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Background: Syringic acid (SA), a naturally occurring phenolic acid, has garnered
significant attention for its antioxidant and anti-inflammatory properties.
However, the mechanisms underlying these effects and their potential
therapeutic applications require further elucidation.

Methods: A comprehensive literature review was conducted using PubMed and
Web of Science (1965–2024) to investigate the antioxidant and anti-
inflammatory mechanisms of SA, with a focus on oxidative stress and
inflammatory pathways. For insights related to traditional Chinese medicine
(TCM), we referenced Chinese literature. Articles focusing on agriculture,
industry, and economics are excluded.

Results: SA exerts potent antioxidant and anti-inflammatory activities through
multiple mechanisms. Specifically, it mitigates OS by scavenging free radicals,
enhancing endogenous antioxidant defenses, and activating the KEAP1/
NRF2 pathway. It also inhibits inflammation by downregulating key mediators,
including NF-κB, TLR4, HMGB1, MyD88, and TRAF6. Crosstalk between NRF2,
NF-κB, and PI3K/AKT pathways reveals SA’s involvement in cellular
pathophysiological processes such as apoptosis, ferroptosis, and endoplasmic
reticulum stress.

Conclusion: SA’s robust antioxidant and anti-inflammatory mechanisms
underscore its promise as a therapeutic agent. Future research should address
its pharmacokinetics, safety profile, and clinical potential.
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1 Introduction

Natural metabolites from plants are a rich source for drug discovery, with polyphenols
serving as potent antioxidants found abundantly in fruits and vegetables (de Araújo et al.,
2021). Among them, phenolic metabolites-comprising tannins, flavonoids, phenolic acids,
and lignans-are widely known for their antioxidant, anti-inflammatory, antimicrobial, and
anticancer activities (Fu et al., 2022; Milla and Kerpper, 2023). One of the most well-studied
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phenolic acids is gallic acid (GA), recognized for its strong
antioxidant activity and therapeutic benefits in diseases including
cardiovascular diseases (Kosuru et al., 2018), cancer (Ashrafizadeh
et al., 2021), and diabetes mellitus (Xu, Y. et al., 2021).

SA, a dimethoxybenzene and 3,5-dimethoxy derivative of GA
(Figure 1), has demonstrated antioxidant, anti-inflammatory, and
anticancer properties, as well as protective roles against diabetes,
cardiovascular diseases, and liver damage (Srinivasulu et al., 2018).
First extracted through permanganate oxidation of sinapic lignin
(Bland and Logan, 1965), SA is abundantly found in dietary sources
such as olives, pumpkins, grapes, blueberries, and honey (Bartel
et al., 2023). Additionally, it presents in some medicinal plants such
as the seed of Lepidium virginicum L. (“Bei Tinglizi” in Chinese), the
seed of Descurainia sophia (L.) Webb. ex Prantl (“Nan Tinglizi” in
Chinese), as well as the radix of Paeonia lactiflora Pall. or Paeonia
veitchii Lynch (“Chishao” in Chinese) (Hu et al., 2022; Yang, 2020).
Both Tinglizi and Chishao are considered to possess antioxidant and
anti-inflammatory activities (Hsieh et al., 2020; Parker et al., 2016).
Notably, wine-processed Chishao, used for treating dysmenorrhea,
exhibits an increased SA content after fermentation, enhancing its
anti-inflammatory effects through prostaglandin F2α inhibition,
similar to non-steroidal anti-inflammatory drugs (NSAIDs)
(Ferries-Rowe et al., 2020).

While comprehensive reviews have addressed SA’s occurrence,
biosynthesis, pharmacology, and industrial relevance, as well as its
role in neurodegenerative and civilization diseases (Bartel et al.,
2023; Ogut et al., 2022; Srinivasulu et al., 2018), the precise
mechanisms underlying its antioxidant and anti-inflammatory
effects remain unclear. This review aims to elucidate these
mechanisms by examining SA’s structure-activity relationships

and its complex regulation of NRF2 and NF-κB, providing
insights into its direct molecular targets. Additionally, we
propose a hypothesis to explain SA’s dual pro- and anti-
apoptotic roles in cancer. The review further evaluates SA’s
activity on oxidative stress and inflammation-related cellular
pathologies, while assessing its pharmacokinetics, safety, and
therapeutic potential.

2 Search strategy

A comprehensive literature review was conducted using
PubMed and Web of Science (1965–2024) to investigate the
antioxidant and anti-inflammatory mechanisms of SA, with a
focus on oxidative stress OS and inflammatory pathways. The
search strategy incorporated keywords like “syringic acid,”
“oxidative stress,” and “inflammation.” A total of 1,226 articles
were identified. Titles and abstracts were screened for relevance,
and full texts were assessed according to PRISMA (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses)
guidelines. Inclusion criteria focused on studies exploring the
pharmacological mechanisms of SA in relation to oxidative stress
and inflammation, while exclusion criteria omitted articles centered
on agriculture, industry, or economics. In vitro studies were only
included if they were clearly linked to or built upon in vivo findings
and used primarily for mechanistic exploration. Purely in vitro
studies without any in vivo validation were excluded. Chinese
literature was referenced for insights related to Traditional
Chinese Medicine (TCM). Data extraction prioritized outcomes
addressing SA’s molecular targets, pathways, and therapeutic

FIGURE 1
Fundamental characteristics of SA. The left side of the figure illustrates themolecularmodel of SA, highlighting the substitutions at the 3 and 5 carbon
positions: hydroxyl groups denote GA, while methoxy groups indicate SA. The top-right corner displays the GC-MS spectral analysis of SA, and the
bottom-right corner provides the chemical profile. GA, gallic acid; GC-MS, gas chromatography-mass spectrometry; SA, syringic acid.
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TABLE 1 The effects of SA on OS-related targets in different types of experiments.

Species
and strain

Model or
disease

Tested
dosage
(duration)

Positive
control

Negative
control

Administration
approach

Target References

Rat (Sprague-
Dawley)

Testicular damage
induced by lead
acetate

25 and 50 mg/kg
(7 days)

— Saline Gavage ↓8-OHdG,
↓MDA, ↑CAT,
↑GPx, ↑GSH,
↑NQO1,
↑NRF2, ↑SOD

Akarsu et al.
(2023)

Testicular injury
induced by I/R

50 and
100 mg/kg
(2.5 h)

— DMSO Intraperitoneal injection ↓8-OHdG,
↓MDA, ↑CAT,
↑SOD,
↑TAS, ↓TOS

Demir et al.
(2023)

Cerebral ischemia
induced by middle
cerebral artery
occlusion

8 and 10 mg/kg
(6 and 24 h)

— — Intraperitoneal injection ↓MDA, ↑SOD Güven et al.
(2015)

Ovarian injury
induced by cisplatin

5 and 10 mg/kg
(3 days)

— DMSO Intraperitoneal injection ↓4-HNE, ↓TOS,
↑GPx, ↑GSH,
↑HO-1, ↑NRF2,
↑SOD, ↑TAS

Demir (2023)

Diabetic nephropathy
induced by
streptozotocin

25 and
50 mg/kg (4 w)

— — Gavage ↓MDA, ↑CAT,
↑GSH, ↑GPx,
↑NQO1,
↑NRF2, ↑SOD

Sherkhane et al.
(2023)

Sciatic nerves I/R 10 mg/kg (24 h) Methylprednisolone Saline Intraperitoneal injection ↓MDA, ↑SOD Tokmak et al.
(2017)

Spinal cord I/R 10 mg/kg (24 h) Methylprednisolone Saline Intraperitoneal injection ↓MDA, ↑SOD Tokmak et al.
(2015)

Myocardial infarction
induced by
isoproterenol

12.5, 25, and
50 mg/kg
(21 days)

— Saline Gavage ↓MDA, ↑CAT,
↑GPx, ↑GSH,
↑GST,
↑SOD, ↑TAC

Shahzad et al.
(2019)

Rat (Wistar) Hepatic
encephalopathy
induced by
thioacetamide

50 and
100 mg/kg
(14 days)

— — Gavage ↓8-OHdG, ↓iNOS,
↓MDA, ↓ROS
production,
↑SOD, ↑GSH

Ferah Okkay
et al. (2022)

Ulcerative colitis
induced by acetic acid

10, 25, and
50 mg/kg
(5 days)

Dexamethasone Saline Intra-rectally ↑HO-1, ↑NQO1,
↑NRF2

Ekhtiar et al.
(2023)

Lung fibrotic induced
by NDMA

50 mg/kg
(28 days)

Ascorbic acid Saline Gavage ↓MDA, ↑CAT,
↑GPx, ↑GSH,
↑GST, ↑SOD,
↑NRF2

Somade et al.
(2022)

Hypertension
induced by L-NAME

25, 50, and
100 mg/kg
(28 days)

— Saline Gavage ↑CAT, ↑GPx,
↑GSH, ↑SOD,
↑Vitamin C,
↑Vitamin E

Kumar et al.
(2012)

Autism induced by
valproic acid

25, 50, and
100 mg/kg
(28 days)

— Saline Intraperitoneal injection ↓MDA,
↑GSH, ↑CAT

Mallan and
Singh (2023)

Hippocampal tissue
damages induced by
sub-chronic
deltamethrin
exposure

25 mg/kg
(60 days)

— Corn oil Gavage ↓ROS/RNS, ↑TAS Ogut et al. (2019)

Diabetic rats induced
by streptozotocin

2.5% and 5%
(14 days)

— — Topical application ↓KEAP1, ↓MDA,
↑CAT, ↑GPx,
↑SOD,
↑GSH, ↑GST

Ren et al. (2019)

(Continued on following page)
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potential. Two independent reviewers conducted the selection and
quality assessment processes, evaluating study design, sample size,
methodology, and risk of bias, with discrepancies resolved through
discussion. Articles containing suspicious data errors, omissions, or
duplications were excluded to ensure the integrity and reliability of
the analysis.

