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Polypharmacy, the concurrent use of multiple drugs, is a common approach to
treating patients with complex diseases or multiple conditions. Although
consuming a combination of drugs can be beneficial in some cases, it can
lead to unintended drug-drug interactions (DDI) and increase the risk of
adverse side effects. Predicting these adverse side effects using state-of-the-
art models like Large Language Models (LLMs) can greatly assist clinicians. In this
study, we assess the impact of using different LLMs to predict polypharmacy. First,
the chemical structure of drugs is vectorized using several LLMs such as
ChemBERTa, GPT, etc., and are then combined to obtain a single
representation for each drug pair. The drug pair representation is then fed
into two separate models including a Multilayer Perceptron (MLP) and a Graph
Neural Network (GNN) to predict the side effects. Our experimental evaluations
show that integrating the embeddings of Deepchem ChemBERTa with the GNN
architecture yields more effective results than other methods. Additionally, we
demonstrated that utilizing complex models like LLMs to predict polypharmacy
side effects using only chemical structures of drugs can be highly effective, even
without incorporating other entities such as proteins or cell lines, which is
particularly advantageous in scenarios where these entities are not available.
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1 Introduction

Polypharmacy, commonly defined as the concurrent use of multiple medications by the
same patient, has become increasingly prevalent, particularly among older adults with
multimorbidity Masnoon et al. (2017); Joaquim and Campos (2011). This is because
multiple medications are often required to manage different health conditions, especially in
elderly patients, to ensure effective treatment. When prescribed appropriately,
polypharmacy can improve health outcomes and enhance quality of life. For instance,
studies have shown that drug combination with synergistic effects can increase the success
rates of drug repositioning Sun et al. (2016); Madani Tonekaboni et al. (2018).

However, polypharmacy is also associated with significant risks Srivastava (2024);
Plácido et al. (2021). Research indicates that polypharmacy increases the likelihood of
adverse drug reactions (ADRs) and drug-drug interactions (DDI) due to complex
medication regimens Srivastava (2024). The risk of DDIs rises as the number of
medications increases, consequently heightening the potential for negative health
outcomes Maher et al. (2014). A recent study examining trends over 20 years, from
1999 to 2018, in the United States found that polypharmacy is continually increasing,
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particularly among older adults and patients with heart disease or
diabetes Wang et al. (2023).

With the growing application of deep learning in various
domains, including drug-related research, we aim to utilize Large
LanguageModels (LLMs) and traditional language models to predict
the side effects of drug combinations. In this study, we retrieved a
chemical representation of drugs known as the Simplified Molecular
Input Line-Entry System (SMILES) Weininger (1988) from
PubChem Kim et al. (2016). After encoding these SMILES strings
and obtaining representations for drug pairs, the resulting features
are fed into two distinct classifiers, including a Multilayer
Perceptron (MLP) and a Graph Neural Network (GNN), to
evaluate and compare their performance in predicting side effects.

LLMs have revolutionized natural language processing (NLP) by
achieving remarkable success in general tasks. However, their
application in scientific disciplines, particularly chemistry, is still in
its early stages. This presents an opportunity for significant
advancements in this area. In particular, researchers have begun
integrating LLMs within the context of drug discovery. For example,
Sadeghi et al. (2024) compared the performance of Generative Pre-
trained Transformer (GPT) Radford et al. (2019) and Large Language
ModelMeta AI (LLaMA) Touvron et al. (2023a); Touvron et al. (2023b)
with pre-trained models on SMILES, such as ChemBERTa
Chithrananda et al. (2020), in vectorizing SMILES strings, on two
downstream tasks, including molecular property prediction and drug-
drug interaction prediction. Similarly, Pham et al. (2024) demonstrated
the superior performance of ChemBERTa Chithrananda et al. (2020)
compared to a model which constrimilarity profiles by comparing
Morgan fingerprints Rogers and Hahn (2010) in predicting the clinical
relevance of interactions between a pair of drugs. Furthermore, Xu et al.
(2023) used Simple Contrastive Sentence Embeddings (SimCSE) Gao
et al. (2021) to fine-tune the original Bidirectional Encoder
Representations from Transformers (BERT) Devlin et al. (2018)
model to encode drugs and integrate them with cell line features for
predicting synergistic drug combinations.

Despite these advancements, there is still a lack of research on
the impact of LLMs in encoding drugs and comparing their
performance. Several studies, such as Masumshah and Eslahchi
(2023), have approached this task by forming binary vectors for
each drug feature and then computing Jaccard similarity between
drug pairs for the specific features and then being aggregated to
obtain a single representation per drug. The DeepPSE model Lin
et al. (2022) takes a different approach by using deep learning and
self-attention mechanism. It constructs drug representations by
concantenating mono side effect features and drug-protein (DPI)
features. Then, multiple neural networks, including Convolutional
Neural Networks, autoencoders with self-attention mechanism, and
a Siamese network are used to generate drug pair representations.
These representations are fused and passed through fully connected
layers to predict side effects. Another study Masumshah et al. (2021)
applied Principle Components Analysis (PCA) over binary feature
vectors of single drug side effects and drug-protein interactions to
obtain a representation for the corresponding drug. After summing
the representations of drug pairs, an MLP is employed to classify the
drug pair into its associated side effects.

Several studies have used graph neural networks for drug-related
predictions. For instance, Wang et al. (2020) proposed a method based
on an enhanced domain knowledge graph that integrates drugs, genes,

and enzymes, and while it captures various types of interactions. After
encoding these relationships by generating entity embeddings and
concatenating head and tail entities, they apply a Convolutional
Neural Network (CNN), followed by fully connected layers, to
compute interaction scores. Additionally, a recent study by Cheng
et al. (2024) introduced HANSynergy to predict drug synergies. They
constructed a heterogeneous graph that captures diverse relationships
associated with drug combinations, including protein-drug, drug-cell
line, protein-protein, protein-cell line, and tissue-cell line interactions.
To extract features, they use SimCSE model and RDKit tolls for drug
SMILES and proteins sequences, while using word2vec and gene
expression profiles for cell lines and tissues. After training the graph,
the extracted features were fed into a multilayer perceptron to predict
whether a drug combination is synergistic or antagonistic.

A significant challenge in existing methodologies is their
dependence on supplementary drug-related features, such as
proteins, cell lines, enzymes, or gene profiles, which are often
limited or unavailable. Additionally, most current studies
predominantly utilize one-hot encoding methods and similarity
computations to represent entities, resulting in embeddings that
may lack the depth and informativeness provided by advanced pre-
trained language models. To address these limitations, this study
focuses explicitly on the chemical interactions between drugs, rather
than incorporating additional biological entities. By leveraging
sophisticated language models to generate more informative and
rich drug embeddings, we demonstrate that our proposed model
achieves superior performance compared to previous approaches,
while significantly reducing the reliance on extraneous features.
Consequently, our model shows greater generalizability and
resource efficiency, effectively overcoming the constraint of
feature unavailability.

2 Methodology

2.1 Dataset

In this study, we use the Decagon dataset, the sole preprocessed
resource available for drug-drug-side effect analysis. This dataset is
originally introduced in the Decagon paper Zitnik et al. (2018). It
includes both drug-drug interactions and their associated
polypharmacy side effects. Drug-drug interactions typically occur
when one drug alters the effects of another drug, potentially leading
to adverse outcomes. The dataset’s polypharmacy side effect information
within the dataset is sourced from theTWOSIDESdataset Tatonetti et al.
(2012), and contains 4,649,441 drug pair-side effect associations,
1,318 side effect types across 645 drugs and 63,473 distinct drug
combinations. The side effects in the TWOSIDES dataset are
extracted from the U.S. Food and Drug Administration’s (FDA)
Adverse Event Reporting System (AER). The Decagon dataset was
preprocessed to use standardized side effect terms with synonyms
removed, ensuring a controlled and consistent vocabulary.

2.2 Data preparation

The decagon dataset serves as a comprehensive resource,
providing detailed information for each drug, including its
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Compound ID (CID), and the Concept Unique Identifier (CUI) for
the associated polypharmacy side effects, alongside descriptive
names of these side effects. We aim to employ text-based
molecular representations of chemical structures and encode
them using advanced language models. To achieve this, we use
PubChem Kim et al. (2016), a publicly accessible repository that
contains extensive chemical substance data and biological activity
profiles. PubChem organizes this vast amount of information into
three interconnected databases with unique identifiers: Substances
(SID), Compound (CID), and BioAssay (AID).

