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Programmed cell death (PCD) is equally important for maintaining overall
homeostasis as it is for cell proliferation. The dynamic balance between cell
proliferation and PCD promotes the body’s continuous self-repair and self-
renewal, thus achieving cellular homeostasis. However, when this balance is
disrupted, such as through unrestricted cell proliferation or the inhibition of PCD,
tumors may occur. Moreover, this inhibition of cell death is considered a major
cause of tumor development and a key factor contributing to the poor efficacy of
many tumor treatments. Nowadays, with the discovery of an increasing number
of PCD modalities, such as necroptosis, pyroptosis, autophagy, ferroptosis, and
cuproptosis, PCD has broken the traditional classification of “apoptotic necrosis.”
It is also an evolutionary necessity to prevent systemic damage caused by
blocking a single cell death pathway. A systematic study of PCD may provide
new insights into the origin of malignant tumors, the sensitivity of normal and
malignant cells to treatment, and the development of treatment resistance.
However, treatment regimens that act on PCD all pose significant
cardiovascular risks, including excessive apoptosis of cardiomyocytes, cardiac
rhythm abnormalities, cardiac remodeling, and myocarditis, among others.
Currently, research on cardiovascular risks in tumor treatment is still
incomplete. In this review, we describe different types of cell death processes
and their roles in tumorigenesis. At the same time, we also discuss the basic and
clinical applications of PCD in tumor pathogenesis, prevention, and treatment, as
well as the known or potential cardiovascular risks. This provides a theoretical
basis for the continuous progress of PCD-based tumor treatments.
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Introduction

Inducing programmed cell death (PCD) appropriately represents a critical strategy in
the development of anti-tumor drugs (Liu et al., 2022). Currently, cell death pathways are
categorized into two major types: accidental cell death (ACD) and PCD (Radi, Stewart and
O’Neil, 2018). ACD occurs following exposure to severe physical, chemical, or mechanical
insults, with necrosis being its sole manifestation, observed in both infectious and
noninfectious disease contexts (Peng et al., 2022). In contrast, PCD encompasses a
diverse repertoire including apoptosis, necroptosis, pyroptosis, autophagy, ferroptosis,
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cuproptosis, and other modalities (Bertheloot et al., 2021; D’Arcy,
2019; Peng et al., 2022). As illustrated in Figure 1, PCD serves a
pivotal role in maintaining homeostasis and regulating growth and
development in multicellular organisms (Hsu et al., 2021; Wu et al.,
2020). This process is fundamental to sustaining physiological
balance, as both normal and tumor cells rely on PCD for self-
renewal and growth regulation (Gao et al., 2022). Importantly,

research has linked impaired PCD to tumorigenesis, disease
progression, and the development of drug resistance across
multiple cancer. Consequently, the targeted induction and
activation of PCD have emerged as a focal area in oncotherapy
(Tong et al., 2022).

Notably, many anti-tumor agents including classical alkylating
agents, targeted therapies, and immune checkpoint inhibitors-exert

FIGURE 1
Classification of PCDs andmain processes of different PCDs. PCD is a key target in tumor treatment mechanisms and drug development. It includes
apoptosis, the classic form of programmed cell death, which depends on the caspase cascade reaction, resulting in cell shrinkage, nuclear fragmentation,
and no inflammatory release. Necroptosis, key molecules, RIPK1 and RIPK3 (receptor-interacting protein kinases) phosphorylate MLKL (mixed lineage
kinase-like protein). Pyroptosis is activated by the inflammasome, which activates Caspase-3/8, and the cleavage of Caspase-3/8 leads to cell
rupture. Autophagy ismediated by lysosomes, followed by the encapsulation and degradation of organelles/protein. Ferroptosis, Fe2+ accumulation leads
to ROS bursts and induces lipid peroxidation, causing cell membrane rupture. Cuproptosis, Cu2+ overload causes mitochondrial metabolic abnormalities
(TCA cycle disruption), leading to protein lipidation aggregation and inducing cell death.
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their effects through modulation of PCD pathways (Kciuk et al.,
2024; Wang et al., 2024b; Wu et al., 2023; Xiao et al., 2021a).
However, clinical applications of chemotherapeutics, targeted drugs,
and immune checkpoint inhibitors have revealed significant
cardiovascular risks (Cai et al., 2022; Hashimoto et al., 2022;
Wang et al., 2024a). Alarmingly, these treatment-related
cardiovascular complications lead cancer patients to die of
cardiovascular disease rather than the primary malignancy.
(Sayour et al., 2024). This highlights the necessity of
incorporating cardiac function monitoring as a standard
component of oncological care. This review systematically
discusses the current understanding of PCD in tumor treatment,
the clinical applications of related therapeutic agents, and their
potential cardiovascular toxicities, aiming to provide a theoretical
foundation for safeguarding cardiovascular health during
cancer therapy.

Basic studies and clinical studies

Specific descriptions of PCD

Each of PCD is governed by distinct molecular regulatory
networks and exhibits unique morphological and biochemical
hallmarks (Yuan and Ofengeim, 2024), as summarized in
Table 1. The evolution of multiple PCD represents an adaptive
strategy for multicellular organisms. Throughout the lifecycle,
innumerable “redundant” or “pathologically altered” cells must
be eliminated (Kulkarni and Hardwick, 2023). Relying exclusively
on a single death mechanism would pose critical risks: inhibition of
such a pathway-whether due to genetic mutation, pathogen evasion,
or therapeutic intervention-could disrupt cellular homeostasis,
potentially leading to uncontrolled proliferation (as in cancer) or
excessive inflammation. This functional redundancy in PCD
therefore serves as a robust safeguard, ensuring that disruptions
in one pathway can be compensated for by others, thereby
maintaining organismal integrity across diverse physiological and
pathological contexts (Tower, 2015).