3 Antioxidant mechanisms of SA

Living cells constantly encounter reactive oxidative molecules
from both externally and internally sources. These species, including
free radicals or non-radical forms like H2O2, readily capture
electrons from surrounding molecules, initiating chain reactions
that can damage cellular structures (Filomeni et al., 2015). Under
physiological conditions, cells tightly regulate the production of free
radicals, including reactive oxygen species (ROS) and reactive
nitrogen species (RNS), to maintain redox homeostasis through
intrinsic antioxidant defense system (Meulmeester et al., 2022).
They are predominantly generated within the mitochondrial
electron transport chain, particularly at complexes I and III,
where electron leakage facilities the partial reduction of molecular
oxygen, leading to the formation of superoxide radicals (Dan Dunn
et al., 2015). These superoxide radicals are rapidly converted into the
less reactive H2O2 through the catalytic action of superoxide
dismutase (SOD). However, under conditions such as elevated
flux through the electron transport chain, reduced mitochondrial
efficiency, or compromised endogenous antioxidant defense, this
redox equilibrium becomes disrupted (Dan Dunn et al., 2015). This
imbalance leads to oxidative stress, wherein excess ROS are
inadequately neutralized, causing damage on cellular structures

and functions. This review explores the mechanisms by which SA
mitigates oxidative stress through four key aspects: structural
activity, modulation of free radical production, enhancement of
the endogenous antioxidant defense system, and activation of
molecular signaling pathways. The effects of SA on oxidative
stress-related targets are summarized in Table 1.

3.1 Structure-activity relationship of SA

In both in vivo and in vitro settings, the radical scavenging
activity of a metabolite is largely determined by its specific molecular
structure (Nimse and Pal, 2015). The position and number of
hydroxyl groups play a crucial role in enhancing the antioxidant
capacity of phenolic acids (Eom et al., 2012).

Gallic acid (GA), characterized by a trihydroxybenzene ring with
hydroxyl at positions 3, 4, and 5, is converted to syringic acid (SA)
through methylation of the hydroxyl groups at positions 3 and 5,
forming methoxy groups (Figure 1). Although the substitution of
methoxy groups reduces the antioxidant capacity-evidenced by
studies showing GA has a stronger antioxidant capacity than SA
(Chen, 2011; Skroza et al., 2022), the presence of methoxy groups in
SA still contributes to its significant antioxidant capability. Methoxy
groups act as electron-donating substituents that stabilize the
phenoxy radical formed during free radical scavenging (Razzaghi-
Asl et al., 2013). Specifically, the methoxy groups at positions 3 and 5
(-OCH3) increase the bond dissociation enthalpy (BDE) of the O–H
bond in the phenolic moiety, promoting the stabilization of the
phenoxy radical generated upon reaction with free radicals (Chen
et al., 2020; Zhang et al., 2002). Notably, the presence of two
methoxy groups flanking the phenoxy radical enhances its

TABLE 1 (Continued) The effects of SA on OS-related targets in different types of experiments.

Species
and strain

Model or
disease

Tested
dosage
(duration)

Positive
control

Negative
control

Administration
approach

Target References

Mouse
(BALB/c)

Obesity induced by
high fat diet

50 mg/kg
(24 days)

— Methylcellulose Gavage ↓MDA, ↑CAT,
↑GSH, ↑SOD

Khatun et al.
(2023)

Ethanol induced by
hepatotoxicity

40 and 50 mg/kg
(5 days)

— Maltose
solution

Gavage ↓gp91phox, ↓NOX,
↓p47phox, ↓ROS
production,
↑CAT, ↑GPx,
↑GSH, ↑GSSG,
↑NRF2

Yan et al. (2016)

Mouse
(C76/BL6)

Femoral artery I/R 100 and
200 mg/kg
(2 days)

— Saline Intraperitoneal injection ↑NRF2, ↑GPX4,
↑SLC7A11

Wang, F. et al.
(2023)

Rat (SD)
hippocampal
neuronal cell*

Cerebral ischemia
induced by OGD/R

0.1, 1, 10, and
20 µM (24 h)

Nimodipine — — ↓ROS production,
↑SOD, ↓MDA

Cao et al. (2016)

Human* Acute myeloid
leukemia

10 µM (1 h) — — — ↓CAT, ↑GPx,
↓MDA,
↓SOD, ↓TOS

Haddadi et al.
(2023)

Notes: The table organizes in vivo and ex vivo experiments, where upward and downward arrows respectively indicate upregulation and downregulation of the target by SA. Experiments marked

with an asterisk are ex vivo.

Abbreviations: 4-HNE, 4-hydroxynonenal; CAT, catalase; GPx, glutathione peroxidase; GSH, glutathione; GST, glutathione-S-transferase; H/R, hypoxia/reoxygenation; iNOS, inducible nitric

oxide synthase; I/R, ischemia/reperfusion; L-NAME, Nω-nitro-L-arginine methyl ester; MDA, malonaldehyde; NDMA, N-nitrosodimethylamine; NQO1, NADPH, quinone acceptor

oxidoreductase 1; NOX, NADPH, oxidase; NRF2, nuclear transcription factor-erythroid 2 related factor; OGD/R, oxygen-glucose deprivation/reoxygenation; ROS, reactive oxygen species;

SLC7A11, solute carrier family 7 member 11; SOD, superoxide dismutase; TAS, total antioxidant status; TOS, total oxidant status.
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stability compared to a single methoxy substituent (Bors et al., 2002).
Additionally, the radical-scavenging ability of phenolic metabolites
is linked to their acidity, which facilitates proton donation, and the
delocalized π-electrons of their benzene ring, which enables electron
transfer while maintaining structural stability (Parmar et al., 2011).
This dual mechanism—proton donation and electron
transfer—underscores the intricate balance that governs SA’s
antioxidant efficacy.

3.2 SA modulates the generation of
free radicals

Free radicals are highly active intermediates characterized by the
presence at least one unpaired electron in their outer shell. Excessive
free radicals production within the body acts a catalyst for damage to
biological molecules, including DNA, proteins, and cellular
membranes, thereby contributing to the development of various
diseases (Liu, 2020; Phaniendra et al., 2015). In biological systems,
free radicals primarily originate from ROS and RNS (Jomova et al.,
2023). Common ROS include hydroxyl radicals (·OH), singlet
oxygen (1O2), hydrogen peroxide (H2O2), and superoxide anion
(O2

.−). NADPH oxidases (NOXs), a family of membrane-bound
enzymes present in various cell types, catalyze the transfer of
electrons from NADPH to oxygen molecules, generating ROS,
primarily O2

.− and the subsequently produced H2O2 (Bedard and
Krause, 2007). SA reduces ROS formation by downregulating the
expression of p47phox and gp91phox induced by alcohol in the liver.
These two components, the cytosolic and membrane components of
NOX, respectively, contribute to decreasing the formation of ROS
(Yan et al., 2016). In the broader context of oxidative stress and
inflammation, lipoxygenases (LOXs) play a pivotal role by catalyzing
the metabolism of arachidonic acid to produce eicosanoids, thereby
contributing to the ROS pool (Kattoor et al., 2017; Wang et al.,
2020). SA acts as an effective LOX inhibitor, exhibiting an IC50 value
of 0.009 mM (Habza-Kowalska et al., 2021).

Common RNS include nitric oxide (NO) and peroxynitrite
(ONOO−). NO is primarily produced by NO synthase (NOS),
which exists in three isoforms: endothelial NOS (eNOS),
inducible NOS (iNOS), and neuronal NOS (nNOS) (Stuehr and
Haque, 2019). The interaction of O2

.− with NO yields ONOO−, a
highly reactive oxidant capable of inducing oxidative and nitrative
damage (Matsubara et al., 2015). SA reduces NO production by
downregulating iNOS expression (Güzelad et al., 2021; Khatun
et al., 2023).

3.3 SA modulates the endogenous
antioxidant defense system

The redox equilibrium of cells is maintained by a complex
endogenous antioxidant defense mechanism, comprising
enzymatic antioxidants like SOD, catalase (CAT), and glutathione
peroxidase (GPx), as well as non-enzymatic components such as
glutathione (GSH), and iron-binding proteins such as ferritin and
transferrin (Poljsak et al., 2013). SOD plays a critical role by
catalyzing the dismutation of superoxide radical anion, a harmful
by-product of cellular metabolism, into H2O2, which is less reactive

(Wang et al., 2018). CAT then rapidly decomposes H2O2 into water
and molecular oxygen preventing its accumulation and potential
conversion into more reactive species (Nandi et al., 2019). GPx, a
selenium-containing enzyme, further detoxifies H2O2 and organic
hydroperoxides by reducing them to water or their corresponding
alcohols, utilizing GSH as a cofactor (Brigelius-Flohé and Flohé,
2020). GSH, a tripeptide composed of glutamate, cysteine, and
glycine, acts as a critical antioxidant by directly scavenging free
radicals and reactive intermediates. It also serves as a substrate for
GPx-catalyzed reactions, where it is oxidized to glutathione disulfide
(GSSG) during the reduction of H2O2, thereby mitigating ROS-
induced damage and maintaining cellular redox homeostasis
(Forman et al., 2009).

Oxidative stress is commonly defined as an imbalance between
the production and elimination of ROS. The imbalance not only
increases free radicals but also impairs antioxidant defense system,
leading to reduced activity of these enzymes and molecules (Pérez-
Torres et al., 2021). Consequently, these antioxidant indicators are
often used to assess the efficacy of antioxidants. Studies have shown
that SA significantly enhances the activity of these indicators in
response to oxidative stress damage across various systems,
including cardiovascular (Güven et al., 2015; Kumar et al., 2012),
neural (Cao et al., 2016; Mallan and Singh, 2023), endocrine
(Sherkhane et al., 2023), and reproductive systems (Akarsu et al.,
2023; Demir, 2023).

Within the cancer microenvironment, although oxidants play
roles through various stages of tumor development, excessive
accumulation of cellular ROS leads to oxidative stress, which can
trigger apoptosis. This mechanism not only limits metastasis but
also prevents tumorigenesis (Forman and Zhang, 2021).
Furthermore, the surplus of ROS damages cellular components
such as DNA, proteins, lipids, membranes, and organelles, acting
as a pivotal signal to activate the apoptotic pathways. Increasing
evidence indicates that inducing the accumulation of intracellular
ROS is a primary strategy underlying the cytotoxicity of anticancer
drugs (Redza-Dutordoir and Averill-Bates, 2016). Phenolic
metabolites are believed to exert their anticancer activities
through such mechanisms (Yang et al., 2020). For instance, high
doses of GA in cell culture media can convert O2 into H2O2,
increasing ROS levels and inducing selective cytotoxicity in
cancer cells (Wang et al., 2016). Both in vivo and in vitro studies,
Yang et al. demonstrated that SA can enhance the production of
ROS in tumor cells of rat lung cancer, leading to apoptosis (Yang
et al., 2020). Similarly, Pei et al. reported that SA reduces the activity
of antioxidant enzymes in gastric cancer cells, induces OS, and
selectively promotes apoptosis, potentially through the
depolarization of mitochondrial membrane potential (Pei et al.,
2021). Additionally, oral administration of SA to rats with
colorectal cancer increased ROS production, decreased
antioxidant enzyme activity, and caused DNA damage, as
evidenced by elevated levels of 8-OHdG and AP-sites, both of
which are significant indicators of oxidative DNA damage
(Mihanfar et al., 2021).

