our results demonstrate that models incorporating DRS features
consistently outperform traditional approaches across all evaluated algorithms.
Validation on independent datasets, including ALMANAC, O’Neil,
OncologyScreen, and DrugCombDB, confirms the robustness and
generalizability of the proposed framework.

Discussion: These findings emphasize the importance of integrating resistance-
informed transcriptomic features into computational models. By capturing drug
functionality in a biologically relevant context, DRS improves both the accuracy
and interpretability of drug synergy prediction, offering a powerful strategy for
guiding the discovery of effective combination therapies.
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1 Introduction

Drug resistance occurs in over 90% of cancer patients, where
cancer cells develop tolerance to treatment. Therefore,
combination therapy has proven to be an effective method for
combating drug resistance (Yardley, 2013). Genetic mutations,
epigenetic changes, increased drug efflux, and other complex
cellular and molecular mechanisms cause his resistance. Drug
resistance can be classified into intrinsic and acquired types
based on when it develops (Wang et al., 2023). Intrinsic
resistance occurs prior to patient exposure to drugs, which may
reduce the drug efficacy from the beginning (Wang et al., 2023;
Wang et al., 2019; Holohan et al., 2013). However, acquired
resistance develops over time during treatment and is
characterized by a decrease in the drug’s effectiveness over
time. Acquired resistance can be caused by the activation of a
proto-oncogene, which becomes the newly emerging driver gene,
mutations, changing expression levels of drug targets, or changes
in the tumor microenvironment after therapy. Both intrinsic and
acquired resistance are common, with each occurring in roughly
50% of cancer patients who develop drug resistance (Holohan
et al., 2013). Therefore, drug combination therapies have become
important as promising methods to overcome resistance by
simultaneously targeting multiple targets or biological pathways.
In addition, the lower dose prescriptions of a single drug can
reduce the potential risks of toxicity and side effects.

The increasing availability of large-scale, high-throughput data
and drug combination databases has enabled the development of
numerous machine learning (ML) and deep learning (DL)
computational methods for predicting drug synergy. These
methods vary in their representation of biological systems, how
they integrate diverse data, and their modeling of the complex
interactions between drugs and cellular contexts (Pan et al., 2023;
Besharatifard and Vafaee, 2024).

Conventional ML algorithms such as Random Forest (RF),
Support Vector Machines (SVM), Gradient Boosting Machines
(GBM), K-Nearest Neighbors (KNN), and logistic regression,
have been widely used to predict drug combination outcomes
(Güvenç et al., 2021; Li et al., 2020). These models typically rely
on engineered features such as chemical fingerprints, gene
expression profiles, and drug-target interaction data. While they
are computationally efficient and relatively interpretable, their
capacity to capture nonlinear and higher-order biological
interactions is limited. Some ensemble-based variants combine
predictions from different feature spaces to enhance robustness
and predictive performance (Li et al., 2020; Xia et al., 2018).

The early DL-based methods, such as DeepSynergy (Preuer
et al., 2018) and MatchMaker (Kuru et al., 2021), utilize fully
connected deep neural networks to learn complex patterns from
chemical descriptors and transcriptomic features. To further
enhance performance, feature fusion models such as WRFEN-
XGBoost (Lu et al., 2021) integrate drug-induced expression
perturbations to better model drug interaction effects. Recent
developments have introduced multi-view DL models that assign
a separate sub-network to each type of input data (such as gene
expression, drug structure, or protein abundance), followed by a
shared prediction layer. These architectures reduce noise and
leverage the complementary strengths of heterogeneous datasets.

Models such as BestComboScore (Xia et al., 2018) and DeepDDS
(Wang et al., 2022) are key examples of this approach.

Graph convolutional approaches, including DRSPRING
(Han et al., 2024) and MFSynDCP (Dong et al., 2024), model
drugs, targets, and pathways as interconnected networks. By
embedding this structure into the learning framework, these
models capture relational patterns that are often missed by flat
feature vectors. Similarly, knowledge graph and hypergraph-
based methods, such as KGANSynergy (Zhang et al., 2023)
and HypergraphSynergy (Liu et al., 2022), are designed to
account for higher-order interactions beyond drug pairs.
These models are particularly effective in sparse or noisy
settings, where they leverage biological priors to infer missing
links. Recent graph attention models, like SynergyX (Guo et al.,
2024), further prioritize explainability by highlighting the most
influential features in synergy prediction.

