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Scientific research has significantly propelled advancements in healthcare. One
notable application is precision medicine, which seeks to analyze and
comprehend disease pathology to offer personalized medical treatments to
patients. Targeted oncology, a branch of precision medicine, focuses on
identifying and targeting specific molecules that regulate cancer cells, thereby
minimizing harm to healthy cells. Different types of targeted therapy against
cancer include monoclonal antibodies and small molecules. This manuscript
intends to provide an overview of the influence of these targeted oncology and
non-oncology therapies on hearing. Furthermore, side effects including
immune-related adverse events will be reviewed as potential causes of
hearing deterioration in this patient population.
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Introduction

Pharmacologic therapies intended to treat malignancies also affect normal cells, leading
to significant peripheral neuropathy sequelae including ototoxicity (e.g. hearing loss,
tinnitus, dizziness, and/or vertigo) (Landier, 2016). The long-term sequelae of this can
be devastating, as it can lead to bilateral severe to profound sensorineural hearing loss and
subsequent developmental delay and poor communication skills in children, (Tomblin
et al., 2015), as well as social isolation and higher risk of dementia in adults (Chern and
Golub, 2019; Brewster et al., 2022). The prevalence of chemotherapy-induced ototoxicity is
alarming, with reported incidence rates higher than 50% (Kessler et al., 2024) and a
prevalence that ranges from 4% to 90% (Schell et al., 1989; Knight et al., 2005; Gupta et al.,
2006; Dean et al., 2008; Lewis et al., 2009; Nitz et al., 2013; Landier et al., 2014). Among all
available therapeutic options, platinum-based agents are known to be the most ototoxic,
affecting more than half a million patients annually in the United States alone (Travis et al.,
2014; Dillard et al., 2022). There are several factors that can increase a patient’s risk for
developing ototoxicity, including age, chemotherapeutic agent used, cumulative dose,
infusion rate, and genetic predisposition (Landier, 2016; Kessler et al., 2024).

The concept of precision medicine or ‘personalized medicine’ has revolutionized the
prevention and treatment of many diseases. In oncology, it emphasizes treatment
customization based on the distinct biological characteristics of tumors, optimizing
therapeutic effects against malignant cells while minimizing side effects that result from
damage to healthy cells and organs (Tsimberidou et al., 2020). Over recent years, targeted
immunotherapies have rapidly developed, becoming essential components in the treatment
of many cancers and other conditions (Shahid et al., 2019). The role of immunotherapy in
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cancer treatment is rapidly evolving; in some malignancies, it serves
as a supplement to traditional chemotherapy or radiation, while in
diseases such as melanoma, the use of monoclonal antibody (mAb)
monotherapy has become the gold-standard (Choi et al., 2020;
Zhang et al., 2024). Understanding how these targeted therapies
are integrated with conventional treatment is essential when
interpreting reports of hearing loss. A case of ototoxicity in a
patient receiving combination therapy (chemotherapy and/or
radiation plus a mAb) is markedly different in significance when
compared to a patient treated with mAb or small molecule
monotherapy who develops hearing loss. The causal link is
potentially more direct in the latter case.

Two main categories of immunotherapy include mAbs and
small molecules. Monoclonal antibodies function by targeting
and binding to specific antigens, such as those presented by
cancer cells or microbes, to enhance the immune system
recognition and response. These drugs operate through various
mechanisms, including activating/blocking signaling cascades and
promoting opsonization (Shahid et al., 2019; Zhang and Zhang,
2020). Small molecules similarly target specific biochemical
pathways to affect cancer cell growth and proliferation via
competitive inhibition of enzymes, targeting oncogenic pathways
to induce apoptosis and block angiogenesis (Zhong et al., 2021;
Chattopadhyay et al., 2024; Li et al., 2024). While side effects and
adverse effects of these targeted therapies have been described and
are routinely monitored, their ototoxic and vestibulotoxic effects
may be underestimated. These therapies have been sparingly
reported on and their ototoxic effects have been difficult to
quantify due to an absence of protocol-based screening (Naples
et al., 2023). It is hypothesized that damage to the inner ear
associated with these drugs occurs through previously described
immune pathways categorized as immune-related adverse events
(irAEs) (Rosner et al., 2020).

Immune-related ototoxicity from immunotherapeutics may
arise through several mechanisms. First, mAbs can cause direct
complement-mediated tissue injury, as seen in myocarditis cases
with elevated PD-L1 expression, suggesting that similar off-target
effects could occur in the inner ear (Engelhardt et al., 2020). Second,
these drugs may promote autoantibody production by enhancing T
and B cell interactions, leading to immune attacks on cochlear
structures in susceptible individuals (Das et al., 2018). Another
possible mechanism is depletion of regulatory T cells and
promotion of Th17-driven cytokine release, including IL-17 and
TNF-α, which are implicated in autoimmune disease and may
mediate inner ear inflammation (Gianchecchi and Fierabracci,
2018; Yang et al., 2018).

A different category of immunotherapy is the use of engineered
T cells, including chimeric antigen receptor (CAR) T cells, T cell
receptor (TCR) modified lymphocytes and tumor-infiltrating
lymphocytes (TILs), which have been associated to a few cases of
hearing loss, especially in patients suffering from melanoma
(Seaman et al., 2012; Duinkerken et al., 2019). While this type of
cellular therapy is not discussed in this manuscript, it is worth noting
that its impact on hearing loss may be due to primed immune cells
targeting healthy melanocyte-like cells within the stria vascularis of
the inner ear (Barozzi et al., 2015).

