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Neurotherapeutics that are effective in the central nervous system (CNS) of the
brain require an accurate estimation of their uptake across the blood—brain
barrier (BBB), a highly selective membrane between the bloodstream and the
nervous system that restricts and regulates the entry of small molecules. Drugs
that influence the CNS must permeate the BBB prior to reaching their target site.
Therefore, the prediction of BBB permeability with CNS activity is a fundamental
aim and significant research objective in neuropharmacology. Here, we utilized in
silico approaches and available machine learning models ranging from
physicochemical properties to structure—activity relationships in a CNS drug
discovery pipeline to identify BBB-permeable molecules. These models pertain to
pharmacophore-based virtual screening, BBB permeability and CNS activity
prediction, medicinal chemistry, ADME, toxicity profiling, drug-likeness, side
effect resources, and bioactivity studies. A total of 2,127 active small
molecules were initially screened based on the structure similarity of five
FDA-approved drugs of particular interest for neurodegenerative diseases.
Based on the BBB model, they were classified into 582 BBB permeable and
1545 BBB non-permeable molecules. Most of the BBB-permeable molecules
were reported to have direct CNS activity due to their high brain-to-blood ratio.
Finally, 112 active CNS molecules were prioritized based on pharmacokinetics,
toxicophores, and drug-likeness. Additionally, the neuroactivity toward the CNS
of small molecules was predicted to be a nootropic, neurotrophic factor
enhancer, and neuroinflammatory modulator. Thus, by ensuring their impact
on BBB integrity and the neuroprotective properties of small molecules, they can
in future be transformed into food supplements and nutraceuticals that could
provide valuable insights into neurotherapeutics as promising therapeutic
interventions for neurodegenerative diseases.

neurotherapeutics, BBB permeable, CNS active, small molecules, drug discovery,
pharmacokinetics, neurotrophic factor
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1 Introduction

Central nervous system (CNS) diseases comprise a wide range of
medical conditions that affect the spinal cord and brain.
Neurodegenerative diseases (NDDs) represent a significant subset
of CNS disorders characterized by the progressive degeneration of
nerve cells. NDDs are age-associated multifactorial diseases
characterized by dementia, cognitive impairment, memory
decline, motor dysfunction, progressive loss of neuronal cells, and
extensive brain damage (Baswar et al.,, 2021). Aging is recognized as
a primary risk factor for the progression of neurodegeneration,
which results in significant impairment in human wellbeing and
health (Duc Nguyen, 2023). The incidence and prevalence of age-
related neurodegeneration, which are predominantly observed in
clinical ~practice, Alzheimer’s  disease,

Parkinson’s disease, and amyotrophic lateral sclerosis and are

primarily encompass

increasingly recognized as major causes of death and disability
worldwide. The pathophysiological hallmarks among these NDDs
are  misfolded protein  accumulation, oxidative = stress,
neuroinflammation, and mitochondrial dysfunction (Wang et al.,
2010). The aging population around the world is contributing to the
rise in the occurrence of neurological diseases, constituting a
significant threat to healthcare systems. To address this problem,
there is an urgent need to discover and develop novel
strategies that
underlying mechanisms of these neurological diseases (Duc
Nguyen, 2023; Wang et al., 2010).

Neurotherapeutics represents a multidisciplinary field in

neurotherapeutic can effectively target the

neuroscience that focuses on developing novel treatments for
neurological disorders. It comprises various applications such as
therapeutic interventions, pharmacological agents, gene therapies,
cognitive behavioral therapies, and neuromodulation techniques.
These therapies seek to alleviate symptoms, prevent disease
progression, and ultimately improve patient outcomes in various
neurological conditions (Smith et al., 2012). Neurotherapeutic drug
development aims to identify new treatments that will increase the
quality of life of individuals suffering from neurologic disorders to
NDDs. Progress in neurotherapeutics and neuropharmacology with
respect to clinical methodology employing therapeutic agents was
used to successfully treat both primary neurologic illnesses and
neurodegenerative conditions (Cummings, 2006). Neurotherapeutic
approaches have been utilized in NDD treatments of the CNS,
resulting in the creation of biologically active molecules as medicines
that particularly target underlying mechanisms involved in the
disease etiology. However, the identification of active molecules
has faced some difficulty in treating neurodegenerative conditions
due to the presence of a specialized microvascular unit, known as the
“blood-brain barrier” (BBB), that is crucial for the drug
development process (Lawal et al., 2018).

The BBB is the complex network of brain microvessels that
separates the CNS compartment from peripheral blood circulation.
The primary cells that make up the BBB are brain microvascular
endothelial cells, which are held together by neuronal cells such as
astrocytes and pericytes that act according to the state of the CNS.
Hence, the BBB plays a vital role in protecting the CNS by regulating
the stability of the physiological (internal) environment of brain
tissue, maintaining brain homeostasis and preserving neuronal
viability (Abbott et al., 2010). The BBB facilitates the supply of

Frontiers in Pharmacology

10.3389/fphar.2025.1616144

essential nutrients necessary for the normal functioning of the brain.
The highly selective nature of the BBB allows only specific molecules
to pass through it and enter the brain, as it has the least permeable
capillaries due to physical barriers (tight junctions). This has been
considered as a major obstacle in designing and delivering beneficial
drug-like compounds into the brain via the BBB to treat CNS
diseases (Geldenhuys et al., 2015). However, the restrictive nature
of the BBB allows only 2% of biologically active small molecules to
cross the intact BBB to reach the brain at varying degrees (Mikitsh
and Chacko, 2014). For many neurological diseases, there is almost
no effective treatment due to the insufficient permeability of
therapeutic agents into the brain through the BBB. Therefore,
screening small molecules as to their BBB permeability is a
prerequisite for a drug discovery process for treating CNS
disorders and NDDs (Nagpal et al., 2013).