To overcome the limitations of any single modality or model
type, hybrid systems integrate multiple data sources (chemical,
genomic, and phenotypic) and learning paradigms (e.g., deep
learning, graph neural networks, and ensemble learning). These
approaches have demonstrated improved generalizability and
predictive stability across diverse datasets. For instance, multi-
modal frameworks incorporating drug-pathway-cell line graphs,
attention-guided embedding fusion, and pathway-enriched
transcriptomic features provide both predictive power and
biological insight (Zhang et al., 2023; Peng et al., 2024).

While recent hybrid and deep learning models have started to
incorporate functional drug data, such as transcriptional profiles
and drug-induced gene expression changes, these applications are
often limited to general drug signatures or pathway activation
scores. Methods such as DeepMDS (Lu et al., 2021) and
DRUGSYNC (Zhao and Luo, 2024) utilize transcriptomic
features, including drug-induced expression profiles or
pathway-level summaries to represent drug function. However,
most of these models rely on broad or averaged gene expression
data without explicitly modeling resistance-specific
transcriptional adaptations. Despite these advances, the
detailed integration of drug resistance-specific transcriptional
information remains largely unexplored, particularly in the
context of drug synergy prediction. In particular,
transcriptomic DRS can reveal molecular adaptations that
contribute to cancer drug resistance, enabling more accurate
predictions of treatment efficacy. To address this gap, To
address this gap, we utilize a novel feature class, DRS, which
captures transcriptomic changes associated with drug resistance
mechanisms, as illustrated in Figure 1. Unlike traditional models
that rely primarily on chemical structures or general drug-
induced transcriptional responses, DRS features provide a
functional perspective by highlighting gene expression
differences between drug-sensitive and drug-resistant cancer
cell lines. To evaluate the generalizability and effectiveness of
this feature type, we analyzed its performance across various
modeling strategies. These included four classical machine
learning algorithms: LASSO, Random Forest, AdaBoost, and
XGBoost, as well as the deep learning framework SynergyX.
Our findings suggest that incorporating functional drug data,
particularly resistance-related signatures, substantially improves
predictive performance in drug combination modeling.

Frontiers in Pharmacology frontiersin.org02

Mozaffarilegha and Gharaghani 10.3389/fphar.2025.1614758

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1614758


2 Materials and methods

2.1 Datasets

The Drug Combination Database aggregates experimental data
on drug pair interactions, including synergy scores derived from
in vitro assays conducted across various cell lines. We utilized five
datasets: DrugComb (Zheng et al., 2021), O’Neil (O’Neil et al., 2016),
Oncology Screen (O’Neil et al., 2016), DrugCombDB (Liu et al.,
2020), and Alamanac (Holbeck et al., 2017) for benchmarking
predictive models against experimentally validated drug
combinations. Among them, DrugComb is the primary dataset in
this study, and it included 739,964 drug combination experiments
and introduces a novel synergy metric, the S score (Malyutina et al.,
2019). This metric quantifies drug synergy by measuring the
disparity between the dose-response curves of a drug
combination and its constituent single agents. Table 1
summarizes the drug combination synergy data in different
datasets with various synergy types.

2.2 Drug signature features

The LINCS database provided extensive gene expression data
from diverse cell lines exposed to various drugs (Subramanian et al.,
2017). Its large-scale repository included transcriptomic signatures
across various experimental conditions, such as different drug
concentrations and time points. We used LINCS data 24 h after
treatment with 10 μM drug concentration, as it was the most
common condition in the LINCS dataset.

We also obtained drug response metrics for a wide array of
cancer cell lines from the GDSC database (Iorio et al., 2016),
including IC50 values and dose-response curves for several
thousand anticancer agents.

We extracted Level 5 transcriptomic signatures from the LINCS
database and associated these profiles with cell viability data from
the GDSC to analyze drug-induced responses across multiple cell
lines. The integration of LINCS and GDSC datasets involved
identifying overlapping drugs by cross-referencing drug
identifiers and filtering for matches, resulting in a final set of
common drugs.