Apoptosis

Apoptosis is a caspase-dependent form of PCD that occurs
under defined physiological or pathological conditions
(Kesavardhana et al., 2020; Obeng, 2021). Apoptosis proceeds
without cell membrane rupture, a critical difference from
necrosis that minimizes collateral tissue damage (D’Arcy, 2019).
Apoptosis is generally classified into two categories: the extrinsic
apoptosis pathway and the intrinsic apoptosis pathway. The
extrinsic apoptosis pathway, referred to in the text as the death
receptor pathway, is triggered by the binding of extracellular death
ligands to death receptors on the cell surface, which in turn
activates a series of caspase proteases, leading to cell apoptosis
(Carneiro and El-Deiry, 2020; D’Arcy, 2019; Hu et al., 2018). B-cell
lymphoma/leukemia-2 protein (BCL-2) protein is a core member
of the BCL-2 family and plays a key regulatory role in apoptosis,
especially in the intrinsic apoptosis pathway (Kaufman et al.,
2021). The intrinsic apoptosis pathway is activated when cells
are exposed to internal stress factors (such as DNA damage,
oxidative stress, protein misfolding, etc.). This leads to changes
in mitochondrial function and structure, alterations in
mitochondrial membrane permeability, and the release of
substances such as cytochrome c into the cytoplasm. This, in
turn, activates caspase proteases, triggering apoptosis
(Figure 2A) (Kesavardhana et al., 2020; Warren et al., 2019;
Zhang et al., 2019).

When the heart is stimulated by chemotherapeutic drugs it
results in the release of large amounts of reactive oxygen species
(ROS) and activates oxidative stress in cardiomyocytes. Excessive
oxidative stress damage the DNA, proteins and lipids of
cardiomyocytes and activates the apoptotic signaling pathway
of cardiomyocytes, leading to apoptosis of cardiomyocyte (Hof
et al., 2019; Peng et al., 2024). Cardiomyocytes are the main
functional units of cardiac contraction and diastole, and massive
apoptosis of cardiomyocytes leads to a decrease in cardiac
contractility and a series of adverse effects, such as
arrhythmia, ventricular remodeling, and ultimately, heart
failure (HF) (Pan et al., 2024).

TABLE 1 Summary of multiple cell death pathways.

Type of cell
death

Key molecule Morphological change

Necrosis None Cell swelling, membrane rupture, loss of organelle

Apoptosis Bax, Bak, Caspase8, Caspase3,
Caspase9

Cell shrinkage, collapse of subcellular structure, condensation of chromatin, fragmentation of nucleus,
formation of plasma membrane vesicles

Necroptosis TNFα, caspase-8, RIPK1, RIPK3,
MLKL

Membrane rupture, expansion of cytoplasm and organelles, chromosome condensation, release of cellular
contents

Pyroptosis NLRs, ALRs, Caspase1, Caspase11 Cell swelling, membrane rupture, chromosome condensation and fragmentation

Autophagy ULK1, ATGs, LC3, mTOR, Beclin1 Membrane integrity, autophagosomes and vesicles formed

Ferroptosis Fe2+, GPX4, GSH, MDA,ROS,LPO Diminutive mitochondria, decreased cristae, collapsed and ruptured membrane

Cuproptosis Cu2+, FDX1,DLAT, LIAS Membrane integrity, collapse of subcellular structure

Abbreviations in the table: Bax, BCL2-associated X; bak, BCL2 antagonist/killer; TNFα, Tumor Necrosis Factor α; RIPK1/3, Receptor Interacting Protein Kinases 1/3; MLKL, Mixed Lineage

Kinase Domain-Like Protein; NLRs, Nucleotide-binding Leucine-rich Repeat Receptors; ALRs, AIM2-Like Receptors; ULK1, Unc-51, Like Autophagy Activating Kinase 1; ATGs, Autophagy-

Related Genes; LC3, Microtubule-Associated Protein 1 Light Chain 3; mTOR, mechanistic target of rapamycin; GPX4, Glutathione Peroxidase 4; GSH, glutathione; MDA, malondialdehyde;

ROS, reactive oxygen species; LPO, lipid peroxidation; FDX1, Ferredoxin 1; DLAT, dihydrolipoamide acetyltransferase; LIAS, lipoyl synthase.
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Pyroptosis

Pyroptosis is a pro-inflammatory form of PCD executed via
canonical or noncanonical pathways, distinguished by the formation
of plasma membrane pores and release of pro-inflammatory
cytokines (Shi et al., 2017; Yu et al., 2021). The canonical
pathway is initiated by pathogen-associated molecular patterns
(PAMPs) or Damage-Associated Molecular Patterns (DAMPs)
activating cytosolic pattern recognition receptors (PRRs), such as
nucleotide-binding oligomerization domain-like receptors (NLRs).
Upon ligand recognition, NLRs oligomerize with apoptosis-
associated speck-like protein containing a caspase-recruitment
domain (ASC) to form inflammasomes, which recruit and
activate pro-caspase-1 (Fang et al., 2020; Shi et al., 2015).
Activated caspase-1 then cleaves the gasdermin D (GSDMD)
protein, releasing its N-terminal domain that translocates to the
plasma membrane, forming pores that induce osmotic lysis (Zhou
et al., 2020). Concurrently, caspase-1 processes pro-interleukin-1β
(pro-IL-1β) and pro-IL-18 into their active forms, which are released
through the pores to propagate inflammatory responses (Sarhan
et al., 2018). The noncanonical pathway involves cytosolic detection
of bacterial lipopolysaccharides (LPS) by caspase-4/5 (in humans) or
caspase-11, leading to GSDMD activation and subsequent pore

formation without inflammasome assembly, though it also results
in IL-1β/IL-18 release and cell membrane rupture (Christgen et al.,
2020). This tightly regulated process links microbial infection or
cellular stress to controlled inflammation, highlighting pyroptosis as
a critical interface between innate immunity and RCD (Figure 2B).

Beyond GSDMD, the Gasdermin family member GSDME has
been recognized as an alternative executor of pyroptosis. Under
physiological or pathological conditions, GSDME can be cleaved by
caspase-3, caspase-8, or granzyme A, liberating its N-terminal
domain to form membrane pores and induce pyroptotic cell
death (Sarhan et al., 2018; Zhou et al., 2020). Consequently, a
defining characteristic of pyroptosis is the proteolytic activation
of Gasdermin proteins, whose N-terminal fragments oligomerize to
form membrane-disrupting pores, ultimately leading to lytic cell
death and the release of inflammatory mediators.

