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Bladder cancer (BC) is a disease that predominantly affects older adults, with
aging playing a critical role in its onset and progression. Age-associated
phenomena, including immunosenescence and chronic inflammation, form a
pro-tumor milieu, while genomic instability and epigenetic drift further increase
cancer risk. The review highlights the dual role of DNA methylation in BC: global
hypomethylation can activate transposable elements and oncogenes, whereas
focal hypermethylation silences tumor-suppressor genes like CDKN2A,
especially detrimental in older tissues that rely on these genes for senescence
control. In parallel, frequent mutations in chromatin modifiers (e.g., KDM6A,
KMT2D) and overexpression of histone-modifying enzymes (e.g., EZH?2) alter the
tumor epigenome to promote immune evasion and tumor aggressiveness. At the
non-coding RNA level, dysregulated microRNAs (miRNAs) and long non-coding
RNAs (IncRNAs) in BC contribute to aberrant proliferation, metastatic potential,
and immune suppression, with aging-associated declines in miRNA processing
further exacerbating these effects. Collectively, the accumulation of epigenetic
alterations in older patients appears to facilitate both tumor progression and
resistance to therapy. Looking forward, epigenetic biomarkers may improve early
detection and risk stratification. Furthermore, “epigenetic therapies,” such as DNA
methyltransferase inhibitors (DNMTi), EZH2 inhibitors (EZHZ2i), or histone
deacetylases inhibitors (HDACI), hold promise to restore tumor-suppressor
function and enhance immunogenicity, offering an attractive avenue for
improving outcomes in older patients with BC.
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1 Introduction

Bladder cancer (BC) is predominantly a disease of older adults—over 90% of cases in the
United States occur in men above 45 years of age (Godlewski et al., 2024). Advanced age is
one of the strongest risk factors for BC incidence and is associated with worse clinical
outcomes; patients diagnosed after age 60 have significantly lower long-term survival than
younger patients (Lin et al., 2023; Lenis et al., 2020). Several biological phenomena
accompanying aging may contribute to this increased risk. Immunosenescence, the age-
related decline in immune surveillance coupled with chronic low-grade inflammation (often
termed “inflammaging”), is thought to create a pro-tumorigenic milieu in the elderly
(Martin et al, 2022). Indeed, older individuals exhibit elevated systemic levels of
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An integrated schematic showing how aging-driven processes (immunosenescence, inflammaging, epigenetic drift) converge on DNA methylation
changes, histone modifications, and non-coding RNA dysregulation. These epigenetic alterations collectively promote bladder cancer initiation, immune
evasion, and aggressive phenotypes in older patients. Epigenetic therapies (DNMTi, EZH2i, HDACI), non-coding RNA therapeutics, and immunotherapy
combinations may reverse key lesions and restore immune surveillance. https://www.biorender.com/.

inflammatory cytokines and an impaired anti-tumor immune
response, which can facilitate cancer initiation and progression
(Rentschler et al, 2022). At the same time, epigenetic drift, a
process by which DNA methylation levels at thousands of CpG
sites gradually shift from the pattern seen in young adults, occurs
with aging (Issa, 2014). This progressive and stochastic deviation in
methylation is driven by imperfect maintenance methylation and
long-term environmental exposures. These epigenetic alterations
can lead to the silencing of tumor-suppressor genes or activation of
oncogenes, essentially “pre-setting” the stage for malignant
transformation in aging tissues. Consistent with this, recent
evidence indicates that biological age acceleration, as measured
by DNA methylation “epigenetic clocks,” correlates with higher
BC risk and poorer outcomes independent of chronological age
(Deng et al., 2024).

Critically, many of the molecular hallmarks of aging-such as
genomic instability, telomere attrition, and cellular senescence
(Lopez-Otin et al., 2013) - are closely interwoven with epigenetic
bladder
transcriptional shifts include increased expression of cell-cycle
inhibitors (e.g, CDKN2A/p16-INK4A) and pro-inflammatory
and

regulatory  changes. In urothelium, age-related

genes,
inflammatory signals (Evangelou et al., 2023). However, bladder

reflecting an accumulation of senescent cells

tumors frequently circumvent these aging defenses. For example, the
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CDKN2A gene (normally upregulated in aging cells to restrain
proliferation) is often inactivated by promoter hypermethylation
in BC, allowing tumor cells to bypass senescence (Jiao et al., 2018).
To understand BC in the context of aging, it is therefore crucial to
examine the epigenetic alterations that characterize bladder
in DNA methylation,
remodeling,

tumors—including  changes histone

modifications/chromatin and non-coding RNA
like
immunosenescence and epigenetic drift. Figure 1 provides a

dysregulation alongside age-related processes
schematic overview of the key epigenetic mechanisms driving BC
and illustrates how aging may modulate them, ultimately
influencing tumor behavior and therapeutic responses in elderly
patients. The figure also highlights emerging implications for
epigenetic therapies, which may be especially beneficial for older

individuals with BC.

2 DNA methylation in aging and
bladder cancer

Aberrant DNA methylation patterns are a well-established
feature of bladder carcinogenesis and may be exacerbated by
aging. In normal cells, aging is accompanied by cumulative DNA
methylation changes—a phenomenon of epigenetic drift-including
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global hypomethylation and site-specific hypermethylation at
certain gene promoters (Ciccarone et al., 2018). Bladder tumors
display these alterations to an extreme degree. On one hand, cancer
genomes undergo global hypomethylation with age and tumor
progression, which can activate transposable elements and
oncogenes, contributing to genomic instability. On the other
hand, there is often focal hypermethylation of tumor-suppressor
gene promoters in BC, leading to their transcriptional silencing.
Researchers have identified hypermethylation in the promoters of
over 50 genes in bladder tumors, providing an alternate route to
gene inactivation beyond mutations. For instance, the CDKN2A
gene (which encodes the pl6INK4A protein) is frequently
methylated in superficial (early-stage) bladder cancers, an event
that likely occurs early in tumorigenesis (Gilyazova, et al., 2023b).
This epigenetic silencing of CDKN2A is especially noteworthy in the
context of aging: while normal elderly cells rely on CDKN2A
upregulation to enforce senescence, bladder tumor cells can
epigenetically shut down CDKN2A expression, thus evading an
age-imposed growth arrest (Safwan-Zaiter et al., 2022).

Several other tumor suppressors and DNA repair genes are
commonly silenced by DNA methylation in bladder cancer.
Examples include TP53, RB1, E-cadherin (CDHI), among others,
which have all been found to be hypermethylated in a subset of
bladder tumors (Tran et al., 2021). In addition to these well-known
cancer-related genes, other methylation targets such as SFRPI,
LAMC2, and SOX9 have been associated with higher tumor
grade, stage, and poorer survival in bladder cancer patients (Ye
et al,, 2021). Collectively, these findings suggest that age-related
epigenetic lesions in the tumor (acquired over decades) can drive a
more aggressive phenotype. Notably, one study stratified bladder
tumors into molecular subgroups based on DNA methylation
profiles and found that the subgroup with the highest burden of
promoter hypermethylation had the worst prognosis (Luo and
Vogeli, 2020). These findings support the concept that an
accumulation of DNA methylation abnormalities—which can be
viewed as an epigenetic “memory” of aging and carcinogenic
exposures—contributes to tumor progression.

Aging not only induces static promoter hyper- and
hypomethylation in BC but also reshapes systemic immunity
through DNA-methylation  drift
“epigenetic clocks.” When methylation-derived biological age is

cumulative captured by
regressed on chronological age, the residual—epigenetic-age
acceleration (EAA)—quantifies the speed of epigenetic aging. In
601 non-muscle-invasive BC patients, each 1-year increment in
peripheral-blood PhenoAge-EAA raised the 10-year overall-
mortality risk by 6% (multivariable-adjusted HR = 1.06, 95% CI
1.03-1.08) and coincided with a neutrophil-rich, memory-
T-cell-poor immune profile (Chen et al, 2023b). CpGs that
receive high weights in several epigenetic clocks—ranging from
PhenoAge and Horvath
algorithms—tend to cluster near ELOVL2, FHL2, KLFl14,
TRIM59, RCAN1, CD46—genes implicated in lipid metabolism,
T-cell signaling, and complement control—suggesting a mechanistic

five-site forensic models to the

bridge between systemic epigenetic aging and impaired anti-tumor
immunity (McCartney et al,, 2021; Jung et al., 2019). Comparable
EAA-prognosis associations have been reported in colorectal,
hepatocellular, and breast carcinomas (Horvath, 2013), indicating
that systemic epigenetic aging is a pan-cancer modifier whose

Frontiers in Pharmacology

10.3389/fphar.2025.1617452

quantitative impact depends on tumor context. Mechanistically,
age-related hypermethylation of cytotoxic T-lymphocyte genes or
antigen presentation machinery can blunt immune surveillance
(Chen et al., 2023b). Consistent with this, loss of MHC class I
expression is frequently observed in recurrent tumors and BCG-
unresponsive disease (Wieczorek and Garstka, 2021), and while
genetic loss can be one cause, there is evidence that epigenetic
mechanisms (like promoter methylation of antigen-processing
genes) contribute to immune escape. Indeed, demethylating
agents can upregulate MHC and antigen presentation in some
cancers, making tumor cells more visible to the immune system
(Jongsma et al, 2021). Although this strategy is still under
investigation in BC, it underscores how age-associated epigenetic
repression of immune-related genes might be reversed for
therapeutic benefit.

DNA
methylation changes offer attractive biomarkers in the aging
population with BC. Methylated DNA can be detected in urine
sediments as a noninvasive test, which is especially useful for older

From a diagnostic and therapeutic standpoint,

patients who may not tolerate frequent invasive cystoscopies. Several
urine DNA methylation assays (targeting panels of genes like GHSR,
SST, PRDM14, and others) have shown high sensitivity for bladder
cancer detection (Hentschel et al, 2022). Moreover, epigenetic
biomarkers could help predict which older patients are at risk of
aggressive disease. For example, an elevated “methylation age” or
hypermethylation of certain promoters may indicate tumors with
of the
chronological age. Clinically, epigenetic therapy using DNMT1 is

more aggressive behavior, independent patient’s
an area of interest. Hypomethylating agents such as decitabine and
azacitidine, which are already used in myelodysplastic syndromes
(another disease of the elderly) (Zhou et al., 2024), could in theory
“rejuvenate” the epigenome of bladder cancer cells-reactivating
silenced tumor suppressors and immune genes. While these
agents are not yet standard for BC, preclinical studies suggest
they can slow tumor growth and enhance immune recognition of
bladder tumor cells (Hu et al., 2021; Nunes et al., 2020). Thus,
reversing age-related DNA methylation changes holds promise as a
therapeutic avenue, particularly for older BC patients who may
derive dual benefit from tumor suppression and improved

immunogenicity (Pereira et al., 2024).

