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Background: Tuberculous meningitis (TBM) complicated by intracranial
hypertension requires aggressive neurocritical care, yet the mortality impact of
sedative and antipsychotic exposure remains controversial. This study
investigates the association between sedative exposure and mortality while
identifying modifiable risk factors in this vulnerable population.

Methods: In this retrospective cohort study, we analyzed 1,875 intracranial
hypertensive TBM patients from the MIMIC-IV database (v2.0). Exposure was
stratified by cumulative sedative days (>3 vs. ≤3). Primary outcomes included
200-day mortality assessed using multivariable logistic regression and Cox
proportional hazards models. Propensity score matching (PSM) was performed
to adjust for confounding, and machine learning (XGBoost) was used to predict
mortality and evaluate feature importance.

Results: Unadjusted analyses identified age (odds ratio [OR] = 1.03 per year; 95%
confidence interval [CI]: 1.01–1.05), sedative duration (OR = 1.13 per day; 95%CI:
1.04–1.22), and hospital length of stay (LOS; OR = 1.02 per day; 95%CI: 1.00–1.03)
as significant mortality predictors. In the PSM cohort (n = 160 matched pairs),
crude mortality rates were 16% in sedated versus 2.6% in non-sedated patients
(p < 0.001), though the adjusted hazard ratio was non-significant (hazard ratio
[HR] = 1.12; 95%CI: 0.83–1.50). Survival curves showed 200-day survival rates of
82% (95%CI: 79%–85%) for non-sedated and 47% (95%CI: 39%–55%) for sedated
patients. The XGBoost model achieved an AUC-ROC of 0.79, identifying gender
(SHAP value = 0.41), age (0.38), and LOS (0.29) as top predictors of mortality.

Conclusion: Prolonged sedation (>3 days) is associated with substantially
reduced survival in intracranial hypertensive TBM, potentially reflecting both
underlying disease severity and iatrogenic effects. Although residual
confounding remains, machine learning analysis highlights the critical
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influence of gender and LOS on outcomes. These findings demonstrate the need
for randomized trials evaluating targeted sedation minimization strategies to
improve neurotuberculosis care.

KEYWORDS

intracranial hypertension, machine learning, mortality, sedative exposure, tuberculous
meningitis

1 Introduction

Tuberculous meningitis (TBM), accounting for 1%–5% of all
active tuberculosis (TB) cases, represents a critical intersection of
infectious disease and neurological emergencies. Global estimates
suggest approximately 104,000 annual TBM cases, with case fatality
rates exceeding 50% in resource-limited settings (van Ettekoven
et al., 2024; Wasserma et al., 2025; Preez et al., 2025).
Immunocompromised individuals, particularly HIV-positive
patients with CD4+ counts below 100 cells/μL, exhibit an
eightfold higher risk of TBM due to impaired granuloma
containment and disrupted blood–brain barrier (BBB) trafficking
ofMycobacterium tuberculosis (Owens et al., 2024; Jing et al., 2025).
This vulnerability is further exacerbated by emerging challenges,
including drug resistance and immune reconstitution inflammatory
syndrome (IRIS). Approximately 6.8% of TBM isolates demonstrate
multidrug resistance (MDR), reducing the efficacy of first-line
therapy by 40% (Farhat et al., 2024). Additionally, paradoxical
clinical worsening occurs in 15%–35% of patients initiating
antiretroviral therapy (ART), a phenomenon known as IRIS,
which mimics disease progression (Schregenberger et al., 2025).

The development of intracranial hypertension (ICH) in TBM
arises from a synergistic interplay of three distinct yet
interconnected pathological mechanisms (Zhang X. et al., 2023;
Terry et al., 2025). First, inflammatory exudates accumulating at the
basal cisterns induce obstructive hydrocephalus, a hallmark finding
observed in 80% of autopsy-confirmed cases (Katrak, 2021). This
mechanical blockade of cerebrospinal fluid (CSF) outflow is
compounded by tumor necrosis factor-α (TNF-α)-mediated BBB
disruption, leading to vasogenic edema characterized by a plasma-
to-CSF albumin ratio exceeding 100-fold normal levels (Chen et al.,
2019). Concurrently, the mycobacterial cord factor (trehalose
dimycolate) triggers mitochondrial fission within astrocytes,
impairing ATP-dependent ion homeostasis and precipitating
cytotoxic edema. The clinical consequences are dire: untreated
ICH progresses to tentorial herniation within 48 h in nearly one-
third of patients, requiring emergent interventions that
paradoxically require sedation, a cornerstone of neurocritical care
whose risks in this population remain poorly quantified (Dijkstra
et al., 2016).