Programmed necrosis

Programmed cell death, necroptosis, when it used as a technical
term, represents a caspase-independent modality of PCD that is
activated when canonical apoptotic pathways are functionally
inhibited (Gong et al., 2019). Morphologically, this process is

FIGURE 2
(A) Apoptosis related pathways; (B) Pyroptosis startup and process; (C) Related pathways of Programmed necrosis. Apoptosis can be triggered by
either extrinsic or intrinsic pathways. The death receptor pathway is activated by ligands on the plasma membrane (e.g., FAS ligand), leading to the
activation of caspase-8. The intrinsic pathway can be induced by a wide range of stress stimuli, including DNA damage or withdrawal of growth factors, as
well as developmental cues. This cell death pathway is associated with mitochondrial outer membrane permeabilization (MOMP), the release of
cytochrome c, and the activation of pro-caspase 9. Both apoptotic pathways converge on the proteolytic activation of effector caspases 3 and 7 by pro-
caspases 8 and 9. Necrotic apoptosis and pyroptosis are the primary pro-inflammatory lytic forms of PCD. They are associated with cell lysis, which, in the
context of pathogen infection, leads to the release of damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns
(PAMPs). DAMPs and PAMPs are recognized by neighboring phagocytes, inducing necrotic apoptosis (and certain other signals) through stimulation of
TNF receptor 1 (TNFR1) or Toll-like receptors (TLRs), leading to the activation of receptor-interacting serine/threonine kinases RIPK 1 and RIPK 3. This
causes conformational changes and the activation of the mixed lineage kinase-like (MLKL) pseudo kinase, which then translocate to the cell membrane,
where it induces membrane rupture.
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characterized by features of necrosis, including loss of plasma
membrane integrity, cytoplasmic and organellar swelling, chromatin
condensation, and release of intracellular components, such as DAMPs,
proinflammatory cytokines, and chemokines-thereby instigating a
robust inflammatory response in vivo (Figure 2C) (Bertheloot et al.,
2021; Gong et al., 2019; Snyder and Oberst, 2021).

Necroptosis is executed through a tightly regulated signaling
cascade involving receptor-interacting protein kinases 1 and 3
(RIPK1, RIPK3) and mixed-lineage kinase domain-like protein
(MLKL). Activation initiates when RIPK1 and RIPK3 assemble via
their RIP homotypic interaction motifs (RHIMs), undergoing
sequential autophosphorylation and trans-phosphorylation to form a
functional necrosome complex. Phosphorylated RIPK3 then recruits
and phosphorylates MLKL, triggering its oligomerization and
translocation to the plasma membrane and intracellular organelle
membranes. At these sites, phosphorylated MLKL forms pore-
forming complexes in biological membranes, leading to membrane
rupture, cytoplasmic content leakage into the extracellular space, and
the characteristic inflammatory phenotype of necroptosis.
Concurrently, this process releases DAMPs, DAMPs are endogenous
molecular patterns released by damaged or dying cells during injury,
activating immune cells like macrophages and triggering inflammatory
responses, including interleukin-1α (IL-1α), IL-1β, and IL-33, which act
as danger signals to recruit immune cells to sites of tissue injury,
facilitating clearance of necroptotic cells and orchestrating local
inflammatory responses (Martens et al., 2021; Zhao et al., 2012).

When Programmed Necrosis is used as a broad concept, it refers
to a genetically regulated process of cell death characterized by
features like necrosis. It encompasses various specific forms of cell
death, including necroptosis, pyroptosis, and ferroptosis, among
others, which will not be elaborated upon here. Mitochondrial-
dependent necrosis is a specific form of necrosis that is typically
closely associated with the opening of the mitochondrial permeability
transition pore (mPTP). When the mPTP opens, it leads to
mitochondrial dysfunction, such as the cessation of ATP synthesis
driven by respiration and the collapse of themitochondrial membrane
potential, ultimately triggering cell necrosis. This represents an
important pathway within Programmed Necrosis. (Chen et al., 2023).

Autophagy

Autophagy enables cells to adapt to stress or injury by degrading
cytoplasmic constituents (Dikic and Elazar, 2018; Glick et al., 2010).
Morphologically and mechanistically, autophagy is defined by the
enzymatic degradation of proteins and organelles via lysosomal
hydrolases, and the formation of double-membrane vesicles
reflecting dynamic rearrangement of cellular membranes
(Figure 3) (Glick et al., 2010).

Autophagy patterns represent a range of conserved strategies for
cellular quality control, nutrient cycling, and stress adaptation.
While macroautophagy is usually associated with non-selective

FIGURE 3
Autophagy and its influencing factors. Under starvation, hypoxia, and other stress conditions, AMPK is phosphorylated and inhibits mTORC1
(mammalian target of rapamycin complex 1), relieving its inhibition on autophagy. The activated ULK1 phosphorylates Beclin-1 (a key autophagy protein),
enabling it to bind to VPS34 (class III PI3K) to form a PI3K complex. This complex catalyzes phosphatidylinositol (PI) to generate phosphatidylinositol-3-
phosphate (PI3P), marking the formation site of the autophagosome. Atg12 is catalyzed by E1 (Atg7) and E2 (Atg10) enzymes, binds to Atg5, and then
forms a multimer with Atg16L1, which localizes to the autophagosome membrane and promotes membrane elongation. LC3 (LC3-I) in the cytoplasm is
cleaved by Atg4 to expose the C-terminal glycine, and then catalyzed by Atg7 (E1) and Atg3 (E2) to bind to phosphatidylethanolamine (PE) to form LC3-II,
which anchors to the autophagosome membrane and promotes membrane closure. Subsequently, the autophagosome fuses with the lysosome.
Enzymes in the autolysosome decompose macromolecules into small molecules such as amino acids and fatty acids, which are released into the
cytoplasm through transport proteins on the lysosomal membrane for reuse by the cell.
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bulk degradation (although selective degradation via cargo receptors
such as p62/SQSTM1 is possible), microautophagy and CMA show a
higher degree of specificity, highlighting the functional diversity of
autophagic processes in maintaining cellular homeostasis and
coordinating PCD.

Ferroptosis

Dr. Brent R Stockwell first introduced the concept of “iron
metamorphosis” in 2012 (Dixon et al., 2012). This is a unique mode
of cell death characterized by iron-dependent lipid peroxidation and
massive accumulation of ROS. The central mechanism of the iron
metabolic response lies in the induction of cell death by lipid
peroxidation of unsaturated fatty acids highly expressed on cell
membranes catalyzed by the action of divalent iron or ester
oxygenases (Hirschhorn and Stockwell, 2019; Li and Li, 2020). In
addition, the expression of antioxidant systems, namely glutathione
(GSH) and glutathione peroxidase 4 (GPX4), is also inhibited
(Figure 4A) (Li and Li, 2020).

In the cell membrane, phospholipids produce lipid ROS through
non-enzymatic (Fenton reaction) or enzymatic (lipid oxidase)
processes, while iron acts as a catalyst. These lipid ROS
accumulate and undergo peroxidation with polyunsaturated fatty
acids (PUFA) in the cell membrane. This ultimately leads to cell
membrane rupture and cell death (Jiang et al., 2021; Li and Li, 2020).

Cuproptosis

Cuproptosis, the central mechanism is that excessive
intracellular accumulation of copper (Cu2+)-through copper

ion imports or dysregulated mitochondrial respiration-binds
to the key enzyme in the pyruvate dehydrogenase complex,
thioacylated dihydrolipoamide S-acetyltransferase (DLAT).
This interaction induces DLAT oligomerization and
aggregation, leading to the formation of insoluble protein
clusters that disrupt mitochondrial metabolism and trigger
cytotoxicity, ultimately leading to cell death (Figure 4B)
(Tsvetkov et al., 2022).

Treatment regimens/targets and
cardiovascular risks for different types
of PCD

Cardiovascular risks for various PCD-
targeting cancer treatment regimens

Apoptosis has long been recognized as an important
mechanism to prevent tumorigenesis, and inhibition of
apoptosis is one of the characteristics of tumor cells (Hanahan
and Weinberg, 2011). The molecular mechanisms that inhibit
apoptosis in tumor cells include disrupting the balance between
pro- and anti-apoptotic proteins (Bertrand et al., 2008; Goolsby
et al., 2005; Mohamad Anuar et al., 2020), inhibiting caspase
activity (Jung et al., 2021; Sangaran et al., 2021), and disrupting
death receptor signaling (Conlon et al., 2020; Xu et al., 2021).
Caspases have been found to be key proteins in the initiation and
execution of apoptosis, and their reduced expression or impaired
function is closely associated with tumor progression
(Kesavardhana et al., 2020). Loss of caspase 3 expression and
function has been found to promote the survival of a variety of
tumor cells (Devarajan et al., 2002).

FIGURE 4
(A) The launch and key factors of Ferroptosis; (B) Cuproptosis process. Ferroportin (FPN) and TFRC (Coding for transferrin receptor 1) on the
membrane regulate Fe2+, while ferritinophagy promotes the release of Fe2+ from ferritin-bound iron. Fe2+ reacts with H2O2 to generate ROS. GSH and
GPX-4 can inhibit the production of PUFAs-OOH. ROS triggers lipid peroxidation (Lipid-ROS), inducing ferroptosis. Cu2+ enters the cell through the
membrane and interacts with FXD-1 to induce the formation of disulfide bonds (DLAT-S-S) in DLAT, disrupting the TCA cycle and ultimately leading
to cuproptosis.
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Chemotherapy
Chemotherapy is the longest and most widely used drugs in

tumor treatment, such as cyclophosphamide, fluorouracil,
adriamycin (DOX), and some plant bases. Chemotherapy is
usually aimed at interfering with the growth and division of
tumor cells, including interfering with the DNA synthesis and
protein synthesis processes of tumor cells to achieve tumor
suppression (Peng et al., 2024). Since chemotherapeutic agents
act on rapidly growing and dividing cells, they inevitably harm
cells that are metabolically active, causing side effects such as
myelosuppression, alopecia, liver and kidney damage, and
cardiomyocyte damage (Hof et al., 2019). The process of
chemotherapy is closely related to PCD. Currently, radiotherapy
and chemotherapy attempt to induce apoptosis by activating the
killing potential of caspase 3. However, new studies have shown that
caspase 3 is not an oncogenic but a pro-oncogenic factor after cells
are exposed to chemicals and radiation (Yosefzon et al., 2018). It has
been shown that caspase 3 is involved in promoting tumor
repopulation after radiotherapy through a paracrine signaling
pathway (Cheng et al., 2019). In addition, caspase 3 promotes
tumor growth by providing a pro-angiogenic microenvironment.
Researchers have found that colon tumor patients with low caspase
3 activation have longer disease-free survival (Kunac et al., 2019).

Targeting drug
Human Epidermal Growth Factor Receptor 2 (HER2)

inhibitors, as classical tumor-targeting agents, are not described
in detail here. The Bcl-2 family plays key regulatory roles by
inhibiting apoptosis and promoting apoptosis. Bcl-2 and/or Bcl-
XL are overexpressed in many human tumors such as
gastrointestinal tumors, lymphomas, neuroblastomas, and bladder
cancers. High expression of Bcl-2 inhibits apoptosis and accelerates
cell growth, which in turn leads to malignancy (Song et al., 2021; Tao
et al., 2021). The anti-apoptotic protein Bcl-2 has become an
emerging drug target in cancer therapy (Hanahan and Weinberg,
2011; Song et al., 2021). In the past 20 years, various inhibitors have
been introduced, and some drugs have entered the clinical stage.
Statistically, some Bcl-2 inhibitors have entered the clinical study
stage, which are Oblimersen, Navitoclax (ABT-263), Venetoclax
(ABT-199), and Obataclax mesylate (GX15-070), among which
Venetoclax has been approved for marketing in 2016 (DiNardo
et al., 2020; Jiménez-Guerrero et al., 2018; Pullarkat et al., 2021;
Walker et al., 2021; Wei et al., 2020). Impaired death receptor
signaling pathway is also one of the mechanisms by which tumor
cells evade apoptosis. Studies have shown that tumor cells acquire
drug resistance by downregulating the expression of death receptors.
For example, reduced expression of CD95 inhibits the apoptotic
pathway, leading to resistance to chemotherapy in patients with
leukemia or neuroblastoma (Friesen et al., 1997; Fulda et al., 1998).

Immune checkpoint inhibitors (ICIs)
ICIs potentiate systemic immune responses, particularly T cell-

mediated antitumor immunity, by abrogating tumor-induced
immunosuppression and can also induce tumor cell apoptosis via
extrinsic death receptor pathways (Carlino et al., 2021). Since the
2011 FDA approval of the CTLA-4 inhibitor ipilimumab, the first
ICIs for melanoma numerous ICIs have entered clinical trials or
achieved market launch, including the PD-1 inhibitor nivolumab

and PD-L1 inhibitor atezolizumab. CTLA-4 is expressed on T cells
and competes with the co-stimulatory molecule CD28 for binding to
B7 molecules on antigen-presenting cells. This interaction inhibits
T-cell activation. CTLA-4 inhibitors like ipilimumab block CTLA-4,
enhancing T-cell activation and promoting an immune response
against tumor cells. PD-1 also acts on T cells, PD-1 is expressed on
the surface of activated T cells, PD-L1 is often overexpressed on
tumor cells. When PD-1 binds to PD-L1, it sends an inhibitory
signal to T cells, preventing them from attacking tumor cells. PD-1
inhibitors, such as pembrolizumab and nivolumab, block the
interaction between PD-1 and PD-L1, enabling T cells to regain
their anti-tumor activity (Ghosh et al., 2021; Rittmeyer et al., 2017).
Emerging ICIs in clinical development target additional pathways
such as LAG-3, TIGIT, and TIM-3, expanding the therapeutic
landscape of immune-oncology (Anderson et al., 2016).