3 Sex-biased epigenetic aging and
hormonal crosstalk

Bladder cancer incidence is four times higher in men, yet women
who develop the disease often present with more advanced stage and
poorer stage-adjusted survival (Doshi et al, 2023). Recent
population studies using DNA-methylation “clocks” reveal that
peripheral-blood EAA is on average =~ 1.5 years higher in men
than in women, even after correcting for smoking and body-mass
index (Kankaanpdi et al, 2021). In cancer cohorts, the adverse
prognostic impact of high EAA is likewise stronger in males,
suggesting that sex modifies the biological consequences of
methylation drift (Yu et al., 2021).

A principal driver of this asymmetry is androgen-receptor (AR)
signaling. AR recruits DNMT1 and the histone-methyltransferase
EZH2 to target promoters, accelerating hyper-methylation and
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H3K27me3 deposition on tumor-suppressor genes (Zimmerman
etal,, 2023); pharmacological or genetic AR blockade in the N-butyl-
N-(4-hydroxybutyl) -nitrosamine (BBN) mouse model attenuates
both methylation drift and tumor incidence (Doshi et al., 2023).
Conversely, predominantly via Erf, estrogen signaling upregulates
DNA-repair genes such as BRCAL and MGMT and slows clock-
CpG drift (Zach et al., 2022; Paranjpe et al., 2016); post-menopausal
estrogen decline is accompanied by an abrupt 6-8-year jump in the
PhenoAge-EAA in large female cohorts (Levine et al., 2016). These
hormonal effects intersect with chromatin architecture: AR
activation promotes EZH2 overexpression, whereas ERP can
suppress EZH2 transcription, partially explaining the higher
prevalence of EZH2-high, immune-cold tumors in older men.

further layer. KDMS6A, an

X-chromosome escapee histone-demethylase, is expressed from

Sex chromosomes add a

both alleles in females but from a single allele in males;
functional loss abolishes the female survival advantage in murine
urothelial carcinogenesis and correlates with reduced CD8"
infiltration in human BC(Kaneko and Xue, 2018; Chen et al,
2021a). Because KDM6A counteracts EZH2, its hemizygous state
in men may sensitize the male epigenome to AR-EZH2-driven
repression, reinforcing the cascade from systemic EAA to local
immune evasion (Ramakrishnan et al., 2019; Villanueva, 2017).

Clinical ramifications are two-fold. First, sex-stratified EAA cut-
offs could sharpen prognostic models; a 1-year PhenoAge-EAA
carries a greater hazard in men than in women. Second, therapy
choices might be sex-specific: AR antagonists or EZH2i combined
with checkpoint blockade warrant prioritization in EAA-high male
patients, whereas estrogen-supplemented PARP- or DNMT-
inhibitor regimens could be explored in post-menopausal females
with accelerated EAA (Doshi et al.,, 2023). Taken together, these
sexually dimorphic pathways link systemic epigenetic ageing to
chromatin-level repression and immune escape—mechanisms
that segue directly into the next section on histone modifications
and chromatin remodeling.

4 Histone modifications and chromatin
remodeling in the elderly

Beyond DNA methylation, histone modifications and
chromatin remodeling are key epigenetic regulators that are
frequently perturbed in BC-often through mutations in histone-
modifying enzymes or chromatin regulators. Notably, some of the
most commonly mutated genes in bladder tumors encode epigenetic
modifiers, indicating how central these epigenetic regulatory
processes are to disease pathogenesis (Knowles and Hurst, 2015).
For example, the histone methyltransferase gene KMT2D (also
known as MLL2) and the histone demethylase gene KDM6A
(UTX) are mutated in approximately 20%-30% of bladder
cancers, as reported by The Cancer Genome Atlas (TCGA)
analyses (Schulz et al, 2019). These loss-of-function mutations
have significant epigenetic consequences: KDM6A normally
removes repressive H3K27 methylation marks, so its loss can
lead to an increase in the repressive H3K27me3 mark on tumor
suppressor gene promoters (Tran et al., 2020). Meanwhile, KMT2D
is an ‘epigenetic writer’ of the activating H3K4me mark; its mutation
might reduce expression of genes needed for maintaining
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differentiated urothelial cell identity (Wang et al., 2025). The net
effect of these mutations is an epigenetic shift toward a more
primitive, proliferative, and invasive transcriptional program in
the cancer cells.

Importantly, the impact of such mutations may be modulated by
patient age. Older patients, by virtue of longer exposure to
carcinogens and a lifetime of cell divisions, are more likely to
accumulate multiple hits in these chromatin regulators. There is
also evidence that the consequences of losing certain epigenetic
regulators might be more pronounced in the aging context. For
instance, ARID1A-a component of the SWI/SNF chromatin
remodeling complex-is another frequently mutated gene (~20%
of BC) whose loss can destabilize chromatin structure. In an older
cell, which already may have heterochromatin decrease and more
transcriptional noise, loss of ARIDIA could further promote
genomic chaos and dedifferentiation (Zhang et al.,, 2020; Braga
et al, 2020). Moreover, these ARIDIA alterations frequently
coincide with high tumor mutational burden (TMB) subtypes of
bladder cancer (Conde and Frew, 2022). This suggests an interplay
in which aging-associated exposures induce these mutations,
thereby confer selective advantages in the context of an aged
(and perhaps inflammation-rich) tissue microenvironment.

