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Drug-drug interactions (DDIs) pose a significant and intricate challenge in clinical
pharmacotherapy, especially among older adults who often have chronic
conditions that necessitate multiple medications. These interactions can
undermine the effectiveness of treatments or lead to adverse drug reactions
(ADRs), which in turn can increase illness rates and strain healthcare resources.
Traditional methods for detecting DDIs, such as clinical trials and spontaneous
reporting systems, tend to be retrospective and frequently fall short in identifying
rare, population-specific, or complex DDIs. However, recent advancements in
artificial intelligence (AI), systems pharmacology, and real-world data analytics
have paved the way for more proactive and integrated strategies for predicting
DDIs. Innovative techniques like graph neural networks (GNNs), natural language
processing, and knowledge graph modeling are being increasingly utilized in
clinical decision support systems (CDSS) to improve the detection, interpretation,
and prevention of DDIs across various patient demographics. This review aims to
provide a thorough overview of the latest trends and future directions in DDIs
research, structured around five main areas: (1) epidemiological trends and high-
risk drug combinations, (2) mechanistic classification of DDIs, (3) methodologies
for detection and prediction, particularly those driven by AI, (4) considerations for
vulnerable populations, and (5) regulatory frameworks and pathways for
innovation. Special emphasis is placed on the role of pharmacogenomic
insights and real-world evidence in developing personalized strategies for
assessing DDIs risks. By connecting fundamental pharmacological principles
with advanced computational technologies, this review seeks to guide
clinicians, researchers, and regulatory bodies. The integration of AI, multi-
omics data, and digital health systems has the potential to significantly
enhance the safety, accuracy, and scalability of DDIs management in
contemporary healthcare.
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Highlights

• This article provides a comprehensive overview of the latest
advancements in drug-drug interactions (DDIs) research,
highlighting the integration of an analytical framework that
combines artificial intelligence, knowledge graphs, and
clinical decision support systems for predicting DDIs.

• It underscores the importance of understanding DDI risks
and implementing effective management strategies,
particularly for vulnerable populations such as older
adults, pregnant women, and children.

• The article also compares various international regulatory
approaches and classification systems that are pertinent to
DDIs assessment, offering insights into how different
regions address these challenges.

• Furthermore, it identifies key future research priorities,
including the need for model interpretability, the
development of personalized risk alerts, and the
integration of pharmacogenomics into DDIs studies.

• The emphasis is placed on a convergence-oriented
perspective of DDIs risk assessment, which seeks to
bridge the fields of clinical pharmacology, machine
learning, and regulatory translation, ultimately aiming to
enhance real-world applications in the management of drug
interactions.

1 Introduction

1.1 Challenges of DDIs and
traditional methods

Drug-drug interactions (DDIs) present a significant challenge in
pharmacotherapy, a situation that is becoming more complex due to
the aging global population and the increasing rates of chronic
multimorbidity. DDIs arise when two or more drugs taken together
influence each other’s pharmacokinetic or pharmacodynamic
properties. This interaction can lead to a decrease in therapeutic
effectiveness, unexpected side effects, or even severe, life-threatening
consequences. The issue is particularly pronounced with the rise of
polypharmacy, especially in elderly individuals and hospitalized
patients, which has drawn increased attention from clinicians,
researchers, and regulatory agencies focused on understanding
and managing these interactions effectively.

1.2 Limitations of traditional DDI
detection methods

Traditionally, identifying DDIs has depended on retrospective
methods, including clinical observations, post-marketing
surveillance, and spontaneous reporting of adverse events.
Although these approaches provide valuable insights, they often
suffer from fragmentation and lack the sensitivity and timeliness
needed for proactive pharmacovigilance. Consequently, many DDIs
go undetected, leading to preventable adverse drug events and
adding strain to healthcare systems. Alarmingly, around 30% of
adverse drug reactions (ADRs) are associated with DDIs, with a

considerable number of these interactions remaining unrecognized
in clinical practice.

1.3 The role of emerging technologies in
DDI detection

In recent years, significant advancements in systems biology,
pharmacokinetics, and molecular pharmacology, along with the
emergence of artificial intelligence (AI), machine learning (ML),
and network pharmacology, have transformed DDIs research. These
innovative technologies facilitate the large-scale prediction and
mechanistic investigation of potential DDIs, frequently
uncovering risks before they become apparent in clinical settings.

1.4 Gaps and challenges in current research

Despite the promising advancements in the field, there are still
notable gaps that need to be addressed. Many current reviews tend to
overlook recent developments in computational methods, as well as
the valuable real-world data derived from electronic health records
(EHRs). Additionally, they often fail to consider the specific DDIs
risks that vulnerable populations, such as the elderly and critically ill
patients, face. This highlights the urgent need for a comprehensive
and up-to-date synthesis that tackles these challenges effectively.
While tools like the STOPP/START criteria are increasingly being
utilized to minimize potentially inappropriate medications (PIMs)
and DDIs events in geriatric care, further research is essential to fully
understand and address the wide range of DDIs risks present in
these populations.

1.5 The framework and objectives of
this review

This review presents a comprehensive synthesis of the current
understanding of DDIs, covering epidemiological trends, mechanistic
insights, predictive methodologies, and regulatory perspectives. It
emphasizes the impact of emerging technologies, particularly
artificial intelligence (AI) and pharmacogenomics, on the detection
and prevention of DDIs. Unlike earlier reviews that typically focus on
specific mechanistic or computational elements, this work combines
AI, pharmacogenomics, and regulatory science into a cohesive
framework, providing a more expansive view of DDIs research.

1.6 The proposed
multidimensional framework

To assist readers in navigating this dynamic landscape, we
present a comprehensive framework (Figure 1) that encompasses
five essential components: epidemiological patterns, mechanistic
classifications, AI-driven prediction methodologies, risk factors
affecting vulnerable populations, and regulatory strategies.
Central to this framework is artificial intelligence (AI), which
serves as a crucial link connecting fundamental scientific
research, clinical applications, and health policy.
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This integrative approach highlights the crucial role of
combining pharmacological knowledge with data-driven
innovation to effectively shape the future of DDIs management.

2 Epidemiological landscape of DDIs

DDIs have emerged as a significant concern in modern
pharmacotherapy, especially given the aging population and the
increasing incidence of multimorbidity. Research shows that DDIs
are a major contributor to adverse drug reactions (ADRs), which can
lead to more hospital admissions, longer treatment times, and higher
healthcare costs. This section outlines the current state of
epidemiological research on DDIs, focusing on trends in
prevalence, populations at higher risk, frequently involved drug
combinations, and findings from real-world pharmacovigilance
systems. The use of multiple medications, or polypharmacy,
along with inappropriate prescribing practices, greatly increases
the likelihood of clinically significant DDIs among older adults.
Tools like the STOPP/START criteria have proven effective in
minimizing the use of potentially inappropriate medications, as
highlighted by a study conducted by Güvel et al. (2024) involving
geriatric patients in Turkey.

Recent studies have employed data mining techniques to
identify significant DDIs within common drug combinations
used to manage chronic conditions such as diabetes. For
instance, research conducted by Dwivedi et al. (2025) indicates
that the risk of DDIs is particularly elevated in polypharmacy
situations, especially concerning anti-diabetic medications. A
notable example is the concurrent use of metformin with
iodinated contrast media, which significantly heightens the risk
of lactic acidosis. Similarly, combining nonsteroidal anti-

inflammatory drugs (NSAIDs) with sulfonylureas increases the
likelihood of hypoglycemia. These findings highlight the urgent
need for careful monitoring and personalized treatment plans to
mitigate DDIs-related risks, especially in vulnerable populations
such as the elderly and individuals with multiple comorbidities.

2.1 Polypharmacy and DDIs risk

2.1.1 Polypharmacy and DDIs Risk in general
Polypharmacy, which refers to the use of five or more

medications at the same time, greatly heightens the risk of DDIs
due to the complex ways in which different drugs can affect each
other. These interactions can manifest through various mechanisms,
such as the inhibition of enzymes that metabolize drugs, changes in
how drugs are processed in the body, or even through combined
effects that can amplify each drug’s impact. This situation becomes
particularly challenging for patients who have multiple health issues,
as their treatment plans can become more complicated. The risk of
DDIs is especially significant among psychiatric inpatients, where
the burden of taking many medications can lead to increased
chances of harmful interactions (Wolff et al., 2021). A study
conducted by Uskur et al. (2024) highlights the complications
associated with lithium treatment, emphasizing the importance of
closely monitoring blood levels to prevent adverse drug-drug
interactions. This careful oversight is essential for effectively
managing psychiatric patients who are on polypharmacy regimens.

2.1.2 Polypharmacy in elderly populations
Polypharmacy is particularly common among elderly

individuals, especially those dealing with several chronic
conditions, and it poses significant risks for DDIs (Hire and

FIGURE 1
A multidimensional framework for contemporary drug–drug interaction (DDI) research. The figure depicts five key thematic pillars in modern DDI
research: epidemiological patterns, mechanistic classifications, AI-based prediction strategies, vulnerable populations, and regulatory strategies. Artificial
intelligence acts as a central integrator across these domains, bridging pharmacogenomics, real-world data, and knowledge graph modeling to support
proactive and personalized DDI risk management.
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Franklin, 2024). For instance, Kaur et al. (2024) found that older
adults receiving outpatient care often face drug-related issues
stemming from polypharmacy. In a similar vein, Hart et al.
pointed out that inappropriate prescribing remains a recurring
challenge in this demographic, closely linked to the occurrence of
DDIs (Hart et al., 2025). Together, these findings highlight that
polypharmacy is not only widespread but also a serious concern
within aging populations.

2.1.3 DDI risks in specific subgroups
A deeper concern emerges when we look closely at specific

subgroups, particularly elderly patients with neurocognitive
disorders. These individuals are especially susceptible to
polypharmacy, particularly with anticholinergic medications,
which can worsen cognitive decline (Perdixi et al., 2024). Brown
et al. (2021) highlight the issue of care fragmentation in dementia
patients, which complicates the management of their medications
(Kern et al., 2024). Additionally, elderly cancer patients receiving
chemotherapy face an increased risk of DDIs due to polypharmacy,
as demonstrated by Oliveira et al. (2024).

Polypharmacy and alcohol use frequently occur together in
individuals living with HIV, which heightens the risk of DDIs
and can lead to decreased adherence to prescribed treatments
(Womack et al., 2025). This issue is not limited to HIV-positive
patients; individuals with psychiatric disorders, especially those
taking medications like clozapine or lithium, also face significant
concerns regarding DDIs (Verdoux et al., 2024a; Ruan et al., 2024;
Verdoux et al., 2024b; Baptista et al., 2024). Research by Zhang et al.
(2024) highlighted that the pharmacokinetics of aripiprazole in
patients with schizophrenia are particularly affected by
polypharmacy. These findings indicate that both older adults and
populations with psychiatric or immunocompromised conditions
are at an increased risk for experiencing harmful DDIs.

2.1.4 Efforts to mitigate DDIs risk: AI and
deprescribing strategies

Efforts to mitigate the risk of DDIs are increasingly utilizing
artificial intelligence (AI) and medication management tools. For
example, AI-driven platforms, including chatbots, can assist
healthcare providers in making real-time decisions by addressing
common inquiries related to medications (Albogami et al., 2024).
Strategies for medication review and deprescribing, as highlighted
by researchers Carollo et al. and Almodovar et al., have proven
effective in minimizing DDIs risks and enhancing therapeutic
outcomes (Carollo et al., 2024; Almodovar et al., 2024). A
significant development in this area is the introduction of long-
acting injectable antiretroviral therapy (LAI ART), which presents
new DDIs challenges, especially when combined with antibiotics or
antiviral medications (Stout et al., 2024). Additionally, the
emergence of new drugs, such as cytisine for smoking cessation,
necessitates careful monitoring for potential interactions,
particularly among hospitalized patients (Torazzi et al., 2024).

