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Statins have been primarily used for the management of low-density lipoprotein
cholesterol and cardiovascular diseases However, in recent years, research has
identified potential applications beyond cholesterol regulation. Statins exhibit
pleiotropic effects, due to their ability tomodulate gene expression via epigenetic
mechanisms, including DNA methylation, histone acetylation, and microRNA
regulation. Clinical studies have correlated these epigenetic changes with
various pathological conditions, such as inflammation, atherosclerosis, cancer,
diabetes, and autoimmune disorders. Despite encouraging findings, further
research is required to fully understand the molecular pathways associated
with the epigenetic actions of statins and disease pathogenesis. This review
describes the potential role of statins as epigenetic modulators and their
relevance in human disease management.
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Introduction

Statins are the primary pharmacological approach for reducing elevated levels of low-
density lipoprotein (LDL) cholesterol (Guadamuz et al., 2022). Their clinical importance is
highlighted by their inclusion in the World Health Organization (WHO) Model List of
Essential Medicines (EML) for the management of cardiovascular diseases (CVD) (Kishore
et al., 2018).

The therapeutic effect of statins involves the inhibition of 3-hydroxy-3-methylglutaryl-
CoA (HMG-CoA) reductase, a key regulatory enzyme in the cholesterol synthesis pathway.
This enzyme catalyzes the conversion of HMG-CoA into L-mevalonate, a crucial precursor
in endogenous cholesterol production (Sizar et al., 2024; Zaky et al., 2023). As a result of
this, there is an increase in the upregulation of LDL receptors on cell surfaces, enhancing the
uptake of circulating LDL cholesterol (Zaky et al., 2023). Given the strong association
between elevated LDL cholesterol and CVDs (Zambrano et al., 2023; Jung et al., 2022),
statins are widely recommended for the management and prevention of these diseases
(Guadamuz et al., 2022).

Beyond the lipid-lowering properties of statins, they exert a range of pleiotropic effects by
modulating the mevalonate pathway, thereby influencing various cellular processes (Kim et al.,
2019). One key effect is their anti-inflammatory potential, which acts by reducing LDL
cholesterol, an established contributor to systemic inflammation, statins indirectly reduce
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inflammatory responses (Yan et al., 2024). Additionally, statins can
directly interfere with the production of pro-inflammatory cytokines
such as interferon-gamma and tumor necrosis factor-alpha (TNF-α),
thereby reducing immune system activation and inflammation. Statins
have also been shown to reduce of C-reactive protein levels in human
hepatocytes, further supporting its anti-inflammatory properties and
suggesting liver-specific interactions (Kim et al., 2019).

Emerging evidence has also correlated statins with epigenetic
modulation, including changes in DNA methylation, histone
acetylation, and microRNA expression (Awosika et al., 2023). For
instance, statins have been shown to inhibit the expression of histone
deacetylases (HDAC) while enhancing histones H3 and
H4 acetylation, promoting a transcriptionally active chromatin
state (Awosika et al., 2023; Karlic et al., 2015; Feig et al., 2011;
Singh et al., 2016; Tikoo et al., 2015). In addition, they may influence
gene regulation by enhancing the expression of DNA
methyltransferases (DNMTs) at promoter regions (Awosika et al.,
2023; Karlic et al., 2015; Kodach et al., 2011).

The present review aims to describe the intricate interaction
between statins and epigenetic mechanisms, emphasizing their
broader implications in various disorders beyond
cardiovascular disease.

Epigenetics and statins: molecular
mechanisms

Statins act as epigenetic regulators through four main
mechanisms: DNA methylation, histone modifications,
microRNA expression, and long non-coding RNA regulation
(Figure 1). These mechanisms contribute to their therapeutic
impact in cardiovascular, metabolic, and inflammatory diseases.