This manuscript reviews targeted oncology therapies as a subset
of precision medicine, focusing on the existing evidence of

ototoxicity and vestibulotoxicity in mAb and small
molecule therapies.

Methods

A thematic review was conducted to examine reported cases of
hearing loss, ototoxicity, and vestibulotoxicity associated with mAbs
and small molecule therapies. A comprehensive literature search was
performed using PubMed for all relevant articles available through
April 2025, without restriction on earliest publication date. Search
keywords included the name of the monoclonal antibody or small
molecule, combined with terms including “ototoxicity,” “hearing
loss,” or “vestibulotoxicity.” The search focused on studies reporting
auditory and/or vestibular adverse effects related to systemic
administration of these agents. Eligible sources included
systematic analyses, database analyses, and case reports, all of
which were screened for relevance to otologic or vestibular
outcomes. Where available, data were extracted on the number of
patients or treatments, duration of therapy, and audiometric
findings both before and after an event, including pure tone
audiometry results. Studies were excluded if they lacked specific
mention of auditory or vestibular symptoms, if adverse effects
occurred prior to the administration of the targeted therapy, or if
full-text access was unavailable in English.

Monoclonal antibodies (mAb)

mAb therapies, particularly those targeting immune checkpoints
and specific cancermarkers, have been associated with ototoxicity and
vestibulotoxicity in rare instances. These toxicities are generally
considered immune-mediated, often arising from the immune
system’s activation or dysregulation, leading to inflammation of
the inner ear structures (Rosner et al., 2020) causing intracochlear
vasculitis or cross-reactivity with hair cells (McKeage and Perry, 2002;
Belinsky et al., 2022). To date, ototoxicity and/or vestibulotoxicity
associated withmAb treatment has been described in a few dozen case
reports (Cheminant et al., 2012; Charakopoulos et al., 2020; Nocturne
et al., 2021) and a small number of systematic reviews (Arya et al.,
2025). Inner ear toxicity is not a common side effect of monoclonal
antibodies, and when it does occur, it is often reversible with
appropriate management, primarily involving corticosteroids.
These side effects remain rare but underscore the importance of
early monitoring and prompt intervention (Thompson et al., 2024;
Arya et al., 2025).

Monoclonal antibodies in oncology
treatments

Programmed Death-1 (PD-1)
Pembrolizumab and nivolumab are both PD-1 inhibitors and

were first approved by the FDA in 2014 for the treatment of
metastatic melanoma (Gong et al., 2018). Both are now used
widely for many other cancers and are often used as dual
therapy with ipilimumab, a Cytotoxic T-Lymphocyte-Associated
Protein 4 (CTLA-4) inhibitor, due to their synergistic effects in
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targeting tumor cells (Wei et al., 2018). Sudden hearing loss,
tinnitus, and aural fullness have been described in cases where
these agents were used both alone and in combination therapy. For
all three agents, the development of an autoimmune response
against healthy host melanocytes in the inner ear has been
proposed as a mechanism of toxicity (Rosner et al., 2020).

Kuzucu et al., 2019, used a rat model to investigate the ototoxic
effects of pembrolizumab, reporting that the drug showed
ototoxicity activity during treatment with spontaneous resolution
after completion during the follow up assessment. This study drew
conclusions from auditory brainstem response measurements and
histological evidence of insult to the organ of Corti, but did not
propose a mechanism of injury (Kuzucu et al., 2019). These findings
have been supported by several other publications reporting this
phenomenon in humans. Wierzbicka et al., 2024, performed a
systematic review noticing that patients developed ototoxicity
symptoms about 3 months into the initiation of treatment, with
most cases being reversible. Little is known regarding the true
incidence and prevalence of this problem. They suggested the
creation and implementation of therapeutic algorithms to allow
for early screening, diagnosis, and management of symptoms
(Wierzbicka et al., 2024). Noteworthy, Page and collaborators
published a case series from MD Anderson and a systematic
review where four patients presented with inner ear toxicity
(Page et al., 2022). Three patients were treated with nivolumab
combined with ipilimumab for metastatic melanoma and renal cell
carcinoma, while the remaining patients received combined therapy
for the treatment of metastatic melanoma. All patients underwent
treatment of hearing loss with high dose steroid tapers, leading to
recovery of hearing in 2 patients, persistent symptoms in one, and
cancer-related death in one. Schlacter et al. described a case of
melanoma treated with combination therapy (ipilimumab and
nivolumab) leading to bilateral profound hearing loss that did
not resolve with systemic steroid therapy, requiring cochlear
implantation surgery (Schlacter et al., 2023). By the time of this
publication, only 13 audiovestibular adverse effects have been
implicated as immune-related adverse events (irAEs),
highlighting that indeed, it is a rare complication.

Programmed death ligand – 1 (PD-L1)
Durvalumab is a PD-L1 inhibitor that is FDA-approved for the

treatment of non-small cell lung cancer (NSCLC), extensive-stage
small cell lung cancer (SCLC), locally advanced or metastatic
urothelial carcinoma, advanced or metastatic biliary tract cancer,
hepatocellular carcinoma, endometrial cancer, and as a neoadjuvant
therapy for resectable NSCLC (Wilmington, 2024). As per the
manufacturer disclosure, Durvalumab has been associated with
an 11-20% rate of dizziness in patients undergoing treatment for
HER2-Negative, high risk early breast cancer, metastatic castration-
resistant prostate cancer, and BRCAm advanced ovarian cancer
(Yang et al., 2018). Of note, most of these patients were concurrently
or previously treated with other chemotherapeutic agents that could
potentially be ototoxic, therefore, a direct relationship cannot
be confirmed.