2.1.5 Current gaps and future directions
Despite recent advancements in medication management,

significant gaps still exist. Surveys reveal that more than one-
third of individuals aged 65 and older are prescribed five or
more medications daily, with this figure exceeding 50% among

those with chronic conditions. The study by Alemayehu et al.
(2024) found that the occurrence of potential drug-drug
interactions (pDDIs) is a serious global issue, with an overall
prevalence of 50.69% among elderly patients, and moderate
interactions being the most common. Similarly, research by
Wolff et al. (2021) highlighted a high incidence of clinically
significant DDIs in psychiatric settings. The drug classes most
commonly involved in these interactions included
antipsychotics, antihypertensives, and anticoagulants.
Contributing factors to these issues include limited
pharmacist-led DDIs assessments (Alhussain et al., 2024),
decreased medication literacy at the time of discharge
(Mubaslat et al., 2024), and a lack of vigilance among frail
elderly individuals or those who consume alcohol (Gentile et al.,
2024; Zare et al., 2024; Inglis et al., 2024; Wu et al., 2024). In
institutional settings, the use of potentially inappropriate
medications (PIMs) continues to be a significant factor
leading to adverse DDIs (Andrade et al., 2024).

2.1.6 Conclusion and future research
In summary, polypharmacy is a significant factor contributing

to the risk of DDIs, especially in vulnerable groups like the elderly,
psychiatric patients, and individuals with complicated treatment
plans. Although artificial intelligence (AI) technologies and
deprescribing strategies show potential in addressing these
issues, ongoing efforts are essential to effectively incorporate
these solutions into various clinical settings. Future research
should focus on the practical application of AI, interventions
led by pharmacists, and monitoring DDIs tailored to specific
regions to thoroughly reduce these risks. A comparative
overview of DDIs risks across different populations is provided
in Table 1.

2.2 DDIs prevalence in vulnerable
populations

Certain populations experience a higher incidence of DDIs. A
retrospective cohort study published in Frontiers in Pharmacology
by Schneider et al. (2021) revealed that older adults suffering from
comorbid conditions such as hypertension, diabetes, and
depression were prescribed an average of eight medications
each day. This polypharmacy resulted in 3 to 5 potentially
dangerous drug-drug interactions (pDDIs) per patient.
Alarmingly, more than 60% of these interactions were deemed
clinically significant, posing risks such as bleeding events or
reduced therapeutic effectiveness. Thus, polypharmacy presents
a complex challenge in geriatric care, where the goal of effective
treatment must be carefully weighed against the potential for
harmful interactions (Swinglehurst et al., 2023).

The prevalence of potentially dangerous drug interactions
(pDDIs) is notably higher in intensive care units (ICUs) and
long-term care facilities. A population-based study published in
the Journal of the AmericanMedical Directors Association by Anrys
et al. (2021) found that 77.3% of elderly nursing home residents
experienced at least one pDDIs, with 18.5% categorized as high-risk.
Such interactions can lead to serious consequences, including
delirium, hemorrhage, and acute kidney injury.
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2.3 High-risk drug combinations in
clinical settings

Real-world evidence has consistently highlighted certain drug
combinations as particularly dangerous. Among the notable high-
risk DDIs are:

• Warfarin + NSAIDs: Elevates bleeding risk through both
pharmacokinetic (CYP inhibition) and pharmacodynamic
(antiplatelet) mechanisms.

• SSRIs + TCAs: Increases the likelihood of central nervous
system (CNS) adverse effects, including sedation and
serotonin syndrome.

TABLE 1 Comparison of drug–drug interaction (DDI) risk among vulnerable populations.

Vulnerable
population

Common medication
types involved

Key DDI risk factors Representative studies (ref. No.)

Elderly patients
(≥65 years)

Anticholinergics,
Antihypertensives, Psychotropics

Polypharmacy, frailty, PIMs,
cognitive decline

Uskur et al. (2024), Kaur et al. (2024), Hart et al. (2025), Perdixi et al.
(2024), Kern et al. (2024), Albogami et al. (2024), Carollo et al.
(2024), Zare et al. (2024), Wu et al. (2024)

Psychiatric inpatients Antipsychotics (e.g., clozapine,
lithium, aripiprazole)

Polypharmacy, narrow therapeutic
index drugs, poor adherence

Dwivedi et al. (2025), Womack et al. (2025), Verdoux et al. (2024a),
Ruan et al. (2024), Verdoux et al. (2024b), Baptista et al. (2024)

Patients with HIV Antiretrovirals, Antibiotics,
Alcohol use

Drug–alcohol interactions, LAI
ART–induced DDIs

Oliveira et al. (2024), Almodovar et al. (2024)

Cancer patients (elderly) Chemotherapeutics, Supportive
meds

Intensive treatment regimens,
polypharmacy

Kern et al. (2024)

Dementia patients Anticholinergics, Psychotropics Poor care coordination, cognitive
vulnerability

Hart et al. (2025), Perdixi et al. (2024)

Hospitalized older adults Multiclass drugs, Cytisine,
Cardiovascular agents

Frequent regimen changes,
inadequate discharge education

Stout et al. (2024), Alhussain et al. (2024), Mubaslat et al. (2024)

Hypertensive patients Antihypertensives, NSAIDs Chronic disease management, lack of
DDI monitoring

Gentile et al. (2024)

Patients with multiple
prescribers

Mixed drug classes Inconsistent medication review,
communication gaps

Carollo et al. (2024), Torazzi et al. (2024)

FIGURE 2
Heatmap of drug–drug interaction (DDI) risk scores across clinical systems and risk levels.
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• ACEIs/ARBs + Diuretics + NSAIDs (“triple whammy”):
Raises the risk of acute kidney injury via additive nephrotoxic
effects and reduced glomerular filtration.

• Antiepileptics + Antiretrovirals: Compete for metabolic
enzymes, potentially altering the efficacy and toxicity of
both agents.

These interactions often appear gradually and can manifest in
various ways, including elevated liver enzymes, subtle changes in
neurological function, or a diminished response to treatment. This
makes it challenging for clinicians to detect these issues without the
use of proactive screening tools.

Figure 2 illustrates the average DDIs risk scores, measured
on a scale from 3 to 5, across various organ systems, categorized
by clinical risk levels: “Medium-High,” “High,” and “Very
High.” The use of darker shades indicates higher average risk
scores. It is particularly noteworthy that the renal and
cardiovascular systems are consistently associated with very
high-risk interactions, highlighting the critical need for
careful monitoring in these areas.

Figure 3 presents a two-dimensional mapping of 30 high-risk
DDIs pairs. In this visualization, drug combinations are plotted
along the X-axis, which represents the affected physiological system,
and the Y-axis, which denotes the identity of the drugs involved. The

color coding indicates the clinical risk level associated with each
interaction, with blue representing medium-high risk, gold
indicating high risk, and red signifying very high risk.
Additionally, the shape and size of the points on the graph
correspond to the risk score of each interaction, where circles
represent a score of 3, squares indicate a score of 4, and
diamonds denote a score of 5. This graphical representation
allows for the quick identification of priority interactions across
various physiological systems, enhancing the ability to assess and
manage potential risks in clinical settings.

2.4 Insights from
pharmacovigilance databases

Large-scale pharmacovigilance platforms, including the FDA
Adverse Event Reporting System (FAERS), EudraVigilance, and
institutional electronic health records (EHRs), offer crucial
epidemiological insights into DDIs. Analyses of data from FAERS
indicate that approximately 12%–15% of serious adverse drug
reactions (ADRs) could be linked to either known or previously
unrecognized DDIs. However, several challenges persist in this area,
such as underreporting of adverse events and the absence of
standardized taxonomies for categorizing DDIs.

FIGURE 3
Enhanced matrix of high-risk drug–drug interactions by system, severity, and risk score.
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Recent efforts utilizing artificial intelligence (AI) and natural
language processing (NLP) to analyze real-world data (RWD) have
uncovered the often-overlooked burden of DDIs. These advanced
tools are capable of extracting structured signals of interactions from
unstructured clinical notes, which frequently leads to the discovery
of clinically significant interactions that are not recorded in
traditional reference databases. Additionally, studies based on
electronic health records (EHR) have emphasized the existence of
population-specific DDIs profiles, particularly within pediatric,
pregnant, and geriatric groups.

2.5 Under-recognition and clinical
implications

Despite growing awareness, many DDIs continue to go
unrecognized, often due to factors such as delayed onset,
nonspecific clinical symptoms, or a lack of familiarity among
clinicians. For example, interactions involving warfarin may
first appear as minor bruising, which can later escalate to more
severe complications like gastrointestinal or intracranial
hemorrhage. In a similar vein, interactions affecting the central
nervous system (CNS) frequently present with symptoms like
fatigue or cognitive changes, which may be mistakenly
attributed to the natural progression of an underlying disease
rather than the effects of medications.

The consequences of missed DDIs can be quite serious. Research
indicates that as many as 30% of hospitalizations related to adverse
drug reactions (ADRs) could be avoided with proper monitoring of
DDIs. When these interactions go undetected, it can lead to
ineffective treatment, higher rates of illness, and, in certain
instances, even death.

2.6 The need for early detection and
intervention

Given the increasing frequency and seriousness of DDIs, it is
essential to adopt proactive measures for their detection.
Incorporating DDIs screening into clinical practices can
significantly reduce their public health implications. This can
be achieved by utilizing clinical decision support systems
(CDSS), conducting pharmacist-led medication reviews, and
providing ongoing medical education for healthcare
professionals. These strategies work together to enhance
awareness and management of DDIs, ultimately improving
patient safety and outcomes.

Risk stratification that incorporates demographic and clinical
variables can significantly enhance precision pharmacovigilance.
For instance, elderly patients who are on multiple medications,
known as polypharmacy, could be automatically identified as high-
risk for dangerous drug combinations through the use of machine
learning-enabled CDSS. Additionally, it is essential to prioritize the
creation of region-specific drug-drug interaction (DDI) surveillance
tools that are customized to reflect local prescribing habits and
genetic profiles. This approach will improve risk mitigation
strategies by ensuring they are context-sensitive and relevant to
the populations being served.

3 Molecular mechanisms and
classifications of drug-drug
interactions

Understanding the molecular mechanisms behind DDIs is
essential for anticipating possible adverse effects and enhancing
pharmacotherapy. DDIs can take place at various biological levels,
such as the modulation of enzymes, interference with transporters,
interactions at receptors, and changes in downstream signaling
pathways. Depending on the nature of these biological
interactions, DDIs are typically divided into two main categories:
pharmacokinetic (PK) interactions and pharmacodynamic (PD)
interactions. This classification is illustrated in Figure 4, which
highlights important molecular pathways along with
representative pairs of drugs involved in these interactions.

3.1 Pharmacokinetic interactions:
Modulation of ADME processes

Pharmacokinetic DDIs occur when one medication influences
the absorption, distribution, metabolism, or excretion (ADME) of
another, leading to alterations in plasma drug levels and, as a result,
changes in pharmacological effects. A notable example of this is
lithium, which necessitates careful therapeutic monitoring because
of its significant potential for interactions (Fiorillo et al., 2023).

3.1.1 Absorption interactions
Absorption-related DDIs primarily take place in the

gastrointestinal tract and are affected by various factors,
including changes in pH, chelation, gastric motility, and
modulation of transporters. For instance, proton pump inhibitors
(PPIs) such as omeprazole can lower the bioavailability of certain

FIGURE 4
Mechanisms of drug-drug interactions.
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medications like ketoconazole or atazanavir by raising the gastric
pH. Similarly, polyvalent cations found in antacids, such as
aluminum or magnesium salts, can bind to antibiotics like
tetracyclines and fluoroquinolones, hindering their absorption.
Additionally, interactions mediated by transporters play a crucial
role in this area. Organic anion-transporting polypeptides (OATPs),
including OATP1A2 and OATP2B1, are present in the intestinal
lining and help in the uptake of drugs. Inhibitors such as
cyclosporine or certain components of grapefruit juice can
diminish the absorption of medications like statins by blocking
OATP activity. Furthermore, fat-soluble vitamins, including vitamin
D, may experience decreased gastrointestinal absorption when taken
alongside bile acid sequestrants or lipase inhibitors like orlistat,
likely due to disrupted micelle formation (Kupisz-Urbanska
et al., 2021).

3.1.2 Metabolic interactions
The most thoroughly researched mechanism of DDIs involves

hepatic metabolism, particularly through the cytochrome P450
(CYP450) enzyme family. Drugs can function as substrates,
inhibitors, or inducers of these enzymes. Among them,
CYP3A4 is the most prevalent isoform found in both the liver
and intestine, responsible for the metabolism of over 50% of all
drugs available on the market. When drugs such as ritonavir,
ketoconazole, or clarithromycin inhibit CYP3A4, it can result in
increased plasma concentrations and heightened toxicity of co-
administered substrates like midazolam or simvastatin. On the
other hand, enzyme induction, as seen with rifampin or
carbamazepine, speeds up drug metabolism, which may diminish
therapeutic effectiveness. Importantly, DDIs are not limited to phase
I metabolism; phase II enzymes, including UDP-
glucuronosyltransferases (UGTs) and sulfotransferases (SULTs),
also have a crucial role. For example, valproic acid can inhibit
UGT-mediated glucuronidation of lamotrigine, raising the risk of
skin rash and neurotoxicity.

3.1.3 Distribution and protein binding
Protein-binding displacement, while not frequently a major

contributor to clinically significant DDIs, can still play an
important role in specific situations. For instance, medications
that are tightly bound to plasma proteins, such as albumin,
including warfarin and phenytoin, may be displaced by other
drugs like valproic acid. This displacement results in a higher
concentration of the free, active form of the drug in the
bloodstream. Nevertheless, in most cases, the body compensates
for this increase through enhanced clearance of the drug, unless
there is an impairment in liver or kidney function, which could
disrupt this balance and potentially lead to adverse effects.

3.1.4 Renal and biliary excretion
Drugs that are eliminated through renal tubular secretion can

compete for shared transporters, specifically organic anion
transporters (OAT1 and OAT3) and organic cation transporters
(OCT2). A notable example is probenecid, which inhibits the OAT1-
mediated excretion of penicillin, leading to an extended half-life of
the drug. Additionally, the inhibition of P-glycoprotein (P-gp),
which is present in both renal and biliary epithelial cells, can
significantly influence drug elimination. For instance, when P-gp

inhibitors like verapamil are taken alongside digoxin, they can
increase the plasma levels of digoxin, heightening the risk of
toxicity. This risk is particularly concerning for drugs with
narrow therapeutic indices, such as lithium and digoxin, which
are more susceptible to adverse interactions. Therefore, it is crucial
to carefully adjust dosages and monitor therapeutic drug levels to
ensure patient safety (Parmar and Pal, 2024).

3.2 Pharmacodynamic interactions: target-
level synergy and antagonism

Pharmacodynamic DDIs arise when two medications affect the
same or interconnected physiological pathways, resulting in effects
that can be additive, synergistic, or antagonistic.

3.2.1 Synergistic and additive effects
Drugs with similar therapeutic effects can exhibit either additive

or synergistic responses. These interactions may be beneficial or
harmful, depending on the clinical context. Similarly, cannabinoids
such as THC and CBD can potentiate the effects of CNS depressants,
including opioids and benzodiazepines, through overlapping
mechanisms at GABAergic and serotonergic synapses, increasing
the risk of excessive sedation and respiratory depression. Similarly,
combining antihypertensives, such as ACE inhibitors, with diuretics
can enhance blood pressure reduction but may also lead to
hypotension or electrolyte imbalances.

3.2.2 Antagonistic interactions
Antagonistic pharmacodynamic (PD) interactions can diminish

the effectiveness of one or both medications involved. For instance,
nonsteroidal anti-inflammatory drugs (NSAIDs) can weaken the
blood pressure-lowering effects of β-blockers or ACE inhibitors by
causing the body to retain sodium and constrict blood vessels.
Another example is flumazenil, which is used as an antidote for
benzodiazepine overdoses; it works by blocking the effects of
benzodiazepines at the GABA-A receptor. Although this
antagonistic interaction is beneficial in situations of overdose, it
exemplifies a classic case of DDIs at the receptor level.

3.2.3 Signal pathway crosstalk and off-
target effects

Pharmacodynamic interactions can occur when different drugs
converge on the same downstream signaling pathways.
Cannabinoids, for instance, influence various receptor systems,
including CB1, CB2, 5-HT1A, and TRPV1, which leads to
intricate crosstalk in signal transduction (Brown et al., 2021).
This complexity can result in either additive or antagonistic
interactions with serotonergic and dopaminergic medications. A
notable example is the combination of selective serotonin reuptake
inhibitors (SSRIs) and monoamine oxidase inhibitors (MAOIs),
both of which elevate synaptic serotonin levels. When these two
classes of drugs are used together, they can trigger serotonin
syndrome, a serious condition marked by excessive
neuromuscular and autonomic activity. Furthermore, certain
medications may have off-target effects that influence the efficacy
of other treatments. For example, tyrosine kinase inhibitors can
interfere with immune checkpoint signaling. This means that
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targeted therapies, such as tyrosine kinase inhibitors, may lead to
unforeseen interactions, particularly when different agents are
administered in sequence (Forte et al., 2024). MAOIs are
particularly concerning in this context, as they pose a high risk
for pharmacodynamic drug-drug interactions, especially when
taken alongside serotonergic or sympathomimetic drugs (Gillman
et al., 2023).

3.3 Classification systems and
severity grading

Various classification systems have been proposed to stratify
DDIs based on severity, molecular mechanism, and clinical
management recommendations:

• Severity-based grading (e.g., minor, moderate, major):
Reflects the clinical consequences, ranging from negligible
to life-threatening.

• Evidence-based grading: Incorporates clinical trial data, case
reports, and in vitro studies (e.g., Micromedex,
Lexicomp, Stockley’s).

• Management-oriented categorization: Recommends specific
actions, such as dose adjustment, monitoring, or complete
avoidance. The Hansten and Horn classification is a widely
used system, which ranks interactions from “Class 1” (avoid
combination) to “Class 5” (no interaction expected).

3.4 Molecular tools for DDI prediction

Emerging tools like molecular docking, enzyme phenotyping,
and quantitative systems pharmacology (QSP) models offer robust
frameworks for predicting DDIs at a mechanistic level. For instance,
CYP phenotyping panels and probe cocktails are instrumental in
assessing metabolic pathways, allowing researchers to understand
how different drugs may interact within the body. Additionally, in
silico tools such as SimCYP and GastroPlus play a crucial role by
simulating drug behavior under various physiological conditions,
providing insights into how drugs might perform in real-world
scenarios. When these advanced technologies are combined with
clinical pharmacogenomics, they significantly enhance our capacity
to predict and prevent clinically significant DDIs, ultimately
improving patient safety and treatment outcomes.

4 Detection and prediction approaches
for DDIs

Effective detection and prediction of DDIs are essential for
preventing adverse drug reactions (ADRs), especially in situations
involving polypharmacy and complex treatment plans. Traditional
methods, such as post-marketing surveillance and clinical
pharmacology, continue to play a vital role; however, they are
increasingly being enhanced or even replaced by computational
and informatics-driven techniques. This section offers a thorough
overview of both established and innovative strategies for identifying
DDIs, covering clinical, in vitro, in silico, and machine learning-

based approaches. A particular focus is placed on integrative,
knowledge-based frameworks that align with the principles of
translational pharmacology. Additionally, representative open-
access databases and tools are summarized to support practical
implementation and ensure reproducibility. Notably, midazolam is
recognized as a gold-standard probe for assessing CYP3A activity
and serves as a benchmark for evaluating DDIs in clinical
pharmacology (Coroa et al., 2023).

Emerging computational strategies can be classified into four
main categories: rule-based systems, traditional machine learning,
deep learning, and graph-based approaches (see Table 2). Each of
these methods has unique advantages and disadvantages depending
on the specific application context. Rule-based systems, for instance,
are commonly used in clinical environments because they are easy to
interpret. However, they often suffer from high false-positive rates
and can lead to clinician alert fatigue, which may undermine their
practical effectiveness.

4.1 Traditional detection approaches

4.1.1 Clinical trials and pharmacovigilance
Historically, most DDIs have been identified through clinical

observation and pharmacovigilance systems. Early-phase clinical
trials and preclinical studies typically uncover predictable
pharmacokinetic interactions, especially those related to
cytochrome P450 (CYP450) isoenzymes. However, these clinical
trials often face limitations due to small sample sizes and the
exclusion of high-risk patients, such as those with comorbidities
or those taking multiple medications, which restricts the
generalizability of the findings. Post-marketing surveillance
systems, like the FDA’s Adverse Event Reporting System
(FAERS), EudraVigilance in the EU, and the WHO’s VigiBase,
gather spontaneous reports of adverse drug reactions (ADRs)
that may include DDIs. While these platforms play a crucial role
in detecting signals of potential interactions, they suffer from issues
such as underreporting, selection bias, and challenges in assessing
causality. To quantify the strength of these signals,
disproportionality analyses—like reporting odds ratios or
information components—are frequently employed, but they
necessitate additional evidence to establish causal relationships.

4.1.2 In Vitro and in vivo experimental models
Experimental pharmacology plays a crucial role in DDIs

research. Standard methods include in vitro assays that utilize
human liver microsomes, recombinant cytochrome P450 (CYP)
enzymes, or primary hepatocyte cultures to evaluate enzyme
inhibition or induction. Additionally, transporter-based assays
that employ cell lines overexpressing P-glycoprotein (P-gp),
breast cancer resistance protein (BCRP), organic anion
transporting polypeptides (OATP1B1/1B3), or organic cation
transporters (OCTs) allow for a detailed understanding of how
drugs interact during absorption and excretion (Martins et al.,
2022). While in vivo animal models offer valuable insights into
physiological processes, they are often limited by differences in
enzyme expression and transporter distribution across species. As
a result, translating findings to human pharmacokinetics
frequently requires methods such as allometric scaling or
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physiologically based pharmacokinetic (PBPK) modeling to
ensure accuracy.