Statins and DNA methylation

Statins have been implicated in the regulation of epigenetic
mechanisms, particularly by inhibiting DNMTs, which leads to
reduced DNA methylation at gene promoter regions and
subsequent activation of gene expression (Kayzuka et al.,
2025). Statins can inhibit DNMT1 through two primary
pathways. First, by blocking the mevalonate pathway, statins
inhibit the isoprenylation of GTP-binding proteins, leading to
the suppression of downstream signaling and reducing
DNMT1 expression. Second, statins lower the production of
interleukin-6 (IL-6), thereby interfering with the IL-6/JAK2/

FIGURE 1
Epigenetic pathwaysmodulated by statins and their functional implications. Statinsmodulate gene expression through four epigeneticmechanisms:
(i) DNA methylation, (ii) histone modifications, (iii) microRNA regulation, and (iv) long non-coding RNA (lncRNA) regulation. (i) By inhibiting the
mevalonate–RAS signaling pathway, statins downregulate DNAmethyltransferase 1 (DNMT1), resulting in hypomethylation of promoter regions in tumor
suppressor genes such as p21 and BMP2. Concurrently, they upregulate SIRT1, which enhances the recruitment of DNMT3B, leading to
hypermethylation and transcriptional silencing of pro-inflammatory genes such as TNF-α. These DNAmethylation changes are represented in the figure
as gray spheres labeled “Me.” (ii) Statins inhibit the activity of histone deacetylases (HDACs), increasing the intracellular availability of acetyl-CoA, a key
substrate for histone acetyltransferases (HATs). HATs catalyze the addition of acetyl groups to histone tails, shown in the figure as purple spheres labeled
“Ac,” resulting in chromatin relaxation and enhanced accessibility for transcription factors. This mechanism promotes the expression of genes such as
PCSK9 and CCR7, involved in cholesterol metabolism and immune cell trafficking, respectively. (iii) Statins modulate the expression of specific
microRNAs, which regulate diverse cellular processes such as tumor suppression, lipidmetabolism, apoptosis, and angiogenesis. (iv) Statins also influence
the expression of long non-coding RNAs such as LASER, MANTIS, and H19, which play key roles in lipid homeostasis, vascular function, and
cardiometabolic protection. These interconnected epigenetic pathways underline the multifaceted therapeutic potential of statins across oncology and
cardiovascular health.
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STAT3 signaling pathway, an established inducer of
DNMT1 expression (Dongoran et al., 2020).

For instance, statins have been shown to downregulate the RAS/
PI3K/mTOR signaling cascade by the inhibiting the mevalonate
pathway through DNA demethylation and the downregulation of
the histone deacetylase HDAC2. This process begins with the
inhibition of GTPase isoprenylation, leading to the reduced
activity of RAS proteins and the MAPK pathway (Karlic et al.,
2015). Another study found that statins were associated with the
downregulation of DNMT 1, which may contribute to the
overexpression of the cyclin-dependent kinase inhibitor p21,
possibly reversing aberrant promoter p21 hypermethylation.
However, this hypothesis has not been solved and remains to be
conclusively demonstrated (Kodach et al., 2011; Dongoran
et al., 2020).

In the context of CVDs, statins have also been associated with
the upregulation of endothelial nitric oxide synthase (eNOS), which
promotes vasodilatation, prevents thrombosis, and improves
endothelial cell function in patients with hypertension and
atherosclerosis (Chen et al., 2024). This effect may be partially
mediated through epigenetic modulation.

Notably, statins have also been reported to modulate DNA
hypermethylation in specific contexts. For instance, they can
promote the overexpression of sirtuin 1 (SIRT1), which recruits
DNMT 3B to CpG islands, leading to transcription repression of
target genes (Zhang and Kraus, 2010; Allen and Mamotte, 2017).
Furthermore, under high simvastatin doses, reduced acetylation of
NF-κB has been observed, which suppresses its transcriptional
activity and downregulates expression of pro-inflammatory genes
such as TNF-α (Du et al., 2014).