One case series described irAEs in four out of seventeen patients,
including sudden hearing loss in two patients and tinnitus in one
patient receiving durvalumab and Olaparib, a poly (ADP-ribose)
polymerase inhibitor (PARP), in the metastatic castration treatment

of resistant prostate cancer (Karzai et al., 2018). Patients received a
median of seven cycles of treatment, and all patients experiencing an
irAE discontinued durvalumab but not Olaparib. Neither patient
received audiometric testing, and both were treated with high-dose
steroids. One patient was reported to have subjective near-recovery
of hearing loss, while the other patient required hearing aids. Low-
grade tinnitus was documented in one patient, but it is unclear
whether this occurred in a patient who experienced hearing loss or a
different, third patient (Karzai et al., 2018).

Interestingly, De Boos and collaborators (De Boos et al., 2025),
published a case report of a 59-year-old man with non-small cell
lung carcinoma who underwent concurrent chemoradiation
(cisplatin-pemetrexed) followed by immunotherapy with
durvalumab immunotherapy. Despite achieving a complete
metabolic response on PET-CT, he developed solitary metastasis
to the internal auditory canal 18 months later, experiencing rapid
progressive vertigo, left-sided facial paralysis, and hearing loss. It is
difficult to draw conclusions from this case as the patient was treated
with a known ototoxic drug, cisplatin, within the same timeframe
prior to hearing loss in addition to later developing retrocochlear
metastatic disease that can also lead to audiovestibular symptoms.

CD20
Rituximab depletes B cells by targeting CD20. It is used in the

treatment of autoimmune conditions like rheumatoid arthritis,
microscopic polyangiitis, granulomatosis with polyangiitis,
pemphigus vulgaris, and B cells malignancies like CD20-positive
B-cell non-Hodgkin’s Lymphoma, chronic lymphocytic leukemia,
and small lymphocytic leukemia (Hanif and Anwer, 2025). The off-
label use of this medication has expanded from demyelinating
diseases to hematologic, oncologic, vascular, and dermatologic
conditions and others, increasing its use from 1.2% in 2009 to
over 50% by 2017 (Delate et al., 2020).

There is no proposed mechanism by which rituximab or B-cell
depletion broadly contributes to hearing loss, and no animal studies
assessing the effect of rituximab on the inner ear were found. Across two
country-wide pharmacovigilance studies within the FDAAdverse Event
Reporting System (FAERS) database measured reporting odds ratios
(ROR). ROR are commonly used in pharmacologic database surveys to
indicate disproportionate drug-specific reporting of an adverse effect
versus all other drugs in a given database. Statistically significant
reporting ROR of ~3.20 has been measured for hearing loss
(Barbieri et al., 2019). Two case reports have described a total of
three patients developing progressive hearing loss, with two
experiencing balance/gait disturbance while on rituximab
maintenance therapy following remission of B-cell lymphoma. In all
three cases, patients experienced systemic enterovirus infection due to
presumed rituximab-associated hypogammaglobulinemia (Anderson
et al., 2022). One report describes subtle sensorineural hearing
confirmed with audiometry after 4 months of maintenance single-
therapy (Healy et al., 2015). The patient presented with balance
impairment and progressive hearing loss was treated with
intravenous immunoglobulin (IVIG) and steroids over 20 weeks.
Despite treatment, the hearing function precipitously worsened,
requiring cochlear implantation surgery. Similarly, the other two
patients did not respond to multiple weeks of IVIG therapy and
experienced persistent hearing loss, one of which also experienced
gait disturbance that resolved (Grisariu et al., 2017).
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Ocrelizumab is a mAb against CD20 approved for the treatment
of multiple sclerosis. Starosta et al. present a case in which a patient
diagnosed with multiple sclerosis contracted a systemic enterovirus
infection that resulted in sensorineural hearing loss along with
hepatitis, pneumonia, enterocolitis, and pancreatitis (Starosta
et al., 2025).

Viral infections are considered an important underlaying cause
of sensorineural hearing loss and have also been associated to
enterovirus infection (Belinsky et al., 2022). Therefore, the
reported hearing loss published by Anderson and Starosta is
likely post-viral in nature, rather than due to the use of
rituximab or ocrelizumab.

Monoclonal antibodies in non-oncology
treatments

Insulin-like growth factor (IGF)
Teprotumumab is an IGF-1R inhibitor indicated in the

treatment of thyroid eye disease (TED). It received FDA approval
in January 2020 but has not comprehensively been evaluated from a
safety perspective in the real-world clinical setting (Yvon et al.,
2025). The IGF-1R pathway has been described as a component of
cochlear maturation and regulation (García-Mato et al., 2021),
which may help explain the ototoxic symptoms that have been
reported (Najjar and Yu, 2022). One pharmacovigilance analysis of
teprotumumab reported significant ROR signals for development of
autophony (ROR = 14,475.49), permanent deafness (ROR =
1853.35), unilateral sensorineural hearing loss (ROR = 129.89),
ear discomfort (ROR = 72.88), and bilateral sensorineural hearing
loss (ROR = 62.46), among other non-otologic effects (Zhang et al.,
2024), which have been supported by other studies using a similar
analytic approach (Huynh et al., 2024; Zhao and Tao, 2024). Other
case studies have reported sensorineural hearing loss, tinnitus and
autophony in 10%–46% of patients undergoing treatment for TED
(Keen et al., 2024) and ear fullness to secondary atrophy of the
tissues surrounding the Eustachian tube valve (Hsiou et al., 2024).
The effects of IGF-1R deficiency have been well-described in both
mouse models and via identification of relevant human genes.
Studies have demonstrated that the IGF-1R signaling pathway
plays a critical role in cochlear development, homeostasis, and
protection, with tightly regulated expression patterns and
downstream effectors whose dysfunction is linked to various
forms of hearing loss and potential therapeutic targets (Murillo-
Cuesta et al., 2011; Okano et al., 2011; García-Mato et al., 2021).