4.2 Knowledge-based and rule-
based systems

CDSS, which are usually integrated with electronic health
records (EHRs), depend on carefully curated DDIs knowledge
bases to produce alerts for healthcare providers. However, a
significant challenge to the effective use of these systems is the
absence of a standardized way to represent DDIs data, which hinders
interoperability and the ability to reuse this information across
different platforms (Hochheiser et al., 2021). These rule-based
systems work by comparing prescribed drug pairs with
established lists of interactions. Some prominent commercial
databases that provide such DDIs information include:

• Micromedex–Provides interaction severity, clinical effects,
and management strategies.

• Lexicomp–Features evidence-gradedmonographs and clinical
recommendations.

• Stockley’s Drug Interactions–Offers mechanistic and
clinical insight.

• Drugs. com, Medscape, Epocrates–Widely used for point-of-
care look-up.

Despite their usefulness, rule-based systems often produce a
high number of false positives, which can lead to clinician
desensitization, commonly referred to as “alert fatigue.”
Furthermore, these systems typically do not consider patient-
specific factors such as age, organ function, or
pharmacogenomics, highlighting the necessity for more flexible
and data-driven solutions. CDSS implemented in community
pharmacies have demonstrated effectiveness in minimizing
adverse drug reactions by offering real-time alerts for potential
drug interactions. A scoping review indicates that CDSS tools in
these settings can significantly enhance drug safety and mitigate
medication-related issues (Moon et al., 2024). Electronic
prescription platforms also contribute by delivering immediate
feedback on drug interactions, enabling clinicians to make well-

informed decisions and avert possible adverse drug interactions.
Research has shown that these platforms markedly enhance the
safety and effectiveness of clinical decisions (Grammatikopoulou
et al., 2024a). Additionally, medication safety initiatives like the
EQUIPPED program have proven to significantly decrease adverse
drug reactions by broadening the detection of drug interactions
across healthcare systems, utilizing both traditional and hub-and-
spoke models (Vandenberg et al., 2024).

4.3 Computational and machine learning
approaches

With the rapid growth of biomedical data, computational
models have become essential for predicting DDIs, especially
those that have not yet been observed in clinical settings. These
models combine various data sources, including chemical structures,
biological pathways, electronic health records (EHRs), scientific
literature, and gene expression data, to estimate the likelihood of
interactions. For instance, the dual graph neural network model
developed by Ma and Lei in 2023 effectively integrates molecular
structures and drug interaction information, significantly improving
the accuracy of DDIs predictions (Ma and Lei, 2023). Similarly, the
feature extractionmodel based on graph neural networks introduced
by Al-Rabeah and Lakizadeh in 2022 also enhances the precision of
predicting DDIs (Al-Rabeah and Lakizadeh, 2022). To further
increase the accuracy and clinical relevance of these predictions,
it is crucial to develop more personalized and context-aware models.
Muylle et al., in 2021 demonstrated that optimizing the integration
of context-specific data can greatly enhance DDIs screening and
management through their context-aware clinical decision support
system (Muylle et al., 2021). This is further supported by Zhu et al. in
2021, who presented an attribute-supervised tri-factorization model
for predicting DDIs (Zhu et al., 2021). Additionally, the AutoDDI
model proposed by Gao et al., in 2024, which employs automated
graph neural networks, improves both the accuracy and efficiency of
DDIs predictions (Gao et al., 2024).

Artificial intelligence (AI) has demonstrated significant promise
in the management of polypharmacy, particularly by enhancing the
accuracy of predicting drug interactions among elderly individuals
and patients with multiple chronic conditions. A review conducted

TABLE 2 Comparison of prediction methods for drug–drug interaction modeling, with representative open-access resources.

Method
type

Representative
models

Advantages Disadvantages Application
scenarios

Representative
resources

Rule-based Decision Rules, FAERS
Mining

Easy to interpret, domain
knowledge-based

Poor generalization, limited
scalability

Early adverse event
detection

DrugBank, Medscape,
Lexicomp

Traditional ML SVM, Random Forest,
XGBoost

High efficiency,
interpretable

Requires manual features,
prone to overfitting

DDI prediction, toxicity
classification

TWOSIDES, DDIExtraction
2013, FAERS

Deep Learning DNN, CNN, RNN Automatic feature
extraction, good
performance

Requires large data, less
interpretable

Drug response prediction,
bio-sequence modeling

DeepDDI, DeepPurpose

Graph Neural
Networks

GCN, GraphSAGE, GIN Captures structural
information

Training complexity,
sensitive to graph quality

Molecular interaction
prediction

DDI-KG, DrugRepurposing
Hub, Hetionet

Knowledge
Graphs

TransE, RotatE, Neo4j-
based models

Integrates heterogeneous
data, supports reasoning

Costly construction and
maintenance

Drug repurposing,
interaction inference

Bio2RDF, PharmKG,
DrugBank KG
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in Saudi Arabia highlighted how AI models can effectively identify
high-risk drug combinations associated with polypharmacy
(Alsanosi and Padmanabhan, 2024). In this regard, deep learning
techniques have made notable strides in predicting DDIs by
analyzing complex patterns within extensive datasets. For
instance, models like DrugBERT utilize large-scale textual data to
achieve a deeper semantic understanding, thereby improving the
accuracy of DDIs predictions by extracting relevant information
from clinical literature (Liu et al., 2025). Additionally, other models,
such as Graph Neural Networks (GNNs), leverage molecular graphs
to capture the intricate relationships between different drugs,
demonstrating promising results in terms of both accuracy and
interpretability (Yao et al., 2024).

The integration of Transformer-based models such as
DrugBERT and BioBERT has become increasingly popular,
facilitating more advanced interactions and improving
predictions through a deeper semantic understanding derived
from extensive medical literature (Qi et al., 2025; Hu et al.,
2024). These innovations, when paired with efficient natural
language processing (NLP) pipelines like DDIExtractor and
specialized knowledge bases, enable the early identification of
emerging DDIs, often before these interactions are documented
in structured clinical or experimental databases.

4.3.1 Similarity-based and network-based
approaches

Similarity-based models are founded on the premise that drugs
with similar chemical or biological characteristics are more likely to
exhibit comparable interactions. To measure drug-drug similarity,
various metrics can be derived from molecular fingerprints, profiles
of adverse effects, protein targets, and gene ontology annotations.
For instance, the KITE-DDI model developed by Zhang et al. (2024)
integrates data on chemical structure (Tamir and Yuan, 2024),
therapeutic classification, and protein–protein interactions (PPI)
within a graph convolutional network (GCN) framework to predict
previously uncharacterized DDIs. Furthermore, models that utilize
graph neural networks, such as DrugDAGT (Chen et al., 2024),
improve the accuracy of drug-target interaction predictions by
merging features from drug sequences and three-dimensional
structures through a cross-attention mechanism.

Network-based models create interaction graphs, such as those
depicting relationships between drugs and targets, enzymes, or
phenotypes, and employ algorithms like random walk with
restart (RWR), PageRank, or graph embedding techniques like
node2vec to uncover new interactions. A notable example is the
HDN-DDI model (Sun and Zheng, 2025), which leverages
convolutional neural networks and graph neural networks to
extract both sequence and three-dimensional structural features
of drugs and their targets. By integrating a cross-attention
mechanism to combine these multimodal features, the model
markedly improves the accuracy of drug-target interaction
predictions.

In recent years, several innovative network models have
emerged for predicting DDIs. A notable example is the model
developed by Tian et al. (2025), which utilizes knowledge graph
embedding in conjunction with a convolutional-LSTM network.
This approach effectively merges the structural information inherent
in knowledge graphs with the temporal characteristics captured by

the convolutional-LSTM network. As a result, this model has
demonstrated a significant enhancement in the accuracy of
multi-label DDIs predictions.

4.3.2 Natural language processing (NLP) and
text mining

Natural language processing (NLP) techniques facilitate the
automated extraction of DDIs evidence from biomedical
literature. Various tools, including DDIExtractor, BioBERT, and
SciSpacy, assist in tasks such as named entity recognition (NER),
relation extraction, and sentiment analysis across extensive
databases like PubMed and ClinicalTrials.gov. The availability of
benchmarked datasets, such as the DDIs Extraction 2013 corpus,
plays a crucial role in training and evaluating these models. By
utilizing NLP-based pipelines, researchers can identify emerging
DDIs early on, even before these interactions are added to
structured databases.

In recent years, there has been significant progress in the field of
DDIs extraction. For instance, Zhang et al. proposed the SCATrans
model, which effectively integrates BioBERT, Doc2Vec, and Graph
Convolutional Networks (GCN) (Zhang et al., 2025). This model
utilizes semantic cross-attention mechanisms to manage
multimodal biomedical data, leading to a notable improvement
in the accuracy of DDIs predictions. Furthermore, Wang et al.
introduced a Transformer-based method for medical entity
extraction that combines pre-trained language models with few-
shot learning techniques (Wang et al., 2025). This innovative
approach has enhanced the capabilities for extracting entities
from biomedical literature, showcasing the advancements in this
area of research.

4.3.3 Machine learning and deep learning models
Supervised learning models, including support vector

machines (SVM), random forests, and gradient boosting, rely
on labeled drug-pair data and make use of various features such
as molecular descriptors, transcriptomic responses, and side effect
profiles for their training processes. Recently, deep learning
architectures have shown remarkable benefits in predictive
accuracy, particularly when dealing with large-scale and
complex datasets. By automating the process of feature learning
and effectively modeling intricate nonlinear relationships, deep
learning methods have significantly enhanced the accuracy of
predicting DDIs.

• Convolutional Neural Networks (CNNs): These methods are
utilized to identify spatial or structural hierarchies within drug
representations. Convolutional Neural Networks (CNNs) are
particularly adept at detecting potential drug interactions by
leveraging the structural information inherent in drugs,
making them especially useful for analyzing drug images or
molecular graphs.

• Recurrent Neural Networks (RNNs) and Long Short-Term
Memory Networks (LSTMs): These models are specifically
designed to manage sequential data, making them particularly
effective for analyzing pharmacokinetic and
pharmacodynamic information. Recurrent Neural Networks
(RNNs) and Long Short-Term Memory networks (LSTMs)
excel at recognizing temporal dependencies, which is crucial
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when forecasting the long-term effects or interactions of
various drugs.

• Graph Neural Networks (GNNs): Graph Neural Networks
(GNNs) excel at capturing the topological characteristics
present in biomedical interaction graphs. By analyzing the
connections between various entities, such as drugs and their
targets or enzymes, GNNs can effectively forecast potential
interactions between different drugs. This capability allows for
a more nuanced understanding of how drugs may influence
one another within complex biological systems.

• Transformer-based Models (e.g., DrugBERT): These models
effectively capture the semantic relationships found in
extensive textual data, including drug leaflets and clinical
literature, to identify potential interactions between drugs.
This capability makes them particularly adept at extracting
intricate drug-drug relationships from medical texts.

Recent hybrid models that integrate graph neural networks
(GNNs) with Transformer-based architectures have shown
remarkable effectiveness in predicting new and mechanistically
plausible DDIs, especially when working with large-scale datasets.
These innovative models not only attain high levels of prediction
accuracy but also ensure a good degree of interpretability, making
them valuable tools in the field of pharmacology.

Despite the excellent predictive capabilities of deep learning
models, several challenges remain:

• Poor Interpretability: Many deep learning models (e.g.,
CNNs, RNNs, LSTMs) are “black-box” models, which lack
sufficient transparency, making their clinical applicability
more challenging.

• Data Dependency: Deep learning models heavily rely on large
volumes of high-quality data, and their performance can suffer
when data is biased or imbalanced.