Taken together, these findings highlight the regulatory capacity
of statins on DNA methylation depending on the cellular context
and target pathways. Further research on DNMT regulation by
statins could provide further comprehension into novel epigenetic
therapies aimed at modulating gene expression in pathological
processes such as cancer or CVDs.

Statins and histone modifications

Statins have been also involved in the regulation of epigenetic
histone modifications, contributing to their broad spectrum of
biological effects (Allen and Mamotte, 2017). Various studies
have described that statins can influence gene expression through
increased histone acetylation of histones H3 (Tikoo et al., 2015) and
H4 (Singh et al., 2016). One proposed mechanism involves the
inhibition of the mevalonate pathway, which leads to the
intracellular accumulation of acetyl-CoA. This excess of acetyl-
CoA may serve as a substrate for histone acetyltransferases,
enhancing acetylation of the gene promoter regions and thereby
promoting transcriptional activation (Allen and Mamotte, 2017;
Cooney, 2010).

In addition to increasing acetyl-CoA availability, statins may
also directly inhibit HDACs by binding to their active sites,
suppressing their deacetylase activity (Singh et al., 2016; Kayzuka
et al., 2025; Lin et al., 2008). This inhibition promotes histone
acetylation, which neutralizes the positive charge on histones,
allowing the loosening of chromatin structure. As a result, DNA

becomes more accessible for the binding of transcription factors to
promoter regions (Kayzuka et al., 2025; Allen and Mamotte, 2017;
Bannister and Kouzarides, 2011).

Furthermore, statins have been correlated with the inhibition of
histone methyltransferases (HMTs), potentially leading to the
hypomethylation of histones and enhanced transcriptional
activity (Kayzuka et al., 2025). These combined effects on histone
acetylation and methylation suggest a significant role for statins in
chromatin remodeling and gene regulation. Further molecular
studies exploring how different types of statins influence these
epigenetic processes could elucidate the underlying mechanisms
of their protective roles in chronic diseases.

Several specific pathways have been described to illustrate
these mechanisms. For example, statins downregulate the histone
methyltransferase enhancer of zeste homolog 2 (EZH2), which in
turn promotes the upregulation of HDAC5 and overexpression of
the cyclin-dependent kinase inhibitor p27KIP1 (Ishikawa et al.,
2014). Statins also downregulate HDAC activity, leading to
increased histone-H3 acetylation at Sp1 binding sites within
the p21 promoter (Lin et al., 2008). Moreover, inhibition of
geranylgeranyl pyrophosphate (GGPP) synthesis by statins has
been linked to the overexpression of p21, reinforcing their role in
cell cycle regulation (Fuchs et al., 2008). Additionally, statins
inhibit the GGTase–RhoA–YAP–SOX9 signaling axis,
contributing to chromatin remodeling and further supporting
their involvement in epigenetic regulation (Chen et al., 2024; Liu
et al., 2023).

Statins and microRNA regulation

MicroRNAs (miRNAs) are small non-coding RNAs, typically
18–25 nucleotides in length, that regulate gene expression at the
post-transcriptional level (Yao et al., 2019). miRNAs can act as
epigenetic modulators by targeting enzymes involved in chromatin
remodeling and epigenetic modifications, such as DNMTs, HDACs,
and HMTs (Yao et al., 2019). Conversely, miRNA expression is itself
subject to regulation by epigenetic mechanisms. DNA methylation
and histone modifications can modulate the expression of miRNAs,
indicating a complex bidirectional interaction between miRNAs and
epigenetic processes (Yao et al., 2019). Table 1 describes the miRNAs
associated with statins role in functional significance and clinical
relevance in various human diseases.

Statins and lncRNA regulation

Long non-coding RNAs (lncRNAs) are transcripts of
approximately 200 nucleotides that do not encode proteins.
Despite being non protein-coding regions, lncRNAs play diverse
and essential biological roles, including participation in
chromosomal organization, telomere maintenance, and the
structural organization of subcellular compartments. Notably,
lncRNAs can also mediate epigenetic regulation by modulating
chromatin structure, transcription, and post-transcriptional
processes (Mercer et al., 2009).

Recent studies suggest that, in addition to their effect on
miRNAs, statins also regulate lncRNAs, contributing to their
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pleiotropic actions (Tsilimigras et al., 2021). For example, the
lncRNA RP1-13D10.2, has been shown to regulate LDLR
expression and modulate the individual response to statin
therapy (Mitchel et al., 2016). Similarly, another study identified
LASER, a lncRNA involved in cholesterol homeostasis, may serve as
a therapeutic target to enhance statins efficacy (Li et al., 2019). The
lncRNA MANTIS has also been associated with statin-mediated
vascular protection (Leisegang et al., 2019). Additionally, the
lncRNA H19 has been implicated in the statin-mediated
therapeutic response in patients with acute myocardial infarction
(Huang et al., 2020).

In the context of atherosclerosis, statin were found to regulate
pyroptosis-associated lncRNAs such as NEX-AS1 and NEXN,
exerting protective effects that are independent of lipid-lowering
activity (Wu et al., 2020). Furthermore OLMALINC, an
oligodendrocyte maturation-associated long intergenic noncoding
RNA, has been linked to the epigenetic regulation of genes involved
in cholesterol biosynthesis, such as stearoyl-coenzyme A desaturase
and shows strong associations with both statins use and serum
triglycerides levels (Benhammou et al., 2019).

A more recent study reported that RP1-13D10.2, MANTIS, and
lncHR1 were overexpressed in individuals with
hypercholesterolemia, and that atorvastatin treatment
significantly suppressed lncHR1 expression (Paez et al., 2023).

Collectively, these findings underscore the important role of
lncRNAs in the epigenetic regulation mediated by statins. The
identification of statin-responsive lncRNAs opens new avenues
for personalized medicine and suggests novel molecular targets
for improving the therapeutic efficacy of statins across a range of
lipid-related and inflammatory diseases.

Clinical evidence on statins regulating
epigenetic modifications

Cardiovascular diseases and atherosclerosis

Clinical evidence supports the protective role of statins in
reducing cardiovascular risk, extending beyond their lipid-
lowering effects. Emerging research highlights that epigenetic

TABLE 1 Functional and clinical relevance of the miRNAs and its statin-induced expression.

miRNAs Functional significance Clinical relevance Statin-induced expression

miR-129 May play role in apoptosis (Karaayvaz et al., 2013) Role in heart disease, epilepsy, Alzheimer’s disease, obesity,
diabetes, bone degeneration, osteosarcoma, nasopharyngeal
carcinoma, and various other cancers (Deng et al., 2021)

Upregulated (Cerda et al., 2021)

miR-143 Promotes adipocyte differentiation by regulating
extracellular signal-regulated kinase 5 (Liu et al.,
2022)

Associated with adenomas, carcinomas, and colon, prostate
and breast cancer (Gomes et al., 2016; Rasmi et al., 2023;
Bolayırlı et al., 2022; Tokumaru et al., 2020)

Upregulated (Cerda et al., 2021)

miR-205 Acts in tissue morphogenesis and homeostasis and
acts as tumor suppressor (Ferrari and Gandellini,
2025)

Altered expression in prostate, breast, lung, renal, head and
neck endometrial, bladder cancer and melanoma (Ferrari
and Gandellini, 2025)

Upregulated (Cerda et al., 2021)

miR-381 Functions as a tumor suppressor (Zeng et al., 2020) Implicated in various cancers, including breast, endometrial,
lung and other types (Zeng et al., 2020)

Upregulated (Cerda et al., 2021)

miR-495 Primarily functions as a tumor suppressor (Chen
et al., 2017)

Associated with cancer and neurological disorders (Chen
et al., 2017; Pang et al., 2024)

Upregulated (Cerda et al., 2021)

miR-29b Regulates osteoblast development and tumor
suppressor (Grassilli et al., 2022; Li et al., 2009)

Involved in cardiovascular disease and cancer (Grassilli
et al., 2022; Liu et al., 2021)

Downregulated (Cerda et al., 2021)

miR-33a Regulates fatty acid metabolism (Dávalos et al., 2011) Linked to cancer and metabolic diseases (Dávalos et al.,
2011; Weihua et al., 2020)

Downregulated (Cerda et al., 2021)

miR-17-5p Essential for proliferation, cell cycle regulation and
apoptosis (Stoen et al., 2021)

Altered expression in various cancer types (Stoen et al.,
2021)

Downregulated (Zambrano et al.,
2015), upregulated (Saavedra et al.,
2022)

miR-20a-5p Functions as tumor promoter and tumor suppressor
(Tylden et al., 2024)

Associated with cancer progression and cholesterol
regulation (Saavedra et al., 2022; Tylden et al., 2024)

Downregulated (Zambrano et al., 2015)

miR-106a-5p Regulates angiogenesis and the activity of vascular
endothelial and smooth muscle cells (Du et al., 2023)

Promotes several cancer types (Zhou et al., 2021) Downregulated (Zambrano et al., 2015)

miR-483-5p Maintains cellular function (Matson et al., 2023) Linked to cancer and cardiovascular diseases (Zhao et al.,
2023)

Upregulated (Lin et al., 2020)

miR-4667-5p Limited functional data, Involved in skin photoaging
(LUI et al., 2023)

Not well-characterized clinically Upregulated (Lin et al., 2020)

miR-3609 Mediates proliferation and apoptosis (Ding et al.,
2021)

Associated with cancer, glioma and other disorders (Ding
et al., 2021)

Upregulated (Lin et al., 2020)

miR-1244 Involved in endoplasmic reticulum stress response
(Czechowicz et al., 2024)

Not well-characterized clinically Upregulated (Lin et al., 2020)
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mechanisms contribute significantly to the pleiotropic benefits of
statins. These compounds influence gene expression through
modulation of DNA methylation, histone post-translational
modifications, and non-coding RNAs, particularly in vascular
endothelial cells (Kayzuka et al., 2025).

For instance, simvastatin has been shown to suppress the
epigenetic activation of the YAP-SOX9 axis, thereby inhibiting
endothelial-to-mesenchymal transition (EndMT)—a process
implicated in vascular dysfunction and atherosclerosis
progression (Liu et al., 2023). Similarly, atorvastatin has been
reported to upregulate SIRT1 expression at both the
transcriptional and protein levels in patients with coronary artery
disease, linking statin therapy to pathways associated with
endothelial protection and cellular longevity (Tabuchi et al., 2012).

In experimental models of atherosclerosis, rosuvastatin
enhances histone H3 and H4 acetylation by inhibiting
HDAC6 and HDAC7, leading to increased expression of CCR7, a
chemokine receptor involved in macrophage migration and plaque
remodeling (Feig et al., 2011). This effect is mediated through
SREBP-2-dependent displacement of HDAC6/7 from the
CCR7 promoter, allowing recruitment of histone
acetyltransferases (HATs) such as p300, therey promoting
transcriptional activation via histone acetylation (Feig et al., 2011).

Statins also epigenetically regulate PCSK9, a key gene in
cholesterol homeostasis and fatty acid metabolism. They increase
PCSK9 expression through SREBP2 activation, which recruits
cofactors like NPAT and TRRAP to facilitate histone
H4 acetylation (Dong et al., 2010; Li and Liu, 2012). This
chromatin remodeling enables the recruitment of HATs such as
p300 and CBP, promoting active transcription via H3K9 acetylation
and H3K4 trimethylation (Duddu et al., 2025). Although this
upregulation of PCSK9 may reduce the lipid-lowering efficacy of
statins, it uncovers a precise epigenetic mechanism that could be
pharmacologically targeted.

In addition to chromatin remodeling, statins modulate miRNA
expression, contributing to both lipid regulation and inflammation
control (Ruiz-Pozo et al., 2023). In HepG2 cells, atorvastatin
upregulates miR-129, miR-143, miR-205, miR-381, and miR-495,
while downregulating miR-29b and miR-33a—miRNAs involved in
lipogenesis and lipid metabolism (Cerda et al., 2021). Other studies
have reported a decrease in hsa-miR-17-5p, hsa-miR-20a-5p, and
hsa-miR-106a-5p with atorvastatin treatment (Zambrano et al.,
2015), although contrasting findings suggest that miR-17-5p may
also be upregulated and associated with LDLR suppression
(Saavedra et al., 2022).

Furthermore statin treatment has been associated with the
upregulation of miR-483-5p, miR-4667-5p, miR-3609, and miR-
1244, all of which are implicated in the regulation of inflammatory
responses. Notably, miR-483-5p may inhibit RhoA-mediated
pathways, which are critical for monocyte migration and
cytoskeletal dynamics. These miRNAs also appear to interact
with the TGF-β signaling pathway, known for its dual role in
immune modulation within atherosclerotic plaques (Lin
et al., 2020).

Collectively, these findings underscore the role of statins as
epidrugs—agents capable of modulating the epigenome—offering
new avenues for therapeutic optimization in cardiovascular disease
management.

Cancer

Although statins are primarily recognized for their cholesterol-
lowering effects, increasing evidence supports their potential as
anticancer agents, particularly through the modulation of
epigenetic mechanisms involved in tumorigenesis. These effects
include alterations in DNA methylation, histone modifications,
and non-coding RNA expression, which collectively influence
gene regulation, cell cycle progression, and tumor cell
differentiation (Awosika et al., 2023; Kayzuka et al., 2025;
Mohammadzadeh et al., 2020).

In oral squamous cell carcinoma (OSCC), cerivastatin and
simvastatin have been shown to significantly suppress DNMT1, a
key enzyme responsible for maintaining promoter
hypermethylation of tumor suppressor genes. This suppression
leads to reactivation of genes such as p21, resulting in G0/G1 cell
cycle arrest and reduced tumor proliferation (Dongoran et al., 2020).
Given the frequent overexpression of DNMT1 in various
malignancies, these findings highlight a promising epigenetic
mechanism for statin-mediated tumor suppression.

In a broader oncological context, simvastatin and ibandronate
have been shown to modulate the mevalonate pathway in breast,
prostate, and osteosarcoma cell lines. This inhibition reduces the
isoprenylation of small GTPases like RAS, leading to
downregulation of DNMT1, HDACs, and specific miRNAs.
These epigenetic changes promote the demethylation and
activation of pro-apoptotic and differentiation-related genes.
Notably, simvastatin significantly upregulates miR-612, a miRNA
associated with reduced tumor cell pluripotency and enhanced
sensitivity to 5-fluorouracil, suggesting a potential suggesting a
potential chemosensitizing role for statins (Karlic et al., 2015).

In colorectal cancer (CRC), statins such as simvastatin,
fluvastatin, and atorvastatin exert epigenetic effects that are
independent of the mevalonate pathway. These include inhibition
of EZH2, a HMT that represses tumor suppressor genes.
EZH2 inhibition leads to upregulation of p27KIP1, promoting
cellular differentiation and improved patient survival.
Furthermore, combining statins with class II HDAC inhibitors
has been shown to enhance these anticancer effects synergistically
(Ishikawa et al., 2014).

Another mechanism involves lovastatin, which promotes
demethylation of the BMP2 gene, encouraging tumor
differentiation and reducing aggressiveness. This protein is part
of the Bone Morphogenetic Proteins (BMPs) family involved in
intestinal epithelial cell differentiation, inhibition of stem cell
activity, and maintenance of adult tissue homeostasis. DNMT
inhibition facilitates BMP2 demethylation and upregulation in
CRC cells, sensitizing tumors to chemotherapeutic agents. While
additional studies are required to validate its efficacy and define its
clinical application, these findings underscore the potential of statins
as adjuvant epigenetic agents (Wang et al., 2014).