PubChem provides one unique SMILES string per CID for a
drug, and ensures that the structure is represented consistently. This
is achieved through an internal algorithm that ensures the SMILES
string is deterministic and canonicalized. Using the CID of the drugs
within our dataset, we retrieve detailed chemical information for
each drug from PubChem, specifically extracting their standardized
SMILES (Simplified Molecular Input Line Entry System) strings.
Consequently, the modified dataset now consists of Drug-1 SMILES,
Drug-2 SMILES, and the corresponding Side Effect Name,
establishing a structured foundation for predictive modeling.

Molecular representation can take various forms, such as text-
based, structure-based, and feature-based formats. In this study, we
focus on the SMILES format, which is a concise linear string
representation that encodes atoms, bonds, and branching in
molecular structures. The character-level representation of
SMILES facilitates straightforward tokenization, making it an
ideal input for language models Janakarajan et al. (2023). An
alternative text-based format, SELFIES (Self-referencing
Embedded Strings) Krenn et al. (2020), addresses some
limitations of SMILES. While generating SMILES strings can
pose challenges, such as potential invalidity due to an uneven
number of ring openingclosing symbols or bond valence
violations Janakarajan et al. (2023), recent studies Skinnider et al.
(2021) have shown that language models can effectively distinguish
between valid and invalid molecule representations by learning the
syntax of SMILES, thereby enhancing their utility for
cheminformatics applications.

To align our approach with prior studies, we focus on predicting
964 commonly occurring types of polypharmacy side effects, each
present in at least 500 drug combinations. This selection reduces the
total number of drug combinations to 4,576,785, ensuring
comparability with established baselines.

To verify the structural uniqueness of these 645 drugs, we
further processed the canonical SMILES strings by converting
them to full InChIKeys using RDKit. The InChIKey is a hashed
representation of the complete molecular structure, derived from the
International Chemical Identifier (InChI), which encodes atom
connectivity, hydrogen positions, and salt components. In other
words, InChI distinguishes between different forms of the same
compound, such as between tautomers and between different salt
forms. In our analysis, all 645 SMILES strings produced unique full
InChIKeys, confirming that no duplicate or structurally redundant
compounds were present in the dataset.

In this dataset, a single drug pair can be associated with multiple
side effects, meaning the problem cannot be treated as a multi-class
classification task. The Decagon dataset initially records each side
effect of a drug pair as a separate entry. To prepare the data for input
into the multilayer perceptron, we integrated these entries by

grouping all side effects for each drug pair into a single list. For
instance, if Drug-1 and Drug-2 have side effects A, B, and C listed in
separate rows, we combine these into a unified list [A, B, C],
resulting in a single row per drug pair. This transformation
reframes the problem as a multi-label classification task, where
each drug pair is associated with a set of side effects. As a result,
the dataset size is reduced from 4,576,785 rows to 63,472 rows,
significantly simplifying further analysis and optimizing its
manageability.

Additionally, we encode the list of side effects into a multi-hot
vector format to facilitate input for the multilayer perceptron
approach. This process involves converting side effect names into
numerical representations. Specifically, we construct a binary vector
of size 964 for each drug pair, where each element in the vector
indicates the presence (1) or absence (0) of a specific side effect. This
transformation enables efficient handling of the multi-label
classification problem.

2.3 Data analysis

Following the completion of dataset preprocessing, we
conducted an analysis to gain deeper insights into the model
configuration requirements. When tokenizing sequences using
LLMs such as BERT, it is crucial to specify an appropriate
maximum input length to ensure uniform processing of inputs
by the model. This parameter is vital, as setting the maximum
length too low may result in the truncation of essential information
from longer sequences, while setting it too high can introduce
excessive padding, leading to computational inefficiency and a
potential loss of accuracy.

To determine an optimal maximum input length, we analyzed
the lengths of SMILES strings for all 645 drugs in the dataset. The
average length was found to be 54.25 characters, as illustrated in
Figure 1a. Based on this analysis, we set the maximum input length
of language models to 64, ensuring that the majority of SMILES
strings are preserved.

Furthermore, since we reformatted the dataset into a multi-label
classification setup, it was essential to examine the sparsity within
the side effect lists. Figure 1b reveals a highly skewed distribution in
the number of side effects per drug pair, with a median of 52 and a
mean of 72. This analysis highlights a significant class imbalance
within the dataset, showing the unequal representation of side effects
across drug pairs in this transformed format.

2.4 Embedding generation

To represent the SMILES strings of drugs in a format suitable for
deep learning models, we use various language models to encode
these text-based representations. This encoding maps SMILES
strings into a latent space where critical structural and chemical
information is preserved for downstream tasks.

In recent years, LLMs have played a pivotal role in various NLP
tasks, including text analysis and translation. Their application in
bioinformatics is expanding rapidly Lv et al. (2021), showcasing
their versatility across diverse fields. In this study, we employ
multiple models to encode drugs representations, including
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BERT, Sentence-BERT (SBERT) Reimers and Gurevych (2019),
Fine-tuned ChemBERTa Xu et al. (2023), OpenAI’s GPT,
Mol2vec Jaeger et al. (2018), and Doc2vec Le and Mikolov (2014).

BERT, built upon the transformer architecture, uses self-
attention mechanisms to capture contextual relationships among
words in a sequence by processing text bidirectionally. The BERT
base model consists of 12 Transformer layers and 12 self-attention
heads. SBERT extends BERT by adding a pooling layer to generate
fixed-sized, sentence-level embeddings. In this study, we use base
BERT (bert-base-uncased) for vectorizing both SMILES strings and
side effect names.

In the context of chemical data, specialized language models
such as ChemBERTa, or BioBERT Chithrananda et al. (2020); Lee
et al. (2020) have been developed to effectively process chemical
data, particularly SMILES strings. ChemBERTa, for instance, is
tailored to enhance molecular property prediction. Variants of
ChemBERTa differ primarily in their training objectives and the
datasets used during pre-training. In this study, we use the
ChemBERTa model pre-trained on the Masked Language
Modeling (MLM) task using a dataset size of 77 million samples
(ChemBERTa-77M-MLM). Additionally, we employ a fine-tuned
variant of ChemBERTa developed by Xu et al. (2023), which uses
SimCSE, a contrastive learning approach. This fine-tuning process is
conducted using the GuacaMol benchmark dataset Brown et al.
(2019), which serves as both the dataset and the basis for applying
SimCSE to learn self-similarity in SMILES strings, with dropout
introduced as noise to further enhance embedding quality.

For comparison with traditional models, we include Doc2vec,
which extends Word2vec Mikolov et al. (2013) to encode larger text
units, such as sentences. Additionally, Mol2vec is included as it
specializes in substructure-based embeddings, and is trained on
extensive molecular datasets like ZINC Irwin et al. (2012) and
ChEMBL Gaulton et al. (2012); Bento et al. (2014) databases, which
are well-established repositories of chemical compounds and bioactive
molecules. Finally, to benchmark against state-of-the-art models, we
assess the embeddings generated by OpenAI’s Third-generation GPT
Small model (text-embedding-3-small). This provides a comprehensive
comparison between traditional and advanced approaches.

Each model typically employs a distinct tokenization strategy.
Tokenization involves segmenting input data into individual
characters or substructures, depending on the model’s purpose. To

compare the tokenization approaches of various language models, we
consider 2-Mercaptoethanesulfonic Acid Sodium, represented by the
molecular formula C2H6O3S2. The corresponding SMILES notation is
”C(CS(=O)(=O)O)S”. This SMILES sequence was processed using the
tokenizers of different models. Table 1 lists the tokenization results
obtained from these models. Notably, the ChemBERTa models
correctly identify ”C” and ”S” atoms as separate tokens,
demonstrating their alignment with chemical structure conventions.

The vectorization process involves multiple steps, as illustrated in
Figure 2a. Initially, each SMILES string is tokenized into individual
characters or substructures, depending on the model specifications.
Then, for BERT, SBERT, and ChemBERTa the tokenized SMILES
strings are fed into the model to generate embeddings that capture rich
contextual information. Mol2vec, by contrast, produces substructure-
based embeddings that emphasize local chemical environments.
Additionally, we use the Application Programming Interface (API)
provided by OpenAI to encode drug representations using their
advanced and most powerful third-generation embedding model.
The text-embedding-3-small version, with an embedding dimension
of 1,536, yields a compact informative representation per drug, resulting
in a fused drug-pair embedding of the same dimensionality.

In our analysis, we evaluate four distinct strategies to obtain a
comprehensive representation for each drug pair. Our experiments
showed that both concatenation and summation yielded similar
performance. However, to optimize computational efficiency, we
selected summation as our fusion method. Specifically, after
vectorizing each drug individually, we sum the embeddings of
the two interacting drugs to produce a unified vector
representation for each drug pair. Formally, given e1 and e2 as
the embeddings of Drug-1 and Drug-2, respectively, the resulting
drug-pair embedding, which serves as the input to our downstream
models for predicting polypharmacy side effects, is represented as
epair � [e1 + e2].