Neurological disorders necessitate prolonged and lifelong
therapeutic interventions. Current therapeutic approaches
predominantly rely on synthetic drugs that are commonly used
to treat most NDDs which have adverse reactions and side effects
(Feng et al., 2023). Natural products and dietary-based molecules
have exhibited significant therapeutic efficacy in preventing major
diseases. Additionally, natural resources provide a unique way for
the identification of promising novel chemicals with validated
efficacy. It is estimated that nearly 50% of all newly approved
drugs can be traced back to a structural origin derived from a
natural product (Zhang et al., 2017). There is a growing interest in
exploring active molecules from diet or dietary interventions and
functional foods that possess neuroprotective properties that may
enhance their wellbeing and potentially slow down the progression
of neurodegeneration. These approaches may provide
neuroprotective benefits with fewer side effects than conventional
pharmacological treatments. As research continues to evolve in this
field, the integration of dietary interventions as complementary
strategies with innovative drug-delivery approaches may facilitate
the effective management of NDDs (Feng et al., 2023).

The development of neurotherapeutics is significantly impacted
by accurate predictions of BBB permeability and CNS activity.
Existing traditional methods of assessing BBB permeability are
often very challenging, time-consuming, require large-scale
experimental trials, and are laborious, resulting in low
throughput (Shaker et al., 2023) and are hence unsuitable for
screening large libraries of molecules. Therefore, given these
experimental difficulties, there is a pressing need for innovative
approaches that can facilitate the rapid screening of drug-like
candidates for their ability to permeate the BBB (Konczol et al.,
2013). Recent advances in computational-aided drug development
(CADD) have emerged as powerful techniques in drug discovery,
offering the potential to screen active molecules and predict BBB
permeability based on physicochemical and pharmacokinetic
properties with higher predictability and clinical applicability
(Aldewachi et al., 2021). Therefore, multiple computational tools,
in silico techniques, and existing machine learning model-based
approaches have been introduced to screen large libraries of
compounds or small molecules that can quickly predict the BBB
permeability of active compounds. Such predictive models are
highly beneficial in enhancing the early phase of the drug
discovery process, especially in the field of CNS research (Stéen
et al,, 2022). Accelerating the drug discovery process is essential for
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FIGURE 1

Research workflow starts from ligand-based screening based on a pharmacophore model of five FDA-approved drugs and compound library
development. The process emphasizes CNS-targeted delivery, focusing on key pharmacokinetic factors such as bioavailability, gastrointestinal (Gl)
absorption, and distribution further evaluated for BBB permeability and CNS activity. Toxicity profiling and side effect resources are integrated before
assessing bioactivity. The ultimate goal is to screen molecules for the treatment of NDDs.

performing high-throughput virtual screening of drug-like small
molecules to evaluate the BBB permeability of the active molecules.

This research applied in silico techniques together with
machine learning and deep learning-based approaches in order
to screen and predict the BBB permeability of druglike
biologically active molecules from natural products and dietary
sources. We explored the BBB permeability of CNS-active small
molecules by interpreting physicochemical descriptors to
compute the brain-to-blood ratio, as these metrics are
routinely utilized to predict clinical exposure in CNS during
the process of drug discovery (Zhang et al., 2016). Hence, we
started with ligand-based virtual screening based on structural
similarity to FDA-approved drugs. Then, the active molecules
were screened and filtered based on multiple parameters,
including BBB permeability, CNS activity, ADME profiling,
toxicity, drug-likeness, bioavailability, medicinal chemistry,
side effect resources, and bioactivity studies. Figure 1 provides
a research workflow for screening BBB-permeable CNS-active
molecules. All molecules were evaluated for the following
parameters in order to identify drug-like small molecules:
improved pharmacokinetics, pharmacodynamics,
physicochemical properties, and the ability to directly activate
at the CNS level by BBB permeation. Therefore, the incorporation
of computational approaches in screening CNS-active and BBB-
permeable molecules in the early phase of the drug discovery
process can reduce the later-stage attrition rate and improve the
overall success rate of drug discovery and development. This may
enable the discovery of small molecules from natural sources with
appropriate BBB permeation to elicit their bioactivity response

against neurotherapeutic targets (Dichiara et al., 2024).
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2 Materials and methods
2.1 Pharmacophore-based virtual screening

Pharmit (Sunseri and Koes, 2016), ChemMine (Backman et al.,
2011), and Swiss similarity (Zoete et al., 2016) were used for ligand-
based pharmacophore modeling and screening of molecules. The
five FDA-approved drugs as a pharmacophore model were selected,
and they were imported as a query molecule in the Pharmit server,
ChemMine, and Swiss similarity to screen large libraries of
structurally similar molecules. Virtual screening was based on
similarity value, calculated according to the Tanimoto similarity
score. Pharmit, ChemMine, and the Swiss similarity web servers are
a collection of inbuilt databases such as PubChem, Drugbank,
Zincl5, ChEMBL, CHEBI,
ZINCPharmer used to screen structurally similar molecules
(Sunseri and Koes, 2016; Backman et al, 2011; Zoete et al,
2016). NPClassifier, a
classifying natural products, was utilized to classify the molecules
(Kim et al., 2021).

Chemspace, Molprot, and

deep-learning tool for structurally

2.2 Computing molecular descriptors

Molecular descriptors related to BBB permeability and CNS
activity were computed by an integrated web-based platform
ChemDes (ChemoPy Descriptor Calculator) (Dong et al.,, 2015).
ChemDes can compute all descriptors that can be calculated by
utilizing Python modules of ChemoPy, chemistry development kit,
RDKit, and PaDel descriptors in order to represent each active
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compound (Yuan et al., 2018). The SMILES strings of bioactive
molecules or compounds were firstly uploaded to ChemDes to
calculate 3D molecular descriptors like geometric descriptors,
topological descriptors, physicochemical descriptors, charged
partial surface area descriptors, and the molecular representation
of structure-based descriptors.