Apart from mutations, dysregulation of histone-modifying
enzymes also occurs in bladder cancer and can relate to aging
processes. One prominent example is EZH2, the catalytic subunit
of Polycomb Repressive Complex 2 (PRC2) that trimethylates
histone H3 on lysine 27 (H3K27me3) to silence genes.
EZH2 levels increase in many cancers, including aggressive
bladder carcinomas (Thompson et al., 2023). Intriguingly, age-
related changes in tissue often involve shifts in PRC2 activity—for
instance, stem cells in older organisms exhibit altered PRC2 targets -
which may help explain why EZH2 is frequently overexpressed in
high-grade, muscle-invasive bladder tumors and is correlated with
shorter time to recurrence (Piunti et al., 2022). This overexpression
might be partly driven by the loss of antagonistic regulators like
KDMG6A (since KDM6A normally opposes EZH2’s mark) (Taylor-
Papadimitriou and Burchell, 2022). Functionally, EZH2 overactivity
in tumors leads to silencing of differentiation genes (e.g.,
E-cadherin) and immune-related genes, contributing to a more
malignant and immune-evasive phenotype (Martinez-Fernandez
et al, 2015b). From the aging perspective, an older patient’s
immune system is already less responsive; if a tumor upregulates
EZH2 and thereby suppresses antigen presentation or chemokine
production, the immunosurveillance might be especially ineffective.
Notably, demonstrated that EZH2-mediated
repression plays a direct role in immune escape in bladder
cancer. In a carcinogen-induced bladder cancer model, inhibition

recent studies

of EZH2 resulted in significantly reduced tumor progression only
when the adaptive immune system was intact-in mice lacking
T-cells, EZH2 inhibitors had little effect. EZH2 inhibition was
found to activate the immune response by upregulating MHC
class II and other immune genes in the tumor
microenvironment, effectively reversing an epigenetically enforced
immunosuppressive state (Piunti et al., 2022). These findings are
highly relevant to older patients: they imply that epigenetic therapies
targeting repressive histone marks (like H3K27me3 via EZH2i)
could rejuvenate  anti-tumor

immunity,  counteracting

immunosenescence (Allegra et al., 2023).
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Another layer of evidence linking histone modifiers to immune
regulation is provided by KDM6A (UTX) mutations. Beyond its
general tumor-suppressive role, KDM6A loss in BC has been shown
to attenuate the anti-tumor immune response. Tumors with
KDM6A mutations
lymphocytes (especially CD8" T cells) and a microenvironment
(Chen et al, 2021a).
Transcriptomic analyses indicate that KDM6A-mutant bladder

tend to have fewer tumor-infiltrating

skewed toward immune tolerance

cancers have downregulation of multiple interferon and
chemokine signaling pathways required for effective tumor
immunity (Kobatake et al, 2020). Clinically, low KDM6A
expression in tumors is associated with worse outcomes in BC
patients (Alessandrino et al., 2020). One can surmise that in an
elderly patient with an already waning immune system, the loss of
KDMG6A could be a double blow-epigenetically silencing immune-
response genes in the tumor and thus further reducing immune cell
recruitment to the tumor site. This synergy between aging and
epigenetic mutation may partly explain why older BC patients often
do not mount strong anti-tumor immune reactions, and why they
might respond differently to therapies. It also opens the door to
potential combination therapies: for example, using EZH2i or
HDACI to epigenetically reprogram “cold” tumors into “hot”
(T-cell inflamed) tumors, thereby improving the efficacy of
immunotherapies like PD-1 checkpoint inhibitors (Kalbasi and
Ribas, 2020). Currently, early-phase clinical trials are exploring
this concept-a combination of the EZH2 inhibitor tazemetostat
with the PD-1 immunotherapy pembrolizumab was found to be
tolerable in advanced urothelial carcinoma, with hints of enhanced
2022). Such
immunotherapy combos may be especially relevant for older
patients, who often have immunosenescent T cells that need

immune activation(Shin et al, epigenetic-

extra stimulation to attack cancer.

In summary, bladder cancer’s alterations in histone modification
pathways-whether via mutation (KDM6A, ARID1A, KMT2D) or
overexpression (EZH2, HDACs) - are a central component of its
biology and interact with aging. The aged epigenome already
undergoes shifts like loss of heterochromatin and redistribution
of histone marks; bladder tumors build on this by manipulating
histone modifiers to promote uncontrolled growth and immune
evasion. Recognizing these changes has direct clinical significance.
Epidrugs (epigenetic drugs) that target histone-modifying enzymes
(e.g., EZH2i, HDACI) could potentially reverse some age-related
epigenetic advantages that tumors possess. In preclinical models,
targeting these enzymes not only slows tumor proliferation but also
unmasks the tumor to the immune system (Yu et al, 2024).
Therefore, therapies aimed at the “histone code” may turn out to
be particularly impactful in older bladder cancer patients, converting
their immunologically silent tumors into ones that can be cleared by
the patient’s immune system or by immunotherapy.