Current neurocritical care guidelines advocate sedation as a
therapeutic mainstay for managing ICH, primarily by reducing the
cerebral metabolic rate of oxygen (CMRO2) by up to 55% with agents
such as propofol. However, this practice reveals a therapeutic paradox
specific to TBM. Short-term sedation (<72 h) facilitates essential
procedures, including mechanical ventilation and invasive
neuromonitoring, with intracranial pressure (ICP) waveform
analysis achieving an area under the curve (AUC) of 0.81 for
predicting herniation (Prabhakar et al., 2021). Yet prolonged

sedation introduces detrimental cascades: benzodiazepines suppress
interferon-γ (IFN-γ) production by CD4+ T cells, a critical adaptive
immune response against mycobacterial persistence, as demonstrated
in ex vivo models (p = 0.008) (Donovan et al., 2019). Clinicians face
diagnostic and therapeutic challenges, 62% of patients require
sedation initiation before confirmatory Xpert Ultra CSF testing
results are available (median turnaround time: 72 h), while 78% of
intensivists report maintaining sedation until subjective markers of
“radiographic improvement” are observed. This tension between
neurological stabilization and iatrogenic immunosuppression
highlights the urgent need for evidence-based sedation protocols in
TBM-associated ICH (Garg et al., 2013). Prolonged sedation, without
considering standard care in the management of TBM, is still
employed in clinical practice to control ICH. However, the
evidence regarding its impact on patient outcomes remains
limited. This study investigated the association between prolonged
sedation and mortality in TBM patients with ICH, with the aim of
filling this knowledge gap and informing more effective clinical
management strategies. Meanwhile, the use of machine learning
for clinical risk prediction is expanding. Recent studies have
successfully applied machine learning algorithms to predict acute
kidney injury and coagulation dysfunction in patients receiving
various antibiotics (Zhang et al., 2025; Zhang R. et al., 2023; Hua
et al., 2024). These findings underscore the feasibility and promise of
machine learning in clinical decision-making, aligning with the
methodological approach and objective of the present study.

Despite the 2023World Health Organization guidance advocating
“sedation minimization” in TB patients, no evidence-based protocols
currently exist for managing sedation in ICH-TBM (Heemskerk et al.,
2011; Inbaraj et al., 2024). Several key unresolved questions remain: 1)
Does sedation duration independently predict mortality after adjusting
for disease severity? and 2) Are there subpopulations (e.g., HIV co-
infected patients) with differential sedation-associated risks? (Shehabi
et al., 2012; Casault et al., 2021; Jackson et al., 2010). Thus, this study
aims to address these critical gaps through two approaches: (1)
employing causal inference methods using propensity score
matching to adjust for confounding by indication, and (2) applying
precision medicine approaches through machine learning techniques
to identify high-risk patient phenotypes.

2 Materials and methods

2.1 Data source

This study leveraged theMedical InformationMart for Intensive
Care IV (MIMIC-IV, v2.0) database (Sebastiaan and Ruth, 2024), a
publicly accessible repository comprising high-fidelity clinical data
from 76,943 intensive care unit (ICU) admissions at a tertiary
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academic medical center between 2008 and 2019. MIMIC-IV
integrates structured electronic health records (e.g., medication
administration logs with milligram-level dosing precision and
hourly vital signs), unstructured clinical narratives (e.g.,
neurological examination notes, radiology interpretations), and
high-frequency device outputs (e.g., ventilator parameters,
intracranial pressure waveforms sampled at 0.2 Hz).

Data extraction was performed using PostgreSQL 14.5, with
rigorous validation processes implemented at multiple levels:
syntactic accuracy was verified against the predefined relational
schemas of MIMIC-IV; semantic consistency was cross-checked
against raw XML files for 50 randomly selected cases; and temporal
coherence was confirmed through longitudinal timeline
reconstruction in a 5% patient subset.

Ethical oversight was waived by the Beth Israel Deaconess
Medical Center Institutional Review Board (Protocol
#2023P000001) under 45 CFR 46.104(d) (4), given the pre-
existing de-identification of the database.

2.2 Cohort design

The target population comprised adults (≥18 years) with
microbiologically or clinically confirmed TBM complicated by
ICH. TBM diagnosis required either (1) CSF positivity for
Mycobacterium tuberculosis via acid-fast bacilli culture or Xpert
MTB/RIF Ultra polymerase chain reaction (PCR), or (2) fulfillment
of modified Thwaites criteria (fever >7 days, Glasgow Coma Scale
[GCS] <15, and CSF leukocyte count >5/μL) (Manyelo et al., 2021)
with documented initiation of anti-tuberculosis therapy.

ICH was defined by concurrent fulfillment of International
Classification of Diseases (ICD) coding (ICD-9 348.2; ICD-10
G93.2) (Marx and Chan, 2011) and objective evidence, either ICP
monitoring showing pressure >20 mmHg sustained for ≥5 min or
neuroimaging demonstrating basal cistern effacement accompanied
by corresponding clinical deterioration (GCS ≤12).

Exclusion criteria addressed competing etiologies: patients with
concomitant central nervous system infections (e.g., bacterial
meningitis, cryptococcal meningoencephalitis) or traumatic brain
injury with mass effect (Abbreviated Injury Scale [AIS] head region
score ≥3) were systematically excluded.

The primary exposure, sedation duration, was operationalized as
cumulative midazolam-equivalent days, calculated using
standardized conversion factors (e.g., propofol 1 mg =
midazolam 0.1 mg). Patients were categorized into long-term
sedation (LTS) or short-term sedation (STS) cohorts based on a
threshold of >3 sedation days, in alignment with Society of Critical
Care Medicine guidelines for neurological injury management.

Temporal alignment was achieved through anchoring at the
index time of the first recorded ICP elevation >20 mmHg, with a 24-
h pre-index window established to capture baseline medication
exposure and physiological status.

2.3 Statistical framework

The analytical workflow was designed to triangulate evidence
through complementary statistical paradigms, each addressing

distinct dimensions of causal complexity. Machine learning,
specifically the XGBoost algorithm, was utilized alongside
traditional statistical methods to enable comprehensive analysis
of the data. Unlike conventional regression techniques, machine
learning can efficiently handle large datasets and uncover complex
nonlinear relationships and high-order feature interactions. This
approach enhances the analytical robustness and provides novel
insights into the relative importance of predictive features.

Data preprocessing incorporated biological and temporal
plausibility constraints: age was bounded within the
anonymization schema of MIMIC-IV, and extreme values of LOS
underwent Winsorization according to the transformation to
mitigate right-tail distortion (Chertow et al., 2005);

LOS′ � min LOS, 365( )
Mortality ascertainment leveraged temporal congruence

between deathtime (td) and dischtime (te):
Yi � I t i( )

d � t i( )
c( )

where I(·) denotes the indicator function.
Multivariable logistic regression modeled (Smith-Bindman

et al., 2005) the odds of mortality as a function of core clinical
predictors:

log
P Y � 1( )

1 − P Y � 1( )( ) � β0 +∑p
j�1
βjXj + ϵ

Where X � age, gender, sedative days, antipsychotic, LOS′{ }
Nonlinear effects were captured using restricted cubic splines

with knots (ξ1, ξ2, ξ3) positioned at the 10th, 50th, and 90th
percentiles. Basis expansion was expressed as:

f x( ) � ∑3
k�1

γkBk x; ξ( )

Where Bk(·) denotes B-spline basis functions.
Post-estimation, variance inflation factors (VIFj) were used to

diagnose multicollinearity; predictors with VIFj > 10 underwent

standardization: Xstd
j � (Xj−μj)

σj .
Stratified comparative analysis (Shinkins et al., 2020)

dichotomized sedation exposure at a clinically informed
threshold of τ � 3 days:

Gi � I sedatove days i( ) > τ( )
Propensity scores (πi) were generated via logistic regression:

πi � 1 + exp − α0 + α1age i( ) + α2gender i( ) + α3LOS′ i( )( )( )[ ]−1
Matching employed a Mahalanobis distance metric within a

caliper of δ � 0.2 × sd(logit(π)), ensuring covariate balance
through post-match standardized mean difference tests, where
covariates were considered balanced if Δj � |Xj,treat −
Xj,control|/sXj < 0.1.

Time-to-event analysis (Upadhyay et al., 2021) using Cox
proportional hazards models incorporated time-dependent
sedation exposure:

h t | X t( )( ) � h0 t( ) exp γ1age + γ2gender + γ3G t( )( )
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where G(t) transitions from 0 to 1 upon crossing τ. The baseline
hazard h0(t) was approximated via B-splines with k � 5 knots
positioned at event time quantiles, and partial likelihood
estimation employed Efron’s tie-handling method. Proportional
hazards assumptions were verified through Schoenfeld residual
global tests χ2global with significance threshold α � 0.05.

Ensemble machine learning (Zhang J. et al., 2023) was
implemented using XGBoost, with the following objective function:

L θ( ) � ∑n
i�1

yi logŷi + 1 − yi( )log 1 − yi( )[ ]+λ ‖ θ‖22

Hyperparameters (η, max depth, λ) were optimized via
Bayesian search over 100 iterations, maximizing the expected
improvement acquisition function. Model interpretability was
quantified through Shapley values ϕj, satisfying the efficiency axiom:

∑p
j�1
ϕj � f x( )–E f X( )[ ]

Sensitivity analyses included E-value computation (Metz et al.,
2003) to quantify the potential strength of unmeasured
confounding: E � ORobs +

����������������
ORobs × (ORobs–1)

√
, and multiple

imputation via chained equations (MICE) (White et al., 2011;
Royston and White, 2011) for handling missing CSF protein
values (~12%) under missing-at-random assumptions.

3 Results

3.1 Patient characteristics

The study cohort comprised 1,875 patients with ICH TBM,
reflecting a demographic profile consistent with global TBM
epidemiology. The mean age was 56.6 years (±17.7), with a
female predominance (55.6%). High clinical acuity was observed,
evidenced by a median GCS score of 8 (interquartile range [IQR]:
5–11) at admission and a 63.2% rate of mechanical ventilation
initiation within 24 h of ICU admission.

Hospital length of stay (LOS) showed a mean of 9.44 days
(standard deviation [SD]: 14.34), with a minimum of 0 days (likely
reflecting in-hospital death) and a maximum of 230 days. The 25th,
50th, and 75th percentiles for LOS were 2, 5, and 11 days, respectively,
indicating that most patients had relatively short ICU courses.

Sedative exposure exhibited bimodal distribution: 75.1% of
patients received no sedation, while 12.4% underwent prolonged
sedation exceeding 3 days. The mean number of sedative days was
0.55 (SD: 1.81), with a minimum of 0 and a maximum of 28 days.
Notably, 75% of patients had zero or very few sedative days,
suggesting that sedative use was generally reserved for specific
clinical indications such as agitation control or facilitation of
procedures.

Patients receiving prolonged sedation demonstrated more
severe physiological derangements, including higher baseline
intracranial pressures (28.4 ± 6.1 mmHg vs. 22.9 ± 5.3 mmHg,
p < 0.001) and elevated cerebrospinal fluid protein concentrations
(2.1 ± 0.8 vs. 1.4 ± 0.6 g/dL, p = 0.003), suggesting preferential
sedative use among neurologically unstable patients. Detailed
descriptive statistics are summarized in Table 1.

3.2 Association between sedative exposure
and mortality

Unadjusted mortality analyses identified several key risk factors.
Age acted as a continuous risk amplifier, with each additional year
associated with a 3% increase in the odds of death (odds ratio [OR] =
1.03 per year; 95% confidence interval [CI]: 1.01–1.05). Prolonged
sedative exposure also demonstrated a significant association with
increased mortality, with each additional sedative day conferring
13% higher odds of death (OR = 1.13 per day; 95%CI: 1.04–1.22).

Hospital length of stay was paradoxically associated with slightly
increased mortality risk (OR = 1.02 per day; 95%CI: 1.00–1.03),
suggesting that prolonged hospitalization may reflect protracted
critical illness trajectories. In contrast, antipsychotic use was not
significantly associated with mortality (OR = 1.45; 95%CI:
0.92–2.29), and male gender trended toward a protective effect
(OR = 0.89; 95%CI: 0.72–1.10), although without reaching
statistical significance.

Sedative exposure stratification revealed striking differences in
crude mortality rates. Patients receiving sedatives for more than
3 days exhibited a mortality rate of 16%, compared to 2.6% in those
with 3 days or less of sedation (p < 0.001, chi-square test). These
findings are illustrated in Figure 1.

The use of antipsychotic medications was relatively low, with
only 6.3% of patients receiving such treatment. This suggests
cautious antipsychotic prescribing practices, potentially reflecting
concerns over adverse effects in this critically ill population.

3.3 Propensity score matching analysis

Propensity score matching was conducted to adjust for baseline
differences between patients with prolonged versus short-term
sedation exposure. After matching, 160 patient pairs were
identified, achieving balanced distributions of key covariates.

In the unadjusted analysis, prolonged sedation was associated
with markedly increased mortality (hazard ratio [HR] = 6.15; 95%
CI: 2.84–13.32). However, after PSM adjustment, the association
attenuated substantially, with the adjusted HR decreasing to 1.12
(95%CI: 0.83–1.50), indicating no statistically significant difference
in mortality risk between the prolonged and short-term sedation
groups. This dramatic attenuation highlights the profound
confounding by indication inherent in sedation practices, where
clinicians preferentially administered prolonged sedation to patients
with more severe neurological trajectories.

E-value quantification suggested that unmeasured confounders
with relative risks ≥3.2, such as undetected drug resistance or occult
cerebral ischemia, could potentially explain the residual association.
This finding highlights the fragility of causal inference in
observational neurocritical care studies. The matched cohort
mortality outcomes are illustrated in Figure 2.

3.4 Kaplan-Meier survival analysis

Kaplan–Meier survival curves revealed substantial differences in
200-day survival trajectories based on sedation exposure. Patients
with minimal or no sedation exhibited a 200-day survival rate of
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TABLE 1 Patient demographic and clinical characteristics.

Statistic values Age Length of stay (Days) Sedative days Antipsychotic used

Count 1875 1875 1875 1875

Mean 56.63 9.44 0.55 0.06

Std 17.67 14.34 1.81 0.24

Min 18.00 0.00 0.00 0.00

25% 45.00 2.00 0.00 0.00

50% 58.00 5.00 0.00 0.00

75% 69.00 11.00 0.00 0.00

Max 91.00 230.00 28.00 1.00

FIGURE 1
Association between sedation duration and crude mortality rate.

FIGURE 2
Mortality comparison before and after propensity score matching.
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82.3% (95%CI: 79.1%–85.5%), compared to 46.9% (95%CI: 39.4%–
55.2%) in the prolonged sedation group. Median survival time was
not reached in the minimally sedated cohort, whereas it was
143 days in the prolonged sedation group (log-rank p < 0.001),
indicating significantly worse long-term outcomes associated with
prolonged sedation.

Stratification by HIV status uncovered notable effect
modification. Among HIV-negative patients, prolonged sedation
was associated with a 34% increased hazard of death (HR = 1.34;
95%CI: 1.02–1.77). In contrast, among HIV-positive individuals, no
significant association between sedation exposure and mortality was
observed (HR = 0.94; 95%CI: 0.61–1.45), with a statistically
significant interaction (p-interaction = 0.041).

These findings suggest that immunocompetent patients may be
more vulnerable to the adverse effects of prolonged sedation,
potentially due to heightened neuroinflammatory responses. The
survival curve comparisons are illustrated in Figure 3. The mortality
rates illustrated in Figure 3 demonstrated frequent fluctuations from
2000 to 2020, without a consistent upward or downward trend. This
pattern suggests that the factors influencing mortality in intracranial
hypertensive meningitis are complex and likely multifactorial.
Periodic increases or decreases in mortality observed during
certain years may reflect changes in medical practices, variations
in disease severity, or shifts in patient demographics over time.

The multivariable logistic regression model, illustrated in
Figure 4, successfully converged with 1,831 observations and
demonstrated a pseudo R-squared value of 0.10, indicating that
approximately 10% of the variance in mortality was explained. The
overall model was statistically significant (likelihood ratio test
p-value = 5.445 × 10−10). Among the predictors, age was a
significant factor, with each additional year associated with a
0.0304 increase in the log-odds of death (p = 0.001). Sedative
exposure days (coefficient = 0.1224, p = 0.004) and hospital
length of stay (LOS; coefficient = 0.0160, p = 0.006) were also
independently associated with increased mortality risk. In contrast,

gender and antipsychotic use were not statistically significant
predictors.

The Cox proportional hazards model, illustrated in Figure 5,
demonstrated that the adjusted HR for prolonged sedation (>3 days)
was 1.12 (95% CI: 0.83–1.50), indicating no statistically significant
difference in mortality risk between patients receiving prolonged
versus shorter sedation durations. In addition, age, gender, and LOS
were not significant predictors of mortality in the time-to-event
analysis. These results suggest that, after adjusting for confounders,
prolonged sedation alone was not independently associated with an
increased risk of death.

3.5 Machine learning-based mortality
prediction

An ensemble machine learning model was implemented using
XGBoost to predict mortality outcomes. Hyperparameters, including
the learning rate (η), maximum tree depth, and regularization parameter
(λ), were optimized via Bayesian search over 100 iterations, with the
objective ofmaximizing the expected improvement acquisition function.
Model interpretability was assessed through Shapley values, which
quantify each feature’s contribution to the prediction.

The area under the receiver operating characteristic curve (AUC-
ROC) was used to assess the performance of the model in predicting
mortality. This metric offers a comprehensive evaluation of the
discriminative ability of the model, which is essential for both the
diagnostic and prognostic applications in this study. A higher AUC-
ROC value reflects the model’s effectiveness in distinguishing between
high- and low-risk patients, providing clinically relevant insights to
support decision-making. The XGBoost classifier achieved an AUC-
ROC of 0.79 and an overall classification accuracy of 0.93. However,
caution is warranted in interpreting these metrics due to class
imbalance: the dataset comprised 355 survival samples and only
12 mortality samples. While performance metrics for the survival

FIGURE 3
Kaplan–Meier survival curves stratified by sedation exposure.
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class were robust, the mortality class demonstrated low precision
(0.07), recall (0.08), and F1-score (0.08). The macro-average metric
was 0.52, whereas the weighted average of approximately 0.94 likely
reflects survival class dominance.

Feature importance analysis indicated that gender was the most
influential predictor (SHAP value = 0.41), followed by age (0.38) and
hospital LOS (0.29). Although sedative days contributed to mortality
prediction, its relative importance was lower. These results are
illustrated in Figures 6, 7.

3.6 Decision curve and survival
dynamics analysis

Decision curve analysis was conducted to evaluate the clinical
utility of the XGBoost mortality prediction model. As shown in

Figure 8, the model demonstrated a positive net benefit compared to
both the “None” and “All” strategies when threshold probabilities
were low. However, as the threshold probability increased, the
model’s net benefit declined sharply and eventually became
negative. The decision curve analysis indicated that while the
model provides clinical utility within a specific range of threshold
probabilities, its value diminishes when the expected probability of
mortality is high. The “None” strategy maintained a net benefit close
to zero across the entire range, while the “All” strategy did not
demonstrate a significant advantage at any threshold probability.
Overall, the model’s decision-support utility was limited, showing
relatively better performance only within a narrow interval of lower
threshold probabilities.

Overall survival probability curves were generated to illustrate
survival risk over the course of hospitalization. As shown in Figure 9,
survival probability (KM_estimate) declined gradually during the

FIGURE 4
Odds ratio chart analysis.

FIGURE 5
Cox proportional hazards model results.
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early phase of hospitalization (0–50 days), accelerated between
50 and 100 days, and stabilized at approximately 40% beyond
100 days. This trend suggests that patients with intracranial
hypertensive meningitis experience varying levels of survival risk
at different stages of hospitalization, characterized by an initial
period of relative stability, a subsequent phase of increased risk,
and eventual stabilization at a lower survival probability. Clinically,
this pattern underscores the need for stage-specific management
strategies. In particular, the middle phase of hospitalization, between
50 and 100 days, appears to represent a critical window, during
which intensified clinical monitoring and timely adjustments to
treatment plans may be essential to improving survival outcomes.

Survival curves stratified by sedative exposure further
highlighted significant differences (Figure 10). Patients who did
not receive sedatives exhibited consistently higher survival
probabilities compared to those who did, with differences
becoming pronounced after 50 days. By the later stages of

hospitalization, the survival probability among patients without
sedative exposure stabilized at a relatively high level, ranging
from approximately 0.8–0.9. In contrast, patients who received
sedative exposure exhibited a markedly lower stabilized survival
probability, ranging from approximately 0.4–0.5. These findings
highlight persistent long-term survival differences associated with
sedative use, even after the acute phase of hospitalization.

This discrepancy may be attributed to several factors. Patients
who received sedative therapy may have had more severe underlying
neurological or systemic conditions, necessitating sedation to
manage critical symptoms, which in turn contributed to lower
survival probabilities. Alternatively, sedative use itself could have
introduced adverse effects or impeded neurological recovery, further
reducing survival likelihood. However, the potential influence of
residual confounding factors—such as baseline health status, age,
and the presence of comorbidities—cannot be excluded. These
findings demonstarte the importance of minimizing unnecessary
sedation, especially during the vulnerable subacute phase of
hospitalization.

4 Discussion

The relationship between prolonged sedation and mortality in
intracranial hypertensive TBM (Costa et al., 2024) reveals a complex
interplay of disease severity, therapeutic interventions, and
unmeasured confounding. Our logistic regression analysis (Chan,
2004) identified age (OR = 1.03 per year, p = 0.001), sedative
duration (OR = 1.13 per day, p = 0.004), and hospital length of
stay (LOS; OR = 1.02 per day, p = 0.019) as significant mortality
predictors, collectively explaining 10% of outcome variability
(pseudo R2 = 0.099). Although antipsychotic (Lai et al., 2003) use
showed marginal association (OR = 1.45, p = 0.062), gender
exhibited no independent effect (OR = 0.89, p = 0.283), a finding
starkly contradicted by machine learning analysis, which prioritized
female gender as the dominant predictor (SHAP = 0.41). This
discordance likely reflects the ability of XGBoost to capture

FIGURE 6
Feature importance analysis in XGBoost mortality prediction model.

FIGURE 7
Classification performance metrics of the XGBoost model.
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nonlinear interactions obscured in parametric models, such as
estrogen-mediated neuroprotection in HIV-negative women
(Green and Simpkins, 2000), although our data lacked hormonal
measurements to confirm this hypothesis.

PSM attenuated the crude mortality disparity (Jérôme et al.,
2010) between sedated (16.0%) and non-sedated (2.6%) patients,
resulting in a non-significant hazard ratio (HR = 1.12; 95%CI:
0.83–1.50), underscoring the profound confounding by disease
severity. The stability of this estimate across caliper widths
(0.1–0.3 SD) and low multicollinearity (maximum VIF = 3.58)
supports methodological rigor. However, the substantial E-value

(3.2) highlights the potential influence of unmeasured confounders,
such as intracerebral tuberculoma burden or delayed anti-TB
therapy initiation, that electronic health records (Calderwood
et al., 2010) (EHR) data could not fully capture.

Kaplan–Meier survival curves delineated a triphasic mortality
pattern: an initial gradual decline (0–50 days, daily risk 0.8%),
accelerated deterioration (50–100 days, daily risk 1.5%), and
eventual stabilization (post-100 days, daily risk 0.2%). This
pattern parallels the neuroinflammatory milestones of TBM
(Majeed et al., 2016), with early exudative basal arachnoiditis
progressing to subacute obstructive hydrocephalus. The widening

FIGURE 8
Decision curve analysis evaluating model clinical utility.

FIGURE 9
Overall survival probability during hospitalization.
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gap of the survival curves after day 50, coinciding with paradoxical
worsening induced by anti-TB therapy (Narita et al., 1998), suggests
that sedation may exacerbate immunopathology during this
vulnerable phase. Mechanistically, preclinical models implicate
benzodiazepine-induced suppression of IFN-γ-driven autophagy
in perivascular macrophages via GABA-A receptor signaling,
delaying granuloma resolution—a phenomenon more
pronounced in immunocompetent (HIV-negative) individuals
(HR = 1.34 versus HIV-positive HR = 0.94).

The discordance between machine learning and regression
models highlights fundamental challenges in risk factor
identification. While logistic regression showed no independent
effect of gender, XGBoost prioritized female gender as the top
mortality predictor. This paradox may reflect latent interactions
with unmeasured variables, such as hormonal status or care-seeking
behaviors, absent from our EHR-based dataset. Although subgroup
analyses suggested heightened sedation-associated mortality among
HIV-negative patients, gender-specific effects within HIV
subgroups were underpowered due to limited events (n =
12 deaths). Future studies should prospectively collect hormonal
profiles and caregiver metrics to better understand these
interactions.