In summary, SA exhibits a bidirectional modulation of
antioxidant enzyme activity. Specifically, in the context of cancer,
it promotes oxidative stress, modulates antioxidant enzyme activity,
and induces apoptosis, consistent with the general activities of
polyphenols (Chimento et al., 2023). However, the factors
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determining the selective pro-/anti-oxidant activity of SA in various
disease contexts remain unclear. Current research on SA’s
anticancer activities has primarily focused on apoptosis. The
underlying mechanisms contributing to this duality will be
explored in section “5.2 apoptosis”.

3.4 SA modulates KEAP1/NRF2/HO-
1 signaling pathway

The Kelch-like ECH-associated protein 1 (KEAP1)/nuclear
factor-erythroid related factor 2 (NRF2) signaling pathway is a
key regulator of the antioxidant defense system, playing a critical
role in protecting cells from oxidative stress. It implicated in various
inflammatory diseases, including cancer, neurodegenerative

diseases, cardiovascular diseases, and aging (Fão et al., 2019; Lu
et al., 2016; Tu et al., 2019). NRF2 is a transcription factor that
activates the expression of a range of antioxidant genes, reducing
ROS levels and mitigating oxidative stress damage (Hybertson et al.,
2011). Under normal condition, NRF2 binds with KEAP1 in the
cytoplasm. As part of the E3 ubiquitin ligase complex that includes
Cullin 3 (Cul3) and RING-box protein 1 (RBX1), KEAP1 promotes
the ubiquitination and subsequent proteasomal degradation of
NRF2, thus maintaining NRF2 low levels. However, during
oxidative stress or ROS exposure, these oxidants modify KEAP1’s
structure, impairing its ability to capture NRF2. Consequently,
NRF2 escapes degradation, accumulates, and translocates to the
nucleus. In the nucleus, NRF2 forms heterodimers with small
musculoaponeurotic fibrosarcoma (sMaf) proteins and binds to
antioxidant response elements (ARE), activating the expression of

FIGURE 2
The impact of SA on the KEAP1/NRF2 and NF-κB pathways. The two sides of the diagram respectively depict the KEAP1/NRF2 pathway (left) and the
NF-κB pathway (right), as well as the effects of SA on them. Under normal conditions, NRF2 is kept at low levels through its binding with KEAP1 in the
cytoplasm, leading to its ubiquitination and degradation. However, OS alters KEAP1, enabling NRF2 accumulation and nuclear migration, where it
enhances antioxidant gene expression including HO-1, NQO1, CAT, and SOD. Within the NF-κB signaling cascade, cellular stressors such as the
interaction of TLR4 with extracellularly released HMGB1 initiate a complex series of events. This cascade involves the recruitment of the adaptor protein
MyD88 and TRAF6, which in turn activates the IKK complex. The activation of IKK results in the targeted phosphorylation of IκB proteins, tagging them for
proteasomal degradation and thereby liberating the NF-κB p50/p65 dimers. Under OS and inflammation-related diseases, SA inhibits ROS and activates
NRF2, enhancing antioxidant gene expression while concurrently attenuating the NF-κB pathway by reducing the expression of p-IκB-α, p65 and p-p65,
as well as downregulating upstream signaling components such as TLR4, HMGB1, MyD88, and TRAF6. In the context of cancer, SA leads to an increase in
ROS and decreases the expression of antioxidant genes. Red circular, T-shaped, and bifurcated arrows represent promotion, inhibition, and bidirectional
effect by SA, respectively. ARE, antioxidant response element; CAT, catalase; Cul3, cullin-3; HMGB1, highmobility group box 1; HO-1, heme oxygenase-1;
IKK, IκB kinase; IκB, inhibitor κB; KEAP1, cytoplasmic kelch-like epichlorohydrin-associated protein 1; IL, interleukin; MyD88, myeloid differentiation
primary response 88; NF-κB, Nuclear factor-kappa B; NQO1, NADPH quinone oxidoreductase enzyme; NRF2, nuclear factor erythroid 2-related factor 2;
RBX1, ring-box 1; ROS, reactive oxygen species; sMAF, small musculoaponeurotic fibrosarcoma; SOD, superoxide dismutase; TLR, toll-like receptor;
TNF-α, tumor necrosis factor-α; TRAF6, tumor necrosis factor receptor-associated factor 6. Created in BioRender. Zhejun, Z. (2024)
BioRender.com/q25k994.
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antioxidant genes, including heme oxygenase-1 (HO-1) and
NAD(P)H quinone dehydrogenase 1 (NQO1) (Figure 2) (Tonelli
et al., 2018).

In an early study by Yan et al., SA intake significantly increased
the expression of NRF2 in liver cell nuclei in a mouse model of
ethanol-induced hepatotoxicity. This suggests that SA may stabilize
intracellular NRF2 molecules, promote its translocation into the
nucleus, and regulate antioxidant-related genes (Yan et al., 2016).
Similarly, SA ingestion in rats with pulmonary fibrosis significantly
increased NRF2 protein expression in lung tissue (Somade et al.,
2022). Comparable results were observed in models of testicular
damage (Akarsu et al., 2023) and diabetic nephropathy (Sherkhane
et al., 2023), where SA enhanced activity of NQO1, a downstream
target of NRF2. Furthermore, Ekhtiar et al. found that a higher
dosage of SA (50 mg/kg) significantly upregulated the expression of
the antioxidant genes NRF2, HO-1, and NQO1, mitigating oxidative
and inflammation in a model of experimental ulcerative colitis,
while a lower dosages (10 mg/kg) did not elicit the same effect,
indicating that SA dose-dependent activation of NRF2 pathway
(Ekhtiar et al., 2023).

HO-1, regulated by NRF2, catalyze the rate-limiting step in
heme breakdown, producing ferrous ions, biliverdin, and carbon
monoxide (Loboda et al., 2016). Biliverdin is rapidly converted into
bilirubin by biliverdin reductase (BVR), both of which are widely
recognized for their anti-inflammatory and antioxidant properties
(Vijayan et al., 2018). Furthermore, iron homeostasis mechanisms,
including the increased in ferritin synthesis, facilitate the safe storage
and utilization of these released ferrous ions, protecting cells from
oxidative damage (Sha et al., 2023). This aspect will be further
discussed in section “5.3 ferroptosis”. Besides regulating antioxidant
enzyme expression through NRF2 activation, HO-1upregulation
can also enhance the expression of other antioxidant enzymes,
including SOD, GPx, and CAT (Ryter, 2022). Studies have shown
that HO-1 knockout animal models exhibit elevated lipid
peroxidation and oxidized protein levels (Mansouri et al., 2022),
highlighting HO-1’s critical role in combating OS and inflammation.
Recent in vivo studies have demonstrated that SA activates the
NRF2/HO-1 signaling pathway in inflammatory models. Ekhtiar
et al. reported that ulcerative colitis increased pro-inflammatory
cytokines TNF-α and IL-1β, as well as decreased expression of the
antioxidant genes HO-1, NRF2, and NQO1. Treatment with SA was
able to reverse these effects in a dose-dependent manner (Ekhtiar
et al., 2023). Additionally, SA improves ovarian toxicity in rats
exposed to CIS, balancing the levels of the antioxidant system,
potentially through NRF2/HO-1 pathway activation (Demir,
2023). In summary, SA’s structure underlies its antioxidant
capacity, reducing free radical production, enhancing the
endogenous antioxidant defense system, and activating the
KEAP1/NRF2/HO-1 pathway (Figure 2).

4 Anti-inflammatory mechanisms of SA

Inflammation is the body’s innate response to infection or injury
and can be categorized into two types: acute and chronic. Acute
inflammation activates the immune system to facilitate rapid
recovery clearing invaders and repairing tissues, which is
generally beneficial to the host (Joffre and Hellman, 2021; Reuter

et al., 2010). However, unresolved inflammation can progress to
chronic inflammation, which is associated with various diseases,
including cardiovascular diseases (Senoner and Dichtl, 2019),
neurodegenerative diseases (Teleanu et al., 2022), diabetes
(Poznyak et al., 2020), and cancer (Caliri et al., 2021).

Various inflammatory stimuli trigger the migration of immune
cells, such as macrophages and neutrophils, to the site of injury,
where they release inflammatory mediators including NO,
prostaglandin E2 (PGE2), tumor necrosis factor-alpha (TNF-α),
and interleukin-1 beta (IL-1β) (Medzhitov, 2008). This process
promotes tissue repair and antigen clearance but may also lead to
pain and edema. Prolonged inflammation leads to elevated levels of
pro-inflammatory mediators such as iNOS, cyclooxygenase-2
(COX-2), PGE2, and various cytokines such as TNF-α, IL-1β,
and IL-6, is observed (Alessandri et al., 2013; Watson et al.,
2017). Furthermore, the activation of T cells fosters the
production of lymphokines, including IL-2 and interferon-γ
(IFN-γ), further mobilizing immune cells to combat pathogens
and repair tissue (Ding et al., 2022). The specific anti-
inflammatory mechanisms of SA will be discussed next, focusing
on its regulation of inflammatory mediators and molecular signaling
pathways. The effects of SA on inflammation-related targets are
summarized in Table 2.