5 Non-coding RNAs, aging, and
bladder cancer

Non-coding RNAs, including miRNAs, IncRNAs, and other
types (e.g., circular RNAs), play critical roles in the epigenetic
(Nemeth et al, 2024).
Dysregulation of these RNAs is a hallmark of bladder cancer,

regulation of gene expression
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and contributes to its development and progression (Zou et al.,
2024). Moreover, the expression profiles of certain non-coding
RNAs change with age (sometimes called “gero-miRNAs”), which
can influence cellular senescence, chronic inflammation, and
tumorigenesis (Wagner et al, 2024). In BC, many tumor-
miRNAs are
miRNAs are upregulated. This imbalance often creates a gene
that
exacerbate these patterns by altering miRNA biogenesis and

suppressive downregulated, while oncogenic

expression pattern promotes malignancy. Aging can

turnover mechanisms (Sanz-Ros et al., 2023).

5.1 MicroRNAs

These short (~22 nucleotide) RNAs normally fine-tune gene
networks post-transcriptionally. In the aging immune system, for
example, specific miRNAs like miR-181a decline, leading to reduced
T-cell sensitivity, whereas others like miR-146a increase to suppress
chronic inflammation (Kim et al., 2021; Gilyazova et al., 2023a).

In bladder cancer, tumor-suppressive miRNAs that normally
inhibit oncogenic pathways are frequently downregulated. One
striking example is miR-34a, a miRNA known to be induced by
p53 and involved in enforcing cell cycle arrest and senescence. MiR-
34a directly targets cell cycle regulators such as CDKG6; in aged cells,
miR-34a reinforces senescence by restraining proliferation (Ito et al.,
2010). However, bladder tumors frequently exhibit downregulation
of miR-34a, resulting in upregulation of CDK6 and uncontrolled cell
division (Li et al., 2014a). The loss of miR-34a’s restraining influence
may be especially detrimental in older patients’ tumors, which often
already harbor p53 pathway disruptions. Essentially, a critical cell
cycle brake activated during aging is disabled in cancer.

Similarly, miR-125b-which suppresses oncogenic transcription
factor E2F3 and is associated with cellular aging—is downregulated in
bladder cancer, leading to overexpression of E2F3 and accelerated
tumor cell proliferation (Wang et al.,, 2020). Let-7 family miRNAs,
which generally promote differentiation and inhibit proliferation
(and tend to increase with cellular senescence), are also commonly
diminished in BC, thereby derepressing RAS oncogenes and other
targets (Liang et al., 2020; Johnson et al., 2005).

Conversely, certain oncomiRs (oncogenic miRNAs) such as
miR-21 are upregulated in bladder tumors (Ohno et al, 2016);
MiR-21 inhibits apoptosis and is
inflammatory  senescent

associated with  pro-

secretomes in aged tissues; its
overexpression correlates with advanced disease (Syed et al,
2024). these miRNA
transcriptomic shift toward proliferation, invasion, and apoptosis

resistance in the tumor. Aging might facilitate these changes by

Collectively, alterations drive a

impairing the miRNA processing machinery (e.g., Dicer and Drosha
levels can decline with age) and by chronic inflammatory signals that
modulate miRNA expression (Proshkina et al., 2020).

5.2 Long non-coding RNAs

LncRNAs (>200 nucleotides) can regulate gene expression
through interactions with DNA, RNA, or proteins at both
transcriptional and post-transcriptional levels. The bladder cancer
contains hundreds

transcriptome of abnormally expressed
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IncRNAs, many of which have important functions in tumor biology
(Li et al,, 2021). Some IncRNAs act as oncogenes, promoting cell
proliferation, metabolic reprogramming, invasion, and therapy
resistance, while others function as tumor suppressors.

Aging influences IncRNA expression as well; for example,
IncRNAs involved in senescence (e.g., GASS5, a growth-arrest
associated IncRNA) tend to accumulate in aged cells but are
frequently downregulated in cancers (Li et al., 2020; Wang et al,,
2021b). In BC, one of the first identified oncogenic IncRNAs is
UCA1 (Urothelial Carcinoma-Associated 1). UCA1 was originally
cloned from BC and is overexpressed in bladder tumor tissues
(Zhang et al., 2013). It drives tumor progression through
multiple mechanisms: UCA1 can act as a molecular sponge for
tumor-suppressive miRNAs, it modulates signaling pathways like
mTOR and STATS3 to enhance glycolysis and proliferation, and it
interacts with epigenetic regulators to alter gene expression (Zhang
et al, 2019; Li et al,, 2014b). Notably, UCA1 has been shown to
sequester miR-143 and miR-145 (both downregulated in aging and
cancer), leading to upregulation of metabolic enzymes (HK2) and
EMT regulators (ZEB1/2) that drive BC cell invasion (Luo et al.,
2017; Xue et al, 2015). The result is a more aggressive tumor
phenotype, which may be more common in older patients’
tumors that often exhibit these metabolic and invasive traits.

Another well-studied IncRNA in BC is HOTAIR, which is
HOTAIR
originates from the HOX gene cluster and epigenetically silences

overexpressed in multiple age-related cancers.
genes by recruiting PRC2 (EZH2) to specific genomic regions. In
bladder cancer, high HOTAIR expression correlates with metastasis
and poor clinical outcomes. Mechanistically, HOTAIR directs
EZH2-mediated repression of tumor-suppressive miRNAs (e.g.,
miR-205) and downstream targets, thereby driving cell cycle
dysregulation and invasive behavior (Martinez-Fernandez et al.,
2015a). Since EZH2 is already elevated in many elderly aggressive
tumors, HOTAIR further amplifies its oncogenic effect.
Interestingly, certain IncRNAs are emerging as immune
regulators as well. For example, IncRNA LINC00337 (Lnc-LBCS)
has been reported to suppress bladder cancer “stemness” by binding
to the chromatin modifier EZH2 and the RNA-binding protein
hnRNPK, forming a complex that represses the stem cell gene SOX2
(Chen et al,, 2019). Such IncRNAs might actually support immune
function by keeping tumor cells differentiated and more
recognizable to the immune system. Age-related decline in these
protective IncRNAs could predispose elderly BC patients to tumors
with stem-like properties and immune evasion capabilities.
Overall, non-coding RNAs form a critical bridge between aging and
cancer. In aging tissues, the balanced expression of miRNAs and
IncRNAs helps maintain homeostasis—for instance, by eliminating
senescent cells and modulating inflammation. When this balance is
disrupted (either by age-related dysregulation or genetic/epigenetic
changes in a tumor), the result can be unchecked cell growth and a
tumor-promoting microenvironment. Bladder cancer exploits this by
downregulating miRNAs that would normally enforce senescence or
apoptosis, and upregulating IncRNAs that drive proliferation and
metastasis. Clinically, these molecules hold promise as biomarkers
and therapeutic targets, particularly in older patients who may face
challenges with traditional interventions. Urine-based miRNA
signatures (e.g., miR-21, miR-141, and miR-205 panels) have shown
potential for non-invasive bladder cancer detection (Ghorbanmehr
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et al, 2019; Chattopadhaya et al, 2025). Likewise, IncRNA
expression profiles can predict tumor behavior; for example, an
eight-long IncRNA signature was reported to predict recurrence in
BC (Lian et al., 2019). Future therapies might include miRNA mimics or
restore a youthful, tumor-suppressive miRNA
environment, or antisense oligonucleotides (ASOs) targeting
oncogenic IncRNAs like UCAI and HOTAIR. Such strategies could
complement existing treatments, possibly resensitizing tumors to

inhibitors to

chemotherapy or immunotherapy in elderly patients.
A concise overview of these key epigenetic alterations, their links
to aging, and their impact on BC progression is provided in Table 1.

6 Conclusion and future directions

Aging profoundly shapes the epigenetic landscape of bladder
cancer. As outlined, older patients with BC often exhibit tumors with
widespread DNA methylation abnormalities, mutations in
altered non-coding RNA
profiles. These changes are not merely passive bystanders but

chromatin-modifying genes, and

actively drive tumor initiation, progression, and immune evasion.
An emerging theme is that bladder tumors effectively co-opt age-
related epigenetic processes to their advantage—for instance,
silencing senescence regulators (such as pl6-INK4A and miR-
34a), upregulating immune-suppressive factors (like EZH2 and
HOTAIR), and
microenvironment of aged tissues (Balaraman et al, 2025; Nutt

exploiting  the  chronic  inflammatory
et al,, 2020). Understanding these interactions between aging and
epigenetics opens up new avenues to improve management of BC in

older adults. Key future directions include the following.

6.1 Epigenetic biomarkers of aging

The development of methylation- and non-coding-RNA-based
biomarkers capable of gauging the “biological age” of bladder
tumors has emerged as an important research focus. Some
studies suggest that these biomarkers may stratify patients by
tumor aggressiveness and predict therapeutic response (Horvath,
2013). For example, an epigenetic clock signature derived from
tumor or blood DNA could help identify older patients whose
cancers are biologically more aggressive (Wang et al., 2021; Chen
et al,, 2022). Such patients might benefit from earlier aggressive
treatment or epigenetic therapy, such as immune checkpoint
inhibitors (e.g., anti-PD-1 or anti-PD-L1 therapies) or targeted
epigenetic therapies, including DNA methyltransferase inhibitors
(e.g., azacitidine or decitabine). Conversely, detecting particular
methylation patterns (e.g., a panel of hypermethylated genes such
as CDKN2A or RASSFIA) in urine samples could enable non-
invasive early detection of BC in the elderly, when tumors are
still localized and treatable (Ibrahim et al., 2023; Lin et al., 2010).

6.2 Microbiome—epigenetic interactions in
the ageing host

Accumulating evidence indicates that age-related dysbiosis of
the gut microbiome can reprogram the bladder epigenome through
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TABLE 1 Key Epigenetic Alterations in Bladder Cancer and Their Links to Aging. This table summarizes major epigenetic regulators, their age-associated
changes, and how they drive bladder tumor progression.

Epigenetic

Factor

Connection to Aging

Impact on Bladder Cancer

References

CDKN2A (p16-INK4A)

Upregulated in aged cells to enforce senescence

Downregulation bypasses senescence and promotes
uncontrolled proliferation

Jiao et al. (2018)
Safwan-Zaiter et al. (2022)

KMT2D (MLL2)

Mutations accumulate with age, impairing normal
urothelial differentiation

Reduces expression of differentiation genes and drives
more aggressive phenotypes

Wang et al. (2025)

KDM6A (UTX)

Age-associated mutations lead to excessive repressive
chromatin marks

Silences tumor suppressors and immune genes, enhancing
immune evasion

Schulz et al. (2019)
Chen et al. (2021)

ARIDIA Loss of function co-occurs with genomic instability in Promotes dedifferentiation and is linked to high-risk Zhang et al. (2020)
aged cells bladder cancer Braga et al. (2020)
EZH2 Overexpressed in elderly aggressive tumors Represses genes for differentiation and immune response =~ Martinez-Fernandez et al.
(2015b)
miR-34a Declines with aging, partly due to reduced miRNA = Loses tumor-suppressive control on cell cycle, leading to Tto et al. (2010)
processing proliferation Li et al. (2014a)
let-7 Increases with cellular aging, restricting oncogene Downregulation derepresses RAS and accelerates tumor Liang et al. (2020)
expression progression Johnson et al. (2005)
miR-21 Associated with chronic inflammation in aged tissues Inhibits pro-apoptotic genes, fueling advanced disease Ohno et al. (2016)
Syed et al. (2024)
UCA1 Overexpressed in elderly patients with chronic Enhances EMT, metabolic reprogramming, and therapy Zhang et al. (2019)
inflammation resistance Li et al. (2014b)
HOTAIR Upregulated in multiple age-related cancers Drives metastasis and cell-cycle dysregulation Martinez-Fernédndez et al.

(2015a)

TABLE 2 Clinical Trials of Epigenetic Drug-Immunotherapy Combinations in Bladder Cancer/Urothelial Carcinoma. This table reflects the latest
ClinicalTrials.gov update and lists interventional studies that are actively accruing or in follow-up as of June 2025.

NCT ID Phase Epigenetic Drug Immunotherapy Status & Update Date Primary Completion
NCT05154994 | Belinostat (HDACH) Durvalumab Recruiting 2026-04-01

(2025-04-24)
NCT06022757 i XNW5004(EZH2i) KEYTRUDA® (pembrolizumab) Recruiting 2028-08

(2024-02-23)

TABLE 3 Overview of Epigenetic Therapeutic Strategies for Bladder Cancer in Elderly Patients. This table highlights current and emerging epigenetic-based
treatments, their mechanisms, and clinical relevance for older adults.

Therapy

Mechanism

Clinical Relevance for Elderly BC
Patients

Reference

DNMT Inhibitors

TSGs

Inhibit DNA methyltransferases, reactivate silenced

immunogenicity

Potential to restore senescence pathways and enhance

Nunes et al. (2020)

EZH2 Inhibitors

HDAC Inhibitors

Block H3K27me3 to reduce gene silencing

Maintain histone acetylation, reopen chromatin

May convert immune-cold tumors to immune-hot

Could overcome age-related repression and synergy
with immunotherapy

Shin et al. (2022)

Allegra et al. (2023)

Non-coding RNA Therapeutics

Use miRNA mimics or antisense IncRNA to correct
dysregulation

Can restore miR-34a or silence UCA1/HOTAIR

X. Zhang et al. (2019)
Li et al. (2014b)

CRISPR/dCas9 Epigenome
Editing

Precisely activate or repress specific loci

Experimental, potential to reverse age-driven
epigenetic drift

Yang et al. (2021)
Zheng and Chen
(2021)

metabolite-mediated crosstalk. Metagenomic surveys show that
bladder cancer patients harbor fewer butyrate-producing taxa
such as Lachnospiraceae and Prevotella, accompanied by a
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measurable

drop

in fecal butyric-acid concentrations
intestinal-barrier integrity. Butyrate and other short-chain fatty
acids (SCFAs) act as endogenous class I/Ila HDAC; their

and
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depletion removes a physiological brake on HDAC activity, thereby
favoring re-establishment of repressive chromatin and promoter
hypermethylation at tumor-suppressor loci (e.g., CDKN2A) in aging
urothelium (Schilderink et al., 2013; Borrego-Ruiz and Borrego,
2024; Chen et al.,, 2023a). Therapeutic corollary: restoring SCFA-
(high-fiber diets,
Akkermansia probiotics) or delivering intravesical butyrate
analogs may synergize with DNMTi, HDACi or EZH2i to
resensitize “cold” tumors in older patients.

producing consortia Faecalibacterium or

6.3 Targeted epigenetic therapies

Targeted epigenetic therapies that seek to reverse pathogenic
chromatin marks—particularly in immunosenescent patients—are
now being actively explored as a novel treatment modality for BC. A
recent review identified dozens of clinical trials evaluating epigenetic
therapies in BC, including DNMTi (e.g., 5-azacytidine and
decitabine), HDACi, and EZH2i (Thompson et al., 2023). While
results have been mixed and no phase III trial has yet been
completed, epigenetic drugs have shown potential synergy with
existing treatments. For instance, demethylating agents may
increase tumor immunogenicity and improve responses to
data
encouraging—for instance, DNMTi and HDACIi essentially “flip

immunotherapy. The from preclinical models are
the switch” on an immune-cold tumor to make it immune-hot
(Galustjan 2023), an effect that could synergize with checkpoint
blockade. For older patients who often have attenuated immune
function, this could be transformative. Another promising strategy
involves targeting telomere epigenetics. Aging-associated telomere
shortening and dysregulation of telomere-associated IncRNAs (e.g.,
TERRA) drive genomic instability in cancer (Chu et al, 2017).
Recent studies suggest that modulating telomeric chromatin states
(e.g., restoring heterochromatin marks like H3K9me3) could
selectively trigger tumor cell crisis (via mitotic catastrophe) while
sparing normal aged cells (Cacchione et al., 2019).

6.4 Delivery challenges and
emerging solutions

Systemic administration of first-generation epidrugs such as
azacitidine and decitabine inevitably exposes healthy proliferative
tissues  to  genome-wide  demethylation, leading to
myelosuppression, gastrointestinal toxicity and, paradoxically, a
potential pro-tumorigenic milieu (Zhou et al., 2024). To mitigate
these off-target effects, intravesical delivery—already standard for
BCG and gemcitabine—has been repurposed for epigenetic agents:
weekly bladder instillation of azacitidine in a carcinogen-induced
mouse model delayed tumor onset and prolonged survival without
the marrow toxicity observed after equivalent intravenous dosing
(Wang S. -C. et al, 2021). Building on this concept, cationic
liposomes, polymeric nanoparticles and hydrogel depots that
penetrate the glycosaminoglycan layer can maintain therapeutic
drug levels at the urothelial surface for days, convert “cold”
tumors to “hot” phenotypes and spare hematopoietic cells in
xenografts (Zhao et al, 2024; Wang et al, 2023). Collectively,

these advances suggest that rational drug-delivery engineering,
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aligned with bladder-specific anatomy, could unlock the full
therapeutic potential of epidrugs while reducing age-related toxicity.

6.5 Combination strategies

Given the interdependence of epigenetic dysregulation and

immunosenescence, combination  therapies are particularly
promising. For example, combining transurethral resection of the
bladder tumor (TURBT) with Bacillus Calmette-Guérin (BCG)
immunotherapy might enhance T-cell recognition of tumor-
associated antigens in older adults with non-muscle-invasive bladder
cancer (NMIBC) (Lodewijk et al., 2021). Likewise, pairing HDAC or
EZH2 inhibitors with PD-1/PD-L1 inhibitors could reverse adaptive
immune resistance in advanced malignancies (Kang et al., 2020). Several
prospective trials are evaluating combinations of epidrugs with
immune-checkpoint inhibitors. Table 2 summaries the key ongoing
studies, focusing on trials that are currently recruiting or listed as active
but not yet reporting final results. Future clinical trials should prioritize
broad age inclusion and conduct age-stratified analyses to determine
whether older patients derive unique therapeutic benefits from

epigenetic combination therapies.

6.6 Addressing epigenetic side effects

Safety and tolerability are critical considerations for older
patients receiving epigenetic therapies. Epigenetic drugs can have
off-target effects, such as myelosuppression (e.g., anemia,
thrombocytopenia) or neurocognitive disturbances, due to their
broad impact on chromatin remodeling. For example, DNA
hypomethylating agents (e.g., azacitidine) are associated with
hematologic toxicity, while HDACi can induce myelosuppression
and fatigue in older adults (Sun et al., 2018; Navada and Silverman,
2017). To address this, dose optimization based on frailty status and
real-time monitoring of blood counts and cognitive function are
essential when developing epidrugs for bladder cancer. Notably,
Tazemetostat, an oral EZH?2 inhibitor, has demonstrated favorable
tolerability in older patients with advanced solid tumors, including
those with genitourinary malignancies (e.g., prostate cancer) (Izutsu
etal,, 2021). While direct data in BC are limited, its safety profile and
epigenetic mechanism support further exploration in urothelial
carcinoma. Future strategies should integrate biomarker-guided

personalization to balance efficacy and toxicity.

6.7 Epigenome editing

CRISPR/dCas9-based tools enable locus-specific correction of
bladder cancer-associated epigenetic aberrations, offering a targeted
therapeutic strategy. In some researches, CRISPR-dCas9-VPR was
utilized to target the ERIC locus, revealing that its overexpression in
T24 and 5637 BC cells significantly suppressed proliferation and
invasiveness while promoting apoptosis. Conversely, CRISPR-dCas9-
KRAB-mediated knockdown of CacyBP in the same cell lines inhibited
proliferation and migration and enhanced caspase-3-dependent
apoptosis. These findings underscore the dual utility of epigenome
editing—activating tumor suppressors (e.g, ERIC) or silencing
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oncogenes (e.g., CacyBP)—to reverse malignant phenotypes, offering a
precision-based  strategy to counteract age-related epigenetic
dysregulation (Yang et al,, 2021; Zheng and Chen, 2021). In an aging
context, such strategies might extend to preventive applications—for
example, using dietary or pharmacologic interventions to slow epigenetic
drift (as measured by epigenetic age) and thereby reduce BC incidence
(Lin and Wagner, 2015). Although currently speculative, these concepts
underscore the potential of intervening on the epigenetic level to mitigate
age-related cancer risk.

Several epigenetic therapeutics have been investigated in BC,
including DNMTi, HDACI, and EZH2i, each holding particular
promise in older patients (see Table 3 for mechanisms and
clinical relevance).

In conclusion, bladder cancer exemplifies the profound
interconnection between cancer biology and aging processes.
Epigenetic regulation sits at this nexus, influencing virtually every
step from tumor cell-intrinsic behavior to tumor-immune system
interactions. By advancing our understanding of epigenetic
alterations in the context of aging, we can improve risk
prediction, personalize therapeutic strategies, and develop novel
therapies for the growing population of older BC patients. Future
advancements in BC management may hinge on dual-targeting
approaches that simultaneously eliminate malignant cells and
restore  youthful epigenetic regulation in aged tumor
microenvironments and immune systems-potentially resetting
dysregulated epigenetic programs to

responsiveness.

reestablish antitumor
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