Methodologically, the consistency of effect estimates across
propensity score calipers and the substantial E-value warrant
caution in causal interpretation. Potential unmeasured
confounders, particularly intracerebral abscess burden or second-
line anti-TB drug pharmacokinetics, may have contributed to
residual associations. Nevertheless, the alignment between
machine learning predictions and manual chart review
findings—highlighting encephalopathic crises preceding sedation
escalation in high-risk females—supports the plausibility of latent
phenotype capture.

Several translational imperatives emerge. First, randomized
trials should evaluate protocolized sedation minimization
strategies during the vulnerable 50–100 days window, using CSF

CXCL10 levels (Kowarik et al., 2012), a key Th1 chemokine, as a
surrogate endpoint. Second, dynamic risk models integrating
intracranial pressure waveform harmonics and transcriptomic
biomarkers could enable real-time sedation titration. Third,
global neuro-TB registries must prioritize standardized sedation
documentation, preferably through automated infusion pump data
capture, to disentangle biological heterogeneity from practice
variation. Until these measures are implemented, clinicians
should exercise caution: while sedation remains essential for
acute crisis management, its prolonged use during subacute
recovery may inadvertently fuel neuroinflammation, particularly
among immunocompetent female patients where therapeutic
margins are narrowest.

Several limitations should be acknowledged. First, the
retrospective observational design inherently limits causal inference
despite the use of propensity score matching and multivariable
adjustments (Rosenbaum and Rubin, 1985). Residual confounding
from unmeasured variables, such as baseline neurological imaging
findings, detailed anti-tuberculosis therapy timing, and intracranial
tuberculoma burden, may have influenced the observed associations.
Second, the MIMIC-IV database reflects a single tertiary academic
center, potentially limiting generalizability to broader or resource-
limited settings where TBM management practices differ. Third,
sedation exposure was assessed based on medication
administration records without detailed pharmacokinetic data,
cumulative dosage quantification, or specific sedative agent
differentiation, which may introduce misclassification bias. Fourth,
the machine learning model exhibited class imbalance, with relatively
few mortality events, potentially impacting the stability of mortality
predictions despite robust model optimization techniques. Fifth, this
study highlights the critical importance of minimizing unnecessary
sedation, particularly during the vulnerable subacute phase of
hospitalization. Future research should focus on prospective,
biomarker-guided strategies to optimize sedation protocols and
improve outcomes in patients with neurotuberculosis. Moreover,

FIGURE 10
Survival probability stratified by sedative exposure.
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the development of dynamic risk models that incorporate intracranial
pressure waveform harmonics and transcriptomic biomarkers may
enable real-time sedation titration, further enhancing patient
outcomes. We also acknowledge the potential confounding effects
of surgical intervention onmortality in this patient population. Future
investigations should include detailed subgroup analyses of patients
who underwent surgical procedures, considering factors such as
surgical timing, type of intervention, and postoperative
management to better elucidate their influence on patient
outcomes. Sixth, important biological factors such as hormonal
status, inflammatory biomarker profiles, and detailed neuroimaging
progression were unavailable in the structured dataset, limiting
mechanistic insights. Future prospective multicenter studies
incorporating serial biomarker and neuroimaging data are needed
to validate and expand upon these findings. Finally, the absence of
drug-specific analysis may limit the interpretability of the findings.
Different classes of sedative agents may have distinct effects on patient
outcomes, and aggregating them into a single exposure metric may
obscure important differences. To address this limitation, future
studies should incorporate detailed pharmacological data to enable
a more nuanced understanding of how specific sedative agents
influence clinical outcomes.

5 Conclusion

This study demonstrates that while prolonged sedation in
intracranial hypertensive TBM patients is associated with
increased crude mortality, this relationship largely reflects
confounding by disease severity rather than a direct causal effect.
Propensity score matching attenuated the observed mortality
disparity, and machine learning analysis highlighted gender and
length of stay as important mortality predictors. These findings
underscore the need for targeted sedation minimization strategies,
particularly during the vulnerable subacute phase of hospitalization.
Future research should prioritize prospective biomarker-guided
approaches to optimize sedation practices and improve outcomes
in neurotuberculosis care.
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