To characterize drug sensitivity and resistance, cell lines have
been grouped from the GDSC based on their IC50 values, using the
median IC50 across all cell lines as a threshold, following established
methodologies (Wang et al., 2019).We define the sensitivity status Si
of the i cell line as:

Si � if ICi
50 <median ICi

50( ) sensitive
if ICi

50 ≥median ICi
50( ) resistance

{
Where ICi

50 denotes the IC50 value of cell line j for a given drug.
Differential gene expression analysis was performed using two

different approaches: Conventional Drug Signature (DS): This
signature compares gene expression between treated and
untreated conditions for a given drug across a fixed cell line. For
each gene i, the differential expression score is computed as:

μSi − μRi � ΔSR
i

Where:

μRi � μ∑
jϵT

1
T| | μSi � μ∑

jϵU

1
U| |

Let T be the set of samples treated with a specific drug, U be the
set of control (untreated) samples. For each gene i, the mean
expression level under treated μRi and control μSi conditions are
calculated by averaging the normalized expression values across all
samples in each group. The differential expression score ΔSR

i is then
defined as the difference between these two means. A statistical test
(e.g., t-test or moderated t-statistic) is used to compute the
significance (p − value) for each ΔSR

i and a threshold on adjusted
p − values is used to identify significantly up/downregulated genes.

Drug Resistance Signature: This signature compares gene
expression between resistant and sensitive cell lines in response
to the same drug.

μRi − μSi � ΔSRD
i

For each gene i, the mean expression in resistance μRi and
sensitive μSi samples are computed. The resistance-associated
differential expression score ΔSRD

i reflects the gene expression
changes between resistance and sensitive contexts. These scores
represent resistance-specific transcriptomic patterns that serve as
functional drug features in our modeling framework.

2.3 Comparative analysis of models

To evaluate the predictive value of different drug signature
representations, we conducted a comparative analysis using four
widely adopted machine learning algorithms—LASSO, AdaBoost,
Random Forest (RF), and XGBoost—as well as the deep learning
model SynergyX, a recent attention-guidedmulti-modal model. This
evaluation aimed to assess how effectively each model leverages
structural features, DS, and DRS to predict drug
combination synergy.

All models were trained and evaluated on the same datasets
under identical conditions, utilizing the same input features, model
architectures, and training parameters as specified in their respective
original studies. This standardized approach ensured a fair and
unbiased comparison of performance across methods. In this study,
SynergyX is utilized in the main model to predict drug synergy by
leveraging functional data, such as drug resistance signatures. Built
on a multi-modal architecture, it integrates diverse feature spaces,
including drug features, gene expression, and functional cell-level
data. A key component, its Cross-Modal Fusion Encoder, captures

TABLE 1 Overview of datasets utilized for drug synergy prediction analysis.

Datasets Drugs Cell lines Combination

DrugComb 354 170 330917

DrugCombDB 600 68 60932

O’Neil 38 39 23062

Oncology Screen 21 29 4176

Alamanac 118 118 296503
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complex interactions between different data modalities, such as
molecular properties and cellular response features (Guo
et al., 2024).

2.4 Model evaluation

We employed a stratified 5-fold cross-validation strategy to
evaluate the performance of all models. This method ensured
that the distribution of the target variable (synergy scores) was
preserved across training and testing splits, reducing the potential
for data imbalance to affect model performance. Each experiment
was repeated ten times with different random seeds, ensuring that
the results were robust and not sensitive to initialization or sampling
variability.

We used Mean Squared Error (MSE), Root Mean Squared Error
(RMSE), R-squared (R2), and correlation as evaluation metrics for
the regression prediction task. These metrics provided a
comprehensive assessment of the models’ predictive accuracy,
ability to capture variance, and rank-order relationships between
predicted and observed synergy scores. Additionally, 95%
confidence intervals (CIs) were computed for each metric to
assess the reliability and variability of the results.

To further validate the generalizability and robustness of our
approach, we tested all models on four independent benchmark
datasets: ALMANAC, DrugCombDB, Oncology Screen, and
O’Neil’s dataset. This evaluation aimed to demonstrate the
model’s ability to perform well on unseen datasets and across
diverse experimental conditions, a critical requirement for real-
world applications in predicting drug synergy.

3 Results

3.1 Evaluation of model performance
across classes

The following analysis compares the predictive performance of
various machine learning and deep learning models across three

distinct feature categories: structural drug descriptors, DS, and DRS.
As shown in Table 2, the SynergyX model trained with DRS features
consistently achieves the lowest Mean Squared Error (MSE) and
Root Mean Squared Error (RMSE), outperforming traditional
models such as LASSO, Random Forest (RF), AdaBoost, and
XGBoost (XGB). Notably, in the DRS feature category, SynergyX
achieves the best performance with an MSE of 92.16 ± 1.82,
significantly better than other models.

In addition to accuracy metrics, the Pearson correlation
coefficients of greater than 0.70 for most models in the DRS
category indicate that drug resistance signatures capture
biologically relevant patterns in synergy prediction more
effectively than drug signatures (0.72) and structural features (0.68).

Similarly, Spearman correlations were more consistent in the
DRS class, with values remaining above 0.80. This result indicates
that functional drug-response data not only improves predictive
accuracy but also enhances the model’s ability to effectively capture
rank-order relationships between drug combinations. The DRS
feature class exhibited narrower confidence intervals (CIs) for
both the mean squared error (MSE) and root mean squared
error (RMSE) metrics, indicating higher model stability and
reliability. For example, the 95% CI for RMSE in the DRS class
9.73 ± 0.10 is significantly tighter than that of the structural feature
class, as shown in Figure 2, indicating reduced variability and more
consistent predictions.

The R2 metric, a crucial measure of predictive accuracy,
further highlights the importance of DRS features. In the
structural feature class, the highest R2 value of 0.67 ± 0.07 was
achieved by SynergyX, indicating moderate predictive
performance. Within the drug signature (DS) class, SynergyX
again outperformed other models with an R2 of 0.71 ± 0.04,
compared to 0.61 ± 0.03 for XGBoost (XGB) and 0.55 ± 0.03 for
Random Forest (RF). The DRS feature class demonstrated the
highest R2 values, highlighting the superior predictive capability
of functional features. This strong R2 score reinforces the
importance of functional drug-response data in accurately
modeling complex drug interactions.

Additionally, The AUC (Area Under the Curve) metric, used to
assess model classification power in synergy prediction, further

TABLE 2 Comparative performance of machine learning models across three feature categories: structure, drug resistance (DR) and DRS.

Feature Category Measure LASSO AdaBoost RF XGB SynergyX

Structure MSE 331.40 ± 5.40 346.22 ± 4.99 163.58 ± 1.82 147.15 ± 1.19 92.81 ± 1.29

95%Cl [316.39 346.40] [332.38 360.07] [158.51 168.64] [143.86 150.45] [89.23 96.38]

P-value 4.24E-07 2.58E-07 9.29E-08 2.55E-08 2.22E-07

DS MSE 345.83 ± 4.86 351.57 ± 5.16 346.16 ± 4.85 346.15 ± 4.79 106.18 ± 1.90

95%Cl [332.34 359.33] [337.25 365.88] [332.70 359.61] [332.85 359.45] [100.92 111.45]

P-value 2.34E-07 2.34E-07 2.34E-07 2.34E-07 6.10E-07

DRS MSE 324.59 ± 3.99 341.57 ± 4.89 165.65 ± 2.07 144.51 ± 3.09 92.16 ± 1.82

95%Cl [313.51 335.67] [327.99 355.15] [159.91 171.40] [135.93 153.09] [87.10 97.22]

P-value 1.37E-07 2.52E-07 1.46E-07 1.25E-06 9.15E-07

Bold values indicate the best performance (i.e., lowest error or highest correlation) among the compared models within each feature category.
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supports the superior performance of DRS features. Although this is
a regression study, a commonly used synergy threshold of 10 was
applied for classification purposes. SynergyX achieved the highest
AUC in the DRS class at 0.74 ± 0.01, followed by XGBoost (XGB) at
0.72 ± 0.01, while traditional models like AdaBoost and Random
Forest (RF) scored lower at 0.69 ± 0.00 and 0.70 ± 0.01, respectively.
Results from the drug signature (DS) and Structure classes revealed

performance limitations when using less detailed features, with a
peak AUC of 0.72 ± 0.01 for SynergyX in the DS class and 0.74 ±
0.01 in the Structure class. While structure-based features performed
well for classification tasks, their regression performance was less
consistent. In contrast, DRS features not only improved regression
accuracy but also enhanced classification robustness and
interpretability.