2.5 Classifier architecture

Given the embeddings generated, which provide structured
numerical representations for each drug pair, we propose two
distinct classification models to predict the side effects of
polypharmacy.

FIGURE 1
(a) Distribution of SMILES string lengths for 645 drugs in the dataset. (b) Number of side effects associated with each drug pair in the
reformatted dataset.
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TABLE 1 Tokenization strategies of various language models for 2-Mercaptoethanesulfonic Acid Sodium (C2H6O3S2) using the SMILES notation
”C(CS(=O)(=O)O)S”.

Model Tokenization

BERT [’C’, ’(’, ’CS’, ’(’, ’ = ’, ’O’, ’)’, ’(’, ’ = ’, ’O’, ’)’, ’O’, ’)’, ’S’]

SBERT [’C’, ’(’, ’CS’, ’(’, ’ = ’, ’O’, ’)’, ’(’, ’ = ’, ’O’, ’)’, ’O’, ’)’, ’S’]

Deepchem ChemBERTa [’C’, ’(’, ’C’, ’S’, ’(’, ’ = ’, ’O’, ’)’, ’(’, ’ = ’, ’O’, ’)’, ’O’, ’)’, ’S’]

Fine-tuned ChemBERTa [’C’, ’(’, ’C’, ’S’, ’(’, ’ = ’, ’O’, ’)’, ’(’, ’ = ’, ’O’, ’)’, ’O’, ’)’, ’S’]

GPT [’C’, ’(’, ’CS’, ’(’, ’ = ’, ’O’, ’)(’, ’ = ’, ’O’, ’)’, ’O’, ’)’, ’S’]

FIGURE 2
Pipeline of PolyLLM. (a) Drug-pair representations created by combining encoded drug features using language models (b) MLP approach:
Multilayer perceptron to predict side effects from drug-pair representations. (c) Graph approach: Bipartite Graph constructed with drug-pair nodes and
encoded side-effect features to predict whether or not a drug-pair is associated with side effects, considered as a binary link prediction task.

FIGURE 3
Overview of (a) the Multilayer Perceptron and (b) the Graph Neural Network approaches for predicting drug-pair side effects.
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The first model, illustrated in Figure 2b, is an MLP that,
processes drug-pair embeddings to generate a list of predicted
side effects. Although this approach demonstrates certain levels
of effectiveness, it also has notable limitations. Specifically, due to
the dataset’s inherent imbalance, the MLP model tends to
produce a high number of false positive predictions. These
limitations are discussed in more detail in subsequent
sections. To address these limitations, we present an enhanced
model based on GNNs.

The GNNmodel, illustrated in Figure 2c, organizes the data into
a graph-based structure, enabling it to capture complex relational
patterns between drug pairs and their associated side effects. Unlike
the MLP, this approach models the interactions more explicitly,
aiming to predict the associations between each pair of drugs and
potential side effects. Figure 3 illustrates the inputs and outputs of
both classification models. In the following sections, we provide a
detailed explanation of the architecture and methodologies for
both models.

2.5.1 Multilayer perceptron approach
We began by implementing an MLP, a fully connected

feedforward neural network, as the initial classification model
tailored to our dataset. The input to this model comprises the
summed embeddings generated from two LLM components,
providing a comprehensive numerical representation of each
drug pair. The model’s output layer contains 964 neurons with
sigmoid units, each representing the probability of a specific side
effect occurring for the given drug combination.

After extensive experimentation to optimize the architecture, as
outlined in Table 2, we determined that a design with three hidden
layers of dimensions of 512, 1,024, and 2048, effectively captures the
complex features and relationships encoded in the SMILES
representations.

Additionally, we evaluated several activation functions and
selected the Leaky Rectified Linear Unit (Leaky ReLU) Xu et al.
(2015) with a negative slope of 0.1 for each hidden layer. Leaky
ReLU was selected for its ability to address the vanishing gradient
problem, which is a common issue in activations functions such
as tanh or sigmoid, and also for its capacity to enhance
learning stability.

To further stabilize the learning process, batch normalization
Ioffe and Szegedy (2015) was applied after the first hidden layer. This
step was critical as the initial layer of the neural network handles raw
input data, which may vary widely in distribution. However,
experimentation with batch normalization on other layers
indicated a slight performance decrease, potentially due to
disruptions in the natural distribution of intermediate
representations.

To mitigate overfitting, we added dropout Srivastava et al.
(2014) with a rate of 0.2 in each hidden layer. This dropout rate
was selected after comprehensive testing with various dropout
values, as summarized in Table 3, to ensure an optimal balance
between the model’s generalizability and its performance.

2.5.2 Bipartite graph
To address the limitations of the MLP approach, discussed in

subsequent sections, we introduced a graph-based classification
model that mitigates the challenges of data imbalance.

We transform the drug pairs and their associated polypharmacy
side effects into a graph structure to capture their real-world
relationships. By focusing on the relational nature of the
problem, the task can be reformulated as link prediction over the
data. The graph is defined as G � (D, S, E, F), where D � {di}ni�1
represents the drug-pair set, S � {sj}mj�1 denotes the polypharmacy
side effect set, E � {disj|di ∈ D, sj ∈ S} is the set of edges
representing associations between drug-pairs and side effects, and
F � {fdi, fsj} represents the feature set for the nodes. Specifically,
fdi corresponds to the embeddings of drug pairs generated by
language models, while fsj corresponds to the BERT-based
embeddings of side effect names. This formulation emphasizes
the bipartite nature of the graph, since connections exist only
between drug-pair nodes and side effect nodes, with no direct
edges within D or S.

To construct the graph, we used the original dataset format, where
each row represents the relationship between a drug pair and a single
side effect. As a result, this graph contains 63,472 drug pair nodes,
964 side effect nodes, and 4,576,785 edges. This defines the task as a
binary link prediction problem, where the model learns to predict
whether an association exists between a drug pair and a side effect.

Each node is assigned a unique identifier derived from the
corresponding dataframe and is equipped with features reflecting
its characteristics. More precisely, drug-pair nodes are assigned
features derived from molecular embeddings, while side effect
nodes use features extracted from vectorizing their names. By
combining these structural identities with node features, the
model captures the topological relationships and the contextual
information of the nodes. This approach allows the GNN to better
differentiate between nodes.

To achieve this, node IDs are first mapped into a latent space of
size 64 and are then combined with the precomputed features of
drug pairs and side effects, derived from language models.
Additionally, it is essential to ensure that all node features have
identical dimensions for effective model training. Currently, we use
BERT to vectorize the names of side effects, which generates
embeddings with a size of 768. For drug pairs, we experiment
with various language models, each producing embeddings of
different dimensions. For instance, Mol2Vec generates
embeddings of size 300. Therefore, we project both the drug pair

TABLE 2 AUC scores of the MLP approach with varying numbers of layers
and neurons.

Number of layers Neurons per layer AUC

1 512 0.854

1 1,024 0.861

1 2,048 0.863

2 256, 512 0.866

2 512, 1,024 0.878

2 1,024, 2,048 0.882

3 128, 256, 512 0.857

3 256, 512, 1,024 0.880

3 512, 1,024, 2,048 0.886

Note: The best performance is highlighted in bold.
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features and the side effect features into a 64-dimensional space
using a simple one-layer neural network to achieve consistency in
dimensionality across all nodes.

To have a trainable module, we design a graph neural network to
operate over graphG. This graph neural network has twomajor parts:

• Encoder: Responsible for learning node embeddings by
aggregating information from graph G.

• Decoder: Predicts the likelihood of an edge between a drug
pair and a side effect based on their learned embeddings.

2.5.2.1 Encoder
The graph encoder model takes graph G as input, along with the

node features fdi and fsj and generates a d-dimensional embedding
zi ∈ Rd for each node. The precomputed drug-pair features and side
effects features are set as the initial embedding values for their respective
nodes. By initializing nodes with informative features, the model can
learn richer embeddings by propagating and aggregating information
from neighboring nodes and the node itself. The impact of using these
initial embedding values is investigated in the Results section.

The graph convolutional layer used in this study is the
GraphConv Morris et al. (2018) layer from the PyTorch
Geometric library. For a given node, the convolutional layer
aggregates features from its neighboring nodes, scales them with
a learnable weight parameter, and adds them. On the other hand, the
node’s own feature is also multiplied by another learnable weight
parameter. These contributions are then summed to produce the
updated feature for the node. Mathematically, a single layer of this
model is expressed in Equation 1.

hki � W k( )
1 hk−1i +W k( )

2 ∑
j∈N i( )

h k−1( )
j (1)

Here, hk−1i is the feature vector of node i at the (k − 1)-th layer,
hki is the updated feature vector of node i at the k-th layer,W(k)

1 and
W(k)

2 are learnable weight matrices for self-connections and
neighboring node features, respectively, and N (i) denotes the set
of neighbors of node i.