2.3 Predicting BBB permeability

BBB permeability was evaluated to compute the potential of
active molecules to permeate the BBB using machine learning-based
quantitative models like BBBper (Kumar P. et al., 2024), LightBBB
(Shaker et al., 2021), and online BBB predictor (Liu et al.,, 2014),
which are based on several machine learning algorithms such as
support vector machine (SVM), random forest (RF), AdaBoost, and
XGBoost to predict the BBB permeability of bioactive molecules.
Deep-B3, a deep-learning-based model, was used to evaluate the
BBB permeability of molecules (Tang et al., 2022). These models aid
in the early phase of the high-throughput screening of BBB-
permeable molecules and also improve the success rate in the
development of CNS drugs. Each molecule structure (as SMILES
format) is used as input for multiple online platforms like BBBper,
LightBBB, and Deep-B3 to list whether the molecule is BBB-
permeable (BBB+) or -non-permeable (BBB-).

2.4 CNS activity

The LogBB_Pred web server was utilized to compute the CNS
activity of BBB-permeable compounds; it accepts a list of bioactive
molecules in SMILES strings and in return provides predicted logBB
values (Shaker et al., 2023). Consequently, this model can accurately
classify the CNS activity of BBB permeable compounds based on the
absolute log [Brain]/[Blood] (logBB) values (i.e., the ratio in the
brain to that in the blood) of drug-like molecules. Small molecules
were considered to be CNS-active if their logBB value exceeded a
defined threshold value (usually > —1) to evaluate the activity of the
compound at the CNS level (Shaker et al., 2023). Additionally, the
CNS multiparameter optimization (MPO) algorithm was used to
calculatet CNS MPO scores (desirability score values >4.0),
combining physicochemical and pharmacokinetic properties to
assess CNS-active druglike molecules (Wager et al.,, 2016).

2.5 Medicinal chemistry metrics

The Swiss-ADME web tool was employed to evaluate the
medicinal chemistry friendliness of bioactive molecules (Daina
et al, 2017). The following filters were applied for further
screening: pan-assay interference compounds (PAINS), Brenk
alerts, lead-likeness, and synthetic accessibility (Opo et al., 2021).
The PAINS substructure filter rule was proposed to exclude
promiscuous compounds that may interfere with assays. Brenk
structural alerts detect reactive functional groups. Lead-likeness
was applied to determine whether a molecular entity is suitable
for optimization. The synthetic accessibility score estimates the ease
of synthesizing the compounds in the laboratory. Medicinal
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chemistry rules were applied with the standard settings already
implemented in the FAF-Drugs4, which have become an essential
component in early-stage drug discovery (Stork et al., 2021).

2.6 ADME profiling

The ADMET lab 2.0 (Xiong et al., 2021), Swiss ADME (Daina
et al., 2017), and the pkCSM ADME (Pi et al., 2015) online servers
were widely used for the systematic evaluation of the
pharmacokinetic properties of screened compounds relative to
CNS drug suitability, provided with diverse physicochemical
associations with known absorption, distribution, metabolism,
and excretion. ADME screening is a batch mode for evaluation,
designed for the prediction of pharmacokinetics based on the
molecular submission of supported SMILES strings and structural
data formatted files. ADMET lab 2.0 (Xiong et al., 2021) and Swiss
ADME (Daina et al,, 2017) were utilized to evaluate intestinal
absorption (human) through Caco-2 and MDCK permeability in
terms of absorption. The volume of distribution (Vd), BBB
permeability, and CNS activity were evaluated in terms of
distribution. Furthermore, cytochrome P450 isoforms substrate or
inhibitor were examined with respect to metabolism. In addition, the
pkCSM (Pi et al., 2015) online server was accessed to predict Renal
OCT2 substrate or inhibitor and total clearance of compounds
through excretion.

2.7 Bioavailability

The HobPre (human oral bioavailability prediction resource) in
silico method was utilized to accurately predict the human oral
bioavailability of small molecules. We began by inputting the
SMILES representations of the compounds into the HobPre web
application, which utilized a consensus model based on five random
forest classifiers to predict human oral bioavailability (HOB). The
model integrated various approaches like machine learning,
pharmacokinetic modeling, and molecular descriptors to predict
oral bioavailability from chemical structure and to classify the
molecules based on predictive bioavailability threshold values
(Wei et al,, 2022). Additionally, Swiss ADME was employed to
find the oral bioavailability based on the bioavailability radar model
of drug-like small molecules.

2.8 Estimation of toxicity

ProTox 3.0 (Banerjee et al., 2024) was used in this study to
estimate the toxic effects of each molecule. ProTox, an advanced
virtual toxicity lab, was used for the prediction of multiple
toxicological ~ factors  related to  molecular  structure,
pharmacophore mapping, and fragment-based propensity scoring
to predict a comprehensive range of toxicological endpoints. It was
used to calculate acute oral toxicity (expressed as LD50, mol/kg) and
predict toxicity classes, ranging from Classes 1 (extremely toxic) to 6
(non-toxic) for each input compound based on chemical similarities
to toxic compounds and a set of trained machine-learning models.

ProTox-3 was then used to determine organ-specific toxicity, other
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toxicity endpoints, and Tox21-toxicological pathways (Banerjee
et al., 2024).

2.9 Evaluation of drug-likeness

The drug-likeness of bioactive compounds was estimated by
cheminformatics techniques with the aid of computational tools
such as Drulito (Bickerton et al., 2012) and Molsoft (Molsoft, 2025).
The Drulito tool was utilized to identify drug-likeness properties
based on Lipinski’s “rule of five” (RO5) and other sets of basic rules
such as the Ghose filter, Veber rule, Egan rule, and Muegge rules at
definite threshold value to determine the drugability of each
molecule. These rules are useful in screening and discovering
drug-like molecules based on structure-activity (Ani et al., 2020).
Molsoft was assessed to select drug-like candidates based on the
drug-likeness score. Drug-like soft filter was executed based on
several physicochemical parameters of drugs integrated with an
in-built statistical analysis of approved drugs (Tamaian et al., 2023).

