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Objective: This study was conducted to evaluate the interventional effects of
astragaloside in a rodent model of myocardial fibrosis (MF).

Methods: Data from studies related to the intervention of astragaloside IV (AS-1V)
in rodent models with myocardial fibrosis were systematically retrieved and
extracted. The outcome indices included collagen volume fraction (CVF), left
ventricular end-systolic diameter (LVESd), left ventricular end-diastolic diameter
(LVEDd), interventricular septal thickness at diastole (IVSd), left ventricular
posterior wall diastolic thickness (LVPWd), left ventricular internal diameter at
diastole (LVIDd), left ventricular mass index (LVMI), left ventricular fractional
shortening (LVFS), left ventricular end-diastolic pressure (LVEDp), left
ventricular systolic pressure (LVSP), left ventricular internal diameter at systole
(LVIDs), left ventricular ejection fraction (LVEF), maximum rate of systolic pressure
rise (+dp/dtmax), maximum rate of diastolic pressure fall (~dp/dtmax), and other
hemodynamic indices. Additionally, it included lactate dehydrogenase (LDH),
tumor necrosis factor-alpha (TNF-a), body weight (BW), and heart rate (HR). The
methodological quality of the studies was assessed using the SYRCLE risk of bias
tool, and these results were statistically analyzed by meta-analysis. Additionally,
meta-regression and subgroup analyses were performed according to species,
administration dosage, and administration duration, aiming to further deepen the
understanding of the study results and provide references for relevant
clinical research.

Results: A total of 38 studies were incorporated into the meta-analysis. The
findings indicated that AS-IV led to a reduction in morphostructural indices,
including CVF, LVESd, LVEDd, IVSd, LVPWd, and LVMI. Moreover, it decreased
LVEDp and LVSP, while increasing hemodynamic indices such as LVEF, LVFS,
+dp/dtmax, and —dp/dtmax. Additionally, astragaloside decreased biochemical
and physiological indices, including LDH, TNF-a, HR, and BW. However, it exerted
no significant impact on the levels of LVIDs and LVIDd in the model.
Conclusion: AS-IV can be used as a supportive treatment for MF, acting through
various mechanisms, including the relief of inflammation, myocardial injury, and
oxidative stress, thereby contributing to the improvement of ventricular diastolic
and contractile capacity and reducing the necrosis and apoptosis of
cardiomyocytes.
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1 Introduction

Cardiovascular diseases are the primary determinants of global
incidence and mortality rates. In 2020 alone, close to one million
fatalities attributable to cardiovascular diseases occurred in the
United States (Minhas et al., 2024). The prevalence and mortality
rates of cardiovascular diseases in China are still on the rise
(Majmundar et al., 2023). Based on the statistics and inferences
drawn from relevant research data, the number of patients currently
afflicted with cardiovascular diseases in China is estimated to be
approximately 300 million (Wang et al., 2023). Myocardial fibrosis
(MF) is an important pathological process in cardiovascular
diseases. It is a pathological change caused by the excessive
accumulation of collagen fibers in normal myocardial tissues due
to various reasons, which leads to a significant increase in collagen
concentration and collagen volume fraction (Wang et al., 2025).
Notably, excessive myocardial fibrosis predisposes the patient to
cardiac diastolic dysfunction (Barton et al., 2023), thereby inducing
arrhythmia, promoting cardiac remodeling and vascular structural
alterations, and exacerbating cardiovascular mortality and
recurrence.

AS-IV is an important bioactive component extracted from
Astragalus membranaceus (a leguminous plant), belonging to the
class of tetracyclic triterpenoid saponins. Its chemical structure
consists of two parts: one is the aglycone moiety (a triterpenoid,
such as cycloastragenol), which serves as the structural core; the
other is the glycosyl moiety, which undergoes catalytic modification
by glycosyltransferases to form saponin molecules with diverse
structures (M et al., 2023) (Figure 1). Extensive pharmacological
effects of AS-IV have been documented in recent studies (Li et al.,
2023a), with accumulating evidence supporting its multi-targeted
pharmacological activities and significant therapeutic potential in
cardiovascular diseases. Specifically in the context of MF, AS-IV
exerts protective effects through multidimensional regulatory
mechanisms,
cytokines;  2)
cardiomyocyte apoptosis; 4) improving ischemia-reperfusion
injury; 5) regulating TRPM7 channels and TGF-p1/Smad/NF-kB
signaling; and 6) activating the AKT/GSK3-B/SNAIL pathway to