CD3
Muronumab is an anti-CD3 mAb that blocks the cytotoxic

activity of T cells, therefore, it is used in the treatment of
transplant-related rejection that has been resistant to
conventional therapy (Todd and Brogden, 1989). Hartnick and
collaborators (Hartnick et al., 1997) reported associated
temporary sensorineural hearing loss confirmed by audiogram in
one case study. The patient was undergoing treatment alongside
renal transplantation, and experienced sudden hearing loss upon
administration of the first dose. Audiograms showed bilateral,
down-sloping sensorineural hearing loss with discriminations of
92% and 88%, respectively. The patient responded to steroids and

experienced subjective restoration of hearing function. The
proposed mechanism by which the hearing loss occurred is
significant cytokine release, altering the vascular permeability of
the organ of Corti. In 2000, the same group presented a case series of
7 patients that underwent therapy with muronomab due to steroid-
resistant rejection of renal cadaveric transplants reporting 71% of
sensorineural hearing loss of at least 15 dB at high frequencies. All
patients experienced near-complete to complete resolution of the
hearing loss up to 2 weeks after discontinuation of the drug
(Hartnick et al., 1997). The authors propose that muronumab
may damage the inner ear through a “first-dose” immune
response, characterized by an unusually large release of cytokines
in the organ of Corti or surrounding tissues, leading to vasodilation
and inflammation (Hartnick et al., 1997).

Tumor necrosis factor–Alpha (TNF- α)
The role of TNF- α as an inflammatory mediator contributing to

hearing loss has been well established, with multiple proposed
mechanisms linked to hearing loss. TNF- α infusion led to direct
synaptic degradation of the cochlear nerve, subsequently reversed by
administration of etanercept in an animal model (Kessler et al.,
2024). TNF- α has further been reported to decrease cochlear blood
flow (Schlacter et al., 2023) that was reversed by systemic etanercept
infusion (Shahid et al., 2016), a soluble TNF receptor that binds and
blocks TNF signaling. The described pathways complicate the
significance of reports of hearing loss linked to TNF- α inhibitor
use and must be acknowledged.

Adalimumab has been reported in the treatment of autoimmune
sensorineural hearing loss, however, Conaway et al., 2011, reported
2 cases of sensorineural hearing loss related to the use of
Adalimumab and calls for its cautionary use in this setting
(Conway and Khan, 2011). Both patients started using
Adalimumab after intolerance to Methotrexate and experienced
unilateral sensorineural hearing loss after several months of use.
These patients were evaluated by an otolaryngologist and underwent
appropriate work up with audiogram and MRI.

Etanercept and infliximab have been associated with hearing loss
especially when combined with methotrexate or when used for
extended periods of time. In a study published by Savastano
(Savastano et al., 2010), 28 patients with ankylosing spondylitis
were treated with either drug alone or in combination with
methotrexate. Patients were followed up with audiometric testing
showing that 57% of patients were diagnosed with sensorineural
hearing loss. All patients that used combination therapy developed
sensorineural hearing loss whereas only 43% of those onmonotherapy
experienced decreased hearing. Patients with known exposure to other
ototoxic drugs, noise, Meniere’s disease, head trauma and metabolic
diseases, were excluded. This study did not describe the timeline of
audiologic testing, if a baseline hearing test was performed before
initiation therapy, and if all the patients underwent testing or not,
limiting the extrapolation of its conclusions.

In a two-patient case report of patients with Cogan’s syndrome,
one subject experienced sensorineural hearing loss while on
infliximab and one patient experienced hearing improvement,
while the other experienced vertigo and hearing loss, confirmed
by pure-tone audiometry (Touma et al., 2007).

While the protective effects of TNF- α inhibitors against
cochlear damage and SNHL have been described, there may be
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more that we are yet to understand regarding the long-term use of
these drugs, especially alongside the use of other immune-
modulating agents such as methotrexate. The mechanism of
action of these drugs leading to inner ear ototoxicity has not
been described (Moore et al., 2023).

Some limitations of the above-mentioned studies are: the small
sample size that limits the establishment of a cause-effect
relationship and the confounding factor of the presence of an
active autoimmune disease that could manifest with sudden
sensorineural hearing loss when the disease is not in remission.
Therefore, further studies are needed to determine a real association.

Other monoclonal antibodies (Mab)
Sudden hearing loss has been reported as an unexpected safety

signal in a FAERS database scrape for daratumumab, a CD38-
targeting mAb used to treat multiple myeloma. However, the
study does not report the specific risk for hearing loss, and it is
likely that the signal intensity is statistically insignificant (Yun et al.,
2024). Further, database surveys are unable to establish causality or
qualified risk. No mechanism of toxicity has been proposed to date,
and no case reports have been located describing describe inner ear
toxicity with its use.

Erenumab and fremanezumab, both approved by the FDA in
2018, block the calcitonin gene-related peptide (CGRP) receptor to
prevent migraine in adults. Hearing loss has been described in one
patient who was treated for chronic migraine with erenumab for
6 months before switching to fremanezumab. While taking
fremanezumab, the patient presented with unilateral hearing loss.
They ultimately underwent mastoidectomy and paranasal biopsy,
which led to a diagnosis of granulomatosis with polyangiitis (GPA)
(Ray et al., 2021). The causality of either mAb leading to the
unilateral hearing loss is unable to be established in this case, as
GPA can lead to either sensorineural or conductive hearing loss on
its own. The mechanism of action leading to changes in hearing is
hypothesized to be chronic nasopharynx inflammation may cause
Eustachian tube dysfunction and subsequent chronic serous otitis
media presenting with conductive hearing loss. On the other hand,
vasculitis of the inner ear can cause ischemia of the cochlea or
auditory nerve leading to sensorineural hearing loss (Mur et al.,
2019; Cacco et al., 2021; Busch et al., 2022). CGRP has been
hypothesized to cause hearing loss via vasodilatory effects and
increased recruitment of leukocytes to the middle and inner ear,
though the authors note that the possible association drawn is
speculative and not bolstered by a known immunochemical
pathway (Ray et al., 2021).

Denosumab is a RANK-L inhibitor used in the treatment of
osteoporosis and several bone-related cancers to prevent osteoclast
activation and bone resorption. To date, denosumab has been
described in one case of bilateral external auditory canal
osteonecrosis in a 79-year-old woman who presented with
symptoms of sudden hearing loss and otalgia 4 months after
treatment initiation (True et al., 2021). This patient had been
taking once-daily bisphosphonates for over 10 years for the
treatment of osteoporosis prior to switching to denosumab. The
patient was treated conservatively over the course of 1 year with an
initial treatment of a 7 day, three-times-daily course of combined
neomycin/dexamethasone/acetic acid ear spray, with ongoing aural
toilet including six microsuction sessions, removal of bone debris

and mastoid mucoid discharge, and regularly refreshed wick
dressings with ointment. At 1 year follow-up, the patient
reported no otalgia or hearing loss. The patient did not undergo
formal audiometric assessment to quantify the degree of initial
hearing loss or subsequent recovery. Although no studies were
found describing a mechanism by which RANK-L inhibition may
cause the symptoms described, it is possible that the inhibition of the
RANK/NF-κB pathway may have played a paradoxical effect on the
inflammatory response in this patient.

Trastuzumab, first approved in 1998, is a HER-2 antagonist
primarily used in the treatment of HER-2 positive breast and gastric
cancers. No evidence suggests that trastuzumab has significant inner
ear effects in humans. One laboratory animal study in rodents
showed that HER-2, a transmembrane receptor tyrosine kinase,
can be found in the inner, suggesting a hypothetical mechanism of
damage or inflammation (Eryilmaz et al., 2016). However, one
pharmacologic adverse event database survey did not find a
statistically significant relationship between trastuzumab and
hearing loss (Favrelière et al., 2020). Table 1 provides a summary
of the discussed monoclonal antibodies.

Small molecules

To date, there are over 80 small molecules approved by the FDA
for the treatment of cancer (Zhong et al., 2021). Even when these
drugs have some of the advantages of mAbs, these still face many
challenges including low response rate and potential development of
drug resistance. Small molecules can have different targets such as
kinases, kinase receptors, regulatory proteins, proteosomes, and
DNA damage repair enzymes (Zhong et al., 2021).

Tyrosine kinase inhibitors (TKI): imatinib, gefitinib,
erlotinib, sunitinib

Imatinib was the first small molecule TKI approved for use.
Initially approved in 2001 for use in Chronic Myeloid Leukemia
(CML), it has since been approved for use for Gastrointestinal
stromal tumors (GISTs) in 2003 and acute lymphoblastic
leukemia (ALL) in 2006. The primary targets include BCR-ABL,
PDGFR-β, and c-kit tyrosine kinases (Flynn and Gerriets, 2025).
One single center, cross sectional study from northern India
reported 4 cases of imatinib-induced ototoxicity, implicating
imatinib in the development of bilateral sensorineural hearing
loss and tinnitus with normal caloric testing. Another study
reported 44 patients treated with 400 mg oral imatinib per day
who developed hearing loss within 6 months of initial treatment
(Gupta et al., 2017). Lastly, one case reported the development of
symptoms over 1 year after initial treatment with multiple
interruptions during therapy due to resection and recurrence of a
GIST and the development of other adverse effects such as mouth
sores, facial swelling, and lower extremity rash (Wasif et al., 2016).
All cases reported no improvement in hearing after otologic
symptoms occurred.

Erlotinib is an epidermal growth factor receptor (EGFR)
tyrosine kinase inhibitor that has been approved for use in
NSCLC in 2004 and pancreatic cancer in 2005 (Carter and Tadi,
2025). There has only been one case report of erlotinib-induced
ototoxicity, in a patient undergoing treatment for pancreatic
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TABLE 1 Summary of monoclonal antibodies and inner ear effects reported.

Monoclonal
antibody

Drug
classification

Hearing effects reported References

Teprotumumab IGF-1R Inhibitor - Bilateral mild/moderate/severe SNHL, tinnitus, popping, autophony Belinsky et al. (2022)
Chow and Silkiss (2022)
Douglas et al. (2023)
Ding et al. (2022)
Highland et al. (2022)
Kahaly et al. (2021)
Kay-Rivest et al. (2023)
Keen et al. (2024)
Lu et al. (2023)
Men et al. (2024)
Najjar and Yu (2022)
Phansalkar et al. (2023)
Reed et al. (2022)
Sears et al. (2022)
Shah et al. (2024)
Yu et al. (2021)

Pembrolizumab PD-1 Inhibitor - Bilateral mild/moderate/severe SNHL, tinnitus, vertigo, aural fullness De Groot et al. (2020)
Hobelmann K, Fitzgerald D
(2019)
Page et al. (2022)
Rosner et al. (2020)
Stürmer et al. (2021)

Nivolumab PD-1 Inhibitor - Bilateral mild/moderate/severe SNHL, tinnitus, vertigo, aural fullness,
imbalance

Choi et al. (2020)
Gambichler et al. (2020)
Lemasson et al. (2019)
Nagai et al. (2023)
Page et al. (2022)
Rajapakse et al. (2020)
Rosner et al. (2020)
Schlacter et al. (2023)
Stürmer et al. (2021)
Tampio et al. (2021)

Ipilimumab CTLA-4 Inhibitor - Bilateral mild/moderate/severe SNHL, tinnitus, vertigo, aural fullness,
imbalance

Choi et al. (2020)
Monferrer-Adsuara et al.
(2021)
Page et al. (2022)
Rosner et al. (2020)
Schlacter et al. (2023)
Stürmer et al. (2021)
Voskens et al. (2012)

Durvalumab PDL-1 Inhibitor - Bilateral moderate to severe SNHL, unilateral CHL, mild tinnitus, vertigo Karzai et al. (2018)
De Boos et al. (2025)

Rituximab Anti-CD20 - Bilateral mild/moderate SNHL, gait disturbance/vertigo, labyrinthine damage,
hypoacusis

Barbieri et al. (2019)
Favreliere et al. (2020)
Grisariu et al. (2017)
Healy et al. (2015)

Muromonab Anti-CD3 - Bilateral mild SNHL Hartnick et al., 1997

Adalimumab TNF-<Inhibitor - Unilateral SNHL, bilateral SNHL, tinnitus Barbieri et al. (2019)
Conway et al. (2011)
Favreliere et al. (2020)

Etanercept TNF-<Inhibitor - Bilateral moderate/severe SNHL, tinnitus Savastano et al. (2010)

Infliximab TNF-<Inhibitor - Bilateral severe SNHL, tinnitus, both worsened and improved vertigo and
hearing (different patients)

Barbieri et al. (2019)
Savastano et al. (2010)
Touma et al. (2007)

Daratumumab Anti-CD38 - FAERS database safety signal for sudden hearing loss, ear and labyrinth
disorders

Yun et al. (2024)

Erenumab Anti-CGRP - Unilateral CHL vs SNHL iso GPA Ray et al. (2021)

Fremanezumab Anti-CGRP - Unilateral CHL vs SNHL iso GPA Ray et al. (2021)

Denosumab RANK-L Inhibitor - Bilateral moderate/severe CHL True et al. (2021)
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adenocarcinoma. This 66-year-old gentleman started on 150 mg of
erlotinib daily, and 30 min following the first dose, he experienced
sudden-onset tinnitus, aural fullness, and severe asymmetric
sensorineural hearing loss. An audiogram later showed complete
deafness of the right ear and severe SNHL in the left. The patient
died several weeks after the audiogram with no improvement in
hearing. The proposed mechanism of action is that the expression of
EGFR has been shown in sensory and non-sensory cells in the inner
ear and is potentially associated with the survival and proliferation of
cells and synaptic maintenance. Therefore, inhibition of this
receptor could affect the homeostasis of the inner ear by
decreasing inner ear cell survival and affecting synapsis (Koutras
et al., 2008).

Gefitinib is another EGFR TKI that was approved for use in
NSCLC in 2003 (Cohen et al., 2003). There has only been one case
associated with ototoxic side effects. An 81-year-old female being
treated with 250 mg daily of gefitinib daily for lung adenocarcinoma
and bone metastasis, who experienced moderate to severe bilateral
sensorineural hearing loss after 4 months of initial treatment. The
patient discontinued treatment after symptoms initially arose, which
resulted in partial return of auditory function, but was restarted after
her cancer-related symptoms persisted. This resumption of gefitinib
treatment led to worsening deafness that persisted until the patient
passed away after continuous treatment (Zhu et al., 2023).

Sunitinib is a TKI that has been approved for several clinical
applications, including treatment of retinal cell carcinoma in 2006
(Motzer et al., 2017), GIST in 2006 (Goodman et al., 2007) and
pancreas neuroendocrine tumors (NET) in 2011 (Blumenthal et al.,
2012). It is known to have a wide range of targets such as PDGFR-α
and β, VEGFR-1,2, and 3, CSF1R, c-kit, RET, and FLT3 tyrosine
kinases (Mena et al., 2010). To date, there has been only one case
described in the literature of massive right side SNHL following
treatment with 37.5 mg of sunitinib daily. The hearing loss was
observed 15 days after initial treatment, along with other aural
vestibular symptoms, despite a comprehensive neurotologic
evaluation reported to be within normal limits. The sunitinib
treatment was discontinued, and high-dose corticosteroids were
used as an attempt at recovering hearing without success
(Dekeister et al., 2016).

Osimertinib is another EGFR TKI that was approved for use
treating NSCLC in 2015 (Greig, 2016). Literature review only
revealed one case of potential ototoxicity. A 71-year-old male
with advanced lung adenocarcinoma and treated with 80 mg per
day of Osimertinib. This patient experienced tinnitus and
progressive bilateral hearing loss 6 months after initial treatment.
After formal audiologic evaluation, a moderate to severe bilateral
SNHL, the patient continued the treatment despite appropriate
counseling of the risks and developed bilateral severe to
profound sensorineural hearing loss detected 1 year after.
Hearing rehabilitation was recommended with some
improvement in his quality of life (Lim et al., 2022).