FIGURE 1
Workflow for predicting drug synergy using transcriptomic signatures features.

FIGURE 2
Comparison of RMSE across different machine learning and deep learning models utilizing three feature categories: Structure, Drug Signature (DS),
and DRS.

Frontiers in Pharmacology frontiersin.org05

Mozaffarilegha and Gharaghani 10.3389/fphar.2025.1614758

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1614758


To further evaluate the effectiveness of the DRS, we applied the
SynergyX model to four widely used benchmark datasets:
ALMANAC, DrugCombDB, OncologyScreen, and O’Neil. As
summarized in Table 3, we compared the predictive performance
of models trained with DRS versus those trained with DS across
multiple evaluation metrics.

In the ALMANAC dataset, the DRS-based model achieved
substantially lower error rates (MSE: 1,273.28, RMSE: 35.68) and
markedly higher correlation scores (Pearson: 0.78; Spearman: 0.73)
than the DS-based model, which showed weak correlations
(Pearson: 0.15; Spearman: 0.17) despite reporting a
marginally higher R2.

In DrugCombDB, while the DS model yielded slightly lower
MSE and RMSE, the DRS-based model demonstrated significantly
superior rank-order consistency, with a Spearman correlation of
0.78 compared to 0.25 for the DS model. For the OncologyScreen
dataset, DRS again outperformed DS, achieving better error metrics
(MSE: 230.83; RMSE: 15.19) and higher correlations (Pearson: 0.80;

Spearman: 0.76), while DS showed weaker predictive performance
(MSE: 530.34; Pearson: 0.28; Spearman: 0.27).

Similarly, in O’Neil’s dataset, the DRS-based model
outperformed DS across all metrics, achieving an MSE of 163.35,
RMSE of 12.78, and strong correlation values (Pearson and
Spearman: 0.79), indicating robust predictive accuracy and rank-
order reliability.

3.2 Comparative analysis between drug and
drug resistance signatures

The gene expression profiles related to Erlotinib in both the DS
and DRS are shown in Figure 3. The volcano plot for the DS
(Figure 3A) reveals significant upregulation of genes like
MAPKAPK3, CSNK2A2, and EIF4G1, which are involved in cell
cycle regulation, signal transduction, and translation initiation.
These genes suggest enhanced cellular adaptability and survival

TABLE 3 Performance comparison of SynergyX using Drug Signature (DS) and DRS features across four benchmark datasets.

Models MSE RMSE R2 Pearson Spearman

Alamanac DR 3,219.46 56.74 0.02 0.15 0.17

DRS 1,273.28 35.68 0.61 0.78 0.73

DrugCombDB DR 25.73 5.07 0.06 0.25 0.27

DRS 10.80 3.28 0.60 0.78 0.86

OncologyScreen DR 530.33 23.02 0.07 0.28 0.27

DRS 230.83 15.19 0.59 0.80 0.76

Oneils DR 428.70 20.70 0.02 0.19 0.18

DRS 163.35 12.78 0.62 0.79 0.79

Bold values indicate the best performance (i.e., lowest error or highest correlation) among the compared models within each feature category.

FIGURE 3
Volcano plots of differential gene expression analysis. (A) DS highlights general drug-induced expression changes in response to Erlotinib.
Significantly upregulated genes include MAPKAPK3, CSNK2A2, and EIF4G1, associated with cell cycle regulation, signal transduction, and translation
initiation. (B) DRS displays a distinct expression profile with significant upregulation of resistance-associated genes, including EIF4EBP1, TRIB3, and
SLC1A4, which are linked to EGFR signalingmodulation andmetabolic adaptation. Dashed lines indicate the thresholds for log2 Fold Change (logFC)
and −log10 (P-value).
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mechanisms in response to Erlotinib treatment. Downregulated
genes such as GRB10 and FAT1 are linked to growth signaling
and cell adhesion, indicating potential inhibition of survival
pathways commonly associated with EGFR signaling. The
broader gene distribution in the DS suggests a less specific but
more comprehensive representation of drug response, capturing
both direct and indirect effects of Erlotinib exposure.

In contrast, the DRS (Figure 3B) focuses on a more refined set of
genes directly tied to resistance mechanisms and Erlotinib’s targeted
pathways. Upregulated genes, including EIF4EBP1, TRIB3, and
SLC1A4, are associated with modulation of EGFR signaling,
stress response, and metabolic adaptation, emphasizing their
direct role in driving resistance. Additionally, the downregulation
of genes such as XBP1 and TSC22D3, involved in stress response
and apoptotic regulation, highlights altered cellular pathways that
reduce sensitivity to Erlotinib. This refined gene expression pattern
underscores key mechanisms that contribute to the development of
drug resistance.

To elucidate the molecular pathways driving Erlotinib’s
therapeutic effects and resistance mechanisms, we performed
pathway enrichment analysis on gene expression profiles derived
from DS and DRS analyses. This approach allowed us to identify
distinct biological processes associated with Erlotinib sensitivity and
acquired resistance.

The results, presented in Figure 4, show the most significantly
enriched pathways based on adjusted p-values (on a-log10 scale). In
the DS analysis (Figure 4A), the most enriched pathways included
Colorectal cancer, Proteoglycans in cancer, Hepatocellular
carcinoma, and Kaposi sarcoma-associated herpesvirus infection.
Notably, pathways such as Chronic myeloid leukemia, Pancreatic
cancer, and Cell cycle regulation also show significant enrichment.
These pathways are consistent with Erlotinib’s knownmechanism of
action as an EGFR inhibitor, influencing cancer proliferation,

senescence, and stress-response pathways, which likely contribute
to Erlotinib sensitivity.

In contrast, the DRS analysis (Figure 4B) revealed a different
enrichment profile. Pathways such as Apoptosis, Colorectal cancer,
Viral carcinogenesis, p53 signaling pathway, Cellular senescence,
and Cell cycle are among the top enriched pathways. These findings
suggest a prominent role of genomic stability and cell survival
mechanisms in resistance. The upregulation of DNA damage
response and cell cycle regulation pathways indicates that
Erlotinib-resistant cells may activate compensatory mechanisms
to enhance their survival and promote resistance. These results
highlight the distinct biological processes involved in Erlotinib
sensitivity versus resistance. While sensitive cells show
enrichment in cancer-related and stress response pathways,
resistant cells exhibit pathways associated with survival,
apoptosis, and immune-related processes related to viral
infections, potentially facilitating their adaptation and resistance
to treatment.

3.3 Drug synergy predictions based on drug
resistance signature

To further evaluate the performance of our model, we assessed
its ability to identify novel and biologically meaningful drug
combinations. For this purpose, we selected a set of 68 FDA-
approved anticancer drugs commonly used in breast cancer
treatment. To capture the influence of cellular context on drug
synergy, we selected two biologically distinct yet estrogen receptor-
positive (ER+) human breast cancer cell lines: MCF7 and T47D.
This selection enabled us to evaluate both the consistency of
predicted drug combinations across different cellular
environments and the discriminative power of the proposed

FIGURE 4
Pathway enrichment analysis comparing DRS and Drug Signature (DS) for Erlotinib. (A) DS highlights pathways associated with cancer progression
and tumor signaling. These pathways suggest Erlotinib’s impact on tumor biology and its potential involvement in regulating cancer-associated
processes. (B) DRS shows pathways mainly related to cell cycle control, p53 signaling, cellular senescence, and apoptosis, underscoring mechanisms of
resistance and cellular survival. The x-axis represents either pathway count or adjusted p-values (−log10), reflecting the statistical significance of
pathway enrichment.
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feature space. The chosen drugs were identified based on their
overlap within the LINCS and GDSC databases, ensuring
compatibility for downstream analyses. We then generated all
possible drug pairs and employed the SynergyX deep learning
model, enhanced with DRS features, to predict synergy scores.
This framework enabled a robust, context-specific evaluation of
model performance and biological relevance.

The top-ranking pairs for each cell line are presented in Tables 4, 5,
emphasizing the influence of cell line specificity on the predicted results.
Table 4 displays the top 5 predicted drug combinations for the
MCF7 cell line. These findings indicate a potential role for
Methotrexate in mediating synergistic interactions that are specific
to the MCF7 cell line. In contrast, Table 5 presents the top five
predicted drug combinations for the T47D cell line, where
Anastrozole-based combinations consistently achieved the highest
synergy scores—particularly Anastrozole in combination with
Methotrexate or Lapatinib. Notably, predicted synergy scores were
consistently higher in T47D than in MCF7, emphasizing the
importance of cell line-specific biological context in influencing
combination outcomes. These results demonstrate that drug synergy
predictions are highly dependent on the underlying cellular
background, with the T47D model exhibiting generally stronger
synergistic responses. This variation highlights the significant impact
of factors such as genetic profiles, molecular signaling networks, and
baseline resistance phenotypes on influencing drug-drug interactions.