Despite these promising findings, some studies have reported
inconsistent results, with no significant changes in histone
acetylation and, in some cases, increased DNMT activity
following statin treatment (Bridgeman et al., 2019). These
discrepancies underscore the complexity of statin-epigenome
interactions and the need for further mechanistic and
translational research.
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In summary, statins are emerging as multifunctional agents with
potential applications in oncology, particularly as adjuvant
modulators of the epigenome. Their ability to influence
chromatin remodeling, gene expression, and non-coding RNA
networks supports their integration into personalized cancer
therapies, pending further validation in preclinical and
clinical settings.

Diabetes and insulin resistance

Growing evidence suggests a paradoxical association between
statin therapy and an increased risk of type 2 diabetes mellitus
(T2DM), primarily through mechanisms that promote insulin
resistance (Paseban et al., 2019). T2DM is a multifactorial disease
influenced by genetic predisposition, environmental exposures, and
pharmacological interventions (Beulens et al., 2021). Among these,
epigenetic mechanisms have emerged as critical contributors to the
pathogenesis of insulin resistance and impaired glucose metabolism
(Awosika et al., 2023).

An important study involving approximately 4,760 participants
from the Framingham Heart Study Offspring cohort (FHS) and the
Women’s Health Initiative (WHI) identified a specific epigenetic
marker associated with statin use. DNA methylation at CpG site
cg06500161 within the ABCG1 gene was positively correlated with
statin therapy, elevated fasting glucose, increased insulin levels, and
a higher risk of T2DM (Qie et al., 2021). Given ABCG1’s dual role in
cholesterol efflux and glucose homeostasis, this finding underscores
the gene’s central role in the metabolic interplay between lipid and
glucose regulation (Kotlyarov and Kotlyarova, 2025; Liu et al., 2020).

Further supporting this, a comparative epigenome-wide
association study in statin-treated versus non-treated T2DM
patients identified 79 differentially methylated CpG sites, with
three—cg17901584 (DHCR24), cg27243685 (ABCG1), and
cg05119988 (SC4MOL)—showing strong associations with statin
exposure (Schrader et al., 2021). While DHCR24 and SC4MOL are
primarily involved in cholesterol biosynthesis, methylation at
DHCR24 was also linked to glucose metabolism, suggesting a
shared epigenetic axis between lipid and glycemic pathways
(Peeples et al., 2024).

In addition to DNAmethylation, miRNA dysregulation has also
been implicated in statin-induced metabolic changes. For instance,
rosuvastatin has been shown to deregulate miR-27a and miR-221,
both of which are involved in insulin signaling and glucose uptake
(Serik et al., 2021). Simvastatin dose-dependently increases miR-27a
expression in hepatic cells, which indirectly reduces LDL receptor
(LDLR) levels by upregulating PCSK9, a protein that promotes
LDLR degradation. Under hyperglycemic conditions, this
dysregulation may impair lipid clearance and exacerbate insulin
resistance (Galicia-Garcia et al., 2020).

Moreover, miR-33a and miR-33b, which regulate ABCA1 and
ABCG1, are reportedly overexpressed in statin users. These genes are
essential for pancreatic beta-cell function, and their suppressionmay
impair insulin secretion and glucose regulation (Awosika et al.,
2023). Clinical studies have corroborated these molecular findings.
A 10-week trial of high-intensity atorvastatin therapy demonstrated
increased insulin resistance and compensatory insulin secretion,
suggesting a shift toward glucose intolerance in susceptible

individuals (Abbasi et al., 2021). A systematic review further
confirmed that statin use is associated with reduced insulin
sensitivity and increased insulin resistance, raising concerns for
patients at risk of developing diabetes (Dabhi et al., 2023).

Collectively, these findings highlight the epigenetic complexity
underlying statin-induced metabolic effects. Through DNA
methylation and miRNA modulation, statins may inadvertently
disrupt glucose homeostasis. These results emphasize the need
for personalized risk assessment and epigenetic monitoring in
patients undergoing long-term statin therapy.