including: 1) modulating pro-inflammatory

alleviating  oxidative stress; 3) inhibiting

Abbreviations: +dp/dtmax, maximum rate of systolic pressure rise; —dp/
dtmax:, maximum rate of diastolic pressure fall; AS-1V, astragaloside IV;
BW:, body weight; Cl, confidence interval; CVF, collagen volume fraction;
HR, heart rate; IVSd, interventricular septal thickness at diastole; LDH, lactate
dehydrogenase; LVEDd, left ventricular end-diastolic diameter; LVEDp, left
ventricular end-diastolic pressure; LVEF, left ventricular ejection fraction;
LVESd, left ventricular end-systolic diameter; LVFS, left ventricular
fractional shortening; LVIDd, left ventricular internal diameter at diastole;
LVIDs, left ventricular internal diameter at systole; LVMI, left ventricular
mass index; LVPWd, left ventricular posterior wall diastolic thickness; LVSP,
left ventricular systolic pressure; MD, mean difference; MF, myocardial
fibrosis; TNF-a, tumor necrosis factor-alpha.
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counteract epithelial-mesenchymal transition (EMT) (Wang Q.
et al., 2021; Yao et al., 2023; Fu et al.,, 2020; Rios et al., 2022).
This study aims to systematically evaluate the therapeutic effects
of AS-IV on MF in rodent models by integrating existing
experimental data through a meta-analysis. By elucidating the
core mechanisms underlying its anti-fibrotic actions, this research
seeks to provide evidence-based support for translating AS-IV from
preclinical studies to clinical applications. Specifically, the findings
may facilitate the development of novel MF-targeted therapies and
offer innovative perspectives for integrative Chinese-Western
medicine approaches in cardiovascular disease management.

2 Materials and methods
2.1 Search strategy

A systematic search was conducted across the PubMed, Web of
Science, Embase, Cochrane Library, CNKI, Wanfang Data, and VIP
databases for studies investigating AS-IV intervention in rodent
models of myocardial fibrosis. The search spanned from each
database’s inception through 24 November 2024. Key search
included: 1) Astragaloside IV/AS-IV; 2)
fibrosis; 3) rats/mice. Terms were combined using logical “AND”

terms myocardial

operators. The specific search formula is provided in

Supplementary Material 1.

2.2 Inclusion criteria

1) Study subjects: Rodent models with MF confirmed by
indicator detection.

AS-IV

FIGURE 1
Structures of AS-IV.
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2) Study design: Controlled animal experiments involving MF
modeling methods, with experimental animals of any species
or strain, and no language restrictions applied to the included
literature.

Administration of AS-IV or its

preparations was required. Negative control groups received

3) Intervention measures:

no medication or placebo.

4) Outcome indicators: To ensure key parameters could be
directly extracted or derived through calculation, drug
efficacy metrics were required to be presented numerically.
Measured indices included collagen volume fraction (CVE),
left ventricular end-systolic diameter (LVESd), left ventricular
end-diastolic diameter (LVEDd), interventricular septal
thickness at diastole (IVSd), left ventricular posterior wall
diastolic thickness (LVPWd), left ventricular internal
diameter at diastole (LVIDd), left ventricular mass index
(LVMI), left ventricular fractional shortening (LVES), left
ventricular end-diastolic pressure (LVEDp), left ventricular
systolic pressure (LVSP), left ventricular internal diameter at
systole (LVIDs), left ventricular ejection fraction (LVEF),
maximum rate of systolic pressure rise (+dp/dtmax),
maximum rate of diastolic pressure fall (—dp/dtmax), and
other hemodynamic indices. Additionally, it included lactate
dehydrogenase (LDH), tumor necrosis factor-alpha (TNF-a),
body weight (BW), and heart rate (HR). These parameters
included both mean values and standard deviations.

2.3 Exclusion criteria

1) The data for evaluation indicators were incomplete.

2) The article comprises systematic reviews, meta-analyses, and
in vitro experimental studies.

3) Experimental groups or control groups involved the
administration of drugs other than AS-IV.

4) The experimental animals in the study were not rodents.

2.4 Literature screening and data extraction

According to the method of including studies in version
5.0.2 of the Handbook for
Systematic Reviewers, the retrieval results from each database

Cochrane Collaboration’s
were imported into the literature management software Zotero.
In parallel and independently, two reviewers, Li Haozhe and Chu
Yunhang, screened the literature and then extracted the data and
cross-checked the experimental results. In case of disagreement,
they reached a decision through negotiation or through referring
the matter to Wang Yue for judgment. Finally, the eligible
literature data were classified and statistically analyzed using
MS Excel. The data to be extracted included author information,
publication year of the literature, drugs used in the experiment,
specific modeling methods, number of models, route of drug
administration, numerical value of the drug dosage, categories of
detection indicators, corresponding units of the detection
indicators, and final experimental result data. To ensure the
validity of the data and the reliability of the analysis, when
the number of studies related to a certain outcome indicator
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was less than 3, this outcome indicator would be excluded from
the scