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Melatonin (MLT), a naturally occurring hormone produced by the pineal gland,
exhibits significant anticancer effects. It has superior antioxidant, inhibit tumor
cell proliferation, migration, angiogenesis-inhibiting, and tumor cell apoptosis-
inducing functions. Mechanistically, melatonin inhibits tumor development
through epigenetic regulation, metabolic reprogramming, immune micro-
environment, and regulation of important signaling pathways (PI3K/AKT). In
addition, MLT significantly enhances anticancer efficacy in combination with
other anticancer drugs, such as cisplatin, 5-fluorouracil, and paclitaxel. However,
the shortcomings of melatonin, such as its low bioavailability, rapid metabolism,
and significant individual variation in secretion, have limited its clinical application
in anticancer therapy. This limitation has been mitigated by targeted delivery and
individualized therapy. Therefore, MLT may be a promising candidate for natural
hormone therapy in the future.
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1 Introduction

Melatonin (MLT) is an indoleamine secreted by the pineal gland and other organs
(retina, gastrointestinal tract, lymphocytes, etc.) (Ahmad et al., 2023). Melatonin
secreted by the pineal gland is mainly regulated by light exposure, which activates a
pathway starting from the retina, transmitting signals to the suprachiasmatic nucleus
(SCN) in the hypothalamus, then to the paraventricular nucleus (PVN), brainstem, and
spinal cord, and finally to the pineal gland (Vasey et al., 2021). Tryptophan is the
precursor for MLT synthesis, entering the pineal gland through the bloodstream and
being converted into 5-hydroxytryptophan (5-HTP) by tryptophan hydroxylase. 5-HTP
is further converted into 5-hydroxytryptamine (5-HT) by aromatic L-amino acid
decarboxylase (AADC), which is then converted to N-acetyl-5-hydroxytryptamine
(NAS) by arylalkylamine N-acetyltransferase (AANT), and finally to MLT by
acetylserotonin O-methyltransferase (ASMT). This MLT enters the cerebrospinal
fluid and bloodstream (Figure 1).

Melatonin secreted by the pineal gland is related to the duration of darkness. The
main function of melatonin is to transmit darkness signals, which may regulate
circadian rhythms and seasonal changes (Claustrat et al., 2005). These circadian
rhythms are regulated by the suprachiasmatic nucleus (SCN) of the hypothalamus.
The light-dark cycle of the environment plays a key role in the synchronization of the
SCN (Pandi-Perumal et al., 2008). MLT synthesis is affected by light, sleep, analgesic
drugs, and other factors (Ahmad et al., 2023). Melatonin secretion peaks at night until
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3:00 a.m. at the age of 1–3 years, and declines by 80% in
adulthood. Seventy% of the melatonin secreted by the pineal
gland is metabolized by the liver (Waldhauser et al., 1993).
According to reports, in mammals, less than 5% of melatonin
is produced by the pineal gland (Reiter et al., 2024). However,
most melatonin is secreted outside the pineal gland (in the retina,
skin, gastrointestinal tract, immune cells, mitochondria, etc.)
and is not affected by circadian rhythms (Acuña-Castroviejo
et al., 2014). Due to this characteristic, some researchers have
speculated that the local production of melatonin outside the
pineal gland plays a more direct and sustained role in the tumor
micro-environment, while melatonin secreted by the pineal
gland directly and indirectly regulates tumor development
during nighttime secretion (Bonmati-Carrion and Tomas-
Loba, 2021).

In mammals, melatonin (MLT) activates membrane-bound G
protein-coupled receptor (GPCR) receptor binding (MT1, MT2) or
by direct action (Jockers et al., 2016). MT1 is a major distribution
site in the suprachiasmatic nucleus (SCN), hippocampus, and
amygdala (Jockers et al., 2008), and the MTI secreted by the
SCN is subject to circadian rhythms. MT2 has a restricted
distribution and is mainly confined to the retina. Melatonin has
a greater affinity for MTI than MT2 (Liu et al., 2016). It was found
that the binding conformation of MTI with 2-
iodohydroxytryptamine or ramelteon was more favorable for the
binding of high-affinity ligands, and H5.42 and N4.56 of MT2 had
weaker affinity due to sequence differences (Wang Q. et al., 2022).
These receptors are directly or indirectly linked to a variety of
different signaling pathways, thereby inhibiting the response of
cancer cells.

2 Antioxidant activity

As a potent redox regulator, melatonin (MLT) exhibits dual
antioxidant mechanisms: executing direct ROS/RNS neutralization
while concurrently upregulating endogenous antioxidant enzymatic
systems through catalytic proficiency modulation, and its main
antioxidant effect is the formation of N-acetyl-5-
methoxytryptophan (AMK), deformed from the metabolite of
melatonin, N1-acetyl-N2-formyl-5-methoxykynurenine (AFMK)
(Galano et al., 2013). Melatonin is most concentrated in cell
membranes (Venegas et al., 2012),is highly concentrated in
mitochondria, and protects proteins, lipids, and DNA from free
radical-induced oxidative damage, in addition to preventing
mutations and damage to mitochondrial DNA (García et al., 2014).

Mitochondria are the primary sites of ROS production. Within
mitochondria, melatonin exerts its antioxidant function by directly
scavenging free radicals and also influences the mitochondrial
membrane potential to prevent damage from oxidative stress
(Chitimus et al., 2020). Melatonin protects the electron transport
chain (ETC) by binding to the Fe-S cluster of NADPHdehydrogenase,
reducing the generation of superoxide anion radicals (O2•−) caused
by electron leakage, blocking the opening of the mitochondrial
permeability transition pore (mPTP), and preventing apoptosis
caused by cytochrome C leakage (Hardeland, 2017; Tan et al.,
2007). Melatonin orchestrates tumor-selective reverse electron
transport through mitochondrial Complex I in head and neck
squamous cell carcinoma (HNSCC), eliciting site-specific
bioenergetic disruption via modulation of NADH/ubiquinone
oxidoreductase flux, thereby augmenting ROS-mediated activation
of the intrinsic apoptotic cascade through redox-sensitive BAX

FIGURE 1
Synthesis and metabolic pathway of melatonin (Melatonin (MLT) synthesis is triggered by light via the retina-SCN-pineal pathway. Tryptophan
converts to MLT through enzymatic steps, then enters blood and CSF, metabolizing into AMK/AFMK in the liver). Created in BioRender. cao, y. (2025)
https://BioRender.com/p10x701.
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TABLE 1 The anticancer activity of melatonin against different types of cancer.

Cancer type Cell Type (Human) MLT
concentration

Mechanism of action MLT
therapeutic

effect

Reference

Breast Cancer 4T1, 891 100 nM Melatonin regulates breast
cancer progression through the
lnc010561/miR-30/FKBP3 axis.

Inhibition of cell cycle Liu et al. (2020a)

MDA-MB-231 5 mM Melatonin can induce
autophagy in MDA-MB-
23 breast cancer cells.

Suppress Proliferation Wu et al. (2022)

HCC1954(PIK3CA, H1047R),
MDA-MB-453(PIK3CA, E545K),
MDA-MB-361(PIK3CA, E545K),

MCF7(PIK3CA, E545K)

4 mM Melatonin enhances the
cytotoxic effects of lapatinib by
promoting the unfolded protein
response (UPR) induced by
excessive EnR stress and

excessive accumulation of ROS.

Suppress Proliferation Sang et al. (2021)

Ovarian Cancer OVCAR3 4.8 mM Melatonin inhibits the PI3K/
Akt signaling pathway and

exacerbates oxidative stress to
increase apoptosis in OVCAR-3

cells.

Promote Apoptosis Baghal-Sadriforoush
et al. (2022)

SK-OV-3, HO-8910pm 100 μm Melatonin inhibition of the NE/
AKT/β-catenin/SLUG axis
reduced abdominal tumor
burden in ovarian cancer.

Suppress Proliferation Bu et al. (2020)

SKOV-3 4 mM Melatonin induces cell cycle
arrest by reducing DNA content
in S and G2/M phases in SKOV-

3 cells.

Inhibition of
Metastasis

Cucielo et al. (2023)

CaKi-1, ACHN, U87MG,
HCT116, PC3

4.8 mM Melatonin upregulates ovarian
tumor domain protein 1
(OTUD1) to stabilize pro-
apoptotic Bcl-2 proteins and

induce cell apoptosis.

Promote Apoptosis Woo et al. (2022)

Lung Cancer H1299, A549, H460, BEAS-2B 100 μm Melatonin reduces the
expression of circ_0017109 by
directly activating miR-135b-3p

to downregulate
TOX3 expression and inhibit
the proliferation of non-small

cell lung cancer cells.

Suppress Proliferation Wang et al. (2022b)

H23, A549 250 μm Melatonin and its derivative
ACT reduced the expression of
dry proteins Oct-4, Nanog, and
β-catenin by decreasing the
phosphorylation of AKT.

Inhibition of
Metastasis

Phiboonchaiyanan et al.
(2021)

A549, PC9, LLC1 1 mM Melatonin enhances
mitochondrial energy

metabolism by stimulating
sirtuin 3 (Sirt3) to increase

acetone and pyruvate
dehydrogenase complex PDH
activity, thereby significantly
reversing the Warburg effect.

Promote Apoptosis Chen et al. (2021a)

A549 1 nM Melatonin inhibits irradiation-
induced apoptosis in A549 cell

line.

Promote Apoptosis Kahkesh et al. (2020)

A459, CL1-5 3 mM Melatonin downregulates EMT
by suppressing the expression of
Twist/Twist1 (Twist family

bHLH transcription factor 1).

Inhibition of
Metastasis

Chao et al. (2019)

Bladder Cancer T24, RT4, HT1197, HT1376 1 mM Chen et al. (2019)

(Continued on following page)
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TABLE 1 (Continued) The anticancer activity of melatonin against different types of cancer.

Cancer type Cell Type (Human) MLT
concentration

Mechanism of action MLT
therapeutic

effect

Reference

Melatonin inhibits bladder
cancer cell migration and
invasion by downregulating
ZNF746-regulated MMP-9/

MMP-2 signaling.

Inhibition of
Metastasis

T24, 5637, UM-UC3 4 mM Melatonin inhibits the
glycolytic enzyme ENO1 and
suppresses bladder cancer.

Suppress Proliferation Shen et al. (2023)

T24, UM-UC-3 100 μm Melatonin inhibits cell prion
protein (PrP) and suppresses

bladder cancer.

Suppress Proliferation Yang et al. (2023)

Squamous cell
carcinoma of the head

and neck

Cal-27, SCC9 100 μm Melatonin drives apoptosis by
increasing mitochondrial ROS
generated through reverse

electron transport.

Promote Apoptosis Florido et al. (2022a)

Cal-27, SCC9 1500 μm Melatonin increases oxidative
phosphorylation (OXPHOS)
and inhibits glycolysis in

HNSCC, leading to increased
ROS production, apoptosis, and

mitochondrial autophagy.

Promote Apoptosis Guerra-Librero et al.
(2021)

HN6, HN12, HN30 5 mM High-dose melatonin blocks
FGF19/FGFR4 signaling

Suppress Proliferation Lang et al. (2021)

SCC-15 2 mM Melatonin inhibits OSCC
invasion and migration by
blocking fibroblast growth

factor 19 (FGF19)

Inhibition of
Metastasis

Wang et al. (2021)

SCC-15 2 mM Melatonin induces apoptosis
and ferroptosis by increasing
the levels of LC3A/B, cleaved
caspase-3, and PARP1 proteins.

Promote Apoptosis Wang et al. (2023b)

SCC-25 4 mM Melatonin increased the levels
of autophagy markers such as
LC-3B and Beclin-1, inducing

cell apoptosis.

Promote Apoptosis Sung et al. (2020)

THP-1, SCC-15 2 mM Melatonin inhibits the
development of oral squamous
cell carcinoma by interrupting
theMIF/NLRP3/IL-1β signaling

pathway promoted by
macrophages.

Inhibition of
Metastasis

Wang et al. (2023d)

SCC-9, HOK 1 mM Melatonin induces miR-25-5p
expression by directly targeting
developmental downregulation
protein 9 (NEDD9) expressed in

neural progenitor cells.

Suppress Proliferation Wang et al. (2020)

Gastric Cancer AGS 4 mM Melatonin induces apoptosis by
upregulating the PERK/eIF2α
pathway and downregulating

the NF-κB pathway.

Promote Apoptosis Li et al. (2022a)

prostate cancer LNCaP, C4-2, 22RV1, PC3,
DU145

1 mM Melatonin significantly reduced
the expression of

carboxyesterase 1 (CES1),
thereby reducing lipid droplet
(LD) accumulation. This was

achieved by increasing
endoplasmic reticulum stress,
reducing androgen synthesis,
and promoting cell apoptosis.

Promote Apoptosis Zhou et al. (2021)
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oligomerization and cytochrome c efflux (Florido et al., 2022a). In
addition, the deacetylase sirtuin 3 (Sirt3) increases the content of the
pyruvate dehydrogenase complex (PDH) through deacetylation,
thereby participating in ATP production. PDH significantly
enhances mitochondrial energy metabolism (Ozden et al., 2014).
Melatonin enhances superoxide dismutase 2 (SOD2) activity
through SIRT3-mediated deacetylation, accelerating the conversion
of O2•− toH2O2 (Ning et al., 2022).MLT reverses theWarburg effect
and inhibits lung cancer progression in lung cancer cells by
stimulating Sirt3 to increase PDH production (Chen X. et al., 2021).

Melatonin exerts its anticancer effects through a multi-level
antioxidant mechanism. ROS triggers apoptosis by activating the
pro-apoptotic proteins caspase-3/7/9 and cleaved PARP, disrupting
mitochondrial function. In pancreatic cancer, melatonin-induced
ROS enhances apoptosis through the mitochondrial pathway. ROS
inhibits cancer cell invasion and migration by regulating the key
JAK2/STAT3 signaling pathway. Additionally, cancer cells combat
ROS by relying on their antioxidant system. In hepatocellular
carcinoma cells, melatonin increases ROS accumulation and
promotes apoptosis by inhibiting GSH levels (Ordoñez et al.,
2015). In hepatocellular carcinoma cells, MLT induces
hepatocellular carcinoma cell death by increasing ROS
production. Concomitant use of melatonin with cisplatin
promotes ROS generation and increases cervical cancer cell death
(Pariente et al., 2016). Melatonin enhances ROS production in
botulinic acid-induced oral squamous cell carcinoma (OSCC)
with concomitant activation of DNA repair (Shih et al., 2021).

In addition, melatonin is conditioned to be pro-oxidant. High
concentrations of melatonin promote ROS generation. Studies have
shown that melatonin promotes ROS production depending on cell
type, concentration and duration of action. High concentrations of
melatonin are pro-oxidant in cancer cells, but do not increase ROS
production in lymphocytes (Büyükavci et al., 2006). The longer a
high concentration of melatonin acts, the more ROS it generates
(Bejarano et al., 2011). In addition, melatonin promotes ROS
production via calmodulin; ROS production is increased when
melatonin interacts with calmodulin, and chlorpromazine
interrupts ROS production by interrupting the binding of
melatonin to calmodulin (Radogna et al., 2009).

3 The anticancer molecular mechanism
of melatonin

Extensive research has demonstrated the crucial involvement of
melatonin in regulating neoplastic progression. Especially for people
who work at night or have low melatonin secretion, the cancer
incidence rate increases significantly, implying an inevitable
connection between melatonin and various tumors. Second, due
to the antioxidant and free radical scavenging activities of melatonin,
it has good anticancer activities (Table 1).

3.1 Inhibition of tumor cell proliferation and
cycle arrest

Cell proliferation refers to an increase in the number of cells.
During tumor growth, abnormal cell proliferation capacity is

significantly enhanced. The rapid expansion of cancer cells
indicates that the disease is more invasive and spreads faster.
Changes in the expression or activity of cell cycle-related proteins
are the mainmarkers of proliferation (Jarrett et al., 2018). Numerous
studies have shown that MLT can inhibit cell proliferation-related
pathways (CDK5 glycosylation, P21, P53, Smad3, etc.) and suppress
the cell cycle (G2/M), thereby hindering cell proliferation. For
example, Melatonin exerts anti-neoplastic effects in bladder
carcinoma through selective suppression of O-GlcNAc post-
translational modification on cell cycle-dependent kinase 5
(CDK5), thereby disrupting malignant cell cycle progression (Wu
et al., 2021). melatonin demonstrates therapeutic efficacy in gastric
malignancies through coordinated downregulation of CDK2/
4 oncogenic drivers (Chatterjee et al., 2024). Melatonin inhibits
proliferation in the G2/M phase of the hepatocellular carcinoma cell
cycle and induces apoptosis by upregulating p21 and p53 (Ammar
et al., 2022). Melatonin exerts antitumor efficacy in gastric
malignancies through selective downregulation of Smad3-
mediated proliferative signaling, effectively disrupting cell cycle
progression in neoplastic epithelia (Zhu et al., 2018). In
melanoma, melatonin inhibits cell proliferation by interfering
with cytoskeleton formation (Alvarez-Artime et al., 2020).
Melatonin inhibits proliferation of prostate cancer cells by
inhibiting SENP1 protein (Nyamsambuu et al., 2022; Ha et al.,
2022). Melatonin demonstrates potent anti-neoplastic activity in
cervical carcinoma through dual suppression of NF-κB-mediated
inflammatory signaling and COX-2 enzymatic hyperactivity,
effectively arresting malignant epithelial proliferation (Minocha
et al., 2022). In breast cancer, melatonin promotes breast cancer
cell apoptosis through downregulation of Delta-like ligand 4 (Rajabi
et al., 2020). Melatonin inhibits gastric cancer proliferation by
inhibiting estrogen receptor 1 (ESR1) in bisphenol S-induced
gastric cancer production (Wang Y. et al., 2023). In endometrial
cancer, melatonin inhibits endometrial cancer proliferation by
upregulating GATA-binding protein 2 (Liao et al., 2024). In a
mouse model of pancreatic cancer, melatonin supplementation
inhibited tumor growth by up to 65%, while blocking
endogenous melatonin accelerated tumor growth (Chan et al., 2023).

3.2 Induction of apoptosis and autophagy

In the development and progression of cancer,the anti-apoptosis
ability of tumorigenesis is significantly enhanced. Melatonin usually
promotes apoptosis by regulating apoptosis-related proteins
(caspase family, bax, bcl-2, C-myc, etc.) and inducing
endoplasmic reticulum stress. Melatonin orchestrates dual
antitumor mechanisms in thyroid carcinoma by simultaneously
inducing programmed cell death pathways and suppressing
mitogenic signaling cascades, effectively disrupting neoplastic
homeostasis (Shih et al., 2021). Melatonin orchestrates dual
antitumor mechanisms in cervical carcinoma by initiating
endoplasmic reticulum stress-mediated unfolded protein response
(UPR) while concurrently activating caspase-dependent apoptotic
pathways in neoplastic epithelia (Song and Wang, 2023). ROS
trigger apoptosis by activating the pro-apoptotic proteins
caspase-3/7/9 and cleaved PARP, disrupting mitochondrial
function, and in pancreatic cancer melatonin-induced ROS
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enhance apoptosis through the mitochondrial pathway (Florido
et al., 2022b).

Induction of tumor cell autophagy is a new possibility for
studying the potential therapeutic mechanisms of tumors (Liu
et al., 2023). Autophagy is a type of programmed cell death and
a relatively conserved catabolic process within cells. In cancer,
autophagy maintains genomic stability, suppresses the
accumulation of oncogenic proteins, and prevents tumorigenesis
(Li et al., 2020). Melatonin promotes autophagy in cancer cells by
regulating key proteins of autophagy (Beclin-1, LC3-II, ATG7, etc.).
During autophagic flux, cytoplasmic LC3-I undergoes lipid
conjugation via the ubiquitin-like system (Atg7/Atg3 cascade) to
form autophagosome membrane-bound LC3-II. This stoichiometric
conversion serves as a quantifiable biomarker for autophagosome
biogenesis monitoring, establishing LC3 lipidation as the gold-
standard metric in autophagy assessment. Melatonin can induce
autophagy in OSCC cells alone or in concert with other drugs (Sung
et al., 2020; Wang et al., 2023b), Melatonin membrane receptor
induces increased autophagy of TFE3 and induces apoptosis in
tongue squamous cell carcinoma (TSCC) (Fan et al., 2018). In gastric
cancer, melatonin promotes apoptosis in gastric cancer cells by
upregulating HSF1 protein (Li W. et al., 2022). melatonin is also
involved in the autophagy process of breast cancer cells, D Wu et al.
found that significantly increased anti-apoptotic proteins, LC3-
ΙΙ/LC3-Ι ratio of autophagy marker LC3, and the expression of
Beclin1 when it was used in the induction of autophagy in breast
cancer cells through the combination of MLT and autophagy
inhibitor 3-MA. decreased, indicating that autophagy inhibitors
can reverse the inhibitory effect of melatonin on breast cancer
and that melatonin inhibits breast cancer by inducing autophagy
(Wu et al., 2022). Combined treatment with melatonin and
Andrographis paniculata in rectal cancer results in an increased
LC3-II to LC3-I ratio and promotes autophagy and apoptosis in
rectal cancer cells (Zhao et al., 2022).

3.3 Inhibition of metastasis and anti-
angiogenesis

The acquisition of epithelial-mesenchymal transition (EMT)
characteristics represents a critical indicator of metastatic potential
in malignant neoplasms. Among the regulatory network governing
this process, Twist and Snail transcription factors have been
identified as pivotal molecular regulators that orchestrate both
EMT activation and the dissemination of cancerous cells
(Gundamaraju et al., 2022),and have been shown to target
Twist to inhibit the EMT of lung cancer cells, thereby
effectively controlling lung cancer metastasis (Chao et al.,
2019). In a seminal study conducted by Karadas et al. Their
experimental findings revealed that MLT administration
effectively suppressed hepatic and pulmonary metastatic
dissemination in murine models of mammary carcinoma.
Furthermore, the investigation demonstrated that this
indoleamine compound exerted dual inhibitory effects on both
angiogenesis and neoplastic proliferation in breast cancer
specimens (Karadas et al., 2021). Endothelin-1 (ET-1) inhibits
osteoblast differentiation, melatonin inhibits prostate cancer bone
metastasis by inhibiting ET-1, making melatonin a promising

therapy (Lin et al., 2024). The ECM is a specialized
extracellular matrix in the basement membrane that surrounds
solid tumors and serves as a structural barrier that anatomically
separates the tumor from the surrounding normal tissue (Mond
et al., 2020). Matrix metalloproteinases (MMPs) play an important
role in explaining the ECM, and melatonin inhibits BC
development by downregulating the AKT/MMP9 signaling
pathway (Chen et al., 2019). Oncogenic transcription factor
(FOSL1) can regulate EMT in a variety of tumors (Sobolev
et al., 2022),synergizes with PDL-1 in HNSCC, and significantly
inhibits EMT through the ERK1/2/FOSL1 pathway (Luo et al.,
2022). In breast cancer, melatonin treatment reduces
STAT3 phosphorylation, thereby inhibiting epithelial
mesenchymal transformation and metastasis (Das et al., 2024).
Melatonin inhibits chondrosarcoma cell proliferation by inhibiting
matrix metalloproteinase 7 (MMP7) (Nguyen et al., 2023).

Increased angiogenesis is an important factor in promoting
tumorigenesis. Tumor development is usually inhibited by direct
or indirect inhibition of angiogenic factors (VEGF, PDGF, HIF1,
etc.), and melatonin can achieve this function. Melatonin inhibits
the progression of hepatocellular carcinoma in rats by decreasing
VEGF levels (Bahaa Eldeen et al., 2023). Melatonin inhibits
tumorigenesis by reducing HIF1 levels (Kim et al., 2013; Park
et al., 2010). Melatonin enhances the inhibitory effect of
netazumab on glioblastoma by inhibiting EGFR, Melatonin
significantly reduces microvascular density and vascular
endothelial growth factor (VEGF) expression levels in mouse
tumors, inhibiting tumor angiogenesis (Wang et al., 2024).

3.4 Metabolic reprogramming

Tumor metabolic reprogramming is the metabolic
reprogramming of cancer cells to adapt to hypoxia and nutrient
deficiencies, Melatonin has the ability to regulate cancer cell
metabolic reprogramming (see Figure 2), in which mitochondrial
metabolism is one of the most important factors in cancer
development and inhibits the development of HNSCC by
regulating mitochondrial metabolism and function (Guerra-
Librero et al., 2021). MLT can be combined with vitexoporfin to
regulate mitochondrial function and inhibit the growth and
stemness of HNSCC (Shin et al., 2022).

In tumor cells, aerobic glycolysis (Warburg effect) leads to
tumor promotion through glucose uptake and lactate production
for a rapid tumor energy supply. Through its modulatory effects on
energy metabolism pathways, melatonin suppresses key oncogenic
factors implicated in ovarian carcinoma progression and metastatic
potential. This is achieved by downregulating both aerobic glycolytic
processes and glutamine degradation mechanisms, thereby
fundamentally reshaping the metabolic profile of malignant
ovarian cells,In a nude mouse tumor suppression model of
ovarian cancer cells, the tumor volume in the melatonin
treatment group was reduced by 50% (Silveira et al., 2024).
ENO1, best known for catalyzing glycolysis’ ninth enzymatic
step, has been identified as a melatonin-regulated protein that
mediates downstream metabolic processes, which is mainly
involved in the glycolytic process of tumor cells to provide
energy support for the survival of tumor cells (Huang et al.,
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2022). Melatonin induces toxicity of the chemotherapeutic drug
gemcitabine in BC cells by silencing the ENO1 upstream factor
PPARγ,In a bladder cancer xenograft model, the tumor growth
inhibition rate in the melatonin treatment group reached
58%,providing a new perspective for MLT treatment of BC (Shen
et al., 2023). Melatonin inhibits smooth muscle sarcoma by
suppressing aerobic glycolysis, inhibiting the uptake of linoleic
acid (LA) and the release of 13-hydroxy octadecadienoic acid
(13-HODE), thereby inhibiting its proliferation and invasion
(Mao et al., 2016).

Additionally, the Warburton effect appears to interact with
mitochondrial oxidative reactions. Some researchers have
speculated that melatonin may act as a glycolytic agent similar to
the anticancer drug DCA, targeting the mitochondria of
metabolically reprogrammed cancer cells. Melatonin upregulates
the pyruvate dehydrogenase complex (PDC), reprogramming
pyruvate in mitochondria, promoting the metabolism of pyruvate
to acetyl-CoA in mitochondria, and inhibiting the Warburg effect
(Reiter et al., 2020).

Fat metabolism is an important part of cancer metabolic
reprogramming. Under hypoxic conditions, the rate of fatty acid
synthesis increases in cancer cells (Xu et al., 2023). Carboxylesterase
1 (CES1) is an enzyme that inhibits fat accumulation, induces lipid
metabolism and increases endoplasmic reticulum stress (Gan et al.,
2023),Melatonin can target PCa by upregulating the expression of
CES1 to achieve this function (Zhou et al., 2021).

Folic acid drives tumor development by increasing nucleotide
synthesis and methylation capacity. In tumor metabolic
reprogramming, nucleotide metabolism is linked to glucose
metabolism and amino acid metabolism.
Methylenetetrahydrofolate dehydrogenase 1-like (MTHFD1L) is a
metabolic enzyme that regulates the folate cycle from format
production (Agarwal et al., 2019),It is a downstream target of
MLT, which was found by Cui et al. to inhibit the development
of HNSCC by inhibiting the expression of MTHFD1L mainly
through downregulation of CREB1 phosphorylation,In a head
and neck squamous cell carcinoma xenograft model, melatonin
inhibited tumor growth by more than 60% (Cui et al., 2021).

FIGURE 2
Melatonin exerts its anticancer effects by inhibiting cancer cell proliferation, promoting apoptosis, reducing metastasis and drug resistance through
multiple mechanisms, including regulation of energy metabolism, epigenetic modification, signaling pathways, and tumor suppressor gene expression.
(GLUT1: Glucose transporter 1; OXPHOS:oxidative phosphorylation; AMPK: AMP-activated protein kinase; HIF-1α: Hypoxia-inducible factor 1α; SIRT1/
NAD+: Deacetylase; EZH2 (H3K27me3): Histone methyltransferase; DNMT1: DNA methyltransferase 1; ACC/CPT1: Acetyl-CoA carboxylase and
carnitine palmitoyltransferase 1). Created in BioRender. cao, y. (2025) https://BioRender.com/bqm60d5.
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4 Epigenetic regulation

Epigenetic modifications are primarily categorized into four
types: DNA methylation, histone modifications, chromatin
remodeling, and non-coding RNA-induced modifications (Xu
et al., 2023). DNA methylation maintains dynamic equilibrium
within the body to ensure normal physiological functions. In
tumor cells, abnormal methylation can lead to the activation of
certain proto-oncogenes and the silencing of tumor suppressor
genes. The key regulatory enzymes of DNA methylation are
DNA methyltransferases (DNMTs), and the key enzymes for
active DNA methylation are TET enzymes. In various cancers,
the balance between DNA methylation and demethylation is
disrupted, leading to impaired expression of DNMT and TET.
Melatonin regulates the activity of DNMT and TET, thereby
influencing the expression of tumor suppressor genes and
oncogenes. Melatonin promotes the expression of DNMT1 and
epigenetic suppression of the transcription of the tumor suppressor
gene ARHI (Ras homolog 1), thereby reducing the sensitivity of
breast cancer to paclitaxel chemotherapy (Xiang et al., 2019).
Melatonin reduces the expression of transport proteins and the
resistance of brain tumor stem cells to chemotherapy drugs by
inducing methylation of the promoter of ABCG2/BCRP, a member
of the adenosine triphosphate-binding box (ABC) superfamily
(Martín et al., 2013).

Histone modifications influence chromatin structure and gene
transcription. The N-terminal regions of histones can undergo post-
translational modifications such as methylation, acetylation,
lactylation, glycosylation, propionylation, or butyrylation, which
alter gene expression. Melatonin exerts its anticancer effects by
regulating histone deacetylases (HDACs) and histone
acetyltransferases (HATs). Melatonin inhibits the growth of
esophageal squamous cell carcinoma by suppressing histone
deacetylase 7 (HDAC7) (Ma et al., 2022). HDAC9 knockdown
further enhanced the anticancer activity of melatonin treatment
in non-small cell lung cancer (Ma et al., 2019). Melatonin inhibits
the growth of glioblastoma stem cells by suppressing the
NOTCH1 signaling axis induced by histone methyltransferase
EZH2 (Zheng et al., 2017). Glycosylation is a post-translationally
modified form of the metabolic flux of glucose or other
monosaccharides (Pinho and Reis, 2015). Dysregulation of
glycosylation triggers tumor development, and O-GlcNAcylation
is usually a biomarker of dysregulated glycosylation (Chatham et al.,
2021). MLT significantly downregulates O-GlcNAcylation, a
dysregulated glycosylation marker, to reduce BC cell proliferation
and pro-apoptosis (Wu et al., 2021).

Non-coding RNAs (ncRNAs), consisting of microRNAs
(miRNAs), long non-coding RNAs (lncRNAs), and circular
RNAs (circRNAs), have been increasingly recognized as crucial
for various biological processes in recent years. Long non-coding
RNAs (lncRNAs) represent a class of epigenetically active molecules
that orchestrate post-transcriptional gene regulation through
competitive sequestration of chromatin modifiers and
microRNAs. This RNA-protein interaction paradigm positions
lncRNAs as promising therapeutic candidates for targeted
oncogenic pathway modulation in precision oncology (McCabe
and Rasmussen, 2021). Melatonin coordinates lncRNA to inhibit
breast cancer development, and FK506-binding protein (FKBP3)

and lnc010561 act as competing endogenous RNAs (ceRNAs) for
the tumor suppressor mir-30, which regulates breast cancer
development because of the significant downregulation of
FKBP3 by melatonin (Liu P. et al., 2020). Melatonin suppresses
triple-negative breast cancer (TNBC) oncogenesis through
competitive ceRNA-mediated modulation of the lnc049808/miR-
101/FUNDC1 mitophagic signaling axis, effectively disrupting
mitochondrial homeostasis in malignant epithelia (Yang
et al., 2021).

Cyclic RNA is highly conserved and very stable; therefore, it is
considered a promising tumor biomarker for precision medicine.
Hsa_circ_0017109 Increased expression is a biological process that
promotes hyperproliferation and metastatic invasion of lung
carcinoma. Wang et al. found that downregulation of Hsa_circ_
0017109 expression can effectively inhibit the development of lung
cancer, and melatonin plays an exact role (Wang Y. et al., 2022).

Melatonin inhibits cancer cell proliferation to promote
apoptosis by up-regulating pro-apoptosis-related miRNAs and
down-regulating anti-apoptosis miRNAs. Melatonin also impedes
tumor progression through miRNA regulation of pathways related
to cancer progression. In addition, melatonin inhibits GC
development by suppressing the exosome miR-27b-3p (Zhang
et al., 2023). Melatonin inhibits malignant progression of
glioblastoma by negatively regulating its downstream target
PIM1 through upregulation of mir-16-5p (Yan et al., 2022).
Melatonin inhibits human glioblastoma development by
regulating HIF1-α/VEGF/MMP9 signaling through the regulation
of differentially expressed vascular miRNAs in 6 (Doğanlar et al.,
2021). Figure 2 summarizes the interaction mechanisms between
melatonin and metabolic reprogramming and epigenetic regulation.

5 Tumor immune microenvironment

The tumor immune microenvironment (TME) is an integral
part of cancer progression, influencing metastasis and treatment
response. It consists of multiple cell types, extracellular matrix
components, and signaling molecules that interact to promote
cancer cell growth, invasion, metastasis, and treatment resistance
(Bilotta et al., 2022; Jin and Jin, 2020).

Immunosuppressive regulatory T cells (Tregs) are a major
mechanism of tumor immune escape (Qin et al., 2024).
Targeting Tregs plays an important role in tumor immune
escape and has significant antitumor effects. IL-10 and TGF-β are
two key cytokines released by Tregs (Sawant et al., 2019). Melatonin
reverses immune suppression by reducing the secretion of TGF-β by
tumor cells and decreasing the accumulation of myeloid-derived
suppressor cells (MDSCs). Melatonin acts on the interactions
between Tregs and other cells, thereby eliminating Treg function.
Melatonin has also been found to induce the release of inflammatory
cytokines such as IFN-γ and TNF-α, which not only promote the
proliferation of CD8+ T lymphocytes but also inhibit the
proliferation of Tregs (Mu and Najafi, 2021).

Macrophages are divided into two types: classically activated
M1 macrophages and selectively activated M2 macrophages (Pan
et al., 2020). M1-type macrophages primarily release pro-
inflammatory factors, while M2-type macrophages produce anti-
inflammatory cytokines such as IL-4, IL-10, and IL-13 within
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tumors (Murray et al., 2014). Tumor-infiltrating macrophages
(TAMs) are the main macrophages in tumors and exhibit M2-
type characteristics (Fu et al., 2020). Melatonin can inhibit the
release of cytokines such as IL-6, IL-10, and IL-12 by
macrophages. After melatonin treatment, the inhibition of the
TLR9/ERK1/2 pathway in macrophages plays a key role in
preventing the release of pro-inflammatory cytokines (Xu et al.,
2018). In addition, melatonin can also inhibit the expression of other
inflammatory mediators by macrophages. MLT treatment increased
the secretion of TNF-α and CXCL10 by macrophages, thereby
inhibiting the growth of gastric cancer cells (Wang K. et al., 2023).

T lymphocytes include various types of cells, such as CD4+ T
lymphocytes (i.e., type 1 and type 2 helper T cells), Th17 cells, and
cytotoxic CD8+ cells. Th1 cells release inflammatory cytokines, such as
IFN-γ, TNF-α, and IL-2. These cytokines activate the immune
response of NK cells and CD8+ T lymphocytes and promote the
proliferation of CD8+ T lymphocytes. In contrast to Th1 cells,
Th2 cells release anti-inflammatory cytokines such as IL-4 and IL-
10 (Zhang et al., 2014). In addition, MLT treatment of gastric cancer
cells leads to the production of exosomes, which promote the
recruitment of CD8+ T cells to the tumor site, thereby inhibiting
tumor growth (Wang K. et al., 2023). Melatonin therapy significantly
increased the number of CD3+ CD4+ and CD3+ CD8+ T cells, but
reduced the infiltration of Ly6G + F4/80- myeloid-derived suppressor
cells (MDSCs), significantly inhibiting the growth of non-small cell
lung cancer (Chao et al., 2021).

Natural killer (NK) cells are key immune cells in the fight against
cancer cells. NK cells kill cancer cells by releasing inflammatory
cytokines such as IFN-γ and TNF-α (Vallentin et al., 2015). NK cells
may be influenced by molecules released in the tumor
microenvironment, thereby promoting angiogenesis and tumor
growth (Zhang et al., 2020). Melatonin or its agonists, such as
agomelatine and remimegrotin, can promote the release of IL-2,
which is a key stimulatory factor for NK cell proliferation
(Srinivasan et al., 2011).

Cancer-associated fibroblasts (CAFs) regulate immune
responses, alter the composition of the extracellular matrix, and
promote angiogenesis to drive tumor progression and metastasis
(Chen D. et al., 2021). CAFs can promote endothelial cell
proliferation by directly secreting vascular endothelial growth
factor (VEGF) and fibroblast growth factor (FGF) through
exosomes. CAFs also secrete chemokine matrix cell-derived factor
1 (SDF-1), which recruits endothelial progenitor cells (EPCs) into
peripheral blood and guides their migration to the tumor periphery.
Melatonin inhibits the infiltration of triple-negative breast cancer-
associated fibroblasts (CAFs) by downregulating the expression of
laminin beta-3 (LAMB3) and the C-X-C chemokine ligand 2
(CXCL2) (Lai et al., 2024). IL-8 is primarily expressed in CAFs.
Melatonin inhibits IL-8 expression in CAFs by suppressing the NF-
κB pathway and AKT pathway, thereby directly or indirectly
inhibiting tumor progression (Liao et al., 2023). Figure 3
summarize the role of melatonin in cancer hallmarks.

6 MLT and signaling pathways

The PI3K/AKT/mTOR (PAM) signaling axis functions as an
evolutionarily conserved regulatory network coordinating pro-

survival mechanisms, mitogenic processes, and cell cycle regulation
through integrated phosphorylation cascades (Glaviano et al., 2023).
Through its regulatory effects on the PI3K/AKT signaling cascade,
melatonin enhances programmed cell death in ovarian carcinoma
cells, thereby suppressing tumor progression and malignant
transformation (Baghal-Sadriforoush et al., 2022). MLT inhibits
AKT pathway activation by decreasing MMD2, a downstream
target of AKT. Inhibition of mTOR induced autophagy in cancer
cells through activation of ULK1, leading to Beclin-1 phosphorylation
(Pourbarkhordar et al., 2024). MLT plays a major role in inhibiting
bladder cancer growth, proliferation and invasion/metastasis by
inhibiting Notch/JAG2 signaling through upregulation of PI3K/
AKT/mTOR downstream signaling (Chen et al., 2020). Melatonin
activates the PI3K/AKT axis, leading to upregulation of ETS and
inhibition of apoptosis in hyperoxia-exposed lung cancer cells (He
et al., 2023). Figure 4 summarizes the regulatory mechanism of
melatonin on the PI3K/AKT signaling pathway.

Abnormal activation of Wnt/β-catenin signal transduction is
closely related to the occurrence and development of cancer (Yu
et al., 2021). Melatonin (MLT) paradoxically enhances metastatic
progression in ovarian carcinoma through NE/AKT/β-catenin/SLUG
axis potentiation, yet concurrently attenuates chemotherapy-related
sequelae (CRS)-driven oncogenesis via SLUG-mediated epithelial-
mesenchymal transition (EMT) suppression in preclinical models (Bu
et al., 2020). MLT combined with Andrographis paniculata in the
treatment of colon cancer, the main mechanism is to induce cell death
by inhibiting β-catenin expression and its downregulated signals
Cyclin D1 and c-Myc (Sokolov et al., 2022).

Melatonin inhibits cervical cancer cell proliferation by suppressing
NF-κB pro-inflammatory transcription factor expression. Melatonin
demonstrates oncostatic efficacy in hepatocellular carcinoma (HCC)
through dual-pathway modulation: suppressing NF-κB transcriptional
activation while attenuating TNF-α-mediated proinflammatory
cascades (Ozturk et al., 2023).

7 Synergize with
chemotherapeutic agents

In order to further study the synergistic mechanism of
melatonin and chemotherapeutic agents, optimize the combined
treatment regimen, improve therapeutic efficacy, and reduce side
effects, a large number of studies have been conducted. Cisplatin, a
platinum-based chemotherapeutic agent, acts on tumorigenesis
mainly by inducing DNA damage and apoptosis, to which
tumors are prone to develop resistance and its main side effect is
that it affects the secretion function of oral salivary glands, resulting
in a series of oral-associated diseases (Dasari and Tchounwou,
2014). MLT has superior anti-inflammatory and antioxidant
effects, and the combination of melatonin and cisplatin treatment
significantly attenuates the destruction of the submandibular gland
due to the chemotherapy of cisplatin and reduces the side effects
(Badawy et al., 2024). In addition, melatonin enhanced the
sensitivity and efficacy of cisplatin for osteosarcoma
chemotherapy (Hosseini et al., 2022). MLT attenuated acute
kidney injury induced by cisplatin chemotherapy (Kim et al.,
2019). Injury to renal tubular epithelial cells is also frequently
seen in cisplatin treatment; fatty acid oxidation (FAO) supplies
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energy to renal tubular epithelial cells, where peroxisome
proliferator receptor alpha (PPARα) is a major regulator of FAO
(Robbins and Nie, 2012),Melatonin increased PPARα gene and FAO
expression and reduced cisplatin-generated acute kidney injury (Li
N. et al., 2022).

Melatonin reduces the toxicity of chemotherapeutic drugs while
at the same time is significantly anti-decaying and has become a new
means of adjuvant chemotherapy for the elderly (Ma et al., 2020). 5-
Fluorouracil (5-FU) has become one of the most commonly used
chemotherapeutic drugs for cancer treatment, and the use of
melatonin in combination with 5-FU reduces the toxicity of the
drug and decreases drug resistance (Mafi et al., 2023). Lapatinib is
commonly used in the treatment of HER2 positive breast cancer but
is prone to recurrence due to drug resistance (Yuan et al., 2023; Yang
et al., 2022; Zhang et al., 2024).

Paclitaxel (PTX) is a classic microtubule stabilizer chemotherapy
drug that blocks cell mitosis, induces cancer cell apoptosis, and
inhibits tumor metastasis (Abbaspour et al., 2025). However,

paclitaxel has neurotoxicity and bone marrow suppression issues.
In breast cancer, exposure to dim nighttime lighting (dLAN)
disrupts the circadian rhythm of melatonin, which drives
intrinsic resistance to paclitaxel through epigenetic mechanisms,
increases STAT3 expression, and enhances breast tumors’ sensitivity
to paclitaxel, inhibiting its growth (Xiang et al., 2019). Melatonin
inhibits dryness by activating MT1 to suppress c-Myc, nestin, and
histone methylation, thereby promoting the anticancer effect of
paclitaxel in brain cancer stem cells (Lee et al., 2018). Table 1
summarizes the anticancer effects of melatonin on different types of
cancer and their mechanisms of action.

8 Clinical trial

Melatonin has been used in anticancer clinical trials in various
types of tumors, and confirmed the beneficial effects of melatonin on
various types of cancer. To further promote the use of melatonin as

FIGURE 3
Summary of melatonin activity in restraining cancer hallmarks. (Snail, slug,twist,NF-κB:transcription factor; E-Cadherin,Bax:pro-apoptotic protein;
N-Cadherin:inhibitor of apoptoasis protein; MMPs:matrix metalloproteinases; PI3K/AKT/mTOR:phosphatidylinositol-3-kinase/Protenin KinaseB/
Mammalian Target of Rapamycin signal channel; MAPK/ERK:signal channel; Wnt/β-catenin:signal channel; TAMs:Tumor-Associated Macrophages; IL-
6,TNF-α:proinflammatory cytokine; CAFs:Cancer-Associated Fibroblasts; ROS:Reactive Oxygen Species; RNS:Reactive Nitrogen; P21,P53:cancer
suppressor genen; G1/S,G2/S:cell cycle; Bcl-2:anti-apoptosis gene; Fas:tumor necrosis factor; Caspase 8:cysteine protease; VEGF:vascular endothelial
growth factor; HIF-1α:the transcription factor hypoxia-inducible factor 1α; NK cell:identify tumor cells; T cell:kill tumor cells). Created in BioRender. cao,
y. (2025) https://BioRender.com/u29o844.
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an adjunctive therapy to traditional anticancer treatments,
researchers investigated the efficacy of melatonin in clinical
studies and patients (Table 2). Most clinical studies used
melatonin in combination with chemotherapy or as a protective
therapy, including alleviating chemotherapy-induced side effects,
reducing the incidence of depressive symptoms, and improving
sleep quality in cancer patients (Fatemeh et al., 2022). A
prophylactic regimen of 20 mg exogenous melatonin
administered 10 days prior to and during initial breast cancer
adjuvant chemotherapy (ACBC) demonstrated neuroprotective
efficacy, effectively counteracting treatment-induced cognitive
impairment, sleep dysregulation, and depressive symptomatology
(Palmer et al., 2020). Advanced cancer patients treated with MLT
showed significant improvement in sleep disorders in a double-blind
clinical trial (Mendis et al., 2024). Among breast cancer patients
receiving chemotherapy, showed that melatonin had the ability to
significantly ameliorate symptoms such as fatigue after adjuvant
therapy for breast cancer (Sedighi Pashaki et al., 2023). Conversely,

some clinical trials have also shown conflicting results. Cisplatin, one
of the most commonly used cancer chemotherapy drugs, causes
significant loss of magnesium and potassium in cancer patients.
Melatonin adjunctive therapy improved the incidence of acute
kidney injury and the rate of magnesium and potassium loss in
urine; however, it did not demonstrate positive results in preventing
acute kidney injury (Karvan et al., 2022). A clinical double-blind,
phase III randomized controlled trial study indicated that melatonin
adjunctive therapy can increase disease-free survival (DFS) in
patients with advanced non-small cell lung cancer, but it has no
significant effect on postoperative fatigue, depression, and anxiety
(Seely et al., 2021). Further research is needed to explore its
effectiveness. In addition, recent studies have shown that patients
undergoing chemotherapy for breast cancer are prone to fatigue, and
the experimental group was administered melatonin 20 mg orally
from the night before the start of chemotherapy until 2 weeks after
the start of chemotherapy. The results showed that melatonin did
not significantly improve the patients’ symptoms of fatigue and sleep

FIGURE 4
Melatonin activates G proteins by binding to theMT1 andMT2 receptors. The dissociation of the Gβγ subunit further activates the downstream PI3K-
AKT signaling pathway. AKT regulates the mTOR complex through phosphorylation, thereby affecting cell growth, metabolism, and survival. (PIP3:
Phosphatidylinositol (3,4,5)-trisphosphate; PTEN:anticancer protein; PDK1:3-Phosphoinositide-Dependent Protein Kinase 1; TSC1/2:Tuberous Sclerosis
Complex; GSK3:Glycogen Synthase Kinase 3; FoxO:Forkhead box class O; BAD:Pro-apoptotic BCL-2 family; MDM2:p53 tumor suppressor protein;
4EBP1:Translation suppression protein; p70s6k:Serine/threonine protein kinase). Created in BioRender. cao, y. (2025) https://BioRender.com/x11d1oe.
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disturbance. It is thought-provoking to note that the study did not
conduct serologic testing to further validate the (Mukhopadhyay
et al., 2024).

Overall, melatonin, as an adjuvant to the main anticancer therapies,
can enhance the anticancer effects and significantly improve the quality
of life of cancer patients with fatigue, depression and other symptoms
associated with chemotherapy. Of course, there are also some
conflicting research results, which require well-designed studies with
longer follow-up periods and larger sample sizes for verification.

9 Challenges and constraints

Absorption, metabolism, and excretion of melatonin vary from
individual to individual, and secondly, the type of drug formulation
needs to be considered in order to achieve clinical therapeutic benefit.
Ideally, it is recommended that melatonin be administered orally at
the usual bedtime time of approximately 45min to 1 h (Arendt, 1998).
Route of administration, age, hepatic function, and potential drug
interactions may affect plasma melatonin levels, and melatonin
sensitivity and pharmacokinetics vary from person to person;
Clinical observations suggest diminished dosing ranges
(0.3–0.5 mg) frequently exhibit enhanced therapeutic outcomes
compared with elevated dosages across diverse patient populations
(Harpsøe et al., 2015). In addition, the collection of melatonin samples
in the clinic needs to vary according to the patient’s time of secretion
due to differences in the timing of melatonin secretion, which greatly
increases the difficulty of sample collection.

10 Challenges and strategies for clinical
translation

10.1 Improvement of bioavailability

Melatonin has a short blood half-life, rapid cycling, and high
hepatic metabolism. To optimize sustained therapeutic efficacy,

developing controlled-release melatonin formulations with
prolonged circulation half-life becomes imperative.
Pharmacokinetic studies demonstrate that modified-release 2 mg
oral tablets achieve peak serum concentration (Tmax) at 6 h post-
administration, sustaining bioactive levels above the therapeutic
threshold for 3.5 h through first-order elimination kinetics. The
sublingual delivery system demonstrated accelerated melatonin
absorption kinetics, achieving peak plasma concentration (Cmax)
within 30 min - pharmacokinetic behavior analogous to immediate-
release (IR) formulations. Comparatively, oral tablet administration
exhibited reduced Cmax values but prolonged therapeutic exposure,
characterized by an extended elimination half-life (t1/2) and greater
area under the curve (AUC) retention (Ait Abdellah et al., 2023).
Oniria, an oral extended-release form ofmelatonin, also significantly
increased its bioavailability (Román Martinez et al., 2022).

10.2 Enhanced targeting

When taken orally, melatonin is rapidly metabolized by
CYP450 enzymes in the liver into 6-hydroxy melatonin, with a
bioavailability of only 3%–15%. Due to its high lipophilicity,
melatonin distributes unevenly and tends to accumulate in
adipose tissue. Additionally, its short half-life necessitates
frequent dosing, which limits its clinical application (Harpsøe
et al., 2015). Targeted delivery of melatonin to tumor sites using
nanotechnology and nanocoupling to reduce side effects on normal
tissues. Melatonin secretion decreases with age, and the use of
prostate-specific membrane antigen (PSMA)-targeted
nanocarriers loaded with I125 radioactive particles and
encapsulated siRNAs targeting APE1 (siAPE1) and melatonin for
the treatment of PCa played a good role in tumor-targeted therapy
(Liu et al., 2024). Melatonin-containing lactoferrin-chitosan-
etoposide nanoparticles show good efficacy in targeting colorectal
cancer therapy, increasing bioavailability, and improving drug
delivery (Raval et al., 2025). When encapsulated within NIR-
responsive chitosan (CS) biopolymers exhibiting superior

TABLE 2 Clinical evidence of melatonin anticancer effects.

Evidence
types

Research type Conclusion References

Positive Evidence Randomized controlled trial Melatonin treatment has a positive effect on sleep quality. Fatemeh et al. (2022)

Randomized, double-blind, placebo-
controlled trial

Hormones have a neuroprotective effect on breast cancer patients undergoing
chemotherapy, mitigating the adverse effects of adjuvant chemotherapy on cognitive
function, sleep quality, and depressive symptoms.

Palmer et al. (2020)

Phase III randomized clinical trial Melatonin improves sleep in patients with advanced cancer. Mendis et al. (2024)

Randomized clinical trial Melatonin reduces fatigue levels in women undergoing adjuvant therapy for breast
cancer and improves quality of life.

Sedighi Pashaki et al.
(2023)

Randomized clinical trial Melatonin prevents cisplatin-induced acute kidney toxicity. Karvan et al. (2022)

Randomized clinical trial Melatonin increases the 2-year disease-free survival rate in patients with advanced
lung cancer.

Seely et al. (2021)

Negative Evidence Randomized clinical trial Melatonin has no significant effect on 2-year disease-free survival in patients with
early-stage lung cancer.

Seely et al. (2021)

Double-blind, placebo-controlled
Phase III trial

Melatonin did not prevent or significantly improve fatigue and other symptoms in
patients with early breast cancer undergoing radiotherapy.

Mukhopadhyay et al.
(2024)
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biocompatibility, melatonin triggers apoptotic cascades in gastric
carcinoma through ROS-dependent PI3K/Akt/mTOR axis
modulation, leveraging photothermal conversion for
spatiotemporal control of therapeutic payload release (Fan et al.,
2024). Polylactic acid-hydroxyacetyl copolymer (PLGA) controls
degradation rate by regulating the lactic acid/hydroxyacetic acid
ratio. Brown algae polysaccharide/chitosan-layered PLGA
nanoparticles loaded with melatonin can induce slow release of
melatonin, enhance intestinal absorption, and inhibit the
progression of triple-negative breast cancer (Yen et al., 2023).

In a mouse model of prostate cancer, the tumor suppression rate
of the mitochondrial-targeted nanoparticle Mito-Mel was equivalent
to that of 500 mg/kg of free melatonin, representing an
approximately 100-fold improvement in efficacy (Chen et al.,
2025). Melatonin and gemcitabine were co-delivered in a
pancreatic cancer model, achieving a tumor inhibition rate of
68%, significantly higher than the 25% observed in the free group
(Ibrahim et al., 2025).

Exosomes mediate intercellular communication. Through
exosomes, donor cells can transfer exogenous substances such as
proteins, mRNA, microRNA (miRNA), and lipids to recipient cells
(Alfonsi et al., 2018). Current research indicates that exosome-
mediated drug delivery has low toxicity, low immunogenicity,
and high engineering potential (Liang et al., 2021). Recent
research has developed engineered M2 macrophage-derived
exosomes loaded with melatonin, which can effectively target
periodontal inflammation sites and mediate immune
reprogramming to promote macrophage repolarization (Cui
et al., 2023). Melatonin-pretreated mesenchymal stem cell-derived
exosomes (MT-Exo) can suppress inflammation by increasing the
ratio of M2 polarization toM1 polarization through activation of the
PTEN/AKT signaling pathway, and can promote diabetic wound
healing (Liu W. et al., 2020). Endothelial cell-derived primary
exosomes mediate melatonin inhibition of vascular calcification
and vascular aging in an m6A methylation-dependent manner
(Shan et al., 2024). However, current research on the use of
exosome-encapsulated melatonin for targeted delivery in cancer
is minimal, and we anticipate further studies on melatonin
in this area.

10.3 Individualized treatment

Due to the differences in the timing of patients’ melatonin
secretion, patients who are sensitive to melatonin are screened
for melatonin therapy through genomics, proteomics, and other
techniques. The administration time and dose of melatonin are
optimized according to the patient’s circadian rhythm, tumor
stage, and type.

10.4 Development of novel
melatonin analogs

Developing melatonin analogs through chemical modification
to enhance their anticancer activity and stability. To design
melatonin derivatives with multi-targeted effects that

simultaneously act on multiple key pathways in tumors to
achieve multiple anti-tumor effects.

11 Conclusion and perspectives

Melatonin, which is a natural hormone with multiple anticancer
activities, has made significant progress in cancer prevention
research in terms of its role and mechanism. MLT inhibits
cancer progression through anti-inflammatory and antioxidant
modulation of the immune system, induction of apoptosis, and
synergistic chemotherapeutic agents. Targeting MLT is prominent
and can effectively reduce side effects and improve bioavailability.
Although MLT has been shown to have therapeutic effects on
certain cancers in ex vivo and in vivo studies, its molecular
mechanism remains unclear, and most of the studies on MLT
have focused on the cellular level, with the direct target in
tumors still unknown. In addition, due to the time-dependent
and concentration-dependent nature of melatonin, although it
has been approved by the FDA for the treatment of insomnia
and other therapies, no substantial progress has been made in its
clinical use in cancer. Currently, there have been related studies
using nanosystems to improve the targeting and utilization of
melatonin, so melatonin is also a natural anticancer hormone
worthy of in-depth study in the future.
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