2.10 SIDER-side effects resource

The SIDER online database was utilized;
information on the recorded side effects (details about adverse

it contains

drug reactions) extracted from public repositories (Kuhn et al.,
2016). The drug-like molecules were searched against the SIDER
database with their PubChem CID. Currently accessible
information includes associated side effects, frequency of side
effects, side effect classification (e.g., frequent, infrequent, and
rare), and connections to further resources, such as drug-target
relations. The drug clinical phenotypes in the SIDER 4.1 dataset
were implemented according to MedDRA. The phenotypes in
MedDRA are organized in a five-level hierarchical structure and
were employed to extract a specific clinical phenotype for
mapping symptoms, diagnoses,
indications under CNS and neurological disorders (Kuhn
et al., 2016; Gao et al.,, 2017).

signs, and therapeutic

2.11 Prediction of bioactivity and mechanism
of action

Way2Drug-PASS online and Molinspiration web tools were
used to explore the bioactivity of small molecules with their
mechanism of action. An estimated biological activity profile of
drug-like molecules was obtained as an output by using the
structural formula of each compound as input. PASS online
predicts the biological role of compounds and the potential
therapeutic effects of active compounds combined with their
chemical entities, which can serve as the basis for bioactivity
The
neuroprotection were determined based on probability scores,

prediction. bioactivity and therapeutic effects on
such as the probability of being active (Pa) or inactive (Pi)
depending on the structure-activity relationship between the
analyzed compounds and their associated parameters (Filimonov
et al, 2014). The Molinspiration property explorer web tool was

utilized to determine the bioactivities of our screened molecules with
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respect to predicted bioactivity scores for the six most important
properties (Molinspiration, 2025).

3 Results and discussion
3.1 Ligand-based virtual screening

High-throughput virtual screening used pharmacophore models
of five FDA-approved drugs (Figure 2) were used to identify
structurally similar active compounds and analogs from Pharmit,
ChemMine, and Swiss Similarity, utilizing their integrated
databases. To uncover similar structures from natural sources, we
initially screened 2,127 compounds with a Tanimoto similarity score
of over 0.5, which represented a generally accepted threshold to
determine the similarity of bioactive molecules (Szilagyi et al., 2021).
The compounds that exhibited extreme similarity to query ligands
were screened in order to maintain the uniqueness of the
compounds (Figure 3). The molecules were then identified as
derivatives of flavonoids, alkaloids, coumarins, and terpenoids
(Table 1). Finally, we created a library of bioactive molecules
structurally similar to query ligands for further evaluation.

3.2 Molecular descriptors

Molecular descriptors related to BBB permeability and CNS
activity were calculated using the ChemDes web platform, capturing
key physicochemical and topological properties of the compounds.
A total of 12 important molecular descriptors of active molecules
were computed for the analysis, which is relevant to the BBB
permeability and CNS activity of molecules. The computed 3D
that
volume

molecular  descriptors include intramolecular bonding

(hydrogen bonding), (size), polar surface area
(topological), surface accessible to the solvent (acidity/basicity),
gyration radius, molecular weight, total atom counts, type of
angles, number of aromatic rings, number of rotatable bonds,
sum of oxygen and nitrogen atoms in the molecule, dihedrals,
and molar refractivity were calculated for their predictive ability

(Russo et al., 2018).

3.3 BBB permeability

The BBB permeability of small molecules was evaluated in well-
known in silico, machine learning, and deep learning models such as
BBBper, LightBBB, and Deep-B3. For the BBB model, out of
2,127 molecules, 582 active molecules were identified as BBB-
permeable (BBB+), and 1,545 were identified as non-BBB-
permeable (BBB-). According to the BBB online predictor,
molecules with a threshold BBB—/BBB + score >0.02 are
considered capable of crossing the BBB, while those with scores
below this
(Figure 4B). The identification of these small molecules is

threshold are classified as non-BBB-permeable
essential for drug development, particularly for treatments
targeting central nervous system disorders with effective delivery
across the BBB. These BBB predictor models achieved an accuracy of
above 85% with the best qualitative model.
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Donepezil

Galantamine

FIGURE 2

Tacrine Rivastigmine

Memantine

Pharmacophore model of five FDA-approved drugs (donepezil, tacrine, rivastigmine, galantamine, and memantine) used for the treatment of NDDs.
The pharmacological features are coded with different colors: aromatic features as a violet ring, hydrophobic feature in a green ring, yellow ring
represents the hydrogen bond acceptor, and white represents hydrogen bond donors.

3.4 CNS activity

CNS permeation activity was estimated only for the 582 BBB +
small molecules in LogBB_Pred based on their logBB threshold
values. BBB permeable molecules were found to have
logBB > -1 and were identified as CNS-active (CNS+) molecules
(Table 1). CNS MPO scores were obtained for our 582 BBB +
the
and pharmacokinetic properties:

molecules based on desired value of six common

physicochemical molecular
weight (MW), topological polar surface area (TPSA), number of
hydrogen bond donors (HBD), lipophilicity or calculated partition
coefficient (clogP), calculated distribution coefficient (clogD), and
negative base-10 logarithm of the acid dissociation constant (pKa) of
the most basic center of the molecule. The potential small molecules
with a generated desirability score value >4.0 tend to be identified as
CNS-active (Gupta et al., 2024). The identified CNS-active small
molecules are highly distributed in the brain and have favorable
properties to exert effect within the CNS.

3.5 Medicinal chemistry friendliness

The medicinal chemistry filter was applied to small molecules
obtained after the BBB-permeable and CNS-active screening. A total
of 582 bioactive compounds were subjected to MedChem rule-based
filters like PAINS, Brenk alerts, lead likeness, and synthetic
accessibility. The analyzed results revealed that most of the
compounds were predicted to be PAINS with less alerts,
indicating non-interference in biological assays. Brenk filter with
less structural alerts indicated non-problematic compounds. Lead-
likeness with less violation met the desired criteria, suitable for the
optimization of the pharmacodynamic properties of our screened
small molecules. Synthetic accessibility score values ranging from 1
(results easy to synthesize) to 10 (results difficult to synthesize), were
calculated, with molecules having average score value less than 4 and
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close to 1 perhaps being relatively easy to synthesize in the
laboratory (Bung et al., 2022).

3.6 Oral bioavailability

Oral bioavailability incorporates important factors such as
solubility (LogS <
allowing us to generate a comprehensive bioavailability profile for

6), permeability, and metabolic stability,

each molecule. Our analysis revealed that BBB permeable molecules
were predicted to have favorable oral bioavailability with good
accuracy, depending on the two cutoff threshold values of F >
20% and F > 50% (high oral bioavailability). Notably, we identified
high-priority drug-like candidates with predicted human oral
bioavailability values F > 20%, suggesting good absorption
potential in the gastrointestinal tract and subsequent brain
uptake. According to SwissADME, small molecules with a
potential bioavailability score of 0.5 were selected during the
early stages of the drug discovery process by efficiently
identifying promising candidates for oral administration.

3.7 ADME

The ADME properties of small molecules were evaluated using
online cheminformatics tools such as ADMET lab 2.0 (Figure 4C),
Swiss ADME, and pkCSM. Absorption is an important parameter
for checking the efficacy of small molecules. All molecules were
shown to have Caco-2 and MDCK cell permeability in positive
test values with more than 90% intestinal absorption, which is
ideal for good absorption. Likewise, all small molecules had a
volume of distribution in the acceptable range of 0.04-20 L/kg,
indicating uniform drug distribution in the body fluid and its
uptake amount in tissues. In the case of metabolism,
approximately two-thirds of small molecules were attributed
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3D conformation of selected BBB-permeable, CNS-active molecules identified in this study through high-throughput virtual screening based on
structural similarity. These compounds represent diverse structural classes, including alkaloids, coumarins, flavonoids, and terpenoids. The molecular
representations highlight their structural diversity and potential pharmacophores for targeting various neurological diseases.

to the human cytochrome P450 family, which includes five liver
isozymes—CYP2D6, CYP3A4, CYP1A2, CYP2Cl19,
CYP2C9—which are responsible for metabolic activity.
Additionally, small molecules were reported as potential

and

substrates or  non-inhibitors for most  cytochrome
P450 isoforms. The predicted half-life for the majority of
small molecules was longer at >3 h. All screened small
molecules were predicted to have favorable excretion, with
results from moderate to high clearance rates of 5-15 mL/
min/kg; suggesting efficient elimination through the kidneys.

3.8 Toxicity profiling

The various types of toxicity factors of active molecules were
predicted using ProTox 3.0 online software. All compounds were
shown to be highly inactive and less active for organ toxicity,
other toxicity endpoints, and Tox21-toxicological pathways. All
compounds were predicted with toxicity classes of 4, 5, and 6

Frontiers in Pharmacology

(non-toxic) for acute oral toxicity, with lethal dose (LD50) values
in the range of 2000 > LD50 > 5,000 mg/kg (Figure 4D), with a
prediction accuracy of above 70%. The screened bioactive
compounds were predicted to be inactive for organ toxicity,
particularly for hepatotoxicity and neurotoxicity. The bioactive
compounds were also classified as inactive for the main type of
toxicological endpoint. In addition, most of the bioactive
compounds were reported to be inactive/less active for
toxicological pathways and molecular initiating events, with
less probability of binding to toxicity targets. All models are
based on a machine learning approach, and results are predicted
with a confidence score of above 0.7.

3.9 Drug-likeness

The drug-like properties of screened molecules were obtained
through Drulito. The evaluated drug-like soft filter that resulted in
our potential small molecules meeting all the parameters of the
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TABLE 1 Natural-based small molecules with representative BBB-permeability, CNS activity, mechanism of action, and disease relevance.

Natural product

classes

Molecules

BBB permeability
CNS activity

Mechanism of
action

Disease
relevance

References

Alkaloids Clausine BBB+ Kinase inhibitor Cerebral ischemia Liu et al. (2019)
—0.68069 GABA C receptor antagonist = Prion diseases
CNS active NF-E2-related factor Dementia
2 stimulant
Dihydropiperlonguminine | BBB+ GABA aminotransferase Parkinson Disease Bi et al. (2015)
—-0.22983 inhibitor Cerebral ischemia
CNS active TNF expression inhibitor
Neurotrophic factor
enhancer
Nootropic
Morphine BBB+ Anti-inflammatory Dementia Wang et al. (2018)
—0.15884 IL6 antagonist Parkinson’s disease
CNS active Nootropic
BChE and MAO inhibitor
NMDA receptor antagonist
Coumarins Auraptene BBB+ Anti-inflammatory, inhibits = Dementia Igase et al. (2018)
—-0.13918 TNF Neurodegenerative
CNS active Antioxidant-free radical diseases
scavenger
Neurotrophic factor
enhancer
Kinase and MAO-inhibitor
Bergapten BBB+ GABA aminotransferase Multiple sclerosis Salem et al. (2021)
—-0.23549 inhibitor Parkinson’s disease
CNS active Anti-inflammatory, inhibits | Dementia
ILs
Antioxidant:
NRF2 stimulant
MAO B and kinase inhibitor
Amyloid-p protein
antagonist
Oxypeucedanin BBB+ GABA aminotransferase Multiple sclerosis Jalilian et al. (2022)
—-0.09974 inhibitor Parkinson’s disease
CNS active Anti-inflammatory Dementia
Antioxidant:
NREF2 stimulant
Amyloid-p protein
antagonist
Cytokine release inhibitor
Microtubule stabilization
Flavonoids Chrysin BBB+ Kinase inhibitor Dementia Talebi et al. (2021)
—-0.75733 Antioxidant: Cerebral ischemia
CNS active NREF2 stimulant
Nootropic
Anti-inflammatory-IL6,
TNF antagonist
Kumatakenin B BBB+ Kinase inhibitor Parkinson’s disease Li et al. (2025)
—-0.54139 Antioxidant: Cerebral ischemia
CNS active NRF2 stimulant Dementia
GABA antagonist Prion diseases
Anti-inflammatory TNF
inhibitor
DOPA decarboxylase
inhibitor
MAQO inhibitor
Nootropic
Ponkanetin BBB+ Kinase inhibitor Multiple sclerosis Braidy et al. (2017)
—-0.45751 Antioxidant: free radical Dementia
CNS active scavenger
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TABLE 1 (Continued) Natural-based small molecules with representative BBB-permeability, CNS activity, mechanism of action, and disease relevance.

Molecules

Natural product

BBB permeability

Mechanism of

10.3389/fphar.2025.1616144

Disease

References

classes CNS activity action relevance
Isoflavonoids Biochanin B BBB+ MAO A and B inhibitor Dementia Kumar et al. (2024b)
—-0.31576 Kinase inhibitor Prion diseases
CNS active DOPA decarboxylase Huntington’s disease
inhibitor Amyotrophic lateral
Antioxidant: sclerosis
NRF2 stimulant
Anti-inflammatory: IL, TNF
antagonist
GABA aminotransferase
inhibitor
Amyloid-p protein
antagonist
Daidzein BBB+ DOPA decarboxylase Dementia Singh (2025)
—0.18126 inhibitor Prion disease
CNS active Kinase inhibitor Amyotrophic lateral
MAO A and B inhibitor sclerosis
Antioxidant-NRF2 Parkinson’s disease
stimulant Huntington’s disease
Anti-inflammatory: IL6,
IL1B, and TNF
Amyloid-p protein
antagonist
Ipriflavone BBB+ MAO A and B inhibitor Dementia Hussien et al. (2021)
—-0.10076 Kinase inhibitor Neurodegenerative
CNS active NF-E2-related factor diseases
2 stimulant
Anti-inflammatory TNF
inhibitor
DOPA decarboxylase
inhibitor
Amyloid-p protein
antagonist
Terpenoids Juniperol BBB+ NF-E2-related factor Dementia Bais et al. (2015)
0.4289 2 stimulant Parkinson’s disease
CNS active Antiinflammatory, inhibits
TNF
GABA aminotransferase
inhibitor
Miltirone BBB+ NF-E2-related factor Dementia treatment Feng and Xi (2022)
0.14967 2 stimulant Cerebral ischemia
CNS active Anti-inflammatory
Kinase inhibitor
Phylloquinone BBB+ Antioxidant: free radical Huntington’s disease Emekli-Alturfan and
0.37507 scavenger Amyotrophic lateral Alturfan (2022)
CNS active Anti-inflammatory TNF sclerosis
inhibitor
Nootropic

This table highlights a representative subset of the molecules; a full listing can be provided as supplementary material.

Lipinski “rule of 5” were MW < 500 g mol-1, number of hydrogen-
bound acceptors (HBA < 10), hydrogen-bound donors (HBD < 5),
and lipophilicity (the partition coefficient between n-octanol and
water, CLogP < 5). Ghose and Egan’s rule criteria like MW 160-480,
WLog P value between —0.3 and +5, molar refractivity (MR, 40-130)
and atom count <70, and Veber rule are rotatable bonds (n-ROTB
should be <10, total polar surface area (TPSA < 140 A), logarithmic
distribution coefficient (ClogD) at physiological pH 7.4 in the range
of 1-4 (Stéen et al., 2022; Tamaian et al., 2023). Small molecules that
violated more than one of these sets of rules were excluded. The
Molsoft tool provided a probability of drug score value around 0-4
(Figure 4A), indicating that the small molecules are considered
drug-like molecules.

Frontiers in Pharmacology

3.10 Side effect resource

The side effects (ADRs, adverse drug reactions) and indications
for our list of drug-like molecules were predicted independently
based on the structured data obtained from the SIDER database. A
total of 582 BBB-permeable small molecules were mapped against
known drug side effect pairs related to the CNS. Small molecules in
the SIDER4.1 dataset with side effects, resources, and indications
were excluded for subsequent validation. Consequently, we screened
and filtered out molecules that are reported to have side effects
relevant to the CNS, such as anxiety, depression, dizziness,
schizophrenia, neurological impairment, and other neurological
side effects. In the SIDER dataset, the majority of our active
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(A) Drug-likeness score of the compound (red line) is compared against distributions of known drugs (blue curve) and non-drugs (green curve),
indicating its potential as a drug candidate. (B) BBB permeability: BBB score predicts the small molecules’ ability to cross the BBB, with "BBB+" indicating
permeability and "BBB-" indicating non-permeability. (C) Radar plot visualizing key ADME parameters (logP, MW, TPSA, etc.), comparing the small
molecule properties (yellow line) to acceptable ranges (green and blue shaded areas). (D) Toxicity: predicted LD50 and toxicity class of

small molecules.

molecules were reported to have very rare (<0.1%) side effects with
zero frequency. Additionally, drug indications were described to be
0%, which means that small molecules are not associated with ADR
within this resource. Notably, our predictions indicate very rare side
effects, highlighting the utility of SIDER in identifying potential
safety concerns.

3.11 Biological activity and mechanism
of action

The biological activities related to neuroprotectivity were

evaluated through the PASS online server. PASS online
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prediction provided the probability of active (Pa) and inactive
(Pi) scores for a variety of biological activities, mechanisms of
action, and disease relevance for each molecule (Table 1)
(Filimonov et al., 2014). All BBB-permeable bioactive molecules
were shown to have a higher probability value (Pa > Pi), with high
antioxidant, anti-inflammation, and anticholinergic activity. The
important key findings relevant to neuroprotective activities for our
screened BBB-permeable small molecules are provided in Table 2,
which lists bioactivities with high Pa > 0.3. According to PASS
prediction, all compounds were found to be nootropic, brain-
factor enhancers,

derived neurotrophic neuroinflammatory

modulators, and have anti-Alzheimer’s and anti-Parkinson’s

activity (Filimonov et al., 2014). Molinspiration explored the
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TABLE 2 Neuroprotective properties and the biological activities of BBB-permeable small molecules relevant to neuronal activity.