Other diseases

Conversely, statins exhibit notable immunomodulatory and
anti-inflammatory properties, making them promising candidates
for the treatment of autoimmune diseases. Statins can regulate
immune responses through both mevalonate pathway-dependent
and -independent mechanisms, affecting antigen-presenting cells
and T-cell functions (Dehnavi et al., 2020). Evidence has
demonstrated improvements in conditions such as rheumatoid
arthritis, lupus, and multiple sclerosis, including enhancements in
cytokine profiles and clinical markers like C-reactive protein and
erythrocyte sedimentation rate (ESR). However, the precise
mechanisms and optimal doses required for these
immunomodulatory effects remain unclear (Dehnavi et al., 2020).

Furthermore, statins have demonstrated significant
neuroprotective effects, potentially reducing the incidence of
neurodegenerative diseases. For instance, a large retrospective
cohort study involving 288,515 participants found that statin use
is associated with a substantial reduction in the risk of various
neurodegenerative diseases, including Alzheimer’s disease,
dementia, multiple sclerosis, Parkinson’s disease, and
amyotrophic lateral sclerosis (Torrandell-Haro et al., 2020).
These findings have fueled interest in drug repurposing, as the
anti-inflammatory and antioxidant properties of statins may help
reduce amyloid plaque formation and protein aggregation, both
central to the pathogenesis of Alzheimer’s and Parkinson’s diseases
(Bhat et al., 2020). Moreover, a meta-analysis of 55 observational
studies encompassing over seven million patients revealed that
prolonged statin exposure (more than 3 years) significantly
enhances dementia risk reduction, with rosuvastatin displaying
the most pronounced protective effects (Westphal Filho et al., 2025).

Emerging evidence also suggests that statins may delay cellular
aging and combat senescence. These agents have been shown to
improve cellular function, mitigate telomere shortening, reduce
apoptosis, and counteract the senescence-associated secretory
phenotype (SASP) (Bahrami et al., 2020; Guaraldi et al., 2023;
Strazhesko et al., 2016). Together, these findings illustrate the
broader physiological impacts of statins, highlighting their
potential benefits beyond lipid regulation while also underscoring
the need for careful evaluation of long-term safety.

Limitations and future perspectives

Together, these findings illustrate the broader physiological
impacts of statins, highlighting their potential benefits beyond
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lipid regulation while also underscoring the need for careful
evaluation of long-term safety (Awosika et al., 2023). Advancing
the understanding of statin-induced epigenetic modifications could
expand their therapeutic applications beyond cardiovascular disease,
potentially informing the management of cancer, neurodegenerative
disorders, autoimmune diseases, and metabolic dysfunctions. To
fully harness this potential, healthcare providers and researchers
must recognize the epigenetic dimensions of statin action and
support research strategies that prioritize both mechanistic depth
and clinical relevance.

Conclusion

In conclusion, while statins are primarily prescribed for the
management of LDL cholesterol, increasing evidence supports their
role as modulators of the epigenome. Their capacity to influence
DNA methylation, histone modifications, and miRNA expression
implicates statins in the regulation of key biological processes,
including inflammation, endothelial function, and tumor
suppression.

Preclinical and clinical studies have demonstrated that these
epigenetic mechanisms may underlie the beneficial effects of statins
across a range of conditions, including cardiovascular disease,
cancer, and diabetes. However, statins have also been linked to
adverse metabolic effects, such as increased insulin resistance and
heightened risk of T2DM. Therefore, it is essential to further
investigate the molecular pathways involved in statin-mediated
disease modulation.

Large-scale, longitudinal studies incorporating epigenomic
profiling and integrative molecular analyses are needed to more
precisely define the benefits and risks of statin therapy. Such efforts
will be critical to developing personalized therapeutic strategies that
optimize statin efficacy while minimizing unintended effects.
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