Necroptosis in tumor treatment

A dual role in both promoting and reducing tumor growth has
been identified in various cancer (Qin et al., 2019). Necroptosis
serves as a fail-safe mechanism of cell death in cells where apoptosis
cannot be induced, thereby inhibiting tumor progression. However,
necroptosis, as a form of PCD, can trigger inflammatory responses,
which have been reported to promote cancer metastasis and
immunosuppression (Najafov et al., 2017).

The RIPK1/RIPK3 complex, a critical regulator of necroptosis,
has been found to be downregulated in samples from cancer
patients, including colorectal cancer (Stoll et al., 2017), gastric
cancer (Feng et al., 2015), acute myeloid leukemia (AML)
(Nugues et al., 2014), and melanoma (Geserick et al., 2015).
Additionally, RIPK1/RIPK3 has been implicated in colorectal
cancer. In a cohort study involving over 100 patients, low
RIPK3 expression was independently associated with reduced
disease-free survival and overall survival (Feng et al., 2015).
Similarly, low RIPK3 expression predicts poor prognosis in
gastric cancer (DiNardo et al., 2020). These findings suggest that
RIPK3 may exert anti-inflammatory and anti-tumor effects in
cancer. However, in some animal models, RIPK1 inhibition has
been linked to adverse cardiovascular effects, such as myocardial
inflammation or structural cardiac alterations. Notably, excessive
activation of the RIPK1 pathway may induce cardiac dysfunction
(Beal et al., 2018). As the executioner of necroptosis, MLKL, upon
activation, induces plasma membrane rupture and initiates the
necroptotic process. Current research indicates that MLKL-
encoded mRNA can promote MLKL expression in the tumor
microenvironment, leading to necroptosis in tumor cells.

Pyroptosis in cancer treatment

Extensive studies have demonstrated that pyroptosis is closely
associated with the development and metastasis of various cancers.
Prolonged exposure to an inflammatory environment increases the
risk of cancer. Specifically, pyroptosis induces the release of
cytokines such as IL-1 and IL-18, which can promote tumor
invasion, thereby enhancing tumorigenesis and metastatic
potential. Pyroptosis acts as a double-edged sword in cancer,
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capable of either promoting or suppressing tumorigenesis. While its
pro-tumorigenic effects have been widely investigated, the
relationship between pyroptosis and anti-cancer immunity
remains incompletely understood (Yu et al., 2021).

In lung cancer, PPVI (a saponin derived from Trillium
tschonoskii Maxim) inhibits the proliferation of NSCLC cells via
the ROS/NF-κB/NLRP3/GSDMD signaling pathway, exhibiting
significant anti-tumor effects. Given the low chemosensitivity of
NSCLC, this mechanism suggests that PPVI may represent a novel
therapeutic target for NSCLC in the future (Teng et al., 2020).

Currently, many chemotherapeutic agents exert anti-tumor
effects by inducing pyroptosis. For instance, in triple-negative
breast cancer, cisplatin (CDDP) appears to increase the complete
pathological response rate and suppress tumor growth and
metastasis in vitro and in vivo by activating the NLRP3/caspase-
1/GSDMD-mediated pyroptosis pathway (Yan et al., 2021).
Sorafenib, a kinase inhibitor, reduces MHC-I expression in HCC
tumor cells. It has been reported to exert anti-tumor effects by
inducing pyroptosis in macrophages. Beyond this indirect
mechanism, pyroptosis also directly exhibits significant anti-
tumor properties in HCC cells (Chen et al., 2022; Hage et al.,
2019). In recent years, CAR-T therapy has demonstrated
remarkable efficacy in treating tumors, particularly B-cell acute
lymphoblastic leukemia (B-ALL), with complete remission rates
reaching 90%. CAR-T cells can induce pyroptosis in primary B-ALL
cells by rapidly releasing granzyme B, activating caspase-3 to cleave
GSDME, and ultimately triggering pyroptosis (Zhang et al., 2021).

Recent studies have validated pyroptosis as a feasible anti-tumor
immune mechanism with clinical potential. Many researchers are
exploring combinations of pyroptosis with other cancer therapies to
modulate pyroptosis and inhibit tumor cell proliferation, migration,
and invasion. Potential targeted strategies include inhibiting NLRP3,
caspase-1, caspase-3, and GSDMD (Li et al., 2021).

Auxiliary role of autophagy in
cancer treatment

Autophagy exerts a pronounced dual role in tumors,
contributing to the limited development of autophagy-targeting
antitumor drugs. Chloroquine (CQ) and hydroxychloroquine
(HCQ) are among the few autophagy-targeting compounds that
have entered clinical investigations (Levy et al., 2017). Their
mechanism of action involves lysosomal deacidification, which
prevents autophagosomes from fusing with lysosomes and
achieving complete degradation of their cargo (Yang et al.,
2013). The more detailed mechanism by which CQ induces
lysosomal deacidification remains unclear. Preliminary clinical
trials indicate that CQ or HCQ are well-tolerated, particularly
without the neurodegenerative side effects observed in mice with
knockout of certain autophagy-related (ATG) genes, which are
associated with neurodegeneration (Ferreira et al., 2021). As a
major metabolite of CQ, HCQ exhibits lower toxicity at peak
concentrations, leading to its increased use in clinical trials. While
overall efficacy reports are positive, most trials enroll a small
number of patients, necessitating further validation of results
(Alruwaili et al., 2023).