Among the top-ranked drug pairs, combinations involving
Anastrozole and Methotrexate consistently emerged across both
MCF7 and T47D cell lines, suggesting their potential as robust
synergistic partners. Furthermore, T47D-specific combinations such
as Anastrozole–Lapatinib and Letrozole–Olaparib represent
promising candidates for novel combination therapies.

The observed synergy between Anastrozole, an aromatase
inhibitor, and Methotrexate, a dihydrofolate reductase inhibitor,

is likely driven by their complementary mechanisms of action.
Anastrozole suppresses estrogen production, thereby inhibiting
the growth of estrogen receptor (ER)-positive breast cancer cells.
In parallel, Methotrexate impairs DNA synthesis, enhancing
cytotoxic effects in rapidly proliferating tumor cells.

Importantly, the ability of DRS to accurately predict this synergy
underscores their strength in capturing adaptive cellular responses,
particularly how tumor cells reprogram their survival pathways
when exposed to dual-targeting strategies. This finding highlights
the practical value of DRS-informed models in identifying drug
combinations that exploit functional vulnerabilities in resistant
cancer phenotypes.

4 Discussion

This study demonstrates the effectiveness of DRS features in
improving the prediction of synergistic drug combinations by
incorporating functional transcriptomic responses to drug
treatment. Unlike conventional models that rely on chemical
structures or general gene expression data, DRS-guided models
provide more mechanistic insight into drug interactions,
identifying combinations that either target complementary
biological processes or performance on the same resistance pathway.

To evaluate the biological relevance of the DRS-based feature, we
conducted a case study using Erlotinib, a selective EGFR (epidermal
growth factor receptor) inhibitor. Comparing general drug signature
profiling with DRS analysis revealed key differences in the pathways
associated with Erlotinib resistance (Harada et al., 2012; Kanda et al.,
2013; Liao et al., 2020; Jakobsen et al., 2017). While the DS approach
identified a broad range of pathways, including cellular stress
responses and metabolic adaptations, the DRS approach provided
more specific mechanistic insights, directly linking resistance to
compensatory survival mechanisms. Both profiling methods
confirmed EGFR signaling as central to Erlotinib’s function.
However, DRS uniquely identified adaptive resistance pathways,
such as the PI3K-Akt and p53 signaling pathways, which promote
cellular survival and proliferation despite EGFR inhibition. These
pathways were significantly enriched in resistant profiles, suggesting
that resistant cells leverage compensatory signaling networks to
bypass the inhibitory effects of Erlotinib (Zhou et al., 2021; He
et al., 2021).

Furthermore, DRS features identified specific upregulated genes
associated with Erlotinib resistance, including EF4BP1, TRIB3, and
SLC1A4, which are known to drive alternative survival pathways
(Wan et al., 2020). These findings suggest that targeting
compensatory signaling pathways, such as the PI3K/Akt pathway,
may enhance the efficacy of Erlotinib when used in combination
therapies. Conversely, downregulated genes, such as XBP1 and
TSC22D3, which are involved in oxidative stress regulation and
apoptosis, indicate a reduced apoptotic response in resistant cells,
further reinforcing the importance of functional resistance profiling.
These findings suggest the importance of incorporating DRS-based
profiling into resistance studies, as it offers mechanistic clarity
beyond general drug response signatures. The identification of
resistance-associated pathways, particularly the PI3K/Akt
signaling pathway, presents potential therapeutic targets.
Targeting these compensatory survival pathways in combination

TABLE 4 Top 5 Predicted Synergistic Drug Combinations for the MCF7 Cell
line.

Rank Drug A Drug B Pred-Score

1 Anastrozole Methotrexate 12.59

2 Cyclophosphamide Methotrexate 9.91

3 Letrozole Methotrexate 8.25

4 Cyclophosphamide Lapatinib 7.42

5 Anastrozole Lapatinib 7.09

TABLE 5 Top 5 Predicted Synergistic Drug Combinations for the T47D Cell
line.

