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Background: Knee osteoarthritis (KOA) is the most widespread degenerative
disease in the cumulative population. With the increasing aging of the population,
KOA has become one of themost important factors leading to joint deformities in
middle-aged and elderly people. At present, the therapeutic effect of synovial
mesenchymal stem cells (SMSCs) has gradually attracted the attention of many
researchers. Due to their better chondrogenic ability, they have gradually
become an effective way to treat cartilage injury. Because its function mainly
relies on exosomes and exosomes have many advantages of cell-free therapy, it
has attracted much attention from researchers.

Methods: The study was searched between April 20, 2014, and April 20, 2025, on
China National Knowledge Infrastructure (CNKI), Wanfang database, PubMed, the
Cochrane Library, and Web of Science. Two researchers independently reviewed
the literature, extracted data, evaluated bias. In cases of disagreement, a third
reviewer made the final decision.

Results: The initial literature search identified 198 potentially relevant studies.
After removing 7 duplicate publications, 183 records remained for screening. Title
and abstract review excluded 164 irrelevant studies. Full-text assessment was
performed on the remaining 19 articles, of which 12 ultimately qualified for
inclusion. Overall, the risk of bias in most of the eligible studies was unclear.
In the 12 included studies, it was confirmed that SMSC-derived exosomes could
maintain and promote cartilage repair and reduce the degree of cartilage damage
by in vitro cell experiments. By isolating and extracting the main functional
mirnas, it was found that these functional mirnas had a good therapeutic
effect on cartilage injury.

Conclusion: SMSC-derived exosomes demonstrate significant potential for
cartilage repair in KOA, primarily mediated by functional miRNAs. While in
vitro results are promising, the unclear risk of bias in current studies
underscores the need for higher-quality clinical research to validate their
therapeutic application.
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1 Introduction

Osteoarthritis (OA) is the most common joint disease, affecting
over 500 million individuals globally, with more than half of these
cases involving knee OA (KOA) (Hunter et al., 2020). Recent
research has increasingly focused on the role of systemic risk
factors in KOA development. Notably, population aging and the
global obesity epidemic have significantly contributed to the rising
prevalence of KOA (Wallace et al., 2017). Additionally, sedentary
lifestyles, comorbid metabolic syndrome, and increased reliance on
pain medications further exacerbate KOA progression (Davis et al.,
2019; Kaufman et al., 2012; Roos and Arden, 2016; Zhuo et al., 2012).
As a multifactorial condition influenced by both local and systemic
factors, its precise etiology remains unclear, and no curative
treatment is currently available (Michael et al., 2010). At present,
the most effective treatment methods for KOA are artificial joint
replacement and osteotomy, but they are all end-stage treatments
(Ramalho et al., 2025). In the current social situation, the economic
burden of surgical treatment for patients has been greatly improved,
but the risk of injury and complications caused by surgery is still
inevitable. Therefore, experts and scholars suggest that the treatment
threshold should be moved forward and treated in the early and
middle stages of KOA in order to delay the progress of KOA (Diab
et al., 2025).

Clinicians and researchers are now focusing on the treatment of
cartilage damage in the early and middle stages of KOA. Cartilage
injury is one of the primary causes of KOA and a major contributor
to knee pain. When cartilage is damaged, the degeneration of
articular cartilage accelerates, leading to pain and restricted
movement in patients. Therefore, targeted treatment of damaged
articular cartilage is critica (Bernhard and Vunjak-Novakovic, 2016;
Kanamiya et al., 2002; Lyu et al., 2022). Currently, various
therapeutic options are available for cartilage injury, including
microfracture, allograft cartilage transplantation, and xenograft
cartilage transplantation. However, these methods still require
surgery, and the above manipulations are performed during
the operation.

Among the current non-surgical treatment options, Platelet-
Rich Plasma (PRP) is favored by many patients and physicians
because it is collected from their own blood, the body will not
produce rejection, and has small trauma and good efficacy (Yan
et al., 2025). PRP treatment can produce good curative effect mainly
because it contains many growth factors, which can accelerate the
proliferation of chondrocytes and cartilage tissue repair (Everts
et al., 2020; Rodríguez-Merchán, 2022). Cell therapy is the direct
injection of cells with differentiation ability such as adipose-derived
mesenchymal stem cells into the joint cavity to achieve chondrocyte
regeneration.

MSC, as the regenerative agent, is one of the treatments for knee
OA treatment due to its potential to heal cartilage defects
(Sergijenko et al., 2016). A large number of studies have shown
that the stimulation of bone marrow MSCs (Wang et al., 2024),

adipose MSCs (Ruan et al., 2024), synovial MSC (Gao et al., 2024),
and umbilical cord MSCs (Najar et al., 2024) will accelerate their
differentiation into chondrocytes and has good therapeutic effects
on KOA-induced cartilage defects. In addition to the function of
chondrocytes, mesenchymal stem cells also show strong regulatory
ability and achieve immune regulation by improving local
microenvironment (Lee et al., 2015; Li N. et al., 2020), which can
be inhibited by chronic inflammation. However, comparative
studies have determined that synovial MSCs (SMSCs) have more
chondrogenic potential than MSCs from other tissues (Sekiya et al.,
2015; Tjandra et al., 2024; Futami et al., 2012), because they are
committed to a chondrogenic lineage (Koyama et al., 2008).

Mesenchymal stem cells can achieve the above functions mainly
through extracellular vesicles. Extracellular vesicles, as mediators of
information transmission between cells, play an extremely
important role in communication in cell differentiation and
regulation of the microenvironment.

1.1 Anatomy and physiological basis of the
SMSC-Exos

Exosomes are membrane-bound vesicles with a diameter
ranging from 30 nm to 150 nm and are found in almost all
living organisms (Gross et al., 2012; Mathivanan et al., 2010;
Simons and Raposo, 2009). In addition to proteins, exosomes
contain various nucleic acids, including mRNAs, microRNAs
(miRNAs), and other non-coding RNAs (ncRNAs) (Sato-
Kuwabara et al., 2015). As intercellular messengers, exosomes
contribute to the healing of osteoarthritic cartilage via paracrine
mechanisms (Kim et al., 2020). An increasing number of studies
have demonstrated that exosomes derived from mesenchymal stem
cells can carry a variety of biomolecules and mediate intercellular
communication (Jo et al., 2023), thereby achieving therapeutic
effects similar to those of their parental cells (Rani et al., 2015).
Exosomes derived from mesenchymal stem cells may offer distinct
advantages over whole-cell treatments in terms of patient safety,
such as reduced immunoreactivity and no risk of tumor formation
(Hassanzadeh et al., 2021). Synovium, a specialized connective tissue
lining the inner wall of joints, contains abundant macrophages and
fibroblastic cells (Haubruck et al., 2021), these cells are involved in
tissue repair under the regulation of SMSCS when the
microenvironment of the knee joint changes (Figure 1).

SMSCs represent a specialized population of multipotent
stromal cells residing within the synovial tissue of the knee joint.
These cells exhibit trilineage differentiation potential, demonstrating
the capacity to undergo osteogenic, adipogenic, and chondrogenic
differentiation under appropriate physiological or pathological
conditions (Sakaguchi et al., 2005). Functionally, SMSCs play a
crucial role inmaintaining joint homeostasis through their paracrine
activities, particularly via the secretion of exosomes. These
membrane-bound vesicles serve as important mediators of
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intercellular communication, facilitating the transfer of bioactive
molecules such as proteins, lipids, and nucleic acids to recipient cells
(Lu M. et al., 2025). Through this exosome-mediated signaling
mechanism, SMSCs actively participate in the regulation of the
local joint microenvironment, influencing cellular behaviors
including proliferation, migration, and importantly, the lineage
commitment of neighboring stem cells (Yang D. et al., 2025).
The precise composition of these exosomal cargos, which varies
according to physiological demands and pathological states,
determines the specific differentiation pathways induced in target
SMSCs, thereby contributing to joint tissue maintenance and repair
processes. Exosomes isolated from osteoarthritic synovial fluid have
been shown to inhibit the progression of osteoarthritis (Headland
et al., 2015) (Figure 2).

1.2 Anatomy and physiological basis of the
knee cartilage

The articulating end of joint bones is covered by articular
cartilage, which has a thickness of 1–4 mm (Shepherd and
Seedhom, 1999), and functions to transmit joint loads while
maintaining a low frictional coefficient. Articular cartilage is a
highly specialized connective tissue composed of sparsely
distributed chondrocytes (<2%–5% by volume of articular

cartilage (Muir, 1995)) surrounded by a dense extracellular
matrix (ECM). Water, either bound (water of hydration) or
unbound, is the most abundant component, accounting for
approximately 70% of the wet weight in healthy articular
cartilage. The water content increases from 65% near the
subchondral bone to 80% in the superficial zone (Amadò et al.,
1976). Due to the avascular nature of cartilage, water within the
tissue plays a critical role in nutrient transport to chondrocytes
(Maroudas, 1970). In addition to water, cartilage contains a variety
of proteins, macromolecules, and lipids (Seror et al., 2015). Healthy
articular cartilage exhibits one of the most efficient lubrication
systems in nature, with friction coefficients as low as 0.001 under
physiologically high pressures (Lin and Klein, 2021).

1.3 Current treatment of the knee
cartilage damage

At present, there are a variety of treatment options for articular
cartilage injury, all of which have shown beneficial therapeutic
results but also have associated negative effects. Allogeneic
cartilage microparticle transplantation is the ideal approach for
small-area cartilage lesions, particularly those less than 2 mm2

(Lin et al., 2010). However, this method will ultimately result in
difficulties such as subchondral bone collapse, poor cartilage fixation

FIGURE 1
The structure and function of SMSC-derived exosomes, as well as their extraction and treatment processes.
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at the transplant site, and poor development of the transplanted and
surrounding cartilage. Microfracture is the most common
treatment. Microfracture involves drilling holes in the cartilage
until bone marrow can be seen oozing out. A recent study on
microfracture showed that, while it is effective in filling cartilage
defects, it is ineffective in improving clinical symptoms (Lee et al.,
2019). This method causes the production of fibrocartilage, which
differ from the functional morphology of the hyaline cartilage (Li
et al., 2022), there is no hyaline cartilage to reduce friction.

Autologous cultured chondrocytes are the most commonly
employed cell-based approach for cartilage defect repair.
However, during in vitro expansion, these cells frequently
undergo phenotypic dedifferentiation, leading to the formation of
fibrocartilage—rather than the desired hyaline cartilage—in the
regenerated tissue (Brittberg et al., 1994; Huey et al., 2012;
Roberts et al., 2009). Currently, allogeneic cartilage micrografts
have emerged as a leading treatment for cartilage defects. Animal
studies demonstrate that this approach significantly improves
International Knee Documentation Committee (IKDC) scores
while markedly reducing pain levels, as assessed by the Visual
Analog Scale (VAS) (Farr and Yao, 2011). This approach not
only minimizes surgical trauma—enhancing patient
acceptability—but also optimally stimulates cartilage regeneration.
Although the above treatment is effective, surgery is still needed, and
some patients cannot cooperate well with the doctors due to the fear
of surgery. Therefore, non-surgical treatment has gradually become
the main breakthrough point for the treatment of cartilage injury in
the future.

As an intra-articular injection therapy without surgery, cell
therapy has been favored by many patients. Mesenchymal stem
cells can secrete a variety of growth factors and stimulating factors
to promote chondrocyte regeneration and cartilage tissue repair (Yang
H. et al., 2025). Moreover, under the influence of the inflammatory
microenvironment in the knee joint, mesenchymal stem cells can
differentiate into chondrocytes to achieve the purpose of cartilage
regeneration. However, cell therapy also has many drawbacks. The
differentiation direction of MSC is uncertain. MSC can differentiate
into bone, cartilage and fat, and its differentiation direction is difficult
to control in vivo (Lu J. S. et al., 2025). The storage and transport
conditions of MSC are strict, and it is difficult to achieve storage and
transport while maintaining cell activity. After topical application, it
will produce immunogenicity, stimulate the local rejection reaction
and aggravate the patient’s symptoms (Lu J. S. et al., 2025).

As a cell-free therapy, extracellular vesicles secreted by MSC
avoid the defects caused by cell therapy and have the therapeutic
advantages of MSC, which has become the object of in-depth
research by many researchers. Knee synovial mesenchymal stem
cells are terminal stem cells, and their differentiation direction is
more likely to induce cartilage (Aghajani et al., 2025). Therefore,
SMSC-derived exosomes also play a role in promoting cartilage
repair. However, the mechanism of SMSC-derived exosomes in the
treatment of cartilage injury has not been fully elucidated. This study
conducted a systematic literature review to assess the therapeutic
efficacy of SMSC-derived exosomes for knee joint cartilage repair.
We hypothesized that exosome-based intervention would
demonstrate significant clinical improvement.

FIGURE 2
The mechanism of KOA cartilage injury and the intervention mechanism of SMSC-derived exosomes.
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2 Methods

This systematic review was performed in strict accordance with:
guidelines for preclinical systematic reviews and meta-analyses of
animal studies (Neeleman et al., 2024), and The Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA)
statement (Bruzek et al., 2024). To ensure originality, we
conducted a preliminary search of the PROSPERO database
(registration number: CRD420250651715) to identify and avoid
overlap with ongoing systematic reviews).

2.1 Search strategy

This systematic review was conducted according to PRISMA
(Preferred Reporting Items for Systematic Reviews and Meta-
Analyses) criteria, along with a PRISMA checklist. Each study was
searched between 20 April 2014, and 20 April 2025, on China National
Knowledge Infrastructure (CNKI), Wanfang database, PubMed, the
Cochrane Library, and Web of Science. The electronic search strategy
used was “SMSC” [MeSH Terms] OR (“synovial mesenchymal stem
cells” [All Fields] AND (“mesenchymal stem cells” [MeSH Terms] OR
(“mesenchymal” [All Fields] AND “stem” [All Fields] AND “cells” [All
Fields]) OR “mesenchymal stem cells” [All Fields]) AND “cartilage”
[All Fields]) and “cartilage”, “Synovial Mesenchymal Stem Cells”.
Screened studies were reviewed by title and/or abstract to determine
study eligibility based on inclusion criteria. In cases of disagreement, a
third reviewer made the final decision.

2.2 Inclusion criteria

This systematic review included randomized controlled trials
(RCTs), clinical studies, and animal experiments published between
2004 and 2025. The inclusion criteria required: (1) complete
English-language full-text availability; (2) studies from all
geographic regions; and (3) human participants consisting of
adult patients (≥18 years) of both sexes with radiographically
confirmed knee osteoarthritis (Kellgren-Lawrence [KL] grade 2–3).

2.3 Selection and data collection

Article screening was performed in two phases according to the
predefined selection criteria. First, titles and abstracts were evaluated
for preliminary eligibility. Subsequently, full-text review was
conducted for final inclusion confirmation. The screening process
included: (1) removal of duplicate publications through systematic
deduplication; (2) verification of strict adherence to search criteria;
and (3) quality control through independent dual evaluation by two
investigators (J.M.S. and Y.S.Q.). Any discrepancies were resolved
through adjudication by a senior researcher (Y.S.X.).

2.4 Quality assessment and risk of bias

The risk of bias was assessed using the Systematic Review Center
for Laboratory Animal Experimentation (SYRCLE) tool, which is

specifically designed for animal studies (Hooijmans et al., 2014).
This tool evaluates bias across several domains: Random sequence
generation (selection bias), allocation concealment (selection bias),
blinding of participants and personnel (performance bias), blinding
of outcome assessment (detection bias), incomplete outcome data
(atrition bias), selective reporting (reporting bias), and other
sources of bias.

3 Results

3.1 Literature search and study identification

The initial literature search identified 198 potentially relevant
studies. After removing 7 duplicate publications, 183 records
remained for screening. Title and abstract review excluded
164 irrelevant studies. Full-text assessment was performed on the
remaining 19 articles, of which 12 ultimately qualified for inclusion.
The complete study selection process is detailed in the PRISMA
flowchart (Figure 3; Table 1).

3.2 Risk of bias

The overall and individual study results of the SYRCLE bias risk
assessment are detailed in Figure 4. Overall, the risk of bias in most
of the eligible studies was unclear. Some papers mentioned that
animal groups were randomly assigned, but did not provide specific
descriptions of the randomization procedure and allocation
concealment methods. All literature showed that the baseline
characteristics of the intervention and control groups were
comparable at the beginning of the experiment. Some studies
have not established animal models for in vivo studies. No
selective reporting or other sources of bias were identified in any
of the studies.

3.3 Animal model

The SMSCs in the twelve studies were derived from human
(n = 6), Sprague Dawley mouse (n = 4) and did not mention a
clear method for producing SMSCs (n = 2). Three studies
established mice models, four with no animal model, and the
remaining five with rat models. In all animal studies, one study
used cold water stimulation to induce KOA in mice, while five
studies’ established an OA model by completely transecting the
medial collateral ligament and the medial meniscus, by cutting
the meniscus at the narrowest point without damaging the tibial
surface, and transecting the anterior cruciate
ligament (Table 1).

3.4 Identification of SMSCs and their exos

Regarding the extraction method used for obtaining SMSCs, five
studies used collagenase, one study used trypsin to isolate SMSCs,
two studies purchased the finished SMSCs, and three studies did not
describe the method of extracting SMSCs. In the 12 studies, multiple

Frontiers in Pharmacology frontiersin.org05

Su et al. 10.3389/fphar.2025.1617874

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1617874


methods were used to confirm the success of SMSCs extraction,
including microscopic observation of the spindle-shaped shape of
extracted SMSCs (n = 10), and detection of SMSCs-specific surface
markers by flow cytometry (n = 8). The osteogenic ability of SMSCs
is identified by alizarin red staining, the lipid-forming ability of
SMSCs is identified by oil red O staining, and the chondrogenic
ability of SMSCs is identified by Alcian blue staining (n =
6) (Table 2).

There are numerous approaches to verify the expression of the
exosomes under examination. Regarding the identification of
exosomes derived from SMSC, eleven studies used Western blot
to detect their surface markers and used electron microscope to
observe the diameter of exosomes, whereas the remaining studies do
not mention how to successfully test for exosome
extraction (Table 3).

3.5 Evaluation of the repair effect of SMSC-
derived exosomes on chondrocytes

Twelve studies investigated the anti-inflammatory effects of
SMSCs-derived exosomes by establishing IL-1βOA models
in vitro. Eight studies demonstrated that SMSC-derived exosomes
might inhibit apoptosis and promote cell proliferation in OA animal
models by scoring them directly. Seven studies demonstrated that
SMSC-derived exosomes could reduce proteins such as proteoglycan
and reverse the course of OA. All studies in this systematic review
have proved that SMSC-derived exosomes can induce chondrocyte
proliferation and reduce chondrocyte matrix secretion, which
protect against KOA. However, different exosomes contain
different miRNA, which have different protective effects on
cartilage (Table 4).

FIGURE 3
Literature screening process.
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All the studies included in the review carried out in vitro cell
experiments, and all proved that SMSC-derived exosomes could
effectively improve IL-1β-induced cartilage damage, increase the
proliferation of chondrocytes and cartilage tissue repair, and some
specific functional mirnas could also increase the secretion of
extracellular matrix. All studies including animal experiments
have also proved that intra-articular injection of exosomes can
effectively alleviate cartilage damage after modeling, and the
degree of cartilage damage was graded by OARSI score, and the
tissue was stained with HE and Safranin O and fast green. It was
found that exosomes had a good effect on delaying the progress of
KOA, especially the therapeutic effect of some specific mirnas was
better than that of common mirnas, and the tissue staining results
and OARSI scores were closer to the blank control group.

Sun et al. (2023) by preparation of BMP-7 overexpression
exosomes, in vitro cell experiments showed that BMP-7

overexpression exosomes had a better effect on cartilage repair,
and could significantly inhibit the LPS-induced polarization of
RAW264.7 to M1 and to M2 direction. It was further
demonstrated that polarization of macrophages to M2 promoted
chondrocyte proliferation and migration and inhibited chondrocyte
apoptosis. In vivo experiments have also proved that BMP-7-exos
can inhibit the degeneration of articular cartilage and slow down the
progress of KOA, and can induce the polarization of macrophages in
synovial tissue to M2 direction, which plays an anti-
inflammatory role.

Long et al. (2023) through bioinformatics analysis, we found that
SMSC-Exo could transmit MATN3 and regulate IL-17 signaling
pathway to participate in the development of OA, which was used as
the entry point for further research. Firstly, the DMM animal model
was established. The results of PCR and tissue staining showed that
MATN3 overexpression could effectively alleviate cartilage damage.

TABLE 1 Summary of characteristics of animal models.

Author, year Animal Age Sample size Gender Weight Animal model Method of induction

Sun et al. (2023) Rats 10 weeks 40 Male NR Knee osteoarthritis Chemical; mono-iodoacetate injection

Long et al. (2023) Mice NR 88 NR NR Knee osteoarthritis Surgical; resection of the medial meniscus

Xu et al. (2021) Rats NR 40 Male 200–220 g Knee osteoarthritis Surgical; resection of the medial meniscus

Gao et al. (2024) Rats NR 36 NR NR Knee osteoarthritis Surgical; resection of the medial meniscus

Tao et al. (2017) Rats 12 weeks NR Male 300–350 g Knee osteoarthritis Surgical; resection of the medial meniscus

Wang et al. (2021) Mice NR 20 NR NR Knee osteoarthritis Physics; cold water stimulation

Lu et al. (2021) Rats NR 36 Male 300–350 g Knee osteoarthritis Surgical; resection of the medial meniscus

Zhao et al. (2024) NR NR NR NR NR NR NR

Zheng et al. (2022) NR NR NR NR NR NR NR

Kong et al. (2023) NR NR NR NR NR NR NR

Zeng et al. (2022) Mice 8 weeks 48 Male NR Knee osteoarthritis Chemical; mono-iodoacetate injection

Qiu et al. (2021) NR NR NR NR NR NR NR

FIGURE 4
The graph of risk assessment. Risk of bias graph about KOA treated with SMSCs-Exos.

Frontiers in Pharmacology frontiersin.org07

Su et al. 10.3389/fphar.2025.1617874

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1617874


Moreover, overexpression of MATN3 inhibited IL-1β-induced
extracellular matrix degradation and autophagy defects in
chondrocytes in vitro. Further studies then targeted MATN3 and
found that MATN3 inhibited IL-17A-induced activation of PI3K/
AKT/mTOR signaling axis, thereby inhibiting IL-1β-induced
extracellular matrix degradation and chondrocytes
autophagy defects.

Xu et al. (2021) promoted the differentiation of SMSC into
chondrocytes and reduced chondrocyte damage in vitro by
exosome-loaded Kartogenin (KGN). The exosome envelope
provides protection for KGN, and KGN can promote the
differentiation of SMSC into chondrocytes, achieving a two-way

promotion effect. On the basis of the cell experiments, the team
further established an animal model for study, and found that intra-
articular injection of KGN-loaded exosomes could continue to play a
role in the joint cavity. Further studies showed that the cartilage
defects caused by the DMM model were repaired with KGN-loaded
exosomes, which were closer to the normal cartilage morphology.

Gao et al. (2024) compared the time of induced differentiation of
mesenchymal stem cells and found that the expression of
MALAT1 decreased significantly, so they used it as a research
entry point for in-depth study. Bioinformatics studies showed
that mi-212-5p could significantly inhibit the expression of
MALAT1 and play a role in inducing SMSC chondrogenesis.

TABLE 2 Characterization of MSCs and their derived secretome and EVs in vitro.

Author,
year

Source Isolation method Characterization Size
distribution

Marker expression

Sun et al.
(2023)

Mouse Supernatants after
centrifugation

TEM, Western blot, NTA 50–160 nm CD63+, CD81+, CD9+

Long et al.
(2023)

Mouse Centrifugation, adherence to
tissue culture flask,
Supernatants after
centrifugation

Flow cytometry, TEM, Western
blot, NTA

30–100 nm CD90+, CD105+,CD34-, CD45-,
CD63+, HSP70+, Calnexin-

Xu et al. (2021) Human Centrifugation, adherence to
tissue culture flask,
Supernatants after
centrifugation

Flow cytometry, TEM, Western blot,
NTA, Osteogenesis, chondrogenesis and
adipogenesis

NR CD73+, CD90, CD105+, CD11b, CD19,
CD63+, CD81+, Tsg101-

Gao et al.
(2024)

Human Centrifugation, adherence to
tissue culture flask,
Supernatants after
centrifugation

Chondrogenesis NA CD44+, CD90+, CD105+

Tao et al.
(2017)

NR Centrifugation, adherence to
tissue culture flask,
Supernatants after
centrifugation

Flow cytometry, TEM, Western blot,
NTA, Osteogenesis, chondrogenesis and
adipogenesis

30–150 nm CD44+, CD73+, CD90+, CD105+,
CD151+, CD11b-, CD19-, CD34-,
CD45-, CD133-, CD9+, CD63+, CD81+,
Alix+

Wang et al.
(2021)

Mouse NR TEM, Western blot, NTA 100–120 nm CD63+, CD81+

Lu et al. (2021) Human Centrifugation, adherence to
tissue culture flask,
Supernatants after
centrifugation

Flow cytometry, TEM, Western blot,
NTA, Osteogenesis, chondrogenesis and
adipogenesis

100–120 nm CD90+, CD151+, CD45-, CD133-,
CD63+, CD9+, Calnexin-

Zhao et al.
(2024)

NR NR Flow cytometry, TEM, Western blot,
NTA, Osteogenesis, chondrogenesis and
adipogenesis

100 nm CD44+, CD73+, CD34-, CD45-, CD81,
TSG101

Zheng et al.
(2022)

Human Centrifugation, adherence to
tissue culture flask,
Supernatants after
centrifugation

Flow cytometry, TEM, Western blot,
NTA, Osteogenesis, chondrogenesis and
adipogenesis

30–150 nm CD44+, CD44+, CD73+, SCA-1+,
CD34-, CD45-, CD9+, CD63+, Alix+

Kong et al.
(2023)

Human Centrifugation, adherence to
tissue culture flask,
Supernatants after
centrifugation

Flow cytometry, TEM, Western
blot, NTA

60–300 nm CD44+, CD73+, CD90+, CD105+,
CD34-, CD45-, CD9+, CD63+, CD81

Zeng et al.
(2022)

Mouse Centrifugation, adherence to
tissue culture flask,
Supernatants after
centrifugation

Flow cytometry, TEM, Western blot,
NTA, Osteogenesis, chondrogenesis and
adipogenesis

100 nm CD44+, CD73+, CD34-, CD45-, CD63+,
TSG101

Qiu et al.
(2021)

Human Centrifugation, adherence to
tissue culture flask,
Supernatants after
centrifugation

TEM, Western blot NR HSP70+, CD9+, CD81
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Further in vivo animal studies showed that inhibition of
MALAT1 greatly promoted the differentiation of SMSCS into
chondrocytes and delayed the progression of arthritis.

Tao et al. (2017) used qPCR to confirm that SMSC-Exo
promoted the proliferation and migration of chondrocytes by
activating Hippo/yes-associated protein (YAP) pathway. In this
study, the expression level of miRNA was measured by
microarray, miR-140-5p is the highest expression level selected
for the study. The team consulted relevant data and proposed
that RalA might be the target of its action, which was verified by
detecting the expression of SOX9 and Aggrecan. Finally, RalA was
identified as the target of miR-140-5p. Animal studies also revealed

similar results to in vitro studies. Compared with the OA group of
rats, the SMSC-140-Exos group rats had less cartilage wear, and
OARSI score, and were more akin to the normal group. This study
strongly demonstrates that miR-140-5p can significantly slow
disease progression in the early stage of OA.

In their study, Wang et al. (2021) formed miRNA profiling of
synovial tissues from both healthy controls and KOA patients,
revealing 52 differentially expressed miRNAs. Among these, the
top 20 most significantly altered miRNAs were subjected to RT-
qPCR validation, which subsequently identified four particularly
prominent miRNAs. Notably, miR-155-5p emerged as the most
abundant miRNA in SMSC-Exos. Western blot analysis further

TABLE 3 Treatment parameters and analyses for included studies evaluating the efficacy of MSC-based therapies for OA treatment.

Author,
year

Group Study
timepoints

Conc./Volume/
Frequency

Method of analysis

Gross Histology IHC

Sun et al. (2023) Control group, KOA group, exo
group, BMP-7-exo group

8 weeks 1 × 1011 exosome
particles/mL/100 μL/3 d

Gross
morphology

HE, Safranin-O-Fast-
Green

collagen II,
aggrecan, iNOS,
CD206

Long et al.
(2023)

Control group, OA group, OA +
PBS group, OA + SMSC-Exo
group, OA + SMSC-oe-NC group,
OA + SMSC-Exo-oe-
Matn3 group, OA + SMSC-Exo-
sh-NC group, OA + Exo-sh-
Matn3 group

4 weeks 100 μg/L SMSC-Exo or
1× 1011 lentivirus/10 μL/1w

Gross
morphology

HE, Safranin-O-Fast-
Green, Toluidine blue

Matn3

Xu et al. (2021) Control group, OA + PBS group,
OA + Exo group, OA + SMSCs
group, OA + KGN group, OA +
Exo/KGN group, OA + Exo/KGN
+ SMSCs group, OA + E7-Exo/
KGN + SMSCs group

5 weeks 1000 μM/L/100 μL/1 w Gross
morphology

HE, toluidine blue,
safranine green

Collagen Ⅰ,
collagen Ⅱ

Gao et al. (2024) Sham group、OA group、OA+
SMSC-pcDNA3.1 group, OA+
SMSC-pcDNA3.1-
MALAT1 group, OA+ SMSC-NC
group, OA+ SMSC-sh-MALAT
group

NR NR Gross
morphology

Safranin-O and fast
green

Col2a1, Sox 9,
ACAN

Tao et al. (2017) Normal group, OA
Group, OA + SMSC-Exos
Group, OA + SMSC-140-Exos
group

12 weeks 1 × 1011 exosome
particles/mL, 100 μL, 1 w

Gross
morphology

Safranin-O and fast
green

Collagen Ⅰ,
collagen Ⅱ

Wang et al.
(2021)

Normal group, OA
Group, OA+ SMSC-Exo group,
OA+ SMSC-155-5p-Exo group

2 weeks 1 × 1011 exosome
particles/mL, 30 μL, 1 w

Gross
morphology

NR collagen Ⅱ,
apoptotic
proteins, P65

Lu et al. (2021) sham group
OA group, OA+ GW group, OA+
EVs group, OA
+ EV-NC group, OA+ EV-
inhibitor group

28 days 1 × 1011 exosome
particles/mL, 30 μL, 1 w

Gross
morphology

HE, Safranin-O and fast
green

apoptotic proteins

Zhao et al. (2024) NA NA NA NA NA NA

Zheng et al.
(2022)

NA NA NA NA NA NA

Kong et al.
(2023)

NA NA NA NA NA NA

Zeng et al.
(2022)

OA group, EVs group, EV + LV-
NC group, EV + LV-LRP12 group

4 weeks 20 μg EV Gross
morphology

Safranin-O and fast
green

collagen Ⅱ

Qiu et al. (2021) NA NA NA NA NA NA
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revealed that miR-155-5p mediates dual regulatory functions,
significantly inhibiting cellular apoptosis while promoting
extracellular matrix (ECM) secretion. Bioinformatics analysis
using MiBase and other prediction tools identified Runx2 as a
putative target of miR-155-5p. Subsequent experimental
validation through three complementary approaches -
quantitative gene expression analysis, dual-luciferase reporter
assay, and Western blotting - conclusively demonstrated

Runx2 as a direct target of miR-155-5p. Notably,
Runx2 demonstrates significantly higher expression in
osteoarthritic synovial tissue compared to normal tissue.
Functional studies revealed that Runx2 overexpression
counteracts the anti-apoptotic effects of miR-155-5p in
chondrocytes, as confirmed through comprehensive assessment
using flow cytometry, Western blot analysis, and CCK-8 assays.
In KOA chondrocyte models, we observed elevated Caspase-3

TABLE 4 Summary of key outcomes for included studies evaluating MSC-based therapies for OA treatment.

Author, year Key outcomes (in vitro) Key outcomes (in vivo)

Sun et al. (2023) BMP-7-exos reversed the inhibition of LPS on RAW264.7 and
chondrocytes, promoted the polarization of RAW to M2, and
inhibited the polarization of M1. BMP-7-exo inhibited apoptosis of
chondrocytes by macrophage M2 polarization

BMP-7-exo had a significant anti-inflammatory effect on KOA by
shifting macrophage polarization from M1 to M2 phenotype

Long et al. (2023) SMSC-Exo can play a role in OA by delivering MATN3 to the
chondrocytes. MATN3 inhibits the release of downstream
inflammatory cytokines, ECM degradation, and autophagy defects by
interacting with IL-17A. MATN3 inhibits IL-17A-induced activation
of the PI3K/AKT/mTOR signaling axis, thereby inhibiting IL-1β-
induced ECM degradation and autophagy defects in chondrocytes

MATN3 inhibits the release of inflammatory cytokines, ECM
degradation, and autophagy defects by interacting with IL-17A

Xu et al. (2021) Exosome-mediated delivery of KGN for SF-MSC chondrogenic
differentiation in vitro. E7-Exo-encapsulation effectively circumvents
the solubility problem of KGN, alleviates the aggregation of KGN
inside cells, and induces a stronger differentiation of SF-MSCs to
chondrocytes

Transplantation of MSCs loaded with E7-Exo/KGN showed
superior efficacy in reverting the damaged cartilage to the normal
state in the DMM model, whereas exosomes alone
MSC alone, or MSCs loaded with non-targeting exosome/KGN
could only lead to partial regeneration

Gao et al. (2024) miR-212-5p mimics obviously inhibited MYD88 expression
compared to the mimics group, while miR-212-5p inhibitor
promoted MYD88 expression

Decreased MALAT1 induced chondrogenic differentiation of
hSMSCs. Inhibition of MALAT1 promoted the expression of Sox9,
ACAN, and Col2a1 suggesting SMSC-sh-MALAT1 prevents OA in
rats

Tao et al. (2017) SMSC-Exos activated YAP, decreased ECM secretion of articular
chondrocytes, and induced proliferation and migration of articular
chondrocytes. SMSC-Exos decreased ECM secretion and induced
proliferation and migration of articular chondrocytes through
activation of YAP. Exosomes derived from SMSC-140-Exos induced
proliferation and migration of AC without decreasing ECM secretion

SMSC-140-Exos slowed the progression of early OA and prevented
the severe damage to knee articular cartilage in the OAmodel caused
by instability of the knee joint

Wang et al. (2021) The SMSC-Exos promote proliferation and migration but inhibit
apoptosis in osteoarthritic chondrocytes. Exosomal miR-155-5p
increases proliferation, migration, and ECM secretion and attenuates
apoptosis in osteoarthritic chondrocytes

Exos with or without some special modifications may have an
important role in clinical applications

Lu et al. (2021) SMSC-EVs suppress IL-1β-induced chondrocyte apoptosis and
inflammation. SMSC-EVs transmit miR-26a-5p into SW1353 cells to
upregulate miR-26a-5p expression. SMSC-EVs ameliorate IL-1β-
induced chondrocyte apoptosis and inflammation by carrying miR-
26a-5p

EVs exert protective effects against cartilage damage in OA by
carrying miR-26a-5p to target PTEN expression

Zhao et al. (2024) miR-485-3p was transferred by Exos, which might affect cartilage
injury in vitro. Exos attenuated cartilage injury by modulating miR-
485-3p expression

NA

Zheng et al. (2022) SMSC-212-5p-Exos) inhibit IL-1β induced ELF3 expression in
chondrocytes. SMSC-212-5p-Exos attenuate IL-1β induced
chondrocyte degeneration and degradation. SMSC-212-5p-Exos
attenuate IL-1β induced inflammatory responses in chondrocytes

NA

Kong et al. (2023) SMSC and its derived exosomes enhanced chondrogenesis. MiR-
320c promoted chondrogenesis through targeting ADAM19

NA

Zeng et al. (2022) EVs alleviate IL-1b-induced growth inhibition, ECM degradation
and inflammation in chondrocytes. Overexpression of
LRP12 activates the AKT/b-catenin signaling pathway and blocks the
alleviating roles of EVs in chondrocytes

NA

Qiu et al. (2021) miR-129-5p may achieve a decrease in the inflammatory response
and cell apoptosis by inhibiting HMGB1. Inhibiting miR-129-5p in
HS-MSC-Exo aggravated IL-1β-mediated chondrocyte injury

NA
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activity, which was markedly reduced following miR-155-5p
treatment (SMSC-155-p group). Consistent with these in vitro
findings, rat femoral condyle cartilage histology and OARSI
scoring in ex vivo experiments corroborated the therapeutic
potential of miR-155-5p. Collectively, these results provide
compelling evidence that miR-155-5p exerts chondroprotective
effects capable of mitigating osteoarthritis progression,
highlighting its significant clinical translation value.

Lu et al. (2021) proved that exosomes contained miR-26a-5p to
SW1353 cells through a series of cell experiments, inhibiting cell
apoptosis and inflammation induced by IL-1β. To determine the
downstream mechanism of miR-26a-5p, the researcher searched
multiple databases and did genetic testing on them, and finally
discovered PTEN as its binding site. PTEN has opposite effects on
exosomes on chondrocytes. This study included in vivo and animal
experiments, which proved that Exos targets PTEN expression by
miR-26a-5p, and demonstrated the therapeutic effect of miR-26-
5p on OA.

Mingjun Qiu et al. (Zhao et al., 2024) investigated using a
miRNA microarray experiment to investigate Exo-induced
differently expressed miRNAs, focusing on miR-485-3P, the
microRNA with the highest expression level in Exos. The authors
searched StarBase and the remaining four databases, predicated five
potential target genes for miR-485-3P. The study was verified using
an IL-1β-induced OA cell model, which confirmed that NRP-1 is the
target gene of miR-484-3P, and NRP-1 is negatively associated with
miR-485-3P. After the silence and overexpression of NRP-1 activate
and inhibit of PI3K/Akt pathway, Aggrecan, Collagen II, and matrix
metalloproteinases (MMP) 13 in chondrocytes were detected. It was
finally confirmed that miR-484-3P carried by Exos activates NRP-1
and protects cartilage through the PI3K/Akt pathway.

Zheng et al. (2022) identified a significant downregulation of
miR-212-5p accompanied by concurrent upregulation of
ELF3 expression in OA patient synovial tissues. Their
investigation revealed that miR-212-5p overexpression suppressed
IL-1β levels in chondrocytes, while ELF3 expression showed a
positive correlation with IL-1β production. Through
bioinformatics analysis using TargetScan and miRBase databases
combined with experimental validation, the researchers established
ELF3 as a direct downstream target of miR-212-5p in SMSCs.
Importantly, their findings demonstrate that miR-212-5p exerts
protective effects by attenuating IL-1β-induced ELF3 expression,
thereby mitigating chondrocyte degeneration and reducing
inflammatory factor production.

Kong et al. (2023) demonstrated that treatment with SMSC-
Exo, SMSC-NC-Exo, and SMSC-miR320c-Exo significantly
attenuated cartilage damage while enhancing chondrocyte
proliferation in OA models. These treatments markedly
downregulated pro-inflammatory cytokines (IL-1β, IL-6, and
TNF-α) and apoptosis-related markers (Bcl2 and Caspase3),
indicating both anti-inflammatory and anti-apoptotic effects.
Particularly, SMSC-derived exosomal miR-320c showed
pronounced efficacy in preventing cartilage ECM degradation
and chondrocyte apoptosis. Furthermore, mechanistic studies
revealed that miR-320c-containing exosomes promoted
chondrogenesis through targeted inhibition of ADAM19 expression.

Zeng et al. (2022) found that Exos derived from SMSC could
effectively reduce IL-1β-induced extracellular matrix degradation

and inflammatory factors such as IL-6 in cells. Then using mRNA
microarray techniques, ten of the highest miRNA expression
differences were screened, and the largest miR - 130 - b -
3 p from the OA model and control group was chosen as the
research object. In order to predict the target genes of miR-130b-3p,
the study searched 5 databases such as StarBase, and 5 potential
genes were ultimately selected. Using RT-qPCR to detect the
expression of these genes, only LRP12 was significantly reduced,
which was identified as the target gene of miR-130b-3p. Finally, in
vivo studies were conducted to confirm the experimental results via
establishing animal experimental models. Animal experiments
showed that miR-130b-3p could improve the levels of
inflammatory factors such as IL-6 in vivo, reduce the wear of
chondrocytes, and significantly repair cartilage damage, as
confirmed by the OARSI. This study demonstrated that miR-
103b-3p can effectively repair cartilage damage caused by OA
in vitro and in vivo, which has great development prospects.

Qiu et al. (2021) conducted in vitro experiments on OA
chondrocytes finding the cell COX2 and MMP13 expression of
inflammatory markers to reflect the degree of inflammation of OA
chondrocytes. In this study, by comparing the synovial fluid of KOA
patients and healthy people, the expression level of miR-129-5p was
the greatest difference, so it was determined as the research object.
HMGB1 (box-1 with high mobility), a kind of regulation of gene
transcription factor, can stimulate the inflammatory response
(Steinle, 2020). At the same time, HMGB1 was also determined
as a target gene of miR-129-5p in a variety of ways. In this study, the
expression levels of inflammatory factors in OA chondrocytes were
detected by silencing and overexpressing HMGB1 and miR-129-5p,
so as to highlight the therapeutic effect of miR-129-5p on OA.

4 Discussion

OA, a prevalent degenerative joint disease worldwide, is
characterized by progressive cartilage degeneration (He et al.,
2022). The current therapeutic options for OA remain limited
due to its complex and poorly understood pathogenesis, creating
an urgent need for more effective treatment strategies to halt disease
progression. Cell-free therapies utilizing exosomes have emerged as
a promising approach for cartilage repair, leveraging their natural
role as key mediators of intercellular communication through
paracrine mechanisms (Wu et al., 2019). Particularly, exosomes
derived from SMSCs demonstrate therapeutic potential by
promoting chondrocyte regeneration and migration while
reducing cartilage degradation in KOA. Notably, these exosomes
modulate ECM secretion in chondrocytes. This systematic review
comprehensively evaluates the clinical efficacy of various SMSC-
derived exosomal microRNAs in cartilage repair.

In the above 12 studies, different types of exosomes were
investigated to evaluate the therapeutic effect after surgery and to
determine the regeneration of cartilage tissue by in vivo experiments.
All studies confirmed that exosomes derived from SMSCs were able
to maintain and rebuild articular cartilage. The main functional
mirnas in exosomes were found and verified by isolation and
extraction. Studies have shown that these mirnas not only
maintain and reestablish chondrocyte function, but also promote
the secretion of extracellular matrix by chondrocytes (Figure 1).
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In the 12 included studies, it was confirmed that SMSC-derived
exosomes could maintain and promote cartilage repair and reduce
the degree of cartilage damage by in vitro cell experiments. By
isolating and extracting the main functional mirnas, it was found
that these functional mirnas had a good therapeutic effect on
cartilage injury. Different sources of SMSCs have been used in
each study, among which human-derived SMSCS have been the
most studied, followed by mouse-derived SMSCs, and there are also
SMSCs directly purchased and successfully extracted. The extraction
methods of exosomes are also different, but most studies use
ultracentrifugation to extract exosomes. Although the methods of
each study were different, there was no statistically significant
difference in the final evaluation indicators, as detailed in Table 2.

Among all the included studies, 5 studies did not establish
animal models for in vivo study, 2 studies established KOA
models by intra-articular injection of mono-iodoacetate, 1 study
established KOA models by cold water stimulation, and the rest
established KOA models by surgery. Although the establishment
methods of animal models are different, the indicators to evaluate
the success of model establishment are similar, so it has little impact
on the research outcome.

OA progression involves critical pathological changes in cartilage,
notably ECM degradation and chondrocyte apoptosis (Fujii et al., 2022;
Peng et al., 2021). The ECM serves as both a structural scaffold and a
biochemical regulator, facilitating nutrient transport to chondrocytes
while maintaining tissue homeostasis and mechanical integrity
(Rahmati et al., 2017). Our findings demonstrate that SMSCs and
their exosomes effectively downregulate MMP3 and MMP13—key
matrix-degrading metalloproteinases—while upregulating collagen
type II expression, the predominant structural component of healthy
cartilage (Peng et al., 2021; Rahmati et al., 2017).

Multiple studies highlight the therapeutic potential of miRNAs in
OA. Rasheed et al. (2016) identified that miR-26a-5p downregulates
inducible nitric oxide synthase (iNOS) and restores chondrocyte
homeostasis, thereby alleviating OA progression. This miRNA
demonstrates consistent protective effects across arthritic
conditions - in rheumatoid arthritis, activated miR-26a suppresses
apoptosis and inflammation while stimulating chondrocyte
proliferation (Jiang and Cao, 2020), whereas its downregulation in
OA correlates with enhanced apoptosis, inflammatory damage, and
synovial hyperplasia (Zhao et al., 2019). Parallel research reveals
additional therapeutic miRNAs: mmu-miR320c-3p inhibits OA
progression in vivo through β-catenin targeting (Hu et al., 2019).
While miR-485-3p overexpression protects against osteoarthritic
cartilage injury (Zhou et al., 2021).

Emerging evidence indicates that SMSC-derived exosomes mediate
cartilage protection through targeted molecular delivery. These
exosomes transport regulatory miRNAs (e.g., miR-150-5p and miR-
212) that significantly downregulate MMPs, thereby promoting
collagen type II accumulation while suppressing chondrocyte
apoptosis (Zheng et al., 2022; Chen et al., 2018). Complementing
these findings, Tao et al. (2017) demonstrated that exosomal
components inhibit ECM secretion via SOX9 pathway suppression.