When evaluating the reported protective effects of EGFR
inhibition against noise-induced hearing loss, it is important to
account for dose-, duration-, and patient-specific factors. Low-
dose, short-term EGFR inhibition may exert beneficial effects via
anti-inflammatory and anti-apoptotic pathways (Vijayakumar
et al., 2024). In contrast, high-dose or prolonged use,
particularly in oncology settings, may disrupt normal cochlear

homeostasis. Notably, many patients receiving EGFR inhibitors
have also been exposed to established ototoxic agents such as
platinum-based chemotherapy and radiation, complicating
attribution (Zhu et al., 2023). A synergistic or compounding
effect is possible, though in some cases, the observed
association between EGFR inhibition and hearing loss may be
incidental rather than causative.

Proteasome inhibitors: bortezomib,
carfilzomib, marizomib

Bortezomib is a proteasome inhibitor that has been approved for
the treatment of multiple myeloma (MM) since 2003 (Kane et al.,
2003) and mantle cell lymphoma (MCL) in 2014 (Raedler, 2015).
There have been three reported cases of ototoxic symptoms that
arose in association with bortezomib treatment. The standard
treatment across cases is 8 cycles of 2 weeks of 1.3 mg/m2

intravenously twice per week, followed by a week of no
treatment. The first case was of a 62-year-old male diagnosed
with MM who stopped bortezomib treatment after experiencing
severe bilateral SNHL after 4 cycles, and one even after a dose
reduction to 1.0 mg/m2 after the third cycle (Engelhardt et al., 2005).
The second case was a 42-year-old female diagnosed with stage III
MM treated with intravenous bortezomib. After her second cycle,
audiologic testing confirmed left sensorineural hearing loss,
stopping as a result. Patient died 8 months after the cessation of
treatment with no improvement in hearing loss (Chim and Wong,
2008). Additionally, a 56-year-old female with MM experienced
bilateral sensorineural hearing loss following the third dose of
bortezomib, which was later discontinued. Audiologic testing
performed 16 weeks after the discontinuation of therapy showed
no hearing improvement (Anoop et al., 2016). Lastly, a 67-year-old
male with Waldenstrom macroglobulinemia reported asymmetrical
sensorineural hearing loss after the third dosage of bortezomib, with
profound loss in the right ear and moderate to severe loss in the left,
requiring cochlear implantation surgery with good postoperative
outcomes (Fitzsimons et al., 2024).

The etiology of bortezomib-induced hearing loss is unclear, but
proteasome inhibitors have been associated with peroxisome
dysfunction, which can lead to auditory hair cell death. Table 2
provides a summary of the discussed small molecules.

Screening and follow-up
Across all case reports and systematic reviews, time-to-follow-

up was highly variable after hearing loss. Audiometric data was
inconsistently recorded; for most mAbs, in which only one to two
cases were described, where patients reported subjective hearing
loss, formal audiometric testing was never performed. Furthermore,
no identified studies reported regular audiometric screening during
treatment. Testing was most frequently performed after onset of
symptoms and following treatment (most commonly with
intratympanic steroid injections), to assess recovery.

The American Speech-Language-Hearing Association (ASHA)
guidelines define medication-induced ototoxicity as a 20 dB
threshold decrease at any frequency, 10-dB decrease at any two
consecutive frequencies, or no response at three consecutive
frequencies where responses were previously present (Konrad-
Martin et al., 2005). However, these criteria only apply if the
patient has had a prior hearing test performed. In cases without
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prior testing, the physician must rely in the patient’s subjective
complaint, physical exam findings, and most recent audiogram in
association to recent history of exposure to any of the above-
mentioned therapies without any other possible conflicting risks
factors (e.g. recent history of head trauma, radiation therapy, prior
chemotherapy with known ototoxic drugs, use of long-term
intravenous antibiotics, recent viral infections, amongst others).
Therefore, a comprehensive head and neck evaluation by an
otolaryngologist with or without subspecialty in otology-
neurotology and an audiometric assessment performed by an
audiologist is important before the initiation of therapy, during
treatment, especially if the patient experiences new or worsening
audiovestibular symptoms, and after completion of treatment.

There are two main classes of drugs which merit regular
audiometric evaluation for ototoxicity: aminoglycoside antibiotics,
and platinum-based chemotherapies (Schlatcter et al., 2023). Other
drugs also carry known, albeit lower, risk of ototoxicity, including
salicylates and loop diuretics (Rybak and Ramkumar, 2007).
According to the American Academy of Audiology, current best
practice for ototoxicity screening in known offending agents
emphasizes early detection of hearing loss with use of high-
frequency audiometry (HFA) and otoacoustic emission (OAE)
testing (Durrant et al., 2009). However, in cases where the
ototoxic profile of a drug-such as many immunotherapies-is
unclear, screening usually consists of conventional audiometry
(0.25–8 kHz) supplemented by validated questionnaires for
tinnitus (Newman et al., 1998) and dizziness (Campbell and
Durrant, 1993) as needed. Test selection should balance
sensitivity and patient burden, with tools like auditory brainstem
response (ABR) reserved for patients whose behavioral response is
inadequate and cannot reliably answer survey instrument tools.
There is significant potential for modification of screening and
monitoring of possible ototoxic agents; testing can and should be
adapted based on the specific ways a drug is known or hypothesized
to affect the inner ear (Campbell and Le Prell, 2018). Since this is a
complex medical decision-making process, all patients should be
evaluated by a multidisciplinary team involving an otolaryngologist
and an audiologist.