Properties

Stimulant/agonist T

Bioactivity (Pa > Pi)

References

Inhibitor/antagonist |

Antioxidant defense NREF2 stimulant

MAO inhibitor

Filimonov et al. (2014), Kocsis et al. (2025)

Neuro-inflammatory modulators Anti-inflammatory

IL10, 11, and 13 agonist

Cytokine release inhibitor
IL6, IL1B, TNF, and IFN antagonist

Filimonov et al. (2014), Kocsis et al. (2025)

Cholinergic activity Acetylcholine release stimulant

Acetylcholine agonist

BCHE, ACHE inhibitor
Choline kinase inhibitor

Filimonov et al. (2014), Kocsis et al. (2025)

Neuronal activity Neurotrophic factor enhancer
Nootropic

Microtubule stabilization

AP aggregation inhibitor
Amyloid-p protein antagonist
Tubulin antagonist

Filimonov et al. (2014), Kocsis et al. (2025)

Neuronal transmission Neurotransmitter agonist

predicted bioactivity score >0.05 of small molecules that exhibited

moderate inhibition of disease-specific kinases, proteases,

and enzymes.

4 Discussion

The blood-brain barrier (BBB) has become an important clinical
in the
neurodegenerative conditions (Sweeney et al, 2019). Effective

feature discovery of small molecules that target
delivery of neurotherapeutic agents, drugs, and small molecules
across the BBB in order to reach the brain is a primary limiting factor
for the successful therapy of neurological conditions. During the
early stages of drug research, checking for BBB permeation offers
crucial information for choosing the appropriate molecules.
However, few studies have reported that many compounds failed
due to their inability to permeate the BBB rather than a lack of
potency to reach the brain, which rendered the BBB a significant
obstacle in discovering central nervous system (CNS) drugs
(Cornelissen et al., 2023). Therefore, our work aimed to address
this challenge by employing in silico tools and existing machine
learning model-based approaches to screen for BBB-permeable
neurotherapeutics (Bicker et al, 2014), CNS-active drug-like
small molecules that could serve as potential therapeutic
that target the
mechanisms of neurodegenerative diseases (NDDs) such as

interventions can effectively underlying

Alzheimer’s disease, Parkinson’s disease, and amyotrophic

lateral sclerosis.
A total of 2,127 molecules
pharmacological model of five FDA-approved drugs. Ligand-

were screened using a
based drug discovery requires a target-site-specific drug in order
to understand the chemical space and create novel drug-like
molecules (Bung et al, 2022). Hence, we performed high-
throughput virtual screening based on structural similarity with
respect to the selected list of FDA-approved drugs for NDDs, such as
Donepezil, tacrine, memantine, galantamine, and rivastigmine.
These pharmacotherapies appear to partially alleviate various
associated with NDDs. the
therapeutic benefits are often minimal, transient, and non-
selective, and are frequently accompanied by adverse side effects
(Duc Nguyen, 2023; Chopade et al., 2023). Due to these drawbacks,
innovative therapies from natural products and dietary sources are

clinical symptoms However,
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being considered for NDDs. A wide range of molecular descriptors
explores trends with CNS active drugs. The involvement of 12 types
of molecular descriptors in our study proved to be associated with
BBB permeability of existing studies (Jiang et al., 2016; Faramarz
et al., 2022) and provided a comprehensive understanding of how
these features correlate with drug-like properties. Specific
physicochemical descriptors like MW, lipophilicity, TPSA, and
HB can influence BBB permeability (log BB) and are positively
correlated to brain uptake (Faramarz et al., 2022; Vilar et al., 2010).
The druggability of each molecule must adhere to a defined set of
standard rules like RO5 to favor BBB permeation and reach the brain
via passive diffusion (Pajouhesh and Lenz, 2005). Therefore,
molecules that do not obey these criteria are unsuitable for
clinical use and are susceptible to various challenges regarding
their properties associated with ADME.

BBB-permeable molecules can have varying effects on the BBB
structure. Conversely, certain molecules have been shown to restore
or maintain BBB integrity by upregulating tight junction proteins
and inhibiting inflammatory mediators. Compounds, such as those
derived from natural products and dietary sources, have
demonstrated both high BBB permeability and neuroprotective
effects, with minimal toxicity to the BBB (Sinchez-Martinez
et al., 2022a; Sanchez-Martinez et al.,, 2022b). According to the
BBB model of Shaker et al. (2021), and Tang et al. (2022), 582 small
molecules were identified as BBB+ with over ~85% accuracy in
differentiating BBB+ and BBB— based on the brain-to-blood ratio
(Zhang et al., 2017). BBB-permeable molecules have been found
with direct CNS activities based on predicted logBB values, which is
crucial for therapeutic efficacy (Garg et al., 2008). A total of six key
descriptors were taken into account for CNS multi-parameter
optimization. The CNS MPO showed that 75% of the FDA-
approved drugs for CNS disorders have high desirability
scores >4 for testing molecules, correlating well with our
screened molecules for better translation into the clinics (Wager
et al,, 2016). Medicinal chemists and neuroscientists in recent years
optimized the identified molecules to obey essential criteria of
synthetic accessibility and lead-likeness in order to improve
pharmacokinetics and pharmacodynamics, has been reported to
enhance brain uptake via BBB (Anthony et al, 2021; Sanghai
et al., 2024).

Physicochemical parameters and structural properties of small
molecules determine the BBB permeability, particularly in relation
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to passive diffusion mechanisms (Cornelissen et al., 2023). We
found that the oral bioavailability of small molecules with
predicted values exceeding the threshold of 30% indicates good
absorption potential in the gastrointestinal tract, which is
particularly important for brain targeting. Lipophilicity and
molecular weight were found to be pivotal in determining
bioavailability, aligned with ADME parameters: increased passive
permeability, minimal P-gp liability, adequate metabolic stability,
long half-lives, and efficient clearance rates (Stéen et al., 2022). In
compliance with the existing study, it was reported that an
absorption of drugs more than 90% of the administered dose
leads to increased BBB permeability. According to ProTox
(Banerjee et al.,, 2024), a virtual lab assessed the safety profile of
desired molecules and found them to be non-toxic. In addition, it is
reported to be inactive/less active against organ toxicity, toxicity
endpoints, and toxicological pathways (Tox21). Adverse drug
reactions were assessed in order to avoid unwanted CNS side
effects at the site of action (Adenot and Lahana, 2004). The
drug-likeness determines whether the druggability of each small
molecule that evolved from natural products is BBB-permeable due
to lipid solubility, has a high degree of hydrogen bonding, positively
charges molecules, a low Mw of 400-600 Da, and the highest TPSA
value (Aldewachi et al., 2021; Russo et al., 2018; Cornelissen et al.,
2023). Stéen et al. (2022) suggested that the hydrogen bond
interactions between a molecule and the hydrophilic portion of
the BBB through lipophilicity enable brain uptake.