Ferroptosis in cancer treatment

Researchers are increasingly recognizing that various
conventional cancer therapies can induce ferroptosis, and
enhancing ferroptosis induced by these treatments may further
improve therapeutic efficacy. Radiotherapy (RT) triggers
ferroptosis through multiple parallel mechanisms (Pearson et al.,
2021). Following RT, tumor cells activate adaptive responses—such
as upregulating SLC7A11 or GPX4 expression—to antagonize RT-
induced ferroptosis. Thus, combining RT with FINs (ferroptosis
inducers) targeting SLC7A11 or GPX4 increases sensitivity of tumor
cells or xenograft tumors to radiation by enhancing ferroptotic
susceptibility (Pearson et al., 2021). Similarly, the
chemotherapeutic agent gemcitabine induces GPX4 expression
and activity; GPX4 inhibition counteracts this effect, increasing
gemcitabine sensitivity in tumor cells and xenografts via
ferroptosis induction. The cardiovascular risks of gemcitabine are
typically linked to factors such as dosage, treatment duration, and
preexisting cardiovascular conditions, with reported symptoms
including myocardial ischemia (e.g., chest pain, tightness), rarely
progressing to myocardial infarction. Targeting SLC7A11 with FINs
has also been shown to sensitize tumor cells to chemotherapy (e.g.,
CDDP, doxorubicin, DOX), immunotherapy (e.g., ICIs), and
combined RT-immunotherapy (Lang et al., 2019).

Notably, in cancer with intrinsic or acquired treatment
resistance, induction of ferroptosis by FINs restores sensitivity to
conventional therapies. Mutations in tumor suppressors TP53 or
KEAP1 evade RT-induced ferroptosis by upregulating SLC7A11 and
other anti-ferroptotic mechanisms, leading to inherent radiation
resistance (Zheng et al., 2022). Acquired radioresistant tumor cells
also exhibit SLC7A11 upregulation and ferroptosis resistance; in
these cells and xenografts, FINs reactivate ferroptotic sensitivity,
restoring responsiveness to RT. Similarly, FINs can overcome
chemoresistance in certain cancers: targeting SLC7A11 with FINs
eliminates CDDP resistance in head and neck squamous cell
carcinoma cells and xenografts (He et al., 2021), while in vitro
studies show FIN-mediated SLC7A11 inhibition reverses docetaxel
resistance in ovarian tumor cells (He et al., 2021).

Cuproptosis in cancer treatment

Cuproptosis is a newly discovered copper-dependent form of
PCD identified in 2022. Currently, research on drugs for treating
tumors caused by copper death is still in its early stages. Elesclomol
(ES) is a chemotherapeutic adjuvant developed by synta
pharmaceuticals and originally developed for treating metastatic
melanoma. Recent studies have found that its synergistic effect with
copper ions can specifically induce cuproptosis by degrading iron-
sulfur proteins and interfering with mitochondrial metabolism. ES is
primarily used in cancer therapy research, with its mechanisms
involving cuproptosis, oxidative stress-induced cell death, and
mitochondrial function regulation. There are currently no
reported explicit applications in the cardiovascular field.
Cuproptosis is often combined with other PCD mechanisms
(such as apoptosis and ferroptosis) or traditional therapies to
overcome the limitations of single mechanisms.

Frontiers in Pharmacology frontiersin.org08

Yue et al. 10.3389/fphar.2025.1615974

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1615974


FIGURE 5
Cardiovascular risk of tumors initiated Ferroptosis or Cuproptosis treatment. On one hand, ferroptosis and cuproptosis can be synergistically used in
combined tumor therapy to induce the death of tumor cells. On the other hand, they are also involved in the apoptosis of cardiomyocytes and are related
to cardiovascular diseases such as myocardial ischemia and myocardial infarction.

FIGURE 6
Known or potential cardiovascular risks of Apoptosis, Necroptosis, Pyroptosis and Autophagy. Apoptosis, Necroptosis, Pyroptosis, and Autophagy.
When these forms of cell death act on cardiomyocytes and cardiac tissue, they trigger a series of injury inducers. For example, ROS induces oxidative
stress, DNA damage destroys genetic material, T-cell activation initiates immune attack, cytoskeleton abnormality affects cell structure, mitochondrial
respiratory chain malfunction interferes with energy metabolism, and ion channel abnormality disrupts electrophysiological activity. When these
inducers act continuously, they will drive cardiomyocytes towards Apoptosis and further lead to Cardiac rhythm disorder.
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PCD-dependent oncology drugs and
cardiovascular risks

Chemotherapeutic drugs are one of the most widely used and
longest-established types of tumor treatment drugs (Zhou et al., 2023).
Numerous existing studies have shown that anthracyclines (Hulst et al.,
2022), taxanes (Sun et al., 2022), and alkylating agents (Kreher et al.,
2023) all exhibit significant cardiotoxicity (Figures 5,6 ). Anthracyclines
represented by DOX, or epirubicin and daunorubicin, induce DNA
damage by intercalating into DNA and inhibiting topoisomerase II,
thereby activating cell apoptosis pathways (van der Voort et al., 2021).
While DOX acts on cancer cells, it also binds to cardiac myocyte-
specific topoisomerase II, leading to double-strand breaks inmyocardial
nuclear DNA. The DNA damage is difficult to repair, triggering the
p53-dependent apoptosis pathway (Büyükçelik et al., 2005; Lin et al.,
2022). Additionally, after entering cardiac myocytes, DOX intercalates
into the mitochondrial membrane lipid bilayer and disrupts the
mitochondrial electron transport chain, leading to electron leakage
and subsequent production and release of reactive oxygen species (ROS)
(Kim and Choi, 2021; Xie et al., 2022). ROS induces the expression of
Bcl-2 associated X protein (Bax)/Bcl-2 homologous antagonist/killer
protein (Bak), leading to increased mitochondrial membrane
permeability. Subsequently, cytochrome C is released to activate
Caspase-9, which in turn activates Caspase-3 to execute the
apoptotic process of cardiac myocytes (Chang et al., 2023; Shen
et al., 2021).

Anthracyclines
Anthracyclines have been widely used in clinical cancer

treatment. According to the timing of cardiac toxicity
appearance, they can be classified into acute toxicity, subacute
toxicity, and chronic toxicity (Cai et al., 2019; Curigliano et al.,
2010). Acute toxicity occurs within hours to days after drug
administration, caused by transient myocardial cell dysfunction
due to a massive burst of ROS in the short term (Cai et al.,
2019). Subacute myocardial toxicity occurs within weeks to
months after drug administration. During this phase, persistent
accumulation of ROS leads to severe DNA damage in myocardial
cells, triggering myocardial cell apoptosis and partial myocardial
necrosis (Dempke et al., 2023). Chronic toxicity occurs years after
drug administration or even persists lifelong. In contrast to the
former two, chronic toxicity involves severe myocardial cell loss and
long-term cardiac fibrosis, leading to irreversible cardiac
dysfunction such as dilated cardiomyopathy and New York Heart
Association (NYHA) class III-IV HF (Figure 7) (Xie et al., 2024). In
clinical use of anthracyclines, cardiac function changes must be
monitored via echocardiography, B-type natriuretic peptide (BNP)
levels, troponin levels, and electrocardiography. Interventions
should be initiated when significant changes in indicators of HF
risk occur, including angiotensin-converting enzyme inhibitors
(ACEIs)/angiotensin receptor blockers (ARBs), β-blockers,
spironolactone, and sodium-glucose cotransporter 2 (SGLT-2)
inhibitors (Porter et al., 2022).