A significant number of case reports establish connections
between the discussed pharmacologic agents and hearing loss
based solely on patients’ subjective accounts, rather than utilizing
objective audiometric assessments. Even in cases where formal
audiometry is performed after hearing loss occurs, it can be
difficult to determine the exact ototoxic effect when hearing
baselines are unknown. The strongest association exists in cases
in which audiometric testing was recorded as a baseline prior to
treatment initiation. The most performed diagnostic test was pure
tone averages, while others such as word recognition scores (WRS)
or speech reception threshold (SRT), were also used. The ASHA
recommends full audiologic workup for known ototoxic agents,
including pure-tone audiometry, including extended high-
frequency audiometry (9000–20,000 Hz), speech audiometry
(SRT and WRS) and OAE studies. Other existing objective tests
include tympanometry, acoustic reflex testing, ABR, and
electrocochleography that are used to evaluate middle ear
function, auditory nerve integrity, and cochlear responses,
respectively. No protocols yet exist for the routine monitoring of
the immunotherapies discussed in this review, including which
specific diagnostic tests to include in initial screening, or at
which intervals to assess throughout the duration of treatment.
Even for well-established ototoxic agents such as aminoglycosides
and platinum-based agents, routine hearing screening is not
consistently implemented at scale, and standardized monitoring
protocols (Lord, 2019) are broadly underutilized and variably
applied across institutions. This lack of consistency is usually
related to lack of awareness of treating teams and inappropriate
patient counseling.

There is high clinical benefit of establishing baseline screening
prior to initiation of immunotherapy; one major reason is that
assessment of causality would be strengthened, as objective changes
could be tracked over time after drug initiation. Routine screening
allows early detection and intervention in cases of subclinical
hearing loss. While the overall incidence of immunotherapeutic
ototoxicity is low, screening has a general benefit to patient care by
facilitating early detection of age-related or multifactorial hearing
loss, establishing a reference point for future comparisons, and

TABLE 2 Summary of small molecules and inner ear effects reported.

Small molecule drug Drug classification Hearing effects reported References

Imatinib TKI - Symmetrical/Asymmetrical Moderate to Severe Bilateral SNHL Attili et al. (2008)
Lin et al. (2012)
Lim et al. (2022)
Wasif et al. (2016)
Gupta et al. (2017)
Flynn Gerriets (2025)

Erlotinib TKI - Severe Asymmetrical Bilateral SNHL Koutras et al. (2008)

Gefitinib TKI - Moderate to Severe Bilateral SNHL Zhu et al. (2023)

Sunitinib TKI - Massive Right-Side Hearing Loss Dekeister et al. (2016)

Osimertinib TKI - Moderate to Severe Bilateral SNHL Lim et al. (2022)

Bortezomib Proteasome Inhibitor - Symmetrical/Asymmetrical Moderate to Severe Bilateral SNHL Engelhardt et al. (2005)
Chim Wong (2008)
Wong et al. (2008)
Anoop et al. (2016)
Fitzsimmons et al. (2024)
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improving provider confidence in managing auditory symptoms
that arise during treatment. It also supports more informed shared
decision-making, especially in complex patients where multiple
etiologies for hearing changes may coexist.

Cost-benefit analysis

Cost-Benefit Analysis has been conducted to compare hearing
screening schedules in the general adult population with special
attention to quality-adjusted life-years (QALY) and age at which
screening begins. By U.S. standards, screening was deemed to be
cost-effective for adults beginning at 55 years of age at a 5-year
interval. In the model used, screening was most cost-effective at
older ages (starting at age 65 or 75 versus age 55), aligning with the
fact that age is the most common predictor of hearing loss. Routine
screening also led to increased utilization of hearing aids (Borre
et al., 2023). However, this evidence may not directly apply to
patients receiving immunotherapy. One possible correlation for this
study’s population concerning cost limitation is to screen selectively
based on risk factors. Factors that would include a patient for
screening may include prior otologic injury, autoimmune
conditions, or history of non-otologic systemic adverse reaction
to immunotherapy (Hsu et al., 2022).

Limitations

Several limitations of the study and its source material warrant
discussion. This review includes studies with varying levels of evidence
and a limited capacity to establish causation; much of the data is drawn
from database analyses and case reports with small or inconsistent
sample sizes. Many patients receiving these drugs are medically
complex, often with multiple comorbidities or concurrent insults
that could contribute to ototoxicity, complicating efforts to attribute
hearing loss directly to the drug in some cases. Due to the characteristics
of the included studies, it is also difficult or impossible to determine
whether hearing loss occurred due to immunotherapeutic use or other
known ototoxic treatment, such as cisplatin or exposure to radiation
therapy. Therefore, those patients with history of prior or concurrent
platinum-based therapies, any causal conclusions are speculative.
Additionally, baseline hearing assessments were rarely conducted,
and post-injury testing and treatment were inconsistently performed
and variably reported. These limitations make it difficult to identify
clear trends in the timing of otologic injury or response to treatment.
The importance of our review is the demonstration of inconsistent
availability of objective hearing measurements both pre–and post-
injury across the literature. The author’s goal is to raise awareness
and promote the creation of protocols and/or guidelines that encourage
baseline assessments and standardized workup of patient undergoing
treatment with any of the above-mentioned drugs.

Final remarks

Cases of hearing loss associated to targeted therapies such as the
discussed in this manuscript are rare compared to conventional
chemotherapy, especially platinum-based antineoplastic drugs.

However, it is recommended that every patient receiving
chemotherapy, including targeted therapy, be evaluated by a
multidisciplinary team including an otolaryngologist and an
audiologist for a comprehensive neurotologic examination and
audiometric testing before the beginning of therapy. Patients
should also be counseled regarding the potential ototoxic side
effects of the medications and instructed to reach out to the
otolaryngologic specialist if experiencing sudden changes of aural
symptoms (subjective decreased hearing, new onset of tinnitus and/
or ear clogged sensation) that do not improve within 72 h.
Otherwise, regular hearing screening should be performed
every 6–12 months.
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