Recent advances in miRNA research have significantly enhanced
our understanding of OA pathophysiology, sparking renewed interest
in this field (Tsai et al., 2017; Mao et al., 2017). Synovial tissue exists
only in a small number of parts of the human body. Therefore, there
are relatively few studies that specifically explore exosomes derived

from synovial mesenchymal stem cells in depth. However, there are
more studies related to exosomes derived from umbilical cord blood
mesenchymal stem cells, bone marrow mesenchymal stem cells and
adipose-derived mesenchymal stem cells, and their applications in
cartilage injury have also been deeply studied.

Previous studies Chang et al. (2025) have shown that exosomes
secreted by HUCMSCs pretreated with PRP have a greater
chondrogenic ability than those without PRP. The study also
demonstrated that exosomes from the pretreatment group could
suppress chondrocyte inflammation and restore cartilage matrix
proteins without inhibiting matrix degradation. Related studies
have also shown that subcutaneous fat (SC) stromal cells derived
exosomes (MSCsSC-Exos) specifically encapsulates miR-199a-3p in
chondrocytes and is delivered to the deep part of the knee joint by
intra-articular injection. To achieve good therapeutic effect (Zhao
et al., 2023). Exosomes derived from various types of cells have been
widely used in cartilage injury, such as M2macrophages (Zhang et al.,
2025), human fetal cartilage stem cells (Lee et al., 2025), auricular
chondrocytes (Kobatake et al., 2025), etc. Exosomes themselves can
play a role in promoting cartilage repair, and they can also be used as a
drug delivery medium to amplify their role in promoting cartilage
repair (Wu et al., 2025; Tu et al., 2025).

In recent years, exosome-based therapies have shown significant
advantages in the field of osteoarthritis treatment, especially in the
treatment of KOA, which has shown unique safety and clinical
transformation potential. As a kind of natural extracellular vesicles,
exosomes have the following outstanding advantages: first, they are
highly biocompatible and can be quickly removed by the human
body through normal metabolic pathways after local therapeutic
effects, thus avoiding possible side effects caused by long-term
retention (Chang et al., 2018). Second, as compared with stem-
cell therapy, exosomes are nonproliferative and completely avoid the
risk of tumorigenesis, a property that offers a significant advantage
in long-term safety (Amsar et al., 2022; Matthay, 2017). In addition,
exosomes require significantly lower storage conditions than SMSC,
which can be stably stored at 4°C for 72 h and frozen at −80°C for
months, which greatly reduces the logistics and storage costs in
clinical applications (Fang and Vangsness, 2024).

The existing research data show that exosomes can effectively
regulate the inflammatory microenvironment in the joint cavity and
promote the proliferation of chondrocytes and extracellular matrix
synthesis by carrying bioactive substances such as specific mirnas,
cytokines and growth factors (Li Z. et al., 2020). Animal studies have
shown that intra-articular injection of exosomes can significantly
improve the pain behavior score of KOA model animals, and
histopathological analysis confirmed that it can effectively delay the
process of cartilage degeneration, and no obvious local or systemic toxic
reactions were observed. In terms of immunogenicity, homologous
exosomes show a very low risk of immune rejection, which provides
an important guarantee for their clinical transformation.

In terms of the indications of exosomes for the treatment of
cartilage damage caused by KOA, most studies believe that MSC-
Exos has a better therapeutic effect on KOA patients in the early and
middle stage (KL 1–2). Grade 1–2 KOA is mainly characterized by
mild cartilage damage and local inflammation, and the joint
microenvironment is not completely unbalanced (Mao et al.,
2018). Exosomes can inhibit inflammation (IL-1β, TNF-α),
promote chondrocyte proliferation and matrix synthesis (collagen
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type Ⅱ, proteoglycan) by delivery of miRNA (such as miR-140-5p,
miR-92a-3p), and delay the progress (Vizoso et al., 2019). For grade
3–4 KOA (large cartilage defect, bone sclerosis, or deformity),
SMSC-Exos has limited repair ability. Advanced lesions are
accompanied by hypoxia, fibrosis, and abnormal mechanical
stress, which may inhibit the targeted delivery of exosomes and
cellular responses (Vizoso et al., 2019). Irreversible changes in knee
joint structure: exosomes are unable to directly repair osteophytes or
reconstruct severely worn cartilage layers, but may reduce pain and
inflammation by regulating the remaining subchondral bone to talk
to the synovium (Wu et al., 2024).

The effects of exosomes on the mechanics and biological
environment of the knee joint are mainly reflected in the
regulation of the local microenvironment. The core mechanism of
SMSC-Exos is to improve the biological microenvironment of joints,
inhibit the polarization of M1 macrophages, and reduce the release of
inflammatory mediators (Lai et al., 2025). Although exosomes cannot
directly correct structural alignment abnormalities such as varus or
valgus deformities, they may indirectly optimize mechanical loading
by repairing cartilage, reducing local stress concentration in the knee,
and relieving knee pain.

Based on the current research results, we suggest to accelerate
the clinical transformation research of exosomes in the treatment
of KOA. The specific research directions should include: (1)
optimizing the separation and purification process of exosomes
and establishing standardized production practices; (2) Conduct
dose exploration and administration regimen optimization studies;
(3) establish a long-term safety evaluation system; (4) explore
exosome engineering modification strategies to enhance targeting
and therapeutic effect. Through systematic preclinical and clinical
studies, exosome therapy is expected to become a breakthrough
therapy in the field of KOA treatment, providing a new treatment
option for delaying disease progression and improving the quality
of life of patients. The development of this innovative treatment
strategy will greatly promote the progress in the field of
osteoarthritis treatment, which has important clinical value and
social significance.

The limitations of this study are mainly reflected in the following
aspects. (1) The number of included studies was small. Because
synovial tissue only exists in a relatively small number of parts, such
as knee joints and shoulder joints, the number of studies on synovial
tissue is small. (2) the heterogeneity of SMSCs and exosomes
extraction methods. At present, MSC as one of the methods for
the treatment of KOA has not been fully accepted by the law and is
still in the exploratory stage. Therefore, there is a lack of
standardized procedures for the extraction of SMSC and
exosomes. (3) All the included studies only involved the efficacy
of exosomes and did not compare with other treatment methods. As
a new type of cell-free therapy, exosomes have a great improvement
in safety and preservation compared with MSC, but they have not
yet become an effective treatment method recognized by the public.
Therefore, studies on the comparative efficacy of exosomes are still
insufficient. In the future, researchers can compare the effect of
exosomes with traditional therapies. To prove the effectiveness of
exosomes in the treatment of KOA. (4) Lack of clinical research data.
As exosomes have not been used in clinical practice on a large scale,
there is still a lack of clinical data on exosomes. (5) Lack of long-term
experimental data. The longest time of animal models established in

each study was not more than 12 weeks, and there was a lack of long-
term study data for comprehensive evaluation.
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