FIGURE 7
Mechanism of DOX effects on the heart. DOX promotes the generation of ROS, which damages mitochondrial membrane lipids and DNA, inhibits
the activity of mitochondrial respiratory chain complexes (such as Complex I and III), reduces ATP production, and trigger a burst of ROS, leading to
oxidative stress and mitochondrial damage. Concurrently, DOX inhibits SERCA2a, disrupts calcium homeostasis, causes calcium overload, and induces
myocardial contractile dysfunction and arrhythmias. In the apoptotic pathway, ROS activate Bax/Bak, leading to the opening of the mitochondrial
permeability transition pore (mPTP), the release of cytochrome c, and the sequential activation of Caspase-9 and Caspase-3. In inflammatory and fibrotic
pathways, DOX induces the release of inflammatory factors, infiltration of inflammatory cells, and promotes collagen synthesis via the TGF-β/Smad
pathway, exacerbating myocardial fibrosis. These multiple, potentially synergistic mechanisms contribute to ventricular dilation and fibrosis, driving the
progression of myocardial injury.
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To reduce the cardiac damage caused by anthracycline
chemotherapy, several clinical application protocols and
preclinical studies have made multi-faceted efforts. On the one
hand, it is about how to reduce the cardiotoxicity of
anthracyclines under the premise of ensuring chemotherapeutic
efficacy, and on the other hand, how to enhance the heart’s
ability to cope with anthracyclines (Cejas et al., 2024). Clinical
practice often involves replacing short-term high-dose
administration of DOX with continuous infusion or fractional
dosing to reduce its cardiotoxicity (Pollack et al., 2020).
Preclinical studies aim to alter the in vivo distribution of drugs to
reduce the cardiotoxicity of anthracyclines, including some newly
developed drug delivery systems such as DOX liposomes and DOX
nanoparticles (Ding et al., 2024; Yang et al., 2024). Some
cardioprotective drugs are commonly used to protect the heart
from anthracycline-induced damage, typically by influencing the
redox metabolic processes of cardiac myocytes. Take Dexrazoxane
as an example: it chelates iron ions from the Fe3+-anthracycline
complex, inhibits hydroxyl radical formation, and directly scavenges
superoxide anions (Chow et al., 2023; Huang et al., 2024). Reduced
GSH is another commonly used reducing agent. In DOX-induced
cardiotoxicity, GSH reduces DOX cardiac toxicity by enhancing
superoxide dismutase (SOD) activity and decreasing the expression
of Bax/Bcl-2 apoptotic signaling (Huang et al., 2024).

Taxanes
Taxanes, like anthracyclines, also lead to increased of ROS in

cardiac myocytes, primarily superoxide anions (O2
−) and hydrogen

peroxide (H2O2). Generally, the cardiotoxicity of taxanes is much less
severe than that of anthracyclines (Mosca et al., 2021; Xiao et al.,
2021b). However, taxanes do affect the mitochondrial fusion-fission
process (You et al., 2021). For example, docetaxel induces dynamin-
related protein 1 (Drp1)-mediated abnormal mitochondrial fission,
leading to collapse of the mitochondrial membrane potential (ΔΨm)
and a 50% increase in cytochrome c release (Xiong et al., 2024).
Taxanes also affect cellular structure by stabilizing microtubules and
blocking mitosis to induce tumor cell apoptosis, while simultaneously
interacting with cardiac tubulin to disrupt cytoskeletal integrity and
trigger myocardial cell apoptosis (Das et al., 2021). All the above
effects on cardiac myocytes can lead tomyocardial cell loss and trigger
cardiac dysfunction, manifested as reduced left ventricular ejection
fraction and congestive HF (Lu et al., 2025).

Unlike anthracyclines, taxanes also affect the normal rhythm of
the heart. Some studies have shown that paclitaxel can directly bind
to the human ether-a-go-go related gene (hERG) channel (a
potassium ion channel) in cardiac myocytes and prolong the
action potential, leading to QT interval prolongation (Rathkopf
et al., 2025). When paclitaxel acts on Ca2+-ATPase, it can cause
intracellular Ca2+ overload in cardiac myocytes and lead to cardiac
rhythm abnormalities, manifested as sinus bradycardia or
supraventricular tachycardia (Wang et al., 2022). In addition,
histamine release by taxanes can cause vasodilation and
hypotension, leading to acute cardiovascular disorders or chronic
cardiac injury (Tsao et al., 2022).

Alkylating agents
Alkylating agents are one of the earliest and most widely used

anticancer drugs. Compared with anthracycline anticancer drugs,

alkylating agents have a lower incidence of cardiotoxicity (Highley
et al., 2022). Clinically, alkylating agents associated with
cardiotoxicity mainly include Cyclophosphamide (CTX)
(Fanouriakis et al., 2021), Ifosfamide (IFO) (Emami et al., 2024),
and platinum compounds such as CDDP (Oaknin et al., 2024) and
Carboplatin (CBP) (Baas et al., 2021). CTX exhibits a certain
probability of causing hemorrhagic myocarditis, typically
occurring with high-dose use (>100 mg/kg). CDDP can directly
damage cardiomyocytes. Upon entering cardiomyocytes, it binds to
DNA or proteins, disrupting normal cellular metabolism. Since
CDDP affects ion channels such as calcium and potassium
channels, its administration is often accompanied by alterations
in cardiomyocyte action potentials and repolarization, potentially
leading to arrhythmias (Panopoulos et al., 2023; Pudil et al., 2020).
Given their early use and well-established clinical application, details
will not be repeated here.