4.1 SA modulates inflammatory mediators

Cytokines are key regulators of the immune system, comprising
both pro-inflammatory and anti-inflammatory types, which play
crucial roles in intercellular communication, maintaining
homeostasis, and disease progression (Opal and DePalo, 2000).
Pro-inflammatory cytokines, such as TNF-α, IL-6, IL-1β, and
IFN-γ, promote inflammatory responses and the development of
chronic diseases. Conversely, anti-inflammatory cytokines like IL-10
and IL-4 inhibit the inflammatory process by regulating the
responses of pro-inflammatory cytokines, maintaining the
balance of the immune system (Henshaw et al., 2021; Propper
and Balkwill, 2022). The regulation of balance of these cytokines
is essential for controlling inflammatory responses. Numerous
studies have shown that in various animal models, interventions
with SA can exert anti-inflammatory activities by simultaneously
downregulating pro-inflammatory cytokines including TNF-α, IL-6,
IL-1β, IFN-γ and upregulating anti-inflammatory factors such as
IL-10.

In addition to cytokines, other key molecules like COX-2 and
PGE2 also play crucial roles in the regulation of inflammatory
responses. COX-2, an enzyme upregulated during inflammation,
catalyzes the production of prostaglandins, especially PGE2, which
is an important mediator of typical symptoms such as inflammation,
pain, and fever (Kawahara et al., 2015). In in vivo inflammation
models, such as drug-induced liver damage, ovarian injury, and
colitis, SA intake significantly downregulated the activity of COX-2
and PGE2 (Fang et al., 2019; Gheena et al., 2022; Liu, J. et al., 2021).

Myeloperoxidase (MPO), an enzyme abundantly present in
neutrophils, catalyzes the production of potent oxidants such as
hypochlorous acid, which contributes to ROS generation. Activated
neutrophils utilize ROS produced by MPO to further modulate the
release of inflammatory cytokines, exacerbating the inflammatory

Frontiers in Pharmacology frontiersin.org07

Zhao et al. 10.3389/fphar.2025.1615294

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1615294


TABLE 2 The effects of SA on inflammation-related targets in different types of experiments.

Species and
strain

Model or
disease

Tested
dosage
(duration)

Positive
control

Negative
control

Administration
approach

Target References

Rat (Sprague-
Dawley)

Ovarian injury
induced by cisplatin

5 and 10 mg/kg
(3 days)

— DMSO Intraperitoneal injection ↓HMGB1,
↓MPO, ↓NF-κB
p65, ↓TNF-α

Demir (2023)

Testicular injury
induced by I/R

50 and
100 mg/kg (2.5 h)

— DMSO Intraperitoneal injection ↓HMGB1, ↓IL-6,
↓MPO, ↓NF-κB
p65, ↓TNF-α

Demir et al. (2023)

Rat (Wistar) Hepatic
encephalopathy
induced by
thioacetamide

50 and 100 mg/kg
(14 days)

— — Gavage ↑IL-10, ↓IL-1β,
↓iNOS, ↓NF-κB,
↓TNF-α

Ferah Okkay et al.
(2022)

Ulcerative colitis
induced by acetic
acid

10, 25, and
50 mg/kg (5 days)

Dexamethasone — Gavage ↓IL-1β, ↓IL-6,
↓iNOS, ↓NF-κB,
↓TLR4

Ghasemi-Dehnoo
et al. (2024)

Ovarian damage
induced by
cyclophosphamide

5, 10, and
20 mg/kg (14 w)

— Saline Intraperitoneal injection ↓COX-2, ↓IL-1β,
↓IL-6, ↓iNOS,
↓NF-κB, ↓PGE2,
↓TNF-α

Liu, J. et al. (2021)

Autism induced by
valproic acid

25, 50, and
100 mg/kg
(28 days)

— Saline Intraperitoneal injection ↓IL-6, ↓TNF-α Mallan and Singh
(2023)

Diabetic rats induced
by streptozotocin

2.5% and 5%
(14 days)

— — Topical application ↑CD31+,
↑CD68+, ↑IL-10,
↓IL-2, ↓IL-8,
↓IL-1β, ↓NF-κB
p65, ↓TNF-α

Ren et al. (2019)

Cardiotoxicity
induced by
isoproterenol

50 mg/kg SA and
25 mg/kg SA +
resveratrol
(30 days)

Gallic acid DMSO Gavage ↓NF-κB,
↓TNF-α

Manjunatha et al.
(2020)

Lung fibrotic induced
by NDMA

50 mg/kg
(28 days)

Ascorbic acid Saline Gavage ↓AKT, ↓IL-1β,
↓NF-κB, ↓PI3K,
↓TNF-α

Somade et al.
(2022)

Mouse (BALB/c) Colitis induced
by DSS

25 mg/kg (7 days) — — Gavage ↓CD68+, ↓COX-
2, ↓IL-1β, ↓IL-6,
↓iNOS, ↓MPO,
↓NF-κB p65, ↓p-
IκB-α, ↓TNF-α

Fang et al. (2019)

Liver injury induced
by concanavalin A

0.1, 1,
10 mg/kg (24 h)

— — Intraperitoneal injection ↓IFN-γ, ↓IL-6,
↓TNF-α

Itoh et al. (2009)

Ethanol induced by
hepatotoxicity

40 and 50 mg/kg
(5 days)

— Maltose
solution

Gavage ↓COX-2, ↓iNOS,
↓IL-6, ↓NF-κB
p65, ↓TNF-α

Yan et al. (2016)

Mouse
(C57BL/6 J)

Obesity induced by
high fat diet

0.05% SA 0.5 g/kg
HFD diet (16 w)

— Normal diet Diet ↓IFN-γ, ↓IL-6,
↓MyD88, ↓NF-
κB, ↓TLR4,
↓TNF-α

Ham et al. (2016)

Colitis induced by
dextran sulfate
sodium

50 mg/kg (7 days) Fecal microbiota
transplantation

PBS Gavage ↓IL-6, ↓IL-10,
↓IL-17A, ↓TNF-
α, ↓TRAF6

Luo et al. (2023)

Mouse
hippocampal and
cerebrocortical
slices (Swiss) *

Depression induced
by glutamatergic
excitotoxicity

1 mg/kg (7 days) Fluoxetine Distilled water Gavage ↑p-GSK-3β, ↓p-
AKT (Ser473)

Dalmagro et al.
(2019)

(Continued on following page)
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response (Aratani, 2018; Hawkins, 2020). In two reproductive
system studies by Demir et al., regardless of whether it was a rat
ovarian damage model or a testicular damage model, SA intake
significantly reduced the activity of MPO (Demir, 2023; Demir et al.,
2023). Additionally, the increased activation of immune cells,
including neutrophils, macrophages, and T lymphocytes,
enhances their recruitment and activation at inflammation site,
leading to elevated pro-inflammatory cytokines production (Ozga
et al., 2021). Fang et al. demonstrated that in a dextran sulfate
sodium-induced colitis mouse model, SA effectively regulated both
the activity and expression of MPO and CD68+, a macrophage
marker, suggesting suppression of immune cell activation (Fang
et al., 2019). Interestingly, a study on wound healing in diabetic rats
produced opposite results, where the topical application of SA
significantly upregulated the protein expression of CD68 and the
endothelial tissue marker CD31, promoting wound healing (Ren
et al., 2019). This discrepancy may be explained by the fact that
cytokines produced by macrophages are essential for fibroblast
proliferation and extracellular matrix deposition; their ablation
can impair healing and hinder functional recovery (Kessenbrock
et al., 2010).

Collectively, these studies suggest that the effects of SA on
inflammation are context-dependent. In inflammatory disease
models, SA’s anti-inflammatory properties help alleviate tissue
damage and inflammation. Conversely, in tissue repair and
regeneration contexts, SA promotes wound healing by activating
immune cells and enhancing angiogenesis.

4.2 SA modulates NF-κB pathway

Nuclear factor kappa B (NF-κB) is a key signaling pathway that
regulates inflammatory responses, immune reactions, and cell
survival (Mitchell et al., 2016; Zinatizadeh et al., 2021). The NF-
κB family consists of five protein monomers: p65 (RelA), RelB, cRel,
p50, and p52, which form homodimers or heterodimers that
regulate gene expression by specifically binding to DNA. The
classical activation pathway of NF-κB is triggered by upstream
signals, including IL-1, TNF, and TLR4 stimulation, which
activate the IκB kinase (IKK) complex. IKKβ phosphorylates IκB
protein, leading to its degradation and the release of NF-κB dimers,
typically the p50/p65 dimer (Zinatizadeh et al., 2021). The NF-κB
dimer then enters the nucleus, binds to specific sequences of DNA,
recruits coactivators, and initiates the transcription of target
genes (Figure 2).

Currently, existing in vivo experiments have widely
demonstrated that SA downregulates the expression of NF-κB.
For example, in an ethanol-induced liver toxicity mouse model, SA
administration reduced NF-κB p65 expression in a dose-
dependent manner, without significant impact observed on p50
(Yan et al., 2016). This reduction has also been noted across several
inflammatory models, including reproductive system injuries
(Demir, 2023; Demir et al., 2023), diabetes (Ren et al., 2019),
and colitis (Fang et al., 2019). p65 can be further phosphorylated to
p-p65, enhancing its transcriptional activity (Xu, X. et al., 2021).
SA can also reduce the phosphorylation of p65 (Wang, M. et al.,
2023; Xiang and Xiao, 2022). Meanwhile, once IκB-α is
phosphorylated, it is rapidly degraded via the proteasomal
pathway, releasing the NF-κB dimer bound to it. Furthermore,
SA downregulates p-IκB-α expression in osteoarthritis and colitis
models, preventing NF-κB activation (Fang et al., 2019; Wang, M.
et al., 2023).

The activation of NF-κB also depends on the recognition and
transmission of upstream signals. TLR4, a pattern recognition
receptor on the cell surface, recognizes pathogen-associated
molecular patterns like LPS, triggering downstream signaling and
activating the IKK complex (Ciesielska et al., 2021). Similarly, high
mobility group box 1 (HMGB1), an intracellular DNA-binding
protein, can be released extracellularly upon cell stress or death,
interacting with TLR4 to amplify inflammatory signaling (Chen
et al., 2022). SA can also downregulate the expression of both
HMGB1 (Demir, 2023; Demir et al., 2023) and TLR4 (Ghasemi-
Dehnoo et al., 2024) in inflammation-related models. Additionally,
myeloid differentiation primary response 88 (MyD88) and tumor
necrosis factor receptor-associated factor 6 (TRAF6) are pivotal in
bridging TLR4 activation with NF-κB-mediated cellular responses
(Cohen and Strickson, 2017). Upon TLR4’s recognition of its ligand,
MyD88 is swiftly recruited to the receptor complex, followed by
TRAF6, and together they transmit the activation signal to
downstream signaling molecules (Deguine and Barton, 2014).
Ham et al. also evaluated the expression of TLR4 and MyD88 in
the liver tissues of obese mice. SA significantly reduced the gene
expression of both, suggesting that by downregulating the TLR4-
MyD88 pathway, it decreases the gene expression of pro-
inflammatory cytokines in the liver, including TNF-α and IL-6
(Ham et al., 2016). The inhibitory effect of SA on TRAF6 has
also been observed in a colitis model (Luo et al., 2023).