Neuronal repair processes involve axonal regeneration, synaptic
reorganization, and neuroprotection. Molecules that promote these
processes are of great interest for treating NDDs and CNS injuries
with neuroregenerative potential. Notably, certain flavonoids and
terpenoids have been reported to support neuronal repair and
neuroprotection. Neuronal repair depends on the neurobiological
activity of small molecules based on their bioavailability in the brain
(Wang et al, 2022). Emerging evidence indicates that small
molecules possess multimodal biological activities, including
antioxidant, anti-inflammatory, and kinase-
This
recognized as a significant characteristic of small molecules,

anticholinergic,
inhibitory effects. multifunctionality is increasingly
enabling them to interact with multiple biological targets and
Activity spectra nearly 4000 types of

based the structure-activity relationship
(Filimonov et al, 2014). Moreover, our findings indicate that
small the

neuroprotective activities, such as nootropic, BDNF enhancer,

pathways. predict

bioactivities on

molecules  permeating BBB  possess  various
and the modulation of neuroinflammatory pathways. These
findings align with current therapeutic needs in treating
neurodegenerative diseases. However, the existing scientific
research provides extensive lists and classes of such compounds,
and many have been confirmed to cross the BBB and exert
neuroprotective effects (Mohd Sairazi and Sirajudeen, 2020).

The 112 active CNS molecules identified in this study comprise a
diverse array of naturally based small molecules, each with
demonstrated BBB permeability. Recent research highlights the
distinct mechanisms of action across key brain cell types, such as
neurons, astrocytes, microglia, and endothelial cells, for effective
therapeutic intervention in NDD. Active molecules that reach the
brain can regulate CNS homeostasis, reduce neuroinflammation and

excitotoxicity, promote neuroprotection by reducing oxidative
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stress, inhibit apoptosis, and support synaptic plasticity, thus

directly modulating neurotransmitter  systems, including

dopaminergic, glutamatergic, and cholinergic pathways, or
promoting neuronal survival, making them relevant for treating
conditions such as Parkinson’s disease, Alzheimer’s disease, and
amyotrophic lateral sclerosis (Cornelissen et al., 2023; Kocsis et al.,
2025; Grabska-Kobytecka et al., 2023).

The

molecules, including flavonoids, terpenoids, polyphenols, and

chemical diversity of CNS-active, BBB-permeable
alkaloids, are well-documented in natural product research as
promising scaffolds for CNS drug development (Isabel et al,
2024). The

consistent with recent reviews that emphasize the BBB-crossing

inclusion of naturally derived compounds is
potential of various natural products (Isabel et al., 2024). Our
findings are promising and largely support the ability of specific
dietary molecules to promote CNS health, improve neuroprotective
mechanisms, enhance cognitive function, and mitigate the risk of
NDDs. Furthermore, our results align with existing studies that
suggest a correlation between dietary intake and neurological
outcomes. Many studies have used multiple ligands and/or small
molecules in a single delivery system to maximize brain uptake and
targeted delivery with improved BBB permeation (Cornelissen et al.,
2023; Isabel et al, 2024; Al Gailani et al, 2022). In future,
experimental validation needs to be carried out by ensuring their
impact on BBB integrity and the neuroprotective properties of small
molecules, which can then be formulated as valuable food additives,
food supplements, and nutraceuticals that could provide new
insights into neurotherapeutics as

promising therapeutic

interventions for NDDs.

5 Conclusion

Neurodegenerative diseases will continue to rise with an aging
population. Nevertheless, the rate of advancement in neurotherapeutics
is limited by the complexities associated with drug delivery across the
blood-brain barrier (BBB). Thus, the integration of in silico techniques
and machine learning models can provide greater insights to accurately
screen and identify biologically active molecules that can effectively pass
through the BBB. A total of 112 effective BBB-permeable
neurotherapeutic molecules were identified after screening a library
of small molecules. Potential small molecules were then configured for
pharmacokinetic properties and pharmacodynamic characteristics for
recommendation as primary lead molecules. These active molecules
were prioritized by considering important factors like structural
similarity, ADME profiling, toxicity endpoints, drug-likeness,
bioavailability criteria, and side effects. Resources were applied
individually for the evaluation of safety profiles of drug-like small
molecules to recognize possible health risks. Moreover, bioactivity
studies relevant to neuronal activity revealed that many of these
molecules possess the capacity to modulate critical pathways
involved in neuroprotection and neuroregeneration. Medicinal
chemistry friendliness ensured that only those molecules with
optimal drug-like characteristics were made for potential therapeutic
use, with improved pharmacokinetic properties, expected central
nervous system (CNS) activity, and permeation phenomena at the
BBB level. While our results are promising, it is significant to note that
the translation of in silico predictions into successful clinical
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applications remains challenging. The complexity of the BBB and the
multifactorial nature of neurodegenerative diseases (NDDs) necessitate
experimental validation of the identified molecules, as well as their
ability to restore BBB integrity and provide neuroprotection. Ultimately,
the overall research was aimed at the development of novel
neurotherapeutics delivered across the BBB with CNS activity.
Additionally, our research underscores the potential for dietary
interventions as a strategy to promote brain health and mitigate the
risk of NDDs like dementia/Alzheimer’s disease, Parkinson’s disease,
amyotrophic lateral sclerosis, and multiple sclerosis. Future research
should focus on experimental validation by elucidating the underlying
mechanisms and optimizing dietary formulations to maximize their
beneficial effects on the CNS.
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