Targeted drugs
Targeted therapies, particularly HER2 inhibitors like

trastuzumab and pertuzumab, exhibit notable cardiotoxic
potential. These agents block HER2-mediated oncogenic signaling
and enhance antibody-dependent cellular cytotoxicity but also
disrupt HER2-dependent survival pathways in cardiomyocytes,
impairing myocardial repair and promoting apoptosis (Kirkham
et al., 2022).

For the known cardiotoxicity of HER2 inhibitors, clinical
practice generally allows for the occurrence of cardiotoxicity with
certain drugs. Take trastuzumab as an example: echocardiography
and troponin level monitoring are typically used to assess
cardiotoxicity risk and determine whether continued use of
HER2-targeted inhibitors is appropriate. When left ventricular
ejection fraction (LVEF) significantly decreases (50% < LVEF ≤
90%) and cardiac troponin levels increase, interventions are initiated
with ACEIs/ARBs and/or β-blockers, accompanied by increased
frequency of echocardiographic monitoring (Porter et al., 2022).

Although BCL-2 inhibitors exhibit promising clinical activity in
oncology, they pose cardiovascular risks by antagonizing the anti-
apoptotic function of BCL-2 in cardiac myocytes, disrupting energy
metabolism, and inducing ventricular remodeling. Additionally,
BCL-2 inhibition alters cardiac electrophysiology by regulating
potassium channels and delaying repolarization, thereby
prolonging the QT interval—a known risk factor for life-
threatening arrhythmias (Gao et al., 2023; Zhang et al., 2016).

Immune checkpoint inhibitors
ICIs, while revolutionizing cancer treatment through immune

activation, carry unique cardiovascular hazards. T cell-mediated
immune attack on cardiomyocytes and systemic cytokine
storms—characterized by acute surges in IL-6, IFN-γ, and other
pro-inflammatory cytokines—can trigger myocarditis,
cardiomyocyte apoptosis, and circulatory collapse with high
mortality (Sun et al., 2024).

During clinical use of ICIs, electrocardiograms, troponin levels,
echocardiograms, and follow-up with symptom change recording
are required. Any abnormal test results necessitate further
evaluation. In the presence of significant cardiotoxic symptoms
such as myocarditis, pericarditis, arrhythmias, or ventricular
dysfunction, prompt intervention with corticosteroid drugs is
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indicated. For cases refractory to initial steroids, consideration
should be given to adding mycophenolate mofetil, infliximab, or
antithymocyte globulin (Alexandre et al., 2020).

Other related channels
In addition, some drugs that are still in the research phase or

may pose potential cardiovascular risks through intrapathway
analysis also warrant attention. MLKL is a key executioner
protein in the necroptosis pathway. However, other studies
suggest that excessive MLKL activation may trigger oxidative
stress in cardiomyocytes, resulting in necrotic cell death. This
also implies that inducing tumor cell necroptosis carries potential
cardiotoxic risks (Gao et al., 2023; Zhang et al., 2016). Pyroptosis
exerts anti-tumor effects through inflammasome activation, eliciting
robust immune responses. However, in cardiovascular research,
excessive NLRP3 activation can exacerbate cardiac inflammation,
increasing the release of IL-1β and IL-18, inducing cardiomyocyte
apoptosis, and contributing to myocardial hypertrophy and fibrosis.
Existing evidence suggests that limiting NLRP3 activity facilitates
recovery in damaged cardiac tissue. Therefore, maintaining
balanced pyroptosis activation is beneficial for cancer therapy,
particularly in hematologic malignancies. Nonetheless, further
research is needed to identify the optimal equilibrium for
pyroptosis induction to avoid associated cardiovascular toxicity.
CQ and HCQ directly affect the electrophysiological properties of
cardiomyocytes, significantly influencing heart rhythm and causing
QT interval prolongation—a risk exacerbated when combined with
antiarrhythmic drugs (Kim et al., 2020; Sutanto and Heijman, 2020).
This stems from their direct impact on potassium and calcium ion
channels, prolonging myocardial repolarization and increasing
intracellular calcium concentration. Additionally, these drugs
exert significant effects on cardiomyocyte structure and
metabolism: studies show that CQ and HCQ interfere with
myocardial β-oxidation, promote intracellular fatty acid
accumulation, disrupt cardiac energy supply, and induce
myocardial cell damage (Ballet et al., 2022; Sutanto and
Heijman, 2020).

Conclusion and prospect

PCD has emerged as a crucial strategy in anti-tumor drug
development. PCD encompasses diverse modalities such as
apoptosis, necroptosis, pyroptosis, autophagy, ferroptosis, and
cuproptosis, each with distinct molecular regulatory networks
and hallmarks. Apoptosis, a caspase-dependent process, is
regulated by endogenous, exogenous, and ER stress-induced
pathways. Necroptosis is caspase-independent and involves
RIPK1, RIPK3, and MLKL. Pyroptosis is pro-inflammatory
and executed via canonical or non-canonical pathways.
Autophagy is a lysosome-mediated process for intracellular
component recycling, with macroautophagy, microautophagy,
and CMA as subtypes. Ferroptosis is characterized by iron-
dependent lipid peroxidation, and cuproptosis is
copper-dependent.

Many anti-tumor agents, including chemotherapeutics,
targeted drugs, and immune checkpoint inhibitors, exert effects
through modulating PCD pathways. However, these agents are

associated with significant cardiovascular risks. For example,
anthracyclines cause cardiomyocyte damage through free radical
generation; HER2 inhibitors disrupt cardiomyocyte survival
pathways; ICIs can trigger myocarditis and cytokine storms.
Necroptosis in tumors has a dual role, and its induction may
carry cardiotoxic risks. Pyroptosis can both promote and suppress
tumorigenesis, and excessive activation in the cardiovascular
system can lead to cardiac inflammation. Autophagy-targeting
drugs like CQ and HCQ have cardiovascular side effects such
as QT interval prolongation and myocardial cell damage.
Ferroptosis induction can enhance the efficacy of conventional
cancer therapies, but the associated cardiovascular risks need to be
further explored.

Future research is needed to comprehensively understand the
complex interplay between different PCD pathways and
cardiovascular biology. This will facilitate the development of
more effective and safer cancer therapies. Strategies could include
designing drugs that specifically target PCD pathways in tumor cells
while minimizing cardiovascular toxicity. Additionally, personalized
medicine approaches may be developed, considering individual
patient’s genetic profiles and cardiovascular status to optimize
treatment regimens. Moreover, exploring novel combinations of
therapies that synergistically induce PCD in tumors while protecting
the cardiovascular system holds great promise for improving cancer
treatment outcomes.
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