• High Computational Resource Requirements: Training deep
learning models typically requires significant computational
resources, and the training time can be lengthy, especially
when modeling complex drug interactions.

As research in DDIs prediction advances, Deep Learning (DL)
methods have emerged as the leading technology in this domain.
DL-based DDIs prediction models excel at extracting intricate
nonlinear features from large datasets, resulting in high
prediction accuracy and robust generalization capabilities. This is
especially true when handling diverse data types, including drug
molecular structures, gene expression profiles, and pharmacological
information, where deep learning models demonstrate considerable
strengths. Nevertheless, despite their impressive performance, these
models are not without limitations. These limitations are outlined in
Table 3, which provides a comprehensive overview of the strengths
and weaknesses associated with each model.

4.4 Systems pharmacology and
knowledge graphs

Systems pharmacology aims to model the effects of drugs within
interconnected biological networks by integrating pharmacokinetics

(PK) and pharmacodynamics (PD). Knowledge graphs (KGs) serve
as a semantic representation of the relationships among drugs,
targets, pathways, diseases, and phenotypes. To effectively encode
these semantic relationships and facilitate cross-platform
integration, standardized information models are crucial
(Hochheiser et al., 2021). Although KGs enhance reasoning
capabilities and interpretability, their construction and
maintenance demand significant expert curation and
computational resources. Notable platforms that support these
efforts include:

• DrugBank and PharmGKB–Curated molecular and clinical
pharmacology data.

• Hetionet and Bio2RDF–Multiscale biological integration.
• DDI-KG–A specialized KG for DDIs prediction via link
prediction models (e.g., TransE, RotatE, ComplEx).

These tools facilitate explainable and mechanistically grounded
inference of DDIs. The SAO semantic structure-based forecasting
method offers a robust framework for predicting adverse drug
reactions, especially in cases of polypharmacy, where the risks
associated with drug interactions can be intricate and challenging
to detect (Wang JY. et al., 2024).

In recent years, AI-based knowledge graph mining methods
have demonstrated significant promise in predicting DDIs. By
utilizing deep learning techniques and graph neural networks
(GNNs), researchers can automatically analyze extensive
biomedical data to identify relationships between various drugs,
thereby aiding in the discovery of potential DDIs. Some of the
prevalent AI-based methods include:

• Graph Neural Networks (GNNs): GNNs excel at identifying
intricate, nonlinear relationships among entities, including
drugs, targets, and diseases within knowledge graphs. By
utilizing node and edge embeddings, GNNs can effectively
forecast various types of DDIs. For example, methods such as
GraphSAGE and Graph Convolutional Networks (GCN) are
commonly employed for the classification and prediction of
DDIs, demonstrating their utility in this domain (Wang
Yaqing et al., 2024).

• Natural Language Processing (NLP) Combined with
Knowledge Graphs: Integrating natural language processing
(NLP) techniques, particularly those utilizing the Transformer
architecture like BERT and GPT, enables the extraction of
potential drug interactions from biomedical literature. The
combination of NLP with knowledge graphs (KGs) facilitates
the automatic identification of intricate relationships between
drugs, thereby revealing interactions that may have been
previously overlooked (Xu et al., 2024; Abdullahi et al.,
2025; Wan et al., 2024; Zhou et al., 2024).

• Reinforcement Learning: Reinforcement learning methods
are employed to simulate various scenarios of DDIs, adjusting
model parameters according to the predicted outcomes. This
technique proves valuable in uncovering unknown
interactions within dynamic drug interaction networks. Its
application in drug discovery and drug repurposing has
yielded new insights into the prediction of complex drug
reactions (Inoue et al., 2025; Zhu F. et al., 2024).
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These AI methods improve the accuracy of drug-drug
interaction (DDI) predictions and offer a scientific foundation for
personalized medication therapy, especially in situations involving
multiple medications.

4.5 Real-world data and EHR mining

Electronic health records provide valuable real-world
evidence that can help identify potential DDIs. By
retrospectively analyzing medication histories, lab results, and
clinical outcomes, researchers can uncover associations that may
not have been recognized before. Time-aware models, particularly
those based on transformer architectures, are capable of capturing
the temporal aspects of drug exposure and the associated risks of
interactions. Nonetheless, there are challenges to consider, such as
the variability in data, missing information, and confounding
factors. To address these issues, methods like federated learning
and differential privacy are being investigated to facilitate large-
scale DDI analysis while preserving patient privacy across
different institutions. Additionally, electronic prescription
systems are crucial for monitoring DDIs, especially through
real-time alerts that notify healthcare providers of potential
risks. A study conducted in Greece demonstrated that CDSS
can significantly enhance the accuracy of clinical decision-
making, particularly in managing DDIs (Grammatikopoulou
et al., 2024b).

4.6 Integration of pharmacogenomics and
personalized DDI risk

Pharmacogenomic (PGx) variability is essential in
understanding how individuals respond differently to DDIs.
Variations in genes like CYP2C9, CYP2D6, and SLCO1B1 can
significantly influence how drugs are metabolized or transported
in the body. For example, individuals who are poor metabolizers of
CYP2D6 may face a higher risk of experiencing toxicity from

medications such as codeine or tricyclic antidepressants. By
incorporating PGx data into clinical DDIs risk models, healthcare
providers can enhance precision medicine, tailoring treatments to
individual genetic profiles. Tools like PharmCAT and CPIC
guidelines support the integration of genetic information into
treatment decisions, which is particularly important in high-risk
areas such as oncology, psychiatry, and cardiology. Personalized
treatment strategies are vital for managing complex drug
interactions, especially among psychiatric patients. Research by
Cuomo et al. (2024) highlights that clinical responses to
vortioxetine can vary widely among different patient profiles. In
psychiatric patients with additional health conditions, the risk of
DDIs may increase due to the simultaneous use of antidepressants
and medications for physical illnesses (Berk et al., 2023).
Furthermore, the growing use of psychedelics, whether prescribed
or recreational, underscores the need for a better understanding of
potential DDIs and effective communication between clinicians and
patients (Boehnke et al., 2023). Additionally, gender-diverse
individuals undergoing hormone therapy may present unique
DDIs profiles, particularly in the context of psychiatric
pharmacotherapy (Kim et al., 2023).

4.7 Challenges and future directions

Despite substantial progress, several challenges remain:

• Data quality and standardization–Heterogeneous ontologies
and inconsistent annotations hinder model interoperability.
Efforts toward minimal information models for DDIs are a
step toward solving these limitations (Hochheiser et al., 2021).

• Model interpretability–Black-box algorithms reduce
clinician trust and limit regulatory acceptance.

• Rare and population-specific DDIs–Existing models often
fail to detect infrequent or demographically restricted
interactions.

• Experimental validation–In silico predictions require
rigorous in vitro, in vivo, or real-world corroboration.

TABLE 3 The performance indicators of various models in DDI prediction.

Model name Accuracy Interpretability Data type Application
scope

Strengths Weaknesses

DrugBERT 90% Low Text data Medical literature, EHR Efficient text analysis,
suitable for extracting DDIs
from literature

Poor interpretability,
relies on large text data

GNN-based Model 85% Medium Molecular data, Drug
Networks

Drug-target, drug-
enzyme networks

High accuracy, captures
complex relationships
between drugs

Requires large datasets,
long training time

CNN-based Model 88% Medium Drug structure,
Image data

Drug screening and
prediction

Good feature extraction
capability, suitable for
structured data

High computational cost,
data structure
dependency

RNN/LSTM-based
Model

87% High Pharmacokinetic
data

Drug time-series
analysis

Suitable for sequential data,
captures dynamic drug
behavior

High training complexity,
requires sequential data

Hybrid Models
(GNN +
Transformer)

92% Medium Chemical, genomic,
clinical data

New drug prediction
and interaction analysis

High accuracy, integrates
multiple data sources,
enhances prediction ability

High model complexity,
large computational
overhead
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Looking ahead, the integration of artificial intelligence with
systems pharmacology, digital twin modeling, and real-time
electronic health record (EHR) analytics presents promising
opportunities for the advancement of next-generation DDIs
surveillance. Key elements such as explainable AI (XAI), causal
inference frameworks, and collaboration with regulatory bodies will
be essential in maintaining clinical relevance, ensuring transparency,
and prioritizing patient safety. Recent advancements in artificial
intelligence, particularly in areas like graph neural networks and
multimodal deep learning, have notably enhanced the accuracy of
predicting potential drug-drug interactions (Zhang et al., 2023;
Wang N-N. et al., 2024; Huang et al., 2023; Zhao et al., 2024; Li
et al., 2023). Additionally, insights from patients and caregivers play
a vital role in recognizing and addressing DDI-related risks,
especially in outpatient settings (Sharma et al., 2024).

As biomedical data continues to expand, the challenge of
analyzing health data across different institutions while
protecting data privacy has become increasingly critical.
Traditional methods of data analysis often involve centralized
data storage, which poses significant privacy risks. In contrast,
federated learning techniques enable data to be processed locally,
thereby preserving patient privacy and facilitating data sharing
between institutions. This approach is especially vital for
predicting and managing drug-drug interactions. For instance,
the privacy-preserving federated learning framework introduced
by Sinaci et al. (2024) effectively tackles privacy concerns
associated with cross-institutional data collaboration, all while
improving the efficiency of data analysis.

5 Special populations and context-
specific considerations in DDI research

DDIs pose a significant and evolving challenge in clinical
pharmacology, especially due to the diverse nature of patient
populations. Certain groups, such as the elderly, pediatric
patients, pregnant and lactating women, individuals with liver
or kidney dysfunction, and those with genetic variations affecting
drug metabolism, often show differences in how their bodies
process medications (pharmacokinetics) and respond to them
(pharmacodynamics) (Strawn et al., 2021). These differences
can greatly affect both the likelihood of experiencing DDIs and
their clinical consequences. Additionally, specific clinical
situations, such as the use of multiple medications in cancer
treatment, critical care settings, and variations in treatment
practices across different regions, add to the complexity of
managing DDIs. Therefore, a detailed understanding of these
population-specific and contextual factors is essential for
improving personalized medication therapy and ensuring that
regulatory practices are based on solid evidence.

To illustrate the varying susceptibility of different populations to
clinically significant DDIs, we created a comparative radar chart
(Figure 5). This chart combines factors such as physiological
changes, the prevalence of polypharmacy, and risk estimates
derived from existing literature. Our findings indicate that the
elderly and patients experiencing polypharmacy are at the
greatest risk, followed closely by individuals in oncology and
those with organ impairments.

5.1 Elderly patients: polypharmacy and
physiological alterations

5.1.1 Pharmacokinetic and pharmacodynamic
changes in aging

Physiological aging brings about significant changes in the body
that can affect how drugs are processed and increase the risks of
DDIs. For example, as people age, there is a decrease in liver blood
flow, kidney function, and alterations in body composition, all of
which can influence drug metabolism and clearance. A notable
consequence of aging is the decline in glomerular filtration rate,
which can hinder the elimination of drugs that are primarily
excreted by the kidneys, like digoxin. This impairment raises the
potential for toxicity, especially when these drugs are taken
alongside other medications that may interact with them.
Additionally, aging can lead to changes in how receptors respond
to drugs and can disrupt the body’s ability to maintain balance,
particularly affecting drugs that act on the central nervous system
(CNS) (Zerah et al., 2021). This is especially relevant for medications
such as benzodiazepines, opioids, and antipsychotics, where the
altered sensitivity and homeostatic responses can heighten the risk
of adverse effects and interactions.