Once the message passing process is completed, resulting in
finalized node features, it is important to note that the current graph
initially contains only positive edges, representing associations
between di and sj. However, for the model to effectively
distinguish between associated and unassociated drug pairs and
side effects, negative edges are introduced. To achieve this, for every
positive edge, a negative edge is added by first excluding the already-
connected node pairs and then randomly selecting other node pairs
to be labeled as zero. This is done by using utilities provided by the
PyTorch Geometric library. Consequently, each mini-batch
contains both positive and negative edges, allowing the model to
learn to differentiate between the two during training.

2.5.2.2 Decoder
As discussed, during the encoder process, node embeddings are

iteratively learned and updated to capture the properties of the
graph. In the decoder process, the objective is to compute a function
f(di, sj) that estimates the likelihood of an association between drug
di and side effect sj. To achieve this, the decoder uses the learned
embeddings of nodes di and sj, denoted as h(k)di

and h(k)sj
, where k

represents the final layer of the encoder. We used the dot product in
the decoder , as shown in Equation 2, to calculate the score sij which
represents the association likelihood.

sij � h k( )
i .h k( )

j (2)

This score sij directly reflects the correlation between the
embeddings and provides a scalar score as the likelihood.

2.6 Training the model

In the following sections, we provide a detailed, separate
discussion on the training procedures of two classifiers.

2.6.1 Multilayer perceptron
The drug pairs, along with their associated side effects, are

partitioned into training, validation, and test sets. To ensure that
our results are comparable with baseline studies, the dataset is divided
as follows: 80% for training, 10% for validation, and 10% for testing.
Comprehensive measures were taken to ensure no data leakage
occurred between the test set and the other subsets. Following this,
10-fold cross-validation was performed on the training and validation
sets to further evaluate the model’s robustness.

This classification model was trained using the drug-pair
embeddings generated by each language model for up to
100 epochs, with early stopping used to prevent overfitting
during the training process.

To address the issue of class imbalance to some extent, Binary
Focal Cross Entropy Lin et al. (2017) was chosen as the loss function,
as it places greater emphasis on hard-to-classify samples, offering an
advantage over standard Binary Cross Entropy. Furthermore, an
exponential decay learning rate schedule with a decay rate of
0.96 was applied to progressively reduce the learning rate during
training, helping the model converge more effectively.

2.6.2 Bipartite graph
To facilitate message exchange across all nodes in the graph, we

transform the graph into an undirected structure. This is achieved by
introducing reversed edges for every existing edge solely during the
message-passing phase, ensuring that relationships are preserved
irrespective of directionality. This transformation doubles the size of
the graph, expanding it from 4,576,785 to 9,153,570 edges. In the
decoder phase, the model focus is only on the existence or absence of
associations, disregarding the directionality of edges.

To prepare the dataset for this graph construction and ensure
compatibility with other baselines, the data is partitioned into three
subsets: 80% for training, 10% for validation, and 10% for testing. It
is important to note that a transductive approach is employed for
edge splitting. Specifically, only 30% of the training edges are
considered for prediction (supervision), loss computation, and
model weight updates, while the remaining 70% are reserved for
message passing. This selection was made after trying other ratios,
including 90/10, 60/40, 30/70, and 10/90 splits (training/message
passing).We observed that extreme configurations (e.g., 90/10 or 10/
90) resulted in performance degradation, likely due to insufficient
supervision or lack of connectivity, respectively. In contrast, 60/
40 and 30/70 produced comparable results, and we selected 30/70 for
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our final setup. During validation, all training edges, including those
used for supervision and message passing, are used to predict
validation edges. Similarly, in the testing phase, the model uses
all training and validation edges to predict test edges.

Considering the binary nature of the link prediction task, we
opted for Binary Cross Entropy With Logits, a well-suited loss
function for binary classification tasks. This choice is particularly
advantageous as the final layer of the model outputs raw logits
directly. By combining a Sigmoid layer and Binary Cross Entropy
Loss into a single class, this loss function offers numerical stability
and computational efficiency compared to using a standalone
Sigmoid layer followed by BCELoss. Additionally, to mitigate the
risk of overfitting, we implemented the Early Stopping technique,
which stops training when validation performance plateaus.

3 Experiments

3.1 System configuration

We conducted all the experiments on a high-performance
computing system equipped with an Intel(R) Xeon(R) Platinum
8,480+ CPU, and four NVIDIA H100 SXM5 GPUs, each with 80 GB
of memory. For implementation, we used Python 3.11.2 and Scikit-
learn 1.4.0 for both the MLP and GNN models. Additionally, we
utilized Keras 2.15.0 for the MLP model and PyTorch 2.4.1 with
PyTorch Geometric 2.6.1 for the GNN model, along with other
relevant libraries.

3.2 Baselines

In this section, we introduce some of the well-known studies in
polypharmacy side effect prediction to compare their performance
with our proposed models.

• Decagon Zitnik et al. (2018) The Decagon paper introduces a
multimodal graph with various node types, including drugs
and proteins. Each drug-drug interaction is labeled by the
associated side effect. They then apply a graph convolutional
neural network (GCN) for the multi-relational link prediction
in the multimodal network.

• RESCAL tensor decomposition Nickel et al. (2011) This
approach employs a tensor factorization built on a multi-
relational structure. Mi which represents a drug-drug
association for drug pairs with side effect r is defined asMr �
ATrAT for 964 different side effects (Tr and A are model
parameters). aiTraj also defines the predicted association of
drugs i and j with side effect type r.

• DEDICOM tensor decomposition Papalexakis et al. (2017) This
approach is also based on tensor factorization, suitable for
sparse data settings. GivenMi as a drug-drug matrix, it can be
decomposed as Mr � AUrTUrAT. The association of pair of
drug i and j with associated side effect r is defined as
aiUrTUraj.

• DeepWalk neural embeddings Perozzi et al. (2014) In this
approach, nodes learn d-dimensional neural features through
a biased random walk procedure that explores network

neighborhoods of nodes. The drug pairs are represented by
concatenating the representation of the drugs and are fed into
a logistic regression classifier. Separate logistic regression
classifiers are trained for different link types (i.e., side
effect types).

• Concatenated drug features Zitnik et al. (2018) This approach
creates a feature for each drug by applying PCA to both the
drug-target protein interaction matrix and the side effects of
individual drugs. The feature vectors of each drug are then
concatenated to represent a drug pair. The drug pairs are fed
into gradient boosting trees classifier, which predicts the
associated side effect of that drug pair.

3.3 Performance metrics

In this section, we analyze the performance metrics that are used
to compare our proposed models with existing baselines. We use
three widely adopted performance metrics: Area Under the Receiver
Operating Characteristic Curve (AUC-ROC), the Area Under the
Precision-Recall Curve (AUPRC), and the Average Precision at 50
(AP@50). These metrics are chosen to align with the evaluation
frameworks used in prior studies, ensuring a fair and consistent
comparison.

The ROC curve addresses the challenges of finding the optimal
threshold to classify probabilities by computing the True Positive
Rate (TPR) and False Positive Rate (FPR) at various thresholds. The
AUC-ROCmetric, which is the area under the ROC curve, is defined
in Equation 3.

AUC � ∫1

0
TPR x( ) dFPR x( ) (3)

On the other hand, the Precision-Recall Curve plots Precision
against Recall at different thresholds. The AUPRC metric, which
represents the area under this curve, is computed defined in
Equation 4.

AUPRC � ∫
1

0
Precision r( ) dRecall r( ) (4)

When dealing with ranked predictions, Average Precision at k
(AP@k) is particularly useful for evaluating the quality of the top k
predictions. In real-world clinical scenarios, healthcare experts often
prioritize the most critical and probable side effects due to time and
resource constraints. Therefore, ranking model predictions is a
crucial aspect for practical applicability in healthcare. To
compute AP@k, predictions are first ordered by their confidence
scores, and precision is calculated separately for the top k elements,
as shown in (Equation 5a). The average of these precision values is
then taken, as illustrated in (Equation 5b).

APk � Number of true positives in top k predictions
k

(5a)

AP@50 � 1
n
∑
n

k�1
APk (5b)

AUC-ROC vs. AUPRC It is commonly believed that AUC-ROC
is inflated in imbalanced datasets, and AUPRC is considered a more
reliable indicator of model performance in such cases. However,
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several studies Richardson et al. (2024); McDermott et al. (2024)
have demonstrated that this is a misinterpretation of the differences
between the ROC and PR curves. These studies show that AUC-
ROC is not significantly affected by class imbalance and provides a
more robust and invariant measure of performance, even in
imbalanced datasets Richardson et al. (2024). In contrast, they
show that AUPRC is highly sensitive to class imbalance and
changes drastically depending on the dataset’s class distribution.
In other words, AUC-ROC provides a general estimate of classifier
performance, while AUPRC reflects the classifier’s performance on a
specific dataset. Reference Richardson et al. (2024) recommends
using AUC-ROC alongside AUPRC and AP@50, as it enables fairer
comparisons of models across datasets with varying class
distributions.

In clinical contexts, rare events are often of primary interest. A
recent study by Martin et al. (2025) highlights that in highly
imbalanced datasets, such as those involving critical illness
events, AUROC can be misleadingly high due to its dependence
on true negative rates, which often dominate in rare-event settings.
In contrast, AUPRC focuses on the tradeoff between precision and
recall, which are more operationally relevant in clinical decision-
making. The authors argue that AUPRC better reflects a model’s
ability to reliably detect rare outcomes while avoiding excessive false
positives, which can lead to diminished trust in predictive models. In
our work, where the goal is to identify clinically significant
polypharmacy side effects, we adopt AUPRC alongside AUROC
to more accurately capture model performance under real-world,
imbalanced conditions.

3.4 Fusion evaluation

There are several ways to fuse two entities, and the choice of
fusion strategy plays a critical role in determining model
performance. In this section, we explore several fusion
strategies, including concatenation, summation, multiplication,
and mean, to merge two drug representations. As shown in
Figure 4, these strategies have been evaluated across various

encoders. The results demonstrate that both summation and
concatenation effectively capture the necessary information,
though concatenation tends to increase the computational
complexity due to the larger resulting embedding size.
Conversely, while the mean strategy is generally effective, it
may lead to information loss and underperformance in certain
scenarios. Given the comparable performance of summation and
concatenation, we opt for summation as our fusing method to
minimize computational overhead while maintaining
model efficacy.

3.5 Hyperparameter setting

3.5.1 MLP approach
We conducted a thorough investigation into the impact of key

hyperparameters, such as learning rate and dropout rate, on the
model’s performance. This is a critical analysis as it ensures the
model’s ability to generalize effectively and avoid overfitting. The
AUC scores obtained by varying the learning rate across different
dropout rates are presented in Table 3. Notably, the model achieves
the highest AUC score of 0.882 with a learning rate of 0.005 and a
dropout rate of 0.2.

Additionally, we evaluate the performance of neural networks
with varying numbers of hidden layers and neurons per layer. As
shown in Table 2, the model with three hidden layers, comprising
512, 1,024, and 2048 neurons respectively, achieves the best AUC
score of 0.886 across all configurations.

To ensure that the observed improvements in AUC scores were
specifically attributable to the different regularization techniques
applied, various configurations were tested individually and in
combination, as detailed in Table 4. Ultimately, the combination
of Dropout and Batch Normalization was chosen, as it demonstrated
the most effective performance.

3.5.2 Graph approach
We analyzed the impact of the learning rate on the model

performance. The optimal learning rate was determined

FIGURE 4
AUC scores for various fusion strategies across multiple encoders.
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empirically by testing multiple values, including 0.1, 0.5, and
0.05. The results indicated that a learning rate of 0.01 yielded the
best performance.

Additionally, dropout rates of 0.1, 0.3, 0.5, 0.7, 0.8, and 0.9 were
manually tested, and a value of 0.8 was selected. This choice accounts
for the dataset’s large size and helps mitigate overfitting by
preventing the model from becoming overly reliant on specific
training examples.

4 Results and discussion

4.1 Comparison of models

This section discusses the results of our experimental studies on
the Decagon dataset, evaluating 964 polypharmacy side effects and
comparing the proposed models with each other as well as with
alternative approaches.

The average AUROC, AUPRC, and AP@50 scores, along with
their standard deviations for the MLP classifier, are reported in table
5. Across 964 side effect types, transformer-based language models
achieved competitive AUC scores compared to prior studies and
traditional methods such as Mol2vec and Doc2vec. In particular, the
fine-tuned ChemBERTa model, which is pre-trained and fine-tuned
on SMILES strings, achieved the highest AUC score of 0.8894 and
AP@50 score of 0.8123, both surpassing baseline scores. However,
all models showed relatively low AUPRC scores, suggesting a
tendency to predict false positives. This limitation can be
attributed to the dataset’s high class imbalance. As Richardson
et al. (2024); McDermott et al. (2024) noted, while the AUC-
ROC score is a strong indicator of the overall performance of the

model, the AUPRC reflects the performance of the model in a
specific dataset. Therefore, despite the challenges of false positives,
the fine-tuned ChemBERTa model demonstrates strong overall
performance based on its high AUROC and AP@50 scores.

The results show that the fine-tuned ChemBERTa is capable of
capturing token-level chemical information and excelling in
modeling complex drug pair interactions by leveraging
attention mechanisms to account for long-range dependencies.
Among the models evaluated, only GPT, which is trained on a vast
and diverse amount of data, achieves results comparable to
ChemBERTa. Other transformer-based models, such as BERT
and SBERT, also outperform Decagon in terms of AUC score,
showcasing their ability to capture intra-molecular and inter-
molecular relationships. However, traditional models like
Mol2vec and Doc2vec continue to struggle to achieve
competitive performance.

Reframing the problem into a graph-based approach and
training a graph neural network with drug-pair node features
from various language models effectively mitigated the issue of
class imbalance. As shown in Table 5, Deepchem ChemBERTa
achieved an impressive AUC score of 0.92 and AUPRC of
0.89 outperforming baseline studies. Additionally, the Fine-tuned
ChemBERTa produced results very close to Deepchem
ChemBERTa, suggesting that while fine-tuning does not degrade
performance, it may not necessarily yield significant improvements
either. The strong performance of both ChemBERTa models can be
attributed to their pre-training on chemical data, which both were
trained on 77 million unique SMILES from PubChem, making them
well-suited for this context. Also, as table 1 illustrated, the
tokenization strategy of the ChemBERTa model, called Bye-Pair
Encoder (BPE) Wolf et al. (2019), effectively tokenizes atoms, while
models like BERT and SBERT struggle to separate Carbon
from Sulfur.

GPT embeddings also demonstrate highly competitive
performance, achieving an AUC score of 0.9181 and AUPRC of
0.8944. Despite GPT not being specifically trained on chemical data,
its extensive pre-training on diverse datasets contributes to its strong
performance, making it comparable to ChemBERTa. Even though
Table 1 shows that the tokenization strategy of GPT struggles to
distinguish certain chemical elements, the model appears to
compensate by using its pre-trained knowledge.

Mol2vec, with an AUC of 0.8382 and AUPRC of 0.8152,
outperforms Doc2vec but still lags behind ChemBERTa and
GPT-based embeddings. This is likely because it is specifically
trained and designed for molecular representation and captures
the structural properties of drugs. However, since it is trained in an
unsupervised manner, it may not encode interactions as effectively
as transformed-based models tailored for chemical data. Doc2vec,
with a low AUC score of 0.7273, indicates that traditional models
lacking attention mechanisms and domain-specific training may not
be suitable as standalone approaches in this context.

SBERT, built on top of BERT, treats drug pair representations as
sentences and applies pooling to generate a single embedding per
drug pair. However, it seems that this pooling strategy led to a loss of
critical molecular features, making it harder for the model to capture
structural details. As a result, SBERT performs poorly compared to
both BERT and even Doc2vec, despite having an attention
mechanism. Comparing BERT and SBERT in the GNN setting

TABLE 3 AUC results of the MLP approach across different
hyperparameters.

Dropout Learning rate

0.001 0.005 0.0001

0.1 0.878 0.880 0.854

0.2 0.881 0.882 0.855

0.3 0.880 0.881 0.852

0.4 0.876 0.877 0.848

0.5 0.869 0.868 0.840

Note: The best performance is highlighted in bold.

TABLE 4 AUC scores of the MLP approach under different regularization
configurations.

Regularization AUC

None 0.873

Dropout 0.891

Batch Normalization 0.884

Dropout + Batch Normalization 0.893

Note: The best performance is highlighted in bold.
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reveals that since BERT preserves token-level embeddings, it can
retain more detailed molecular information, while SBERT’s pooling
mechanism limits the GNN’s ability to capture atomic interactions
and meaningful relationships.

We also trained the GNN model with zero-filled features (size
200) to evaluate the impact of informative and meaningful
embeddings. The results show that zero features performed the
worst, with an AUC of 0.07, confirming the necessity of meaningful
representations.