Rank Drug A Drug B Pred-Score

1 Anastrozole Methotrexate 23.87

2 Anastrozole Lapatinib 17.41

3 Cyclophosphamide Methotrexate 14.60

4 Letrozole Methotrexate 13.38

5 Cyclophosphamide Lapatinib 12.83
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with Erlotinib may enhance its efficacy and help overcome
resistance. Overall, DRS analysis offers a refined framework for
understanding acquired resistance mechanisms and informs the
rational design of combination therapies aimed at improving
outcomes in EGFR-targeted treatments.

The top-ranked combination of Anastrozole and Methotrexate
exemplifies how DRS features can identify drug interactions based
on complementary mechanisms of action. Anastrozole, an
aromatase inhibitor, reduces estrogen receptor (ER)-positive
breast cancer growth by suppressing estrogen synthesis, thereby
limiting tumor proliferation (Milani et al., 2009). Methotrexate, a
dihydrofolate reductase inhibitor, disrupts nucleotide synthesis,
leading to impaired DNA replication and enhanced cytotoxicity
(Jolivet et al., 1983). This synergy highlights how hormonal signaling
inhibition and nucleotide depletion can work in concert to enhance
therapeutic efficacy, a pattern effectively captured by DRS-based
predictive models. The ability of DRS-based models to predict this
synergy suggests that transcriptomic resistance signatures effectively
capture adaptive survival responses in tumor cells, enabling the
identification of functionally relevant drug interactions that may be
ignored by traditional structure-based models (Ma et al., 2019).
DRS-guided models also prioritize synergistic drug pairs that target
the same resistance pathway, as demonstrated by the synergy
between Cyclophosphamide and Methotrexate.
Cyclophosphamide, an alkylating agent, induces DNA
crosslinking and replication stress, leading to genomic instability.
Methotrexate, by depleting nucleotide pools, further exacerbates the
accumulation of DNA damage, leading to heightened cytotoxic
effects and cell death (Sahrayi et al., 2021).

Conventional synergy prediction models, which primarily rely
on chemical properties or generalized transcriptional profiles, often
lack the resolution needed to identify pathway-specific interactions.
As a result, they may overlook critical mechanistic synergies that
arise from functional adaptations within resistant cancer cells. This
limitation leads to an incomplete understanding of compensatory
survival pathways, thereby restricting the ability of predictive
models to accurately identify effective drug combinations. By
integrating DRS features, our model addresses these challenges
by effectively identifying functional synergies that exploit shared
resistance mechanisms, thereby providing a more precise and
biologically relevant framework for predicting drug synergy.

While this study demonstrates the effectiveness of DRS in
enhancing the prediction of drug synergy, several limitations
should be considered. Although comprehensive validation using
experimental assays would enhance the confidence and translational
relevance of the identified drug combinations, our study relied
exclusively on large-scale, well-curated datasets for model
training and evaluation. Additionally, the dependence on the
LINCS and GDSC databases introduces coverage limitations and
potential bias due to the incomplete overlap of drugs, cell lines, and
treatment conditions. Another limitation lies in deriving resistance
signatures from a single post-treatment time point (24 h), which
may not adequately capture the temporal complexity and dynamic
evolution of drug resistance.

In future work, we aim to integrate single-cell transcriptomics,
consider multi-time-point resistance profiling, and develop multi-
modal models that incorporate genomic and phenotypic context to
improve biological fidelity and clinical relevance.

5 Conclusion

This study highlights the importance of incorporating drug
resistance-specific functional data in predicting synergistic drug
combinations, demonstrating that DRS features enhance predictive
accuracy by capturing adaptive transcriptomic responses to therapy.
By systematically comparing DRS to structural and general drug
signature features across multiple machine learning and deep
learning models, SynergyX, we demonstrated that DRS consistently
outperforms other feature types in terms of predictive accuracy, rank-
order stability, and interpretability. Despite certain limitations, such as
reliance on pre-existing datasets and absence of experimental
validation, the proposed framework provides a scalable and
mechanistically insightful approach for prioritizing effective drug
combinations. These findings pave the way for future efforts to
integrate multi-omic, temporal, and single-cell data into resistance-
aware synergy prediction models, ultimately guiding the development
of more precise and personalized combination therapies in oncology.
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