5.1.2 Polypharmacy and inappropriate
prescriptions

Polypharmacy, which is commonly defined as the simultaneous
use of five or more medications, is particularly common among
older adults and significantly increases the risk of DDIs. This issue is
especially pronounced in elderly patients. Research by Abdu et al.
highlights that polypharmacy is a major risk factor for DDIs in older
populations (Abdu et al., 2025). For example, a cross-sectional study
conducted in the U.S. found that 62.7% of elderly patients with
cardiovascular disease were subjected to polypharmacy, with 34.8%
experiencing at least one severe potential drug-drug interaction. To
help identify potentially inappropriate medications (PIMs), clinical

FIGURE 5
Radar chart illustrating relative risk levels of DDIs in special
populations. Risk scores range from 1 (low) to 5 (very high) and are
derived from published literature and clinical evidence.
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tools like the Beers Criteria and the STOPP/START guidelines are
utilized, as many of these medications are known to cause significant
interactions. A specific example is the combination of warfarin with
trimethoprim-sulfamethoxazole, which can lead to increased
bleeding due to CYP2C9 inhibition and changes in gut
microbiota. Similarly, taking citalopram alongside omeprazole
may heighten the risk of QT interval prolongation, particularly in
patients with diminished CYP2C19 activity. The most frequently
encountered potential drug-drug interactions involve warfarin being
co-prescribed with other interacting agents such as nonsteroidal
anti-inflammatory drugs (NSAIDs) or antibiotics, highlighting the
critical need for structured medication reviews in geriatric care
(Sheikh-Taha and Asmar, 2021). A European multicenter study
found that 54.8% of elderly patients had at least one potentially
clinically significant drug-drug interaction before being admitted to
the hospital, and this figure rose to 58.3% during their stay.
Antithrombotic agents were involved in 40.6% of these
significant interactions, particularly when they were taken
alongside non-steroidal anti-inflammatory drugs (NSAIDs) or
antibiotics. The use of STOPP/START criteria in the OPERAM
trial highlighted their effectiveness in pinpointing potentially
inappropriate medications and related drug-drug interactions.
While multidose drug dispensing systems are designed to
minimize errors associated with polypharmacy, they may not
sufficiently warn users about the risks of drug-drug interactions
(Martin-Oliveros et al., 2024). Furthermore, there is a strong link
between polypharmacy and the use of potentially inappropriate
medications (PIMs) and an increased risk of falls among older adults
(AlHarkan et al., 2023).

5.2 Pediatric population: developmental
pharmacology

5.2.1 Maturation of drug metabolism and transport
Children, especially neonates and infants, experience significant

developmental changes in their drug-metabolizing enzymes and
transporters. For instance, enzymes like CYP3A7, CYP2D6, and
CYP1A2 show variations in their expression levels depending on the
child’s age, which can lead to differences in how susceptible they are
to DDIs. Additionally, the underdevelopment of renal transport
mechanisms, such as organic anion transporters (OATs), organic
cation transporters (OCTs), and multidrug and toxin extrusion
proteins (MATEs), affects how drugs are cleared from the body.
A notable example of this is the increased risk of ototoxicity when
aminoglycosides are used in conjunction with loop diuretics in
neonates. This risk arises from both the immature excretory
functions of their kidneys and the synergistic nephrotoxic effects
of these medications.

5.2.2 Off-label drug use and limited DDI data
Off-label drug use is prevalent in pediatrics, primarily because

children are often excluded from numerous clinical trials, leading to
a scarcity of pediatric-specific data on DDIs. This lack of
information compels healthcare providers to rely on data derived
from adult populations, which can be unsuitable due to the
developmental differences between children and adults. Although
legislative measures like the Pediatric Research Equity Act (PREA)

and Pediatric Investigation Plans (PIPs) have made strides in
tackling this challenge, significant gaps in knowledge and data
still persist.

5.3 Pregnant and lactating women: dual-
physiology and teratogenic risk

5.3.1 Pregnancy-induced physiological changes
Pregnancy brings about significant changes in the body that

can affect how drugs are processed. For instance, during
pregnancy, the activity of the enzyme CYP3A4 increases while
that of CYP1A2 decreases. Additionally, there is an increase in
renal blood flow and plasma volume, all of which can alter how
drugs are metabolized and how they interact with one another. A
practical example of this is that the heightened activity of
CYP3A4 can lead to lower levels of midazolam, which in turn
can change how this drug interacts with inhibitors of CYP3A4.
Moreover, DDIs involving teratogenic medications, such as
valproate and isotretinoin, along with enzyme inhibitors, can
increase the exposure of the fetus to these drugs, highlighting
the importance of careful risk-benefit evaluations. Furthermore,
interactions that affect placental transporters, such as BCRP and
P-glycoprotein (P-gp), can also influence the amount of
medication that reaches the fetus.

5.3.2 Lactation and breastmilk transfer
Drugs can transfer into breast milk through two primary

mechanisms: passive diffusion and transporter-mediated
processes. DDIs that raise maternal drug concentrations or
modify the composition of breast milk can significantly affect the
amount of medication that a newborn is exposed to. A notable
example of this is the interaction between fluoxetine, an
antidepressant, and metoclopramide, a medication often used to
treat nausea. This interaction may lead to an increase in prolactin
secretion, which could have implications for lactation and the
amount of the drug that an infant ingests through breast milk.

5.4 Patients with hepatic or renal
impairment

5.4.1 Hepatic impairment and reduced
metabolic capacity

Liver dysfunction affects both phase I and phase II metabolic
pathways, leading to significant implications for drug metabolism.
Enzymes like CYP1A2 and CYP2C19 are especially vulnerable to the
suppressive effects of cirrhosis, which can result in unpredictable
and potentially dangerous DDIs when these enzymes are induced or
inhibited. This is particularly concerning for medications that have
narrow therapeutic windows, such as carbamazepine, phenytoin,
and propranolol, as they require meticulous monitoring in patients
with liver impairment to avoid adverse effects and ensure
therapeutic efficacy.

Recent advances in transcriptomic profiling have led to the
creation of tools like the TGx-DDI biomarker, which is capable of
characterizing drug-induced DNA damage responses in human
HepaRG™ liver cells. This biomarker may provide valuable
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insights into the risks associated with DDIs in conditions where liver
function is compromised (Buick et al., 2021).

5.4.2 Renal dysfunction and drug accumulation
Chronic kidney disease (CKD) leads to a decrease in drug

clearance and changes in protein binding, which increases the
likelihood of drug accumulation and toxicity. The use of
nephrotoxic medications, such as aminoglycosides, nonsteroidal
anti-inflammatory drugs (NSAIDs), and contrast agents, can
further worsen kidney damage. Additionally, the presence of
uremia can hinder the function of transporters and enzymes,
making it essential to implement individualized therapeutic drug
monitoring (TDM) that considers the potential for DDIs.

5.5 Oncology and immunocompromised
populations

5.5.1 Anticancer polypharmacy and enzyme
modulation

Oncology patients often undergo complex treatment regimens
that include chemotherapy, targeted therapies, antimicrobials, and
supportive care agents. A significant number of anticancer drugs,
particularly tyrosine kinase inhibitors (TKIs), are either metabolized
by or influence the activity of CYP3A4, which makes them
susceptible to serious DDIs with medications such as azoles or
macrolides. Additionally, immunosuppressants like tacrolimus and
cyclosporine have narrow therapeutic indices and can interact
adversely with antifungals, calcium channel blockers, or
antiepileptics. Research indicates that over 60% of psychiatric
inpatients encounter at least one clinically significant potential
drug-drug interaction, frequently involving psychotropic
medications like antipsychotics, selective serotonin reuptake
inhibitors (SSRIs), and benzodiazepines, highlighting the
necessity for integrated decision-support tools in psychiatric care.
In the field of oncology, polypharmacy is prevalent, and employing
comprehensive care strategies, such as CDSS, can help reduce the
risks associated with drug-drug interactions. A qualitative study
conducted in Hong Kong shed light on the challenges and strategies
for enhancing drug safety in outpatient oncology care (Ho et al.,
2024). In treating bipolar depression, drug interactions can
significantly affect treatment outcomes. A drug surveillance
project in Bavaria revealed that patients undergoing
polypharmacy for bipolar depression face a heightened risk of
adverse drug interactions, especially with antidepressants (Kriner
et al., 2024). Furthermore, in managing multiple sclerosis, patient
preferences for therapies, including sphingosine-1-phosphate
receptor modulators, are often shaped by the potential for drug
interactions, particularly when these therapies are used alongside
other medications for comorbid conditions (Keenan et al., 2024).
For example, serotonin syndrome can occur due to
pharmacodynamic interactions between SSRIs and other
serotonergic drugs (Zhu A. et al., 2024).

5.5.2 Drug–microbiome interactions
The gut microbiome plays a crucial role in drug metabolism, and

its disruption through antibiotics or chemotherapy can significantly
affect drug deconjugation and enterohepatic circulation. For

instance, bacteria that produce β-glucuronidase can increase the
toxicity of irinotecan, highlighting a new category of microbiome-
mediated DDIs in oncology. In addition, the use of traditional
medicine is prevalent among diabetes patients, particularly in
Africa, which can lead to interactions with conventional
medications. Unfortunately, these interactions are often
overlooked, resulting in adverse drug reactions and complications
in treatment (Ekpor et al., 2024). The significance of gut microbiota
in drug metabolism and interactions is gaining recognition.
Probiotics have been found to modify drug efficacy and toxicity,
and research conducted in Serbia indicates that healthcare students
are aware of these interactions (Danic et al., 2024); however, there is
a need for further education on the subject. Knowledge regarding the
interactions between drugs and dietary supplements is still
insufficient among healthcare professionals, which can lead to an
increased risk of adverse reactions due to overlooked interactions
between supplements and prescription medications. Studies reveal
that many healthcare workers are not fully aware of these risks
(Büyükkasap and Yazici, 2024). Herbal products further complicate
DDIs, particularly in psychiatric or immunocompromised patients,
where modulation of cytochrome enzymes can disrupt standard
therapies (Patel et al., 2024). Cannabinoid compounds, such as THC
and CBD, have the potential to inhibit CYP enzymes, increasing the
likelihood of metabolic DDIs (Smith and Gruber, 2023). Patients
with HIV often navigate complex antiretroviral therapy (ART)
regimens, where even minor errors related to DDIs can
significantly impact therapeutic efficacy (Chastain et al., 2024).
Moreover, the widespread use of dietary supplements among
older adults presents substantial, yet often unrecognized, risks for
DDIs (Fravel et al., 2023).

5.6 Intensive care and emergency settings

5.6.1 Complex regimens and organ support devices
Critically ill patients often receive a variety of intravenous

medications, which can lead to both pharmacokinetic and
physicochemical interactions. The use of medical devices like
renal replacement therapy (RRT), extracorporeal membrane
oxygenation (ECMO), and plasma exchange can significantly
change how drugs are cleared from the body, making it essential
to adjust dosages and assess potential DDIs carefully. Emergency
department physicians who follow national guidelines for HIV post-
exposure prophylaxis can notably lower the chances of adverse drug
interactions. Research indicates that adhering to these guidelines not
only enhances patient safety but also improves overall outcomes by
reducing the likelihood of harmful drug interactions (Heck et al.,
2024). Furthermore, pharmacist-led stewardship programs are
becoming increasingly important in managing and minimizing
DDIs related to antiretroviral therapy (ART) (Ahmed et al., 2023).

5.6.2 Time-critical decision-making
The urgent nature of emergency care often limits the ability to

conduct comprehensive evaluations of DDIs. To address the risks
associated with these interactions in high-pressure environments, it
is crucial to implement advanced CDSS that include severity
stratification and tailored patient alerts. These systems can help
healthcare providers quickly identify and manage potential
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interactions, ensuring safer and more effective patient care during
emergencies.

5.7 Pharmacogenomic subpopulations

Polymorphic variants in drug-metabolizing enzymes, such as
CYP2C9/2C19, CYP2D6, and CYP3A5*3, play a crucial role in
influencing the risk of drug-drug interactions (DDIs). For instance,
individuals identified as poor metabolizers of CYP2D6 may be at an
increased risk of developing serotonin syndrome when paroxetine is
used in conjunction with tramadol. By incorporating
pharmacogenomic (PGx) profiling into standard healthcare
practices, utilizing platforms like PharmCAT or YouScript,
healthcare providers can conduct personalized risk assessments
and make proactive dose adjustments tailored to individual
patient needs.

5.8 Global considerations and
population diversity

5.8.1 Ethnopharmacology and DDI sensitivity
Genetic variations in metabolic enzymes, along with dietary

habits and the common use of traditional medicines, play
significant roles in the differences in DDIs risks among various
ethnic groups. For example, individuals from East Asian
backgrounds often possess a higher frequency of poor
metabolizer genotypes for the CYP2C19 enzyme, which can
diminish the effectiveness of clopidogrel when it is taken
alongside proton pump inhibitors. Additionally, herbal remedies
like St. John’s Wort and ginseng can either induce or inhibit
cytochrome P450 enzymes, making the management of DDIs
even more challenging. Beyond these genetic and cultural
factors, differences in enzyme expression and drug transporter
activity based on sex and gender can also influence DDI risks. For
instance, the levels of estrogen and testosterone can impact the
activity of CYP enzymes, which is particularly relevant for both
cisgender and transgender patients undergoing hormone therapy
(Cirrincione and Huang, 2021).

5.8.2 Resource-limited settings
In low- and middle-income countries (LMICs), the challenges

of limited access to DDIs screening tools, combined with the co-
treatment of infectious and chronic diseases, heighten the risks
associated with polypharmacy. This issue is especially critical for
older adults, who frequently face a higher prevalence of DDIs due
to the presence of multiple health conditions and instances of
inappropriate prescribing practices. Recently, an international
expert panel has put together a consensus list of potentially
clinically significant drug-drug interactions specifically for the
elderly. This list provides a standardized framework that could be
used as a basis for developing simplified DDI screening tools
tailored for resource-limited environments (Anrys et al., 2021).
By integrating these curated interaction lists into mobile
applications that are adapted for different languages, we could
take a significant step toward enhancing medication safety
in LMICs.

5.9 Future directions in personalized DDI
management

• Dynamic DDIs Modeling: Integration of real-time PK/PD
data and digital phenotyping for adaptive therapy.

• Wearable and Sensor Technologies: Early detection of DDIs
effects, such as QT prolongation.

• Global DDIs Surveillance Networks: Real-world evidence
from diverse populations to improve alert accuracy.

• Patient-Centric Tools: Mobile DDIs checkers and at-home
genetic screening to empower informed decision-making.

6 Regulatory considerations and DDI
labeling strategies

The accurate identification and proactive management of
clinically significant DDIs is a crucial priority for health
authorities worldwide. Regulatory frameworks have evolved to
facilitate the systematic evaluation of DDIs at every stage of drug
development, from preclinical studies to post-marketing
surveillance. This section outlines the main strategies employed
by prominent regulatory agencies, including the FDA, EMA, and
PMDA, while also noting regional differences and the trend towards
global harmonization. It is important to mention that this content is
not recommended for citation unless it is connected to
socioeconomic factors in drug interaction management (Leslie,
2024). Efforts to harmonize ontological frameworks, such as
RxNorm and DrugBank, play a key role in maintaining
consistency in DDIs knowledge bases (Kawakami et al., 2024).
Additionally, this section discusses the growing role of artificial
intelligence (AI) in predicting DDIs and the regulatory
considerations that come with its implementation.

6.1 United States: FDA guidance

The U.S. Food and Drug Administration (FDA) has established
a thorough and risk-informed framework for evaluating drug-drug
interactions (DDIs), which includes both laboratory (in vitro) and
clinical (in vivo) studies. The guidance updated in 2020 highlights
the importance of using physiologically based pharmacokinetic
(PBPK) modeling as a key method for predicting interactions
that occur due to metabolism and transport processes. The FDA
supports model-informed drug development (MIDD), which
combines PBPK with quantitative systems pharmacology (QSP)
to enhance the design of studies and improve regulatory
decision-making. Additionally, the FDA has promoted the use of
artificial intelligence (AI)-driven models that utilize extensive
clinical data to facilitate real-time detection of DDIs.

The FDA is progressively incorporating AI tools into the
assessment of DDIs, especially within CDSS. To ensure these AI
models are effective in real-world settings, they must undergo
thorough validation that includes not just data from clinical trials
but also real-world evidence (RWE) sourced from electronic health
records (EHRs). This approach helps confirm that the AI tools are
applicable in everyday clinical practice. Additionally, the FDA
emphasizes the necessity for clear labeling that accurately
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conveys the underlying mechanisms of the identified DDIs and their
therapeutic consequences. It is crucial that AI-generated predictions
are presented in a way that is clinically actionable, thereby providing
valuable support to both healthcare providers and patients.

6.2 European Union: EMA framework

The European Medicines Agency (EMA) offers comprehensive
guidance on evaluating pharmacokinetic interactions, placing
significant importance on mechanistic classification, especially
concerning cytochrome P450 enzymes and drug transporters.
Within the EMA framework, there is a clear requirement for
strong justification when waiving clinical interaction studies,
frequently necessitating sensitivity analyses or supplementary
modeling to substantiate these claims. In contrast to the FDA,
the EMA applies more stringent regulatory oversight regarding
the reasoning behind the decision not to perform certain
clinical trials.

The European Medicines Agency (EMA) has begun to integrate
artificial intelligence (AI) into the evaluation of DDIs,
acknowledging its ability to predict intricate interactions and
categorize DDIs based on underlying mechanisms. Nevertheless,
the application of AI tools must be firmly rooted in thorough
scientific validation and must adhere to the agency’s commitment
to transparency and data sharing. To support this initiative, the
EMA provides an open-access DDIs database, which aids in the
incorporation of AI-driven tools designed to uncover previously
underreported or newly emerging DDIs.

6.3 Japan: PMDA requirements

The Pharmaceuticals and Medical Devices Agency (PMDA) in
Japan generally aligns with international best practices while also
taking into account specific regional considerations. A key focus for
the PMDA is ethnic sensitivity; they often require bridging studies to
ensure that DDIs data can be accurately extrapolated to Japanese
populations. Additionally, the PMDA has been increasingly
supportive of modeling and simulation techniques, including the
use of AI-based systems, to predict potential DDIs effectively.

The PMDA has approached the endorsement of AI-driven
models with caution, yet it is gradually advancing towards
supporting these technologies. These models have the potential to
incorporate population-specific data, which is particularly
important for enhancing DDIs predictions. This is especially
relevant in the context of Japanese populations, where unique
genetic factors can significantly influence drug metabolism.

6.4 Comparison and global
harmonization trends

While national regulatory agencies have their own specific
nuances, there is a growing trend towards convergence in DDIs
evaluation strategies, largely influenced by ongoing efforts to
harmonize guidelines through the International Council for
Harmonisation (ICH). The upcoming ICH M12 guideline marks

a significant step forward, as it seeks to standardize the scientific
principles that govern DDIs study design, data interpretation, and
labeling requirements. Among the leading regulatory bodies, the
U.S. Food and Drug Administration (FDA) has taken a proactive
approach by advocating for model-informed and simulation-based
regulatory science. In contrast, the European Medicines Agency
(EMA) and the Pharmaceuticals and Medical Devices Agency
(PMDA) are gradually incorporating these methodologies,
reflecting their unique institutional and regional priorities.
Despite these differences, it is crucial for these agencies to align
their efforts to reduce redundant testing, speed up global drug
development, and maintain consistency in communicating
clinical risks. As these global agencies strive for harmonization,
recent regulatory guidance—such as the FDA’s protocols for
CYP450 and transporter studies (U.S. Food and Drug
Administration FDA, 2020)—illustrates a developing consensus.
Additionally, emerging artificial intelligence tools, like the affinity
models summarized on arXiv, provide further translational benefits
in this evolving landscape (Vefghi et al., 2025).

There is a growing movement aimed at achieving global
consistency in the use of artificial intelligence (AI) tools for
predicting DDIs. AI-driven models must comply with
international regulations concerning data privacy, transparency of
the models, and their validation processes. New AI technologies,
such as graph neural networks (GNNs) and transformer-based
models, provide significant advantages, allowing for more precise
and context-sensitive predictions of DDIs. As international
organizations strive for harmonization, it is essential that these
AI models adhere to the same stringent standards that are
applied to conventional DDIs assessment tools, thereby ensuring
their relevance in clinical settings and safeguarding patient safety.

7 Limitations and future directions

Despite significant advancements in DDIs research, several key
limitations persist that hinder clinical implementation, regulatory
harmonization, and the relevance of findings in real-world settings.

7.1 Limitations

Many current DDIs prediction models are based on limited
and skewed datasets, which primarily focus on well-characterized
drug classes. This focus leads to a significant underrepresentation
of rare interactions, population-specific pharmacokinetics, and the
complexities of real-world treatment scenarios. Additionally,
clinical trials frequently exclude vulnerable populations,
including the elderly, pediatric patients, pregnant individuals,
and those with multiple health conditions. Such exclusions
undermine the external validity of DDIs evidence, particularly
for high-risk groups.

A considerable number of machine learning-based DDIs
prediction models face challenges related to interpretability,
which diminishes trust among clinicians and hampers acceptance
by regulatory bodies. These models frequently function as “black
boxes,” delivering precise predictions without offering insights into
their underlying mechanisms or pharmacological reasoning.
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Consequently, this lack of transparency restricts their incorporation
into clinical workflows and the labeling of drugs.

Current DDIs frameworks inadequately address the role of
herbal medicines, dietary supplements, and traditional therapies,
even though these are commonly used, especially in low- and
middle-income countries (LMICs). The diversity in therapeutic
practices across different geographic and cultural contexts adds
another layer of complexity that is seldom reflected in
conventional pharmacovigilance systems or regulatory guidelines.

Most DDIs risk stratification tools are static, which means they
do not adapt to the dynamic physiological changes, evolving
comorbidities, or treatment adjustments that patients experience
over time. Currently, the integration of real-time patient data,
including electronic health records (EHRs), therapeutic drug
monitoring (TDM), and longitudinal health trends, remains
underutilized in modern DDIs management systems. This lack of
adaptability and real-time data incorporation limits the effectiveness
of these tools in providing personalized and timely assessments of
DDIs risks, ultimately impacting patient safety and
treatment outcomes.

7.2 Future directions

Future research should concentrate on creating explainable and
clinically validated DDIs prediction models that combine
mechanistic pharmacology with sophisticated data-driven
techniques. It is essential to prioritize the generalizability of these
models across various patient populations and clinical contexts,
including intensive care units, oncology settings, and resource-
limited environments.