In summary, SA downregulates NF-κB signaling by reducing
NF-κB p65 expression and phosphorylation, lowering p-IκB-α
levels, and inhibiting nuclear transcription. Additionally, it

TABLE 2 (Continued) The effects of SA on inflammation-related targets in different types of experiments.

Species and
strain

Model or
disease

Tested
dosage
(duration)

Positive
control

Negative
control

Administration
approach

Target References

Mouse
chondrocytes
(C57BL/6) *

Osteoarthritic
cartilage degradation

1, 5, 10, and
50 μM (1 and
2 days)

— — — ↓p-IκB-α, ↓IL-
1β, ↓p-p65,
↓TNF-α

Wang, M. et al.
(2023)

Notes: The table organizes in vivo and ex vivo experiments, where upward and downward arrows respectively indicate upregulation and downregulation of the target by SA. Experiments marked

with an asterisk are ex vivo.

Abbreviations: AKT, protein kinase B; COX-2, cyclooxygenase-2; DSS, dextran sulfate sodium; GSK-3β, glycogen synthase kinase 3β; HFD, high-fat and high-cholesterol diet; HMGB1, high

mobility group box 1; IFN-γ, interferon-γ; IL, interleukin; iNOS, inducible nitric oxide synthase; MPO, myeloperoxidase; MyD88, myeloid differentiation primary response 88; NDMA,

N-nitrosodimethylamine; NF-κB, nuclear factor kappa B; PGE2, prostaglandin E2; p-IκBα, phosphorylated-inhibitor of kappa B alpha; TLR4, toll-like receptor 4; TNF-α, tumor necrosis factor-

alpha; TRAF 6, TNF receptor associated factor 6.
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impacts upstream regulatory mechanisms by suppressing TLR4,
HMGB1, and adaptor proteins like MyD88 and TRAF6,
highlighting its role in modulating inflammatory
responses (Figure 2).

5 Potential crosstalk among different
pathways involving SA

Current evidence suggests that SA exhibits significant
antioxidant and anti-inflammatory activities. However, its direct
molecular targets remain unclear. While SA is well-known for its
antioxidant properties, typical of phenolic acids, stronger evidence
supports its anti-inflammatory effects. If SA’s antioxidant activity
arise from its inherent ROS-scavenging ability, then the reduced
oxidative stress should, in theory, restore KEAP1’s ability to capture
NRF2. Studies often report increased NRF2 levels following SA
intervention, suggesting that SA may stabilize NRF2. Notably,
potential publication bias, particularly regarding NF-κB pathway
research, cannot be ruled out. Therefore, we will examine NRF2’s
upstream regulators and pathway crosstalk to identify SA’s potential
direct targets.

5.1 The potential role of SA in modulating
crosstalk between NRF2 and NF-κB

Oxidative stress and inflammation are two highly
interconnected processes. NRF2 is a crucial molecule in
regulating oxidative stress, while inflammation induced by
oxidative stress is primarily triggered by the activation of NF-κB
(Ahmed et al., 2017).

Their interaction is complex. Similar to NRF2, IKKβ can also
bind to KEAP1, leading to its ubiquitination and proteasomal
degradation. Under ROS-rich condition, KEAP1 is inhibited,
stabilizing IKKβ, which phosphorylates and degrades I-κBα,
thereby activating NF-κB (Lee et al., 2009). Conversely, the
NRF2 pathway inhibits NF-κB nuclear translocation of by
preventing the proteasomal degradation of IκB-α (Saha et al.,
2020). On the other hand, NF-κB inhibits NRF2 activation by
reducing the transcription of ARE genes (Cuadrado et al., 2018).
NF-κB p65 additionally interacts with KEAP1, promoting its
translocation to the nucleus. This process facilitates the
separation of NRF2 from the ARE, leading to the increased
ubiquitination and degradation of NRF2 (Kim and Jeon, 2022).
This reciprocal negative regulation creates a complex interplay

FIGURE 3
The potential role of SA in modulating crosstalk between NRF2 and NF-κB. ROS-rich conditions inhibit KEAP1, stabilizing IKKβ and leading to NF-κB
activation through IκBα degradation. NRF2 inhibits NF-κB’s nuclear translocation by preventing IκBα degradation and reduces NF-κB activation by
enhancing antioxidant defenses and lowering ROS levels. Conversely, NF-κB p65 can inhibit NRF2 activation by affecting ARE gene transcription and
facilitating NRF2 degradation via interactions with KEAP1. In diseases related to OS and inflammation, SA activates NRF2 and inhibits NF-κB. Red
circular and T-shaped arrows represent promotion and inhibition by SA, respectively. Dashed arrows indicate indirect effects. ARE, antioxidant response
element; CAT, catalase; Cul3, cullin-3; HO-1, heme oxygenase-1; IKK, IκB kinase; IκB, inhibitor κB; KEAP1, cytoplasmic kelch-like epichlorohydrin-
associated protein 1; IL, interleukin; NF-κB, Nuclear factor-kappa B; NQO1, NADPH quinone oxidoreductase enzyme; NRF2, nuclear factor erythroid 2-
related factor 2; RBX1, ring-box 1; ROS, reactive oxygen species; sMAF, small musculoaponeurotic fibrosarcoma; SOD, superoxide dismutase; TLR, toll-
like receptor; TNF-α, tumor necrosis factor-α. Created in BioRender. Zhejun, Z. (2023) BioRender.com/n67e000.
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between NF-κB and NRF2 (Figure 3). SA’s potent antioxidant and
anti-inflammatory activities may stem from a synergistic feedback
loop involving NRF2 activation and NF-κB inhibition. Akarsu et al.
concurrently evaluated the expression levels of these two molecules.
In a rat model of testicular injury induced by lead acetate, a
significant downregulation of NRF2 was observed alongside a
significant upregulation of NF-κB, indicating the presence of
oxidative stress and inflammation. SA intake was able to reverse
this condition, suggesting that SA plays a role in regulating the
NRF2/NF-κB signaling pathway (Akarsu et al., 2023). However,
current research evaluating the simultaneous effects of SA
intervention on both NRF2 and NF-κB remain limited. Given the
intricate crosstalk between these pathways, the causal relationship is
not fully understood, and both pathways may be influenced
concurrently. Further studies are needed to elucidate the precise
mechanisms and interactions involved.

5.2 The potential role of SA in modulating
crosstalk among PI3K/AKT, NRF2, and NF-κB

NRF2 is an downstream targets of PI3K and can be
phosphorylated by activated AKT (Yu and Xiao, 2021). One
study indicated that under the action of PI3K inhibitors, there
was a reduction in AKT1 phosphorylation, which in turn
diminished the accumulation of carnosol-induced NRF2 protein
(Martin et al., 2004). The PI3K/AKT/NRF2 pathway is considered a
primary route for cells to counteract oxidative stress (Lai et al.,
2020). Besides direct activation of NRF2, the PI3K/AKT pathway
regulates the activity of NRF2 through glycogen synthase kinase 3β
(GSK-3β), a widely distributed serine/threonine kinase (Grimes and
Jope, 2001). Activated GSK-3β phosphorylates Fyn tyrosine kinase,
promoting its nuclear translocation, where it phosphorylates
NRF2 at Tyr568, facilitating its export via chromosomal region
maintenance 1 (Crm1) and reducing its transcriptional activity
(Culbreth and Aschner, 2018; Rojo et al., 2008). GSK-3β can also
phosphorylate NRF2’s Neh6 domain, promoting KEAP1-
independent degradation (Rada et al., 2011). Activated AKT
phosphorylates GSK-3β at Ser9, leading to its inactivation (Zhou
et al., 2013).

SA has been shown to activate the PI3K/AKT signaling pathway,
reducing cellular ROS production and MDA content, thus
protecting RGC-5 cells from oxidative damage induced by H2O2

(Song et al., 2016). In another oxidative injury model, the ischemia/
reperfusion (I/R) injury rat model, intervention with SA significantly
activated the PI3K/AKT/GSK-3β signaling pathway, thereby
inhibiting mitochondria-induced apoptosis and alleviating
myocardial damage (Liu, G. et al., 2020). In a glutamate-induced
neurotoxicity model, SA can significantly increase the
phosphorylation of PI3K, AKT, and GSK-3β, producing effects
similar to fluoxetine. Moreover, inhibitors of PI3K and GSK-3β
can negate these protective effects (Dalmagro et al., 2019). These
findings suggest that SA acts as an activator of PI3K and GSK-3β,
contributing to NRF2 elevation and antioxidant effect. However,
whether SA directly interacts with PI3K and GSK-3β remains to be
determined, as the specific binding sites are unknown.

However, in specific disease contexts, the effects of SA on the
PI3K/AKT/NRF2 pathway are complex. Another downstream

component of AKT is NF-κB (Yu et al., 2017). The PI3K/AKT
pathway activates NF-κB by phosphorylating IKK, leading to the
degradation of IκB (Burow et al., 2000; Yang et al., 2019). Somade
et al. assessed the expression levels of the PI3K/AKT pathway, NRF2,
and NF-κB in NDMA-induced pulmonary fibrosis (Somade et al.,
2022). In this context, the PI3K/AKT pathway is activated,
promoting both fibroblast proliferation and differentiation into
myofibroblasts, which play an essential role in fibrotic disease
(Conte et al., 2011; Fagone et al., 2011). In this model, the PI3K/
AKT pathway is activated, NF-κB significantly increases with
NRF2 downregulated. These changes are significantly reversed
under SA intervention (Somade et al., 2022). Notably, despite
PI3K/AKT activation typically upregulating NRF2, SA’s
inhibition of PI3K/AKT coincided with NRF2 stabilization,
suggesting that SA may directly stabilize NRF2 or that other
upstream factors are involved.