The Decagonmodel, which uses Graph Convolutional Networks
for drug-drug, drug-protein, and protein-protein interactions, is
primarily limited by fixed node embeddings and does not leverage
transformer-based representations. Our approach benefits from pre-
trained ChemBERTa embeddings that capture richer chemical
information and improve generalization. Additionally, while
Decagon integrates other biological entities such as proteins, we
rely solely on chemical structures as features. Given this, our model
achieves competitive results, demonstrating the effectiveness of
transformer-based architectures even with a limited feature set.
Furthermore, in our approach, drug pairs are explicitly modeled
as a distinct node type since side effects arise due to specific drug

combinations, helping capture side-effect-specific interaction
patterns more effectively than a node-centric approach.

While our approach uses the chemical structures of drugs alone
through SMILES-based LLM embeddings, we acknowledge that
many adverse drug reactions are mediated by complex biological
mechanisms that cannot be fully captured by molecular structure
alone, as further discussed in the Side Effect Analysis section.
Biological factors such as protein interactions, metabolic
pathways, pharmacogenomics, and off-target effects may play
crucial roles in this context. Several prior studies have
incorporated protein interactions Masumshah et al. (2021), drug
pathways, and enzymes Masumshah and Eslahchi (2023) to better
capture these mechanistic pathways, potentially enhancing
predictive power and interpretability. In the present study, our
primary focus was to analyze drug entities alone in order to
better explore the applicability of LLMs for polypharmacy side
effect prediction. As LLM-based approaches have not yet been
extensively applied to this task, we intentionally limited the scope
to chemical structures to avoid additional complexities in this initial
investigation. In future work, we plan to extend the model by
incorporating additional biological entities such as proteins,

TABLE 5 Performance of integrating language model features with the bipartite graph compared to baseline methods.

Model AUC AUPRC AP@50

Baselines

RESCAL 0.693 0.613 0.476

DEDICOM 0.705 0.637 0.567

DeepWalk neural embeddings 0.761 0.737 0.658

Concatenated features 0.793 0.764 0.712

Decagon 0.872 0.832 0.803

MLP Approach

ChemBERTa SimCSE 0.8894 ± 0.0017 0.4139 ± 0.0081 0.8123 ± 0.0125

Deepchem ChemBERTa 0.8859 ± 0.0019 0.3979 ± 0.0079 0.7557 ± 0.0120

GPT (small) 0.8886 ± 0.0039 0.4129 ± 0.0166 0.7820 ± 0.0218

BERT 0.8793 ± 0.0034 0.3736 ± 0.0119 0.7157 ± 0.0182

SBERT 0.8717 ± 0.0044 0.3494 ± 0.0121 0.6808 ± 0.0169

Mol2vec 0.8498 ± 0.0057 0.3044 ± 0.0109 0.6266 ± 0.0149

Doc2vec 0.8684 ± 0.0032 0.3376 ± 0.0091 0.6593 ± 0.0173

GNN Approach

ChemBERTa SimCSE 0.9221 ± 0.0011 0.8929 ± 0.0007 0.7693 ± 0.0200

Deepchem ChemBERTa 0.9228 ± 0.0039 0.8944 ± 0.0025 0.9599 ± 0.0044

GPT (small) 0.9181 ± 0.0010 0.8900 ± 0.0003 0.8640 ± 0.0065

BERT 0.7951 ± 0.0463 0.8238 ± 0.0259 0.8879 ± 0.0084

SBERT 0.6745 ± 0.0040 0.7141 ± 0.0029 0.8170 ± 0.0094

Mol2vec 0.8382 ± 0.0682 0.8152 ± 0.0604 0.8144 ± 0.0472

Doc2vec 0.7273 ± 0.0174 0.7519 ± 0.0128 0.5146 ± 0.0555

Zeros 0.0740 ± 0.0004 0.3355 ± 0.0000 0.0000 ± 0.0000
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pathways, and enzymes to capture more complex mechanistic
interactions.

4.2 Side effect analysis

We obtained the best and worst predicted side effects by the
Deepchem ChemBERTa model integrated with the bipartite
graph. The results are shown in Table 6, which is ordered by
AUPRC scores. The results show that GNN performs best on side
effects with strong molecular underpinnings, likely because these
side effects are directly influenced by drug interactions at a
biochemical level, making them easier for the model to
capture using molecular-based embeddings. The analysis of
the best and worst-performing side effects in the table
highlights that side effects with a significantly lower number
of drug-drug interactions in the dataset tend to have lower
AUPRC scores. For instance, bronchiolitis, which appears to
be the worst-performing side effect, is linked to only 636 drug
interactions, whereas cardiac decompensation, the best-
performing side effect, has 16,555 interactions. This
discrepancy in data availability plays a major role in the
model’s predictive performance.

We also examined the worst-performing side effect in terms of
AUC score, which happens to be Adenopathy, with an AUC of
0.7844 and an AUPRC of 0.8398. Adenopathy refers to swelling of
lymph nodes, and as some studies Maini and Nagalli (2023) have
shown, it is primarily caused by immune-mediated mechanisms or
infections rather than direct chemical interactions between drugs.
Since the ChemBERTa-derived features integrated into our graph
are designed to capture primarily chemical interactions between
drugs and are not equipped to model complex biological processes,
they may only detect general patterns of drug interactions correlated
with Adenopathy. To further investigate this limitation, we analyzed
a specific drug combination in the dataset reported to cause
Adenopathy: Cyclophosphamide and Gamma-Aminobutyric Acid
(GABA). Cyclophosphamide is a well-known immunosuppressive
drug Ogino and Tadi (2023); Winkelstein (1973); Ahlmann and
Hempel (2016) and is widely used in chemotherapy and

autoimmune conditions. GABA, on the other hand, is found to
have immunomodulatory properties and can influence immune cell
function Jin et al. (2013). When combined, these compounds may
interact in a manner that amplifies or alters their individual
immunomodulatory effects. This imbalance could trigger immune
activation, potentially leading to adenopathy as a side effect. Given
that the immunomodulatory effects of Cyclophosphamide and
GABA are indirect and involve complex biological pathways, our
model, which primarily focuses on direct chemical interactions
between drugs, is likely unable to fully capture these intricate
mechanisms.

5 Conclusion

The adverse effects associated with polypharmacy represent the
primary challenges when patients are administered multiple drugs
concurrently. Accurately identifying and predicting these side
effects can provide valuable insights for clinicians. Most existing
predictive methods for drug combinations rely on diverse data
sources, such as cell lines and protein networks. In this study, we
utilized a text-based molecular representation known as SMILES
and encoded drug SMILES strings using various language models.
By aggregating the representations of individual drugs, we obtained
a single embedding representing each drug pair. These embeddings
are then fed into two distinct classifiers including a multilayer
perceptron and a graph neural network. Our results indicate that
integrating ChemBERTa-derived features within a graph neural
network setting yields the best performance, surpassing baseline
models. Additionally, we demonstrated that using fewer features,
such as chemical formulas, alongside informative embeddings can
reduce the dependency on extensive biological data. In future work,
we plan to enhance the model by incorporating additional
biological entities such as proteins, pathways, and enzymes
alongside chemical structures, as well as exploring robustness to
multiple SMILES representations per drug, to improve its ability to
capture complex relationships. Additionally, we plan to
incorporate explainability into the model to improve
interpretability, and to enhance its robustness by enabling it to

TABLE 6 Side effects showing the best and worst performance when DeepChem ChemBERTa features are integrated with the bipartite graph.

Best performing side effects AUROC AUPRC Worst performing side effects AUROC AUPRC

Cardiac decompensation 0.988177 0.996100 Bronchiolitis 0.949642 0.613721

Cardiac ischemia 0.986724 0.993551 Corneal ulcer 0.925869 0.623843

Aching joints 0.974858 0.992379 Alcoholic intoxication 0.880503 0.625518

Abnormal LFTs 0.980251 0.991889 Aseptic meningitis 0.923545 0.636184

Acne 0.990405 0.991439 Phimosis 0.954801 0.643596

Burns Second Degree 0.996599 0.987317 Primary biliary cirrhosis 0.958360 0.656204

Acidosis 0.955826 0.986312 Brain abscess 0.953811 0.658020

Extremity pain 0.962125 0.984298 Bundle branch block 0.906469 0.658819

Abnormal Laboratory Findings 0.980074 0.984159 Fibrosing alveolitis 0.942627 0.667376

Candida Infection 0.964859 0.981878 SCLC 0.957948 0.668350
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handle less standardized inputs, such as synonym variations in side
effect terminology.

Data availability statement

The dataset used for this study is available through the
Decagon’s study website (https://snap.stanford.edu/decagon).The
code for this study is available from the GitHub repository
(https://github.com/sadrahkm/PolyLLM). Further inquiries can be
directed to the corresponding author.