The convergence of pharmacogenomics, mobile health
technologies, and digital infrastructure presents remarkable
opportunities for personalized assessment of DDIs risks. By
integrating genotype-guided dosing algorithms with real-time
decision support tools and mobile patient engagement platforms,
we can facilitate a dynamic and individualized approach to
pharmacovigilance. This integration allows healthcare providers
to tailor medication plans based on a patient’s genetic profile,
ensuring safer and more effective treatment options while
actively engaging patients in their healthcare journey.

The establishment of global DDIs surveillance networks, along
with the implementation of interoperable data standards, can
significantly improve consistency across different regulatory
jurisdictions. It is essential for regulators, clinicians,
informaticians, and technology developers to work together
across sectors to effectively translate computational advancements
into practical tools that enhance the safety of pharmacotherapy.

To tackle the aforementioned challenges, we propose an
integrative translational framework that connects diverse data
sources, predictive modeling strategies, and various application
domains. This framework, illustrated in Figure 6, is designed to
enhance the prediction of DDIs through the use of AI-powered
models. It effectively integrates heterogeneous data sources with AI-
based prediction methodologies and real-world applications,
emphasizing the challenges faced and the solutions available for
translating these insights into clinical practice.

7.3 Data sources

The foundational data inputs essential for DDIs prediction come
from various sources:

• Molecular Mechanisms: The data encompasses how drugs
interact at the molecular level, including details about
chemical structures, biological pathways, and the
interactions that occur within biological systems.

• Electronic Health Records (EHRs): Patient data, including
medical history, laboratory results, and prescription records,
are crucial for understanding drug interactions in diverse
patient populations.

• Pharmacogenomics (PGx): Genetic information that
influences drug metabolism, efficacy, and toxicity. This data
helps predict individual responses to drugs.

• Real-World Evidence (RWE): Data derived from actual
clinical practice, including observational studies and post-
market surveillance, to capture drug interactions in broader
patient populations.

7.4 AI-based prediction

The second section of the framework involves AI-based
prediction methods that process the heterogeneous data sources
mentioned above. These methods include:

FIGURE 6
A proposed integrative framework for drug–drug interaction
(DDI) prediction and clinical translation. An integrative framework for
drug–drug interaction (DDI) prediction and clinical translation. The
framework is structured in three tiers: (1) Data Inputs, including
molecular mechanisms, electronic health records (EHR),
pharmacogenomics (PGx), and real-world evidence (RWE), which
serve as foundational sources for model development; (2) Predictive
Modeling, encompassing rule-based systems, machine learning, deep
learning, and knowledge graphs, enabling scalable and
mechanistically informed DDI predictions; and (3) Application
Domains, where model outputs inform clinical decision support
systems (CDSS), regulatory science, and personalized medicine.
Cross-cutting challenges—such as interpretability, clinical adoption,
data bias, and regulatory validation—remain critical to successful
implementation. This framework supports a dynamic, data-driven
pathway from mechanistic understanding to patient-specific
pharmacovigilance.
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• Machine Learning: Algorithms that learn from large datasets
to predict drug interactions based on patterns and
correlations.

• Deep Learning: A subset of machine learning that uses neural
networks to model complex, high-dimensional data and
improve the prediction of interactions.

• Knowledge Graphs: Graph-based models that represent the
relationships between drugs, diseases, genes, and other
medical entities, providing a structured approach to explore
interactions.

• Natural Language Processing (NLP) and Text Mining:
These methods are used to extract valuable insights from
unstructured data such as scientific literature, clinical notes,
and drug labels.

7.5 Applications

The predictions generated by AI-based models are directed
toward practical applications:

• CDSS: AI-powered tools that assist healthcare providers in
making informed decisions about drug prescriptions,
minimizing harmful interactions.

• Regulatory Science (FDA, EMA): Regulatory bodies can use
AImodels to enhance drug approval processes, ensuring safety
and efficacy based on predicted interactions.

• PersonalizedMedicine: AI predictions can be applied to tailor
drug regimens for individual patients, considering their
genetic background, medical history, and potential for drug
interactions.

7.6 Challenges

While the framework holds promise, several challenges remain
in implementing AI-powered DDI predictions:

• Interpretability: AI models, especially deep learning, can be
difficult to interpret, making it challenging to understand the
rationale behind predictions.

• Clinical Adoption: Integrating AI-based prediction tools into
clinical workflows requires overcoming barriers such as
clinician trust, training, and workflow integration.

• Data Bias: Models trained on biased data may perpetuate
existing healthcare disparities, leading to inaccurate
predictions for certain patient populations.

• Regulatory Validation: AI-driven predictions need rigorous
validation to meet regulatory standards for clinical
applications, ensuring their safety and efficacy in
real-world use.

8 Emerging trends and future
perspectives in DDI research

As pharmacotherapy becomes increasingly complex due to
the rise of polypharmacy, biologics, and personalized medicine,

traditional paradigms for understanding DDIs are encountering
significant limitations. In response to these challenges, several
emerging trends are transforming DDIs research into more
integrative, predictive, and patient-centered approaches. For
instance, insights from pharmacogenetics regarding atypical
antipsychotics can enhance our ability to predict DDIs risks
and tailor dosing to individual patients, thereby improving
treatment outcomes and minimizing adverse effects
(Vasiliu, 2023).

8.1 Artificial intelligence–enabled DDI
prediction

Artificial intelligence (AI) and machine learning (ML) are
transforming the detection and prediction of DDIs by facilitating
scalable, data-driven methodologies. Advanced deep learning
models, such as graph neural networks (GNNs) and transformer-
based architectures like BERT-DDI, are capable of revealing intricate
molecular interactions and identifying novel DDIs from extensive
compound libraries and biomedical literature. Additionally, natural
language processing (NLP) techniques enhance the analysis of
electronic health records (EHRs) and adverse event reports,
allowing for the identification of hidden interaction signals.
Nevertheless, for these technologies to gain wider regulatory
acceptance, there is a need for improvements in model
interpretability, clinical validation, and effective risk
communication.

8.2 Network pharmacology and multi-DDI
risk modeling

The increasing occurrence of polypharmacy necessitates the
implementation of systems-level strategies. Tools such as network
pharmacology models, agent-based simulations, and cumulative
DDIs risk scores allow researchers to assess multi-drug treatment
plans in a comprehensive manner. These methodologies are
particularly significant in fields like geriatrics, oncology, and
psychiatry, where the simultaneous administration of various
medications is frequently observed.

8.3 Beyond CYP450: epigenetics,
microbiome, and immune modulation

DDIs mechanisms are evolving beyond traditional pathways,
introducing new complexities such as epigenetic modulation,
microbiome-driven metabolism, and immune-mediated enzyme
regulation. For instance, histone deacetylase inhibitors have been
shown to influence the expression of CYP3A4, an important
enzyme in drug metabolism. Additionally, the gut microbiota
plays a significant role in drug metabolism, as it can either
activate or inactivate certain medications and alter the host’s
metabolic capacity. These emerging mechanisms highlight the
need for their incorporation into existing DDIs prediction
frameworks to enhance our understanding and management of
drug interactions.
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8.4 Pharmacogenomics and genotype-
guided decision support

Genetic polymorphisms play a significant role in influencing the
drug behaviors of both perpetrators and victims. New models that
focus on gene–drug–drug interactions (GDDIs) are being developed
alongside electronic health record (EHR)-integrated CDSS to
provide alerts tailored to specific genotypes. By incorporating
polygenic risk scores and dynamic enzyme activity models, these
systems may improve the assessment of risks associated with drug
interactions. Pharmacogenomics is essential for personalizing
treatment, particularly in the realm of psychiatric medications,
where it can help prevent drug intolerance. For example,
pharmacogenetic testing has been shown to reduce the risk of
adverse drug reactions in patients prescribed antipsychotics, as
highlighted in a specific case report (Hudnik et al., 2024).

8.5 Innovative study designs and simulation-
guided trials

To improve study efficiency and ensure relevance to real-world
applications, innovative methodologies like adaptive trials, microdosing
studies, and physiologically based pharmacokinetic (PBPK)-informed
trial designs are becoming more popular. Regulatory agencies are
increasingly supporting simulation-based strategies as an integral
component of model-informed drug development (MIDD).

8.6 Global harmonization and open science

The adoption of ICHM12 and the establishment of open-access
DDIs databases, such as ONC-DDI and FDA DDIR, signify a
significant shift towards harmonized regulatory science and
enhanced transparency in the field. These initiatives are
supported by collaborative consortia that are actively working to
set standards, promote data sharing, and train artificial intelligence
models. This collaborative effort is crucial in accelerating global
advancements in DDIs safety, ensuring that stakeholders can access
and utilize vital information effectively.

9 Conclusion

DDIs present a complex challenge in modern pharmacotherapy,
particularly in an era characterized by polypharmacy, biologics, and
precision medicine. As treatment plans become increasingly
intricate, it is crucial to identify and address DDIs promptly to
ensure both the effectiveness of therapies and the safety of patients.

This review offers a thorough overview of the current landscape
of DDIs, covering the underlying mechanisms, methods for
computational prediction, considerations specific to different
populations, and the evolving regulatory frameworks. By
integrating traditional pharmacological principles with advanced
technologies like artificial intelligence (AI), real-world data (RWD),
and pharmacogenomics, we highlight the critical role of
interdisciplinary collaboration in developing the next-generation
of DDIs management.

AI-powered models, knowledge graphs, and NLP-based
pharmacovigilance systems are increasingly revealing previously
unrecognized interactions that are sensitive to context, and they
are doing so with greater precision. However, to achieve successful
clinical implementation, it is essential to systematically tackle several
translational challenges. These include improving model
interpretability, addressing data heterogeneity, and ensuring a
diverse population representation in the data used.

Special populations, such as the elderly, children, pregnant
individuals, and those with unique genetic profiles affecting drug
metabolism, require customized strategies because their bodies
process medications differently, and they are often
underrepresented in clinical trials. Additionally, the increasing
use of herbal and complementary medicines, combined with the
diverse prescribing practices observed worldwide, highlights the
need for DDIs approaches that are both culturally sensitive and
centered around the patient’s individual needs.

Looking ahead, the field is experiencing a significant
transformation, moving away from traditional static assessments
of DDIs that typically consider only pairwise relationships. Instead,
there is a shift towards dynamic models that are tailored to
individual patients. This evolution is being driven by
advancements in explainable artificial intelligence, which helps
clarify how AI systems make decisions, as well as genotype-
guided therapy, which personalizes treatment based on a patient’s
genetic makeup. Additionally, the design of clinical trials is
becoming more informed by simulations, allowing for a better
understanding of how different treatments may interact in real-
world scenarios. To successfully integrate these innovations into
everyday medical practice, it will be essential to adopt interoperable
decision support systems and maintain open-access databases for
DDIs. These tools will enable healthcare providers to offer more
personalized, responsive, and context-aware risk mitigation
strategies for their patients.

In conclusion, research on DDIs is advancing beyond traditional
pharmacological limits, transforming into a genuinely
multidisciplinary effort. By integrating technological
advancements, proactive regulatory strategies, and a focus on
patient-centered design, this field is set to provide safer, more
intelligent, and globally equitable pharmacotherapy in the future.

The convergence of artificial intelligence (AI), clinical
pharmacology, and regulatory science, as shown in Figure 1, is
transforming the detection, interpretation, and application of DDIs
to enhance therapeutic safety. Implementing this multidimensional
framework in practical, real-world environments marks the next
significant advancement in personalized pharmacovigilance.
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