Overall, SA appears to stabilize NRF2 directly while also acting
as an activator of PI3K and GSK-3β (Figure 4). However, its effects
may vary depending on disease contexts. The causal relationship
between SA’s anti-inflammatory and antioxidant effects remains
unclear, necessitating further research to identify its direct
molecular targets.

6 The regulatory role of SA in OS and
inflammation-related cellular
pathological processes

SA plays a crucial role in mitigating oxidative stress and
inflammation-related cellular pathological processes. Through
multiple mechanisms, SA exerts protective effects against
endoplasmic reticulum stress (ERS), apoptosis, and ferroptosis,
which are key pathological processes aggravated by oxidative
stress and inflammation, partially through modulating NRF2 and
NF-κB signaling (Figure 5).

6.1 ERS

The ER is essential for cellular functions and survival, overseeing
protein synthesis, folding, and trafficking (Oakes and Papa, 2015).
ERS occurs when these critical processes are disrupted by
pathological events, particularly oxidative stress and
inflammation. To restore homeostasis, cells activate the unfolded
protein response (UPR) pathway, which is regulated by three sensor
proteins: activating transcription factor 6 (ATF6), inositol-requiring
enzyme 1 (IRE1), and protein kinase RNA-like endoplasmic
reticulum kinase (PERK), respectively (Bettigole and Glimcher,
2015; Chen and Cubillos-Ruiz, 2021). Under normal condition,
glucose-regulated protein 78 (GRP78) binds to sensor proteins,
keeping them inactive. Upon activation of the UPR,
ATF6 migrates to the Golgi apparatus, becomes activated, and
then enters the nucleus to increase the expression of proteins like
GRP78, GRP94, and CHOP, aiming to restore ER function (Read
and Schröder, 2021; Wiseman et al., 2022). However, prolonged
PERK activation can induce CHOP expression, suppress the anti-
apoptotic gene BCL-2, and promote apoptosis (Marciniak
et al., 2004).
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Demir et al. demonstrated that SA mitigates rat testicular damage
induced by I/R by inhibiting the HMGB1/NF-κB axis and ERS, resulting
in a dose-dependent reduction of oxidative stress, inflammation, and key
ERSmarkers (includingGRP78, ATF6, and CHOP) (Demir et al., 2023).
Similar findings were observed in another study by the same group,
showing SA’s protective effects against cisplatin-induced ovarian damage
(Demir, 2023). Additionally, in the context of neurodegenerative
diseases, SA covalently modify tau protein, inhibit the formation of
amyloid fibrils, and alleviate neurotoxicity. Importantly, this study
highlighted SA’s inhibitory effects on endoplasmic reticulum stress
mediated by tau amyloid proteins (downregulation of ATF6) and
apoptosis (downregulation of caspase-8 and caspase-3) (Li et al., 2021).

6.2 Apoptosis

Apoptosis is a precisely regulated form of cell death that occurs
via two main pathways: extrinsic and intrinsic (Bertheloot et al.,

2021). The intrinsic pathway is triggered by internal stress factors
such as DNA damage or ERS, with the key event being the release of
cytochrome c from the mitochondria (Ketelut-Carneiro and
Fitzgerald, 2022). This pathway is regulated by the balance
between pro- and anti-apoptotic proteins of the Bcl-2 family
(Kesavardhana et al., 2020). In contract, the extrinsic pathway is
initiated through the activation of membrane receptors, such as
tumor necrosis factor receptor 1 (TNFR1) or toll-like receptors
(TLRs) (Amarante-Mendes et al., 2018). Despite their distinct
initiation mechanisms, both pathways converge on the activation
of caspases, particularly caspase-3, which executes apoptosis.

Oxidative stress and inflammation contribute to apoptosis
(Cameli et al., 2020; Kondylis et al., 2017). In such models, SA
exerts its anti-apoptotic activity by upregulating BCL-2 and
downregulating BAX, caspase-3, 8, and APAF1 (Akarsu et al.,
2023; Li et al., 2021; Wang, F. et al., 2023; Zhang et al., 2020).
Multiple pathway networks are involved in regulating the anti-
apoptotic capabilities of SA. For example, in cardiomyocytes, SA

FIGURE 4
The potential role of SA in modulating crosstalk among PI3K, NRF2, and NF-κB. AKT phosphorylation, stimulated by PI3K, leads to the
phosphorylation and inactivation of GSK-3β, which facilitates NRF2’s nuclear retention and antioxidant activity. GSK-3β can phosphorylate Fyn, leading to
its nuclear translocation and subsequent phosphorylation of NRF2, which when associated with Crm1, diminishes NRF2’s transcriptional activity.
Additionally, AKT-mediated phosphorylation of IKK promotes NF-κB activation and inflammatory response. In diseases related to OS and
inflammation, SA promotes the phosphorylation of PI3K, AKT, and GSK-3β. However, in fibrotic diseases, SA inhibits the phosphorylation of PI3K and AKT.
Red circular and bifurcated arrows represent promotion and bidirectional effect by SA, respectively. AKT, protein kinase B; ARE, antioxidant response
element; Crm1, chromosomal region maintenance 1; Cul3, cullin-3; Fyn, fyn tyrosine kinase; GSK-3β, glycogen synthase kinase 3β; IKK, IκB kinase; IκB,
inhibitor κB; NF-κB, Nuclear factor-kappa B; NPC, nuclear pore complex; NRF2, nuclear factor erythroid 2-related factor 2; PI3K, phosphatidylinositol-
4,5-bisphosphate 3-kinase; PIP2, phosphatidylinositol 4,5-bisphosphate; PIP3, phosphatidylinositol 3,4,5-trisphosphate; sMAF, small
musculoaponeurotic fibrosarcoma. Created in BioRender. Zhejun, Z. (2023) BioRender.com/r78r058.
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activates the PI3K/AKT/GSK-3β signaling pathway to exert anti-
apoptotic activities (Liu G. et al., 2020), while in RGC-5 cells, it
protects against H2O2-induced apoptosis via the PI3K/AKT
signaling pathway, suggesting its therapeutic role in diabetic
retinopathy (Song et al., 2016). In a rat colitis model, SA
alleviates oxidative stress, inflammation, and apoptosis by
inhibiting the TLR4/NF-κB/iNOS pathway (Ghasemi-Dehnoo
et al., 2024). Most studies on SA’s anti-apoptotic effects focus on
the mitochondria-dependent intrinsic pathway. Mitochondrial
dysfunction leads to the release of cytochrome C from the
mitochondrial membrane into the cytoplasm, resulting in
apoptosis (Nakagawa and Tayama, 2000). In the study by Helli
et al., bisphenol A-induced mitochondrial dysfunction increases free
radicals production, activating the mitochondrial apoptosis
signaling pathway. SA’s anti-apoptotic effects were attributed to
its potent antioxidant capacity, which scavenges free radicals (Helli
et al., 2024). Additionally, SA promotes the phosphorylation of the

upstream cAMP response element-binding protein (CREB) of Bcl-2,
stabilizing the mitochondrial outer membrane and preventing
cytochrome c release (Helli et al., 2024; Yan et al., 2022).

Inducing apoptosis is one of the fundamental principles of most
current cancer treatments (Ouyang et al., 2012). In cancer cells, SA
promotes apoptosis through the mitochondria-dependent pathway,
including the downregulation BCL-2, and upregulation of P53,
caspase-3, caspase-9, cytochrome C, BAX, and APAF1 (Abijeth
and Ezhilarasan, 2020; Li et al., 2023; Velu et al., 2017). This
cytotoxic effect often coincides with ROS accumulation (Gheena
and Ezhilarasan, 2019; Yang et al., 2020). Structurally similar
phenolic acids, such as ferulic and caffeic acids, also increase
ROS levels in cancer cells, inducing cytotoxicity (Bao et al., 2023;
Rajendra Prasad et al., 2011). ROS can activates P53 translocation to
the nucleus and trigger the expression of pro-apoptotic genes
(Srinivas et al., 2019). They can also directly affect mitochondria
by reducing their membrane potential, promoting the release of

FIGURE 5
SA is involved in regulating cellular pathological processes related to OS and inflammation. The left side of the diagram illustrates that SA primarily
acts to mitigate cellular pathological processes through its antioxidant and anti-inflammatory effects, achieved by enhancing NRF2 and suppressing NF-
κB. Specifically, SA alleviates ERS by suppressing the expression of ATF6, CHOP, and GRP78. In terms of apoptosis, SA exerts its anti-apoptotic effect
through the mitochondrial-dependent pathway, which includes upregulating Bcl-2 and downregulating Bax, Caspase-3, 8, and APAF1. SA also
promotes the phosphorylation of CREB, an upstream activator of BCL-2, thus stabilizing the integrity of the mitochondrial outer membrane. Regarding
ferroptosis, SA activates the SLC7A11-GPX4 pathway on one hand and reduces the expression of ferrous ions and LOX on the other, thereby decreasing
lipid peroxidation (reductions in MDA and 4-HNE) and mitigating ferroptosis. The right side of the diagram illustrates pro-apoptotic effects of SA in the
context of cancer. SA activates the generation of ROS, which promotes the nuclear transcription of p53, thereby activating themitochondrial-dependent
apoptosis pathway. Red circular and T-shaped arrows represent promotion and inhibition by SA, respectively. Dashed arrows indicate indirect effects. 4-
HNE, 4-hydroxynonenal; APAF1, apoptotic protease activating factor 1; ATF6, activating transcription factor 6; BAX, BCL-2-associated X; BAK, BCL-2-
antagonist/killer; BCL-2, B-cell lymphoma 2; CHOP, C/EBP homologous protein; CREB, cAMP response element-binding protein; Cys, cystine; Glu,
glutamate; GPX4, glutathione peroxidase 4; GRP78, glucose-regulated protein 78; GSH, glutathione; LOX, lipoxygenase; MDA, malondialdehyde; PERK,
protein kinase RNA-like endoplasmic reticulum kinase; ROS, reactive oxygen species; SA, syringic acid; SLC7A11, solute carrier family 7 member 11; Tf,
Transferrin; TLR, toll-like receptor. Created in BioRender. Zhejun, Z. (2024) BioRender.com/g91x518.

Frontiers in Pharmacology frontiersin.org13

Zhao et al. 10.3389/fphar.2025.1615294

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1615294


cytochrome C and leading to apoptosis (Sinha et al., 2013).
Therefore, SA’s ability to regulate ROS accumulation may be
central to its anticancer activity.

The pro-oxidant effects of polyphenols in cancer cells are
thought to be related to copper-mediated cellular DNA damage
(Farhan and Rizvi, 2022). Malignant cells have a higher absolute
copper content than non-malignant cells (Ge et al., 2022). In the
presence of copper ions, polyphenolic metabolites can act as pro-
oxidants. Specifically, plant polyphenols are believed to mobilize
chromatin-bound copper, undergoing redox reactions that reduce
Cu2+ to Cu1+, which is then re-oxidized by molecular oxygen to
produce ROS. Although SA may promote oxidation in this manner,
the extent of DNA damage depends on the orientation and number
of hydroxyl groups, particularly galloyl groups (Farhan et al., 2015).
SA has only one hydroxyl group at the 4-position, with methoxy
groups at the 3- and 5-positions. Another possible hypothesis is that
the two methoxy groups, as electron donors, push electron density
towards the benzene ring through resonance, thereby increasing the
electron density on the ring. This makes it easier for the ring to
donate electrons to Cu2+, facilitating its reduction to Cu1+ and
generating ROS. Additionally, the small molecular size of SA
allows it to approach DNA closely, which is essential because
hydroxyl radicals have a limited diffusion radius and must be
generated near cellular DNA (Pryor, 1988). While SA exhibits
significant pro-oxidant effects in cancer cells, the mechanisms
underlying its dual anti-oxidant and pro-oxidant activities remain
unclear, necessitating further research to validate these hypotheses.

6.3 Ferroptosis

Ferroptosis is a form of programmed cell death first identified in
2012, distinct from traditional modes of cell death such as apoptosis
and autophagy. Its hallmark features include iron ions dependence
and the excessive accumulation of lipid peroxides (Dixon et al.,
2012). Current research suggests that ferroptosis is closely associated
with oxidative stress (Xie et al., 2016). Iron is an essential element for
many metabolic enzymes involved in the production of intracellular
ROS. Through the non-enzymatic, iron-dependent Fenton reaction,
iron can further catalyze the production of large amounts of ROS,
thereby exacerbating the extent of lipid peroxidation and the
generation of reactive compounds such as malondialdehyde
(MDA) and 4-hydroxynonenal (4-HNE) (Conrad and Pratt,
2019). The excessive accumulation of lipid peroxides disrupts cell
membrane integrity, ultimately triggering cell death.

SA has been shown to significantly reduces lipid peroxidation
markers, potentially through modulation of the solute carrier family
7 member 11 (SLC7A11)/glutathione peroxidase 4 (GPX4) axis.
SLC7A11 is a critical cystine-glutamate exchanger that constitutes
part of system xc

−. By regulating the import of cystine (one of the
essential precursors for GSH synthesis), SLC7A11 directly influences
the synthesis of GSH (Chen et al., 2021; Liu M.R. et al., 2021). As the
most abundant antioxidant in mammalian cells, GSH not only
scavenges ROS but also acts as a key substrate for GPX4.
GPX4 utilizes GSH to convert lipid peroxides into non-toxic
molecules, thereby halting the progression of lipid peroxidation
reactions and contributing to the cell’s resilience against oxidative
stress. Ferroptosis has been implicated in various pathological

conditions, including I/R-induced organ damage (Stockwell et al.,
2017). In C2C12 subjected to hypoxia/reoxygenation (H/R),
demonstrated that SA can upregulate GPX4 and SLC7A11, while
reducing intracellular Fe2+ levels and lipid peroxidation (Wang F.
et al., 2023). Additionally, beyond GPX4, other key regulators of
Ferroptosis, such as ferroportin and HO-1, are transcriptional
targets of nuclear factor erythroid 2-related factor 2 (NRF2)
(Kerins and Ooi, 2018). In fact, many proteins and enzymes
responsible for preventing lipid peroxidation and thereby
triggering ferroptosis are target genes of NRF2 (Dodson et al.,
2019). Notably, NRF2 inhibitors have been explored as potential
inducers of ferroptosis-mediated cancer cell death (Roh et al., 2017;
Sun et al., 2016). Given the significant effects of SA on modulating
NRF2 activity, while direct evidence linking SA to ferroptosis
remains limited, there is a strong rationale to investigate this
association further.

7 Pharmacokinetics

Ideal pharmacokinetic properties (PPs) are a prerequisite for the
clinical application of a botanical drug. Understanding a botanical
drug’s PPs helps elucidate its absorption, distribution, metabolism,
and excretion (ADME) processes (Bai et al., 2021). A series of studies
have assessed the bioavailability and tissue distribution of SA
administered orally in rats and mice (Liu et al., 2019; Sun et al.,
2020; Sun et al., 2021; Sun et al., 2018). Following a single oral
administration of SA in rats, the pharmacokinetic curve shows a
rapid and sharp contour, reaching the maximum plasma
concentration within 5–15 min, and then swiftly diminishing
from the rat plasma. The maximum plasma concentration
(Cmax), half-life (T1/2), the area under the curve (AUC), and the
mean residence time (MRT) ranges between 4.49 and 9.86 μg/mL,
14.29–25.36 min, 200.34–667.22 μg/mL*h, and 34.8–51 min,
respectively. Notably, the absolute bioavailability of SA in rabbits
was determined to be 86.27%, as calculated by comparing AUC
following intraperitoneal administration to that after intravenous
injection (Liu et al., 2003). Despite its high bioavailability in rabbits,
SA exhibits poor absorption and rapid elimination when taken
orally, contributing to its short T1/2 and relatively low bioactivity
(Sun et al., 2020). The biodistribution of SA after a single oral dose in
mice was also assessed. SA was widely distributed to most organs
within 15 min, with the most significant accumulation in the
kidneys, followed by the liver, lungs, spleen, and heart. In
addition, SA also has the capability to cross the blood-brain
barrier (BBB). By 120 min, SA had disappeared from most
organs. SA primarily distributes to well-perfused tissues such as
the liver and kidneys, dependent on blood flow and organ perfusion
rates. The significant distribution of SA in the kidneys suggests its
clearance mainly through metabolic pathways, while accumulation
in the liver reflects a process of passive capture, possibly indicating
that part of the drug did not effectively participate in physiological
activities. Although direct bioavailability values have not been
studied, the rapid elimination rate of the drug, passive
accumulation in the liver, and clearance mechanisms through the
kidneys could collectively explain the low bioavailability of SA.

SA’s PPs in medicinal plants show significant differences
compared to those of the purified metabolite, manifested by
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varying degrees of increase in AUC, Cmax, MRT, and T1/2 (Table 3).
This is attributed to the synergistic effects of various constituents
within the extract. Even in scenarios where SA constitutes a minimal
proportion of the plant extract, as is the case with Cynanchum
auriculatum, where SA accounts for merely 0.01%, the in vivo half-
life of SA within rats notably extends to 34.52 h (Sun et al., 2023). It
is noteworthy that the study also evaluated the PPs of SA under
conditions of functional dyspepsia, finding that the disease state did
not significantly impact the PPs of SA. This may imply that the
absorption process of SA exhibits a certain degree of robustness, or
that its absorption mechanism may rely on pathways not directly
affected by the state of the digestive system. It is believed that
phenolic metabolites are absorbed mainly through passive diffusion
mechanisms or via specific carriers present in the intestine, such as
P-glycoprotein and the sodium-glucose linked transporter
1(SGLT1) cotransporter (Lewandowska et al., 2013). However,
research on the PPs of SA in vivo under disease conditions
remains limited. A deeper understanding of the absorption and
metabolism mechanisms of SA in specific health conditions still
requires further experimentation and observation. In addition to the
synergistic effects between metabolites, existing research has
employed various drug delivery system optimization strategies to
enhance the oral bioavailability of SA. These include the use of
TPGS/F127/F68 mixed polymer microcapsules (Sun et al., 2020),
liposomes (Sun et al., 2018), TPGS liposomes (Liu et al., 2019), and
self-microemulsifying drug delivery systems (Sun et al., 2021), all of
which have been shown to at least double the relative bioavailability.

8 Toxicity and safety assessment

SA is generally considered non-toxic to animals at therapeutic
doses (Srinivasulu et al., 2018). A study on the subacute toxicity of
SA byMirza and Panchal, whereinWistar rats received 1,000mg/kg/
day via oral gavage for 14 days, without significant adverse effects on
body weight, food intake, erythropoiesis, leukopoiesis, or the
internal organs including the liver, heart, kidneys, pancreas,
hippocampus, and sciatic nerve (Mirza and Panchal, 2019). These

findings suggest SA is safe within a limited timeframe. However, no
clinical studies have been conducted on humans.

An ex vivo study involving 44 individuals, including healthy
donors and patients with acute myeloid leukemia, demonstrated
that treating peripheral blood mononuclear cells with 10 µM SA for
1 h did not show any signs of cellular damage (Haddadi et al., 2023).
Although “Occupational hepatotoxins - Secondary hepatotoxins”
describes the potential for a toxic effect in the occupational
setting based on human ingestion or animal experimentation
(https://pubchem.ncbi.nlm.nih.gov/compound/Syringic-acid), it
is important to note that these risks are associated with specific
conditions, such as prolonged exposure or high concentrations.
Therefore, while passive accumulation of SA in the liver could
theoretically contribute to its potential as an occupational
hepatotoxin, there is currently no evidence to suggest that such
risks are relevant in clinical use, particularly given the therapeutic
doses and short exposure times typically involved. According to
hazard classification, SA can cause skin, eye, and respiratory
irritation (https://pubchem.ncbi.nlm.nih.gov/compound/Syringic-
acid). These classifications underline the need for caution when
handling SA, especially in occupational environments where
exposure risk is higher.

9 Discussion

This review highlights the broad-spectrum pharmacological
activities of SA, emphasizing its potent antioxidative and anti-
inflammatory properties. As elucidated, SA exerts its effects
through intricate mechanisms, modulating critical cellular
pathways including NRF2, NF-κB, and PI3K/AKT, which play
pivotal roles in cellular defense against oxidative stress and
inflammation. By influencing these pathways, SA mitigates
ERS, apoptosis, and ferroptosis, thereby restoring cellular
pathological processes to their normal state. Evidence
suggests that SA’s anti-inflammatory and antioxidant effects
are primarily mediated through NRF2 activation and NF-κB
inhibition.

TABLE 3 Pharmacokinetics of SA in vivo.

Source/Formulation Doses (g/kg) Animal Effects on PPs of SA References

Cynanchum auriculatum Royle ex Wight (root) 1 SD rats ↓Cmax, ↓AUC; ↑T1/2 Sun et al. (2023)

Prunus mume (Siebold) Siebold & Zucc. (fruit) 5 SD rats ↑AUC, ↑Cmax, ↑MRT, ↑T1/2 Zhu et al. (2022)

Echinacea purpurea (L.) Moench (flower) 10 SD rats ↑AUC, ↑Cmax, ↑MRT, ↑T1/2, ↑Tmax Du et al. (2017)

Mahonia fortunei Berberis fortunei (Lindl.) Fedde (stem) 5 SD rats ↑AUC, ↑Cmax, ↑MRT, ↑T1/2 Liu, L. et al. (2020)

TPGS/F127/F68 mixed polymeric micelles 0.025 SD rats ↑AUC, ↑Cmax, ↑MRT, ↑T1/2 Sun et al. (2020)

TPGS liposome 0.025 SD rats ↑AUC, ↑Cmax, ↑MRT, ↑T1/2 Liu et al. (2019)

Self-microemulsifying drug delivery system 0.025 SD rats ↑AUC, ↑Cmax, ↑MRT, ↑T1/2 Sun et al. (2021)

Liposome 0.025 SD rats ↑AUC, ↑Cmax, ↑MRT, ↑T1/2 Sun et al. (2018)

Notes: The sources listed in the table refer to specific parts of medicinal plants, while formulations pertain to drug delivery systems. Scientific names of all plant species were checked and

standardized according to the Medicinal Plant Names Services (MPNS) database (http://mpns.kew.org/mpns-portal/). The effects on PPs are compared with those of orally administered SA as

discussed in the text.

Abbreviations: AUC, area under the curve; Cmax, maximum plasma concentration; MRT, mean residence time; T1/2, half-life; Tmax, time to reach maximum plasma concentration.
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9.1 Research gap

This review focuses on the antioxidant and anti-inflammatory
activities of SA. Despite its promising properties, current research is
insufficient, with several critical issues unresolved. Most studies lack
systematic in vivo validation, appropriate positive controls, and
mechanistic depth. The mechanisms underlying SA’s antioxidant
activity remain inadequately elucidated, posing a significant
challenge. While SA’s significant anti-inflammatory activity is
better supported, the causal relationship between its antioxidant
and anti-inflammatory activities is not well-established.
Determining whether SA’s primary action is antioxidant or anti-
inflammatory is imperative for future research. Most in vivo studies
heavily rely on rats for basic mechanism validation, limiting research
depth. Few studies have elucidated the minimum effective
antioxidant concentration of SA in vivo. Significant differences
exist in the pharmacokinetics of SA derived from medicinal
plants compared to the purified metabolite, and its
pharmacokinetics in humans remain largely unexplored.
Comparative efficacy studies relative to other antioxidants and
anti-inflammatory agents are scarce. Furthermore, the long-term
effects and safety profile of SA, particularly concerning potential
hepatotoxicity with prolonged administration, are
insufficiently explored.

There also remains a lack of direct target engagement studies,
such as protein–ligand interaction assays (e.g., surface plasmon
resonance, thermal shift assays, or cellular target validation), to
confirm the molecular targets of SA. Structure–activity relationship
(SAR) analyses have been insufficiently addressed. Moreover, few
studies have directly compared the efficacy of SA with established
clinical antioxidants or anti-inflammatory drugs, making it difficult
to contextualize its therapeutic relevance.

9.2 Translational potential and challenges in
clinical settings

While SA demonstrates substantial antioxidant and anti-
inflammatory potential in preclinical studies, its translation into
clinical settings faces several challenges. SA’s pharmacokinetics,
particularly its limited bioavailability, remains a significant hurdle
for clinical application. The current research has shown that SA’s
bioavailability can be improved via intraperitoneal injection to
bypass first-pass metabolism; however, this raises concerns about
potential hepatic overexposure and associated toxicity. Optimizing
drug delivery methods, such as nanoparticles, liposomes, or
polymeric micelles, could improve its therapeutic potential,
ensuring better tissue distribution and reducing the risk of toxicity.

Another key challenge is the variability in the pharmacokinetics
of SA derived from different sources. The differences in ADME
between plant-derived SA and the purified metabolite need to be
further studied to understand how these factors may influence
clinical outcomes. Additionally, the long-term safety and efficacy
of SA, especially with regard to its potential hepatotoxicity after
prolonged use, must be carefully evaluated in clinical trials.
Furthermore, while SA has demonstrated significant effects in
animal models of oxidative stress and inflammation, translating
these results to human trials will require robust evidence of its

effectiveness and safety at therapeutic doses. There is a need for well-
designed clinical studies to establish appropriate dosing regimens
and assess the metabolite’s interactions with other therapeutic
agents. Combining SA with existing drugs in therapies could also
improve treatment outcomes while minimizing side effects.

Future research should prioritize clinical trials to evaluate SA’s
efficacy and safety in humans, focusing on its pharmacokinetics,
dosage optimization, and potential for synergistic effects with other
agents. Mechanistic insights into how SA modulates key signaling
pathways such as NRF2, NF-κB, and PI3K/AKT will also be crucial
for understanding its therapeutic potential in clinical settings.

9.3 Limitations

Several limitations of this review should be acknowledged.
Although this work provides a comprehensive overview of the
antioxidant and anti-inflammatory properties of SA, the majority
of the included studies are preclinical, with considerable
heterogeneity in experimental design, dosage, and model systems.
A portion of the included literature is based on in vitro experiments,
which, while mechanistically informative, may not fully capture the
metabolite’s effects under physiological conditions. Moreover, as SA
is a polyphenolic compound, concerns have been raised regarding its
potential classification as a pan-assay interference compound
(PAINS), known to cause false-positive results in high-
throughput or cell-based assays. Nevertheless, structural alert
screening using both the ZINC database (https://zinc15.docking.
org/) and SwissADME (http://www.swissadme.ch/) revealed no
PAINS-associated structural features in SA. While this supports
its potential specificity, caution is still warranted when interpreting
in vitro findings involving polyphenols.

In addition, potential publication bias cannot be excluded, given
that the number of publications highlighting the anti-inflammatory
effects of syringic acid substantially exceeds those investigating its
antioxidant activity. Studies published in non-English languages or
non-indexed journals may have been overlooked. Finally, due to the
narrative nature of this review, quantitative comparisons, meta-
analyses, or statistical effect size estimations were not performed.

10 Conclusion

In summary, SA has demonstrated considerable antioxidant and
anti-inflammatory pharmacological activities, highlighting its
potential as a therapeutic agent. However, further research is
needed to clarify its mechanisms of action, optimize its
pharmacokinetics, and evaluate its long-term safety and efficacy
in clinical settings. By addressing these challenges and focusing on
translational research, SA could emerge as a valuable therapeutic
option for conditions associated with oxidative stress and
inflammation.
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Glossary
4-HNE 4-hydroxynonenal

AKT Protein kinase B

APAF1 Apoptotic protease activating factor 1

ARE Antioxidant response element

ATF6 Activating transcription factor 6

BAX BCL-2-associated X

BAK BCL-2-antagonist/killer

BCL-2 B-cell lymphoma 2

BVR Biliverdin reductase

CAT catalase

CHOP C/EBP homologous protein

CO Carbon monoxide

COX-2 Cyclooxygenase-2

CREB cAMP response element-binding protein

Crm1 Chromosomal region maintenance 1

Cul3 cullin-3

Cys cystine

ERS Endoplasmic reticulum stress

Fyn Fyn tyrosine kinase

GA Gallic acid

Glu Glutamate

GPx Glutathione peroxidase

GRP78 Glucose-regulated protein 78

GSH Glutathione

GSK-3β Glycogen synthase kinase 3β

GST Glutathione S-transferase

HMGB1 High mobility group box 1

HO-1 Heme oxygenase-1

H/R Hypoxia/reoxygenation

IFN-γ Interferon-γ

IKK IκB kinase

IκB Inhibitor κB

IL Interleukin

iNOS Inducible nitric oxide synthase

I/R Ischemia/reperfusion

IRE1 Inositol-requiring enzyme 1

KEAP1 Cytoplasmic kelch-like epichlorohydrin-associated protein 1

L-NAME Nω-nitro-L-arginine methyl ester

LOX Lipoxygenase

MDA Malondialdehyde

MPO Myeloperoxidase

MyD88 Myeloid differentiation primary response 88

NADPH Nicotinamide adenine dinucleotide phosphate

NDMA N-nitrosodimethylamine

NF-κB Nuclear factor-kappa B

NO Nitric oxide

NOS NO synthase

NOX NADPH oxidase

NQO1 NADPH quinone oxidoreductase enzyme

NRF2 Nuclear factor erythroid 2-related factor 2

OGD/R Oxygen-glucose deprivation/reoxygenation

PERK Protein kinase RNA-like endoplasmic reticulum kinase

PGE2 Prostaglandin E2

PI3K Phosphatidylinositol-4,5-bisphosphate 3-kinase

PIP2 Phosphatidylinositol 4,5-bisphosphate

PIP3 Phosphatidylinositol 3,4,5-trisphosphate

PPs Pharmacokinetic properties

RBX1 Ring-box 1

RNS Reactive nitrogen species

ROS Reactive oxygen species

SA Syringic acid

SLC7A11 Solute carrier family 7 member 11

sMAF small musculoaponeurotic fibrosarcoma

SOD Superoxide dismutase

TAS Total antioxidant status

TCM Traditional Chinese medicine

Tf Transferrin

TLR Toll-like receptor

TNF-α Tumor necrosis factor-α

TNFR1 Tumor necrosis factor receptor 1

TOS Total oxidant status

TRAF6 Tumor necrosis factor receptor-associated factor 6

UPR Unfolded protein response.
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