Author contributions

SH: Investigation, Software, Conceptualization, Validation,
Writing – review and editing, Project administration, Visualization,
Data curation, Formal Analysis, Methodology, Writing – original draft.
AN: Funding acquisition, Conceptualization, Supervision, Resources,
Project administration, Writing – review and editing.

Funding

The author(s) declare that financial support was received
for the research and/or publication of this article. This

research is supported by the National Science and Engineering
Research Council of Canada (NSERC) (NSERC RGPIN-
2024-04547).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Ahlmann, M., and Hempel, G. (2016). The effect of cyclophosphamide on the
immune system: implications for clinical cancer therapy. Cancer Chemother.
Pharmacol. 78, 661–671. doi:10.1007/s00280-016-3152-1

Bento, A. P., Gaulton, A., Hersey, A., Bellis, L. J., Chambers, J., Davies, M., et al.
(2014). The ChEMBL bioactivity database: an update. Nucleic Acids Res. 42,
D1083–D1090. doi:10.1093/nar/gkt1031

Brown, N., Fiscato, M., Segler, M. H., and Vaucher, A. C. (2019). GuacaMol:
benchmarking Models for de novo Molecular Design. J. Chem. Inf. Model. 59,
1096–1108. doi:10.1021/acs.jcim.8b00839

Cheng, N., Wang, L., Liu, Y., Song, B., and Ding, C. (2024). HANSynergy:
heterogeneous graph attention network for drug synergy prediction. J. Chem. Inf.
Model. 64, 4334–4347. doi:10.1021/acs.jcim.4c00003

Chithrananda, S., Grand, G., and Ramsundar, B. (2020). ChemBERTa: large-scale
self-supervised pretraining for molecular property prediction. doi:10.48550/ARXIV.
2010.09885

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). BERT: pre-Training of
deep bidirectional transformers for language understanding. doi:10.48550/ARXIV.
1810.04805

Gao, T., Yao, X., and Chen, D. (2021). SimCSE: simple contrastive learning of
sentence embeddings. doi:10.48550/ARXIV.2104.08821

Gaulton, A., Bellis, L. J., Bento, A. P., Chambers, J., Davies, M., Hersey, A., et al.
(2012). ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids
Res. 40, D1100–D1107. doi:10.1093/nar/gkr777

Ioffe, S., and Szegedy, C. (2015). Batch normalization: accelerating deep network
training by reducing internal covariate shift. doi:10.48550/ARXIV.1502.03167

Irwin, J. J., Sterling, T., Mysinger, M. M., Bolstad, E. S., and Coleman, R. G. (2012).
ZINC: a free tool to discover chemistry for biology. J. Chem. Inf. Model. 52, 1757–1768.
doi:10.1021/ci3001277

Jaeger, S., Fulle, S., and Turk, S. (2018). Mol2vec: unsupervised machine learning
approach with chemical intuition. J. Chem. Inf. Model. 58, 27–35. doi:10.1021/acs.jcim.
7b00616

Janakarajan, N., Erdmann, T., Swaminathan, S., Laino, T., and Born, J. (2023).
Language models in molecular discovery. doi:10.48550/ARXIV.2309.16235

Jin, Z., Mendu, S. K., and Birnir, B. (2013). GABA is an effective immunomodulatory
molecule. Amino Acids 45, 87–94. doi:10.1007/s00726-011-1193-7

Joaquim, J. J., and Campos, M. C. (2011). Drug use and knowledge in a elderly
polimedicated Portuguese population. Basic Clin. Pharmacol. Toxicol. 109, 143.

Kim, S., Thiessen, P. A., Bolton, E. E., Chen, J., Fu, G., Gindulyte, A., et al. (2016).
PubChem substance and compound databases. Nucleic Acids Res. 44, D1202–D1213.
doi:10.1093/nar/gkv951

Krenn, M., Häse, F., Nigam, A., Friederich, P., and Aspuru-Guzik, A. (2020). Self-
referencing embedded strings (SELFIES): a 100% robust molecular string
representation. Mach. Learn. Sci. Technol. 1, 045024. doi:10.1088/2632-2153/aba947

Le, Q. V., and Mikolov, T. (2014). Distributed representations of sentences and
documents. doi:10.48550/ARXIV.1405.4053

Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C. H., et al. (2020). BioBERT: a pre-
trained biomedical language representation model for biomedical text mining.
Bioinformatics 36, 1234–1240. doi:10.1093/bioinformatics/btz682

Lin, S., Zhang, G., Wei, D.-Q., and Xiong, Y. (2022). DeepPSE: prediction of
polypharmacy side effects by fusing deep representation of drug pairs and attention
mechanism. Comput. Biol. Med. 149, 105984. doi:10.1016/j.compbiomed.2022.105984

Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Dollár, P. (2017). Focal loss for dense
object detection. doi:10.48550/ARXIV.1708.02002

Lv, H., Dao, F.-Y., Zulfiqar, H., Su, W., Ding, H., Liu, L., et al. (2021). A sequence-
based deep learning approach to predict CTCF-Mediated chromatin loop. Briefings
Bioinforma. 22, bbab031. doi:10.1093/bib/bbab031

Madani Tonekaboni, S. A., Soltan Ghoraie, L., Manem, V. S. K., and Haibe-Kains, B.
(2018). Predictive approaches for drug combination discovery in cancer. Briefings
Bioinforma. 19, 263–276. doi:10.1093/bib/bbw104

Maher, R. L., Hanlon, J., and Hajjar, E. R. (2014). Clinical consequences of
polypharmacy in elderly. Expert Opin. Drug Saf. 13, 57–65. doi:10.1517/14740338.
2013.827660

Maini, R., and Nagalli, S. (2023). Adenopathy.

Martin, B., Bennett, T. D., DeWitt, P. E., Russell, S., and Sanchez-Pinto, L. N. (2025).
Use of the area under the precision-recall curve to evaluate prediction models of rare
critical illness events. Pediatr. Crit. Care Med. 26, e855–e859. doi:10.1097/PCC.
0000000000003752

Masnoon, N., Shakib, S., Kalisch-Ellett, L., and Caughey, G. E. (2017). What is
polypharmacy? A systematic review of definitions. BMC Geriatr. 17, 230. doi:10.1186/
s12877-017-0621-2

Frontiers in Pharmacology frontiersin.org13

Hakim and Ngom 10.3389/fphar.2025.1617142

https://snap.stanford.edu/decagon
https://github.com/sadrahkm/PolyLLM
https://doi.org/10.1007/s00280-016-3152-1
https://doi.org/10.1093/nar/gkt1031
https://doi.org/10.1021/acs.jcim.8b00839
https://doi.org/10.1021/acs.jcim.4c00003
https://doi.org/10.48550/ARXIV.2010.09885
https://doi.org/10.48550/ARXIV.2010.09885
https://doi.org/10.48550/ARXIV.1810.04805
https://doi.org/10.48550/ARXIV.1810.04805
https://doi.org/10.48550/ARXIV.2104.08821
https://doi.org/10.1093/nar/gkr777
https://doi.org/10.48550/ARXIV.1502.03167
https://doi.org/10.1021/ci3001277
https://doi.org/10.1021/acs.jcim.7b00616
https://doi.org/10.1021/acs.jcim.7b00616
https://doi.org/10.48550/ARXIV.2309.16235
https://doi.org/10.1007/s00726-011-1193-7
https://doi.org/10.1093/nar/gkv951
https://doi.org/10.1088/2632-2153/aba947
https://doi.org/10.48550/ARXIV.1405.4053
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.1016/j.compbiomed.2022.105984
https://doi.org/10.48550/ARXIV.1708.02002
https://doi.org/10.1093/bib/bbab031
https://doi.org/10.1093/bib/bbw104
https://doi.org/10.1517/14740338.2013.827660
https://doi.org/10.1517/14740338.2013.827660
https://doi.org/10.1097/PCC.0000000000003752
https://doi.org/10.1097/PCC.0000000000003752
https://doi.org/10.1186/s12877-017-0621-2
https://doi.org/10.1186/s12877-017-0621-2
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1617142


Masumshah, R., Aghdam, R., and Eslahchi, C. (2021). A neural network-based
method for polypharmacy side effects prediction. BMC Bioinforma. 22, 385. doi:10.
1186/s12859-021-04298-y

Masumshah, R., and Eslahchi, C. (2023). DPSP: a multimodal deep learning
framework for polypharmacy side effects prediction. Bioinforma. Adv. 3, vbad110.
doi:10.1093/bioadv/vbad110

McDermott, M. B. A., Zhang, H., Hansen, L. H., Angelotti, G., and Gallifant, J. (2024).
A closer look at AUROC and AUPRC under class imbalance. doi:10.48550/ARXIV.
2401.06091

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation of word
representations in vector space. doi:10.48550/ARXIV.1301.3781

Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen, J. E., Rattan, G., et al.
(2018). Weisfeiler and leman Go neural: higher-Order graph neural networks. doi:10.
48550/ARXIV.1810.02244

Nickel, M., Tresp, V., and Kriegel, H.-P. (2011). A three-way model for collective
learning on multi-relational data, 809–816.

Ogino, M. H., and Tadi, P. (2023). Cyclophosphamide

Papalexakis, E. E., Faloutsos, C., and Sidiropoulos, N. D. (2017). Tensors for data
mining and data fusion: models, applications, and scalable algorithms. ACM Trans.
Intelligent Syst. Technol. 8, 1–44. doi:10.1145/2915921

Perozzi, B., Al-Rfou, R., and Skiena, S. (2014). DeepWalk: online learning of social
representations, 701, 710. doi:10.1145/2623330.2623732

Pham, T., Ghafoor, M., Grañana-Castillo, S., Marzolini, C., Gibbons, S., Khoo, S., et al.
(2024). DeepARV: ensemble deep learning to predict drug-drug interaction of clinical
relevance with antiretroviral therapy. npj Syst. Biol. Appl. 10, 48. doi:10.1038/s41540-
024-00374-0

Plácido, A. I., Herdeiro, M. T., Simões, J. L., Amaral, O., Figueiras, A., and Roque, F.
(2021). Health professionals perception and beliefs about drug-related problems on
polymedicated older adults-a focus group study. BMC Geriatr. 21, 27. doi:10.1186/
s12877-020-01972-3

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. (2019).
Language models are unsupervised multitask learners

Reimers, N., and Gurevych, I. (2019). Sentence-BERT: sentence embeddings using
siamese BERT-networks. doi:10.48550/ARXIV.1908.10084

Richardson, E., Trevizani, R., Greenbaum, J. A., Carter, H., Nielsen, M., and Peters, B.
(2024). The receiver operating characteristic curve accurately assesses imbalanced
datasets. Patterns 5, 100994. doi:10.1016/j.patter.2024.100994

Rogers, D., and Hahn, M. (2010). Extended-connectivity fingerprints. J. Chem. Inf.
Model. 50, 742–754. doi:10.1021/ci100050t

Sadeghi, S., Bui, A., Forooghi, A., Lu, J., and Ngom, A. (2024). Can large language
models understand molecules? BMC Bioinforma. 25, 225. doi:10.1186/s12859-024-
05847-x

Skinnider, M. A., Stacey, R. G., Wishart, D. S., and Foster, L. J. (2021). Chemical
language models enable navigation in sparsely populated chemical space. Nat. Mach.
Intell. 3, 759–770. doi:10.1038/s42256-021-00368-1

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014).
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res.
15, 1929–1958.

Srivastava, S. B. (2024). Polypharmacy, unintended consequences, and impact of
lifestyle medicine. Am. J. Lifestyle Med. 18, 54–57. doi:10.1177/15598276231207302

Sun, W., Sanderson, P. E., and Zheng, W. (2016). Drug combination therapy increases
successful drug repositioning. Drug Discov. Today 21, 1189–1195. doi:10.1016/j.drudis.
2016.05.015

Tatonetti, N. P., Ye, P. P., Daneshjou, R., and Altman, R. B. (2012). Data-driven
prediction of drug effects and interactions. Sci. Transl. Med. 4, 125ra31. doi:10.1126/
scitranslmed.3003377

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.-A., Lacroix, T., et al.
(2023a). LLaMA: open and efficient foundation language models. doi:10.48550/ARXIV.
2302.13971

Touvron, H.,Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., et al. (2023b). Llama
2: open foundation and fine-tuned chat models. doi:10.48550/ARXIV.2307.09288

Wang, R., Li, T., Yang, Z., and Yu, H. (2020). “Predicting polypharmacy side effects
based on an enhanced domain knowledge graph,” in Applied informatics. Editors
H. Florez and S. Misra (Cham: Springer International Publishing), 1277, 89–103. doi:10.
1007/978-3-030-61702-8_7

Wang, X., Liu, K., Shirai, K., Tang, C., Hu, Y., Wang, Y., et al. (2023). Prevalence and
trends of polypharmacy in U.S. adults, 1999–2018. Glob. Health Res. Policy 8, 25. doi:10.
1186/s41256-023-00311-4

Weininger, D. (1988). SMILES, a chemical language and information system. 1.
Introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 28, 31–36.
doi:10.1021/ci00057a005

Winkelstein, A. (1973). Mechanisms of immunosuppression: effects of cyclophosphamide
on cellular immunity. Blood 41, 273–284. doi:10.1182/blood.V41.2.273.273

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., et al. (2019).
HuggingFace’s transformers. State-Of-The-Art Natural Language Processing. doi:10.
48550/ARXIV.1910.03771

Xu, B., Wang, N., Chen, T., and Li, M. (2015). Empirical evaluation of rectified
activations in convolutional network. doi:10.48550/ARXIV.1505.00853

Xu, M., Zhao, X., Wang, J., Feng, W., Wen, N., Wang, C., et al. (2023). DFFNDDS:
prediction of synergistic drug combinations with dual feature fusion networks.
J. Cheminformatics 15, 33. doi:10.1186/s13321-023-00690-3

Zitnik, M., Agrawal, M., and Leskovec, J. (2018). Modeling polypharmacy side effects
with graph convolutional networks. Bioinformatics 34, i457–i466. doi:10.1093/
bioinformatics/bty294

Frontiers in Pharmacology frontiersin.org14

Hakim and Ngom 10.3389/fphar.2025.1617142

https://doi.org/10.1186/s12859-021-04298-y
https://doi.org/10.1186/s12859-021-04298-y
https://doi.org/10.1093/bioadv/vbad110
https://doi.org/10.48550/ARXIV.2401.06091
https://doi.org/10.48550/ARXIV.2401.06091
https://doi.org/10.48550/ARXIV.1301.3781
https://doi.org/10.48550/ARXIV.1810.02244
https://doi.org/10.48550/ARXIV.1810.02244
https://doi.org/10.1145/2915921
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1038/s41540-024-00374-0
https://doi.org/10.1038/s41540-024-00374-0
https://doi.org/10.1186/s12877-020-01972-3
https://doi.org/10.1186/s12877-020-01972-3
https://doi.org/10.48550/ARXIV.1908.10084
https://doi.org/10.1016/j.patter.2024.100994
https://doi.org/10.1021/ci100050t
https://doi.org/10.1186/s12859-024-05847-x
https://doi.org/10.1186/s12859-024-05847-x
https://doi.org/10.1038/s42256-021-00368-1
https://doi.org/10.1177/15598276231207302
https://doi.org/10.1016/j.drudis.2016.05.015
https://doi.org/10.1016/j.drudis.2016.05.015
https://doi.org/10.1126/scitranslmed.3003377
https://doi.org/10.1126/scitranslmed.3003377
https://doi.org/10.48550/ARXIV.2302.13971
https://doi.org/10.48550/ARXIV.2302.13971
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.1007/978-3-030-61702-8_7
https://doi.org/10.1007/978-3-030-61702-8_7
https://doi.org/10.1186/s41256-023-00311-4
https://doi.org/10.1186/s41256-023-00311-4
https://doi.org/10.1021/ci00057a005
https://doi.org/10.1182/blood.V41.2.273.273
https://doi.org/10.48550/ARXIV.1910.03771
https://doi.org/10.48550/ARXIV.1910.03771
https://doi.org/10.48550/ARXIV.1505.00853
https://doi.org/10.1186/s13321-023-00690-3
https://doi.org/10.1093/bioinformatics/bty294
https://doi.org/10.1093/bioinformatics/bty294
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1617142

	PolyLLM: polypharmacy side effect prediction via LLM-based SMILES encodings
	1 Introduction
	2 Methodology
	2.1 Dataset
	2.2 Data preparation
	2.3 Data analysis
	2.4 Embedding generation
	2.5 Classifier architecture
	2.5.1 Multilayer perceptron approach
	2.5.2 Bipartite graph
	2.5.2.1 Encoder
	2.5.2.2 Decoder

	2.6 Training the model
	2.6.1 Multilayer perceptron
	2.6.2 Bipartite graph


	3 Experiments
	3.1 System configuration
	3.2 Baselines
	3.3 Performance metrics
	3.4 Fusion evaluation
	3.5 Hyperparameter setting
	3.5.1 MLP approach
	3.5.2 Graph approach


	4 Results and discussion
	4.1 Comparison of models
	4.2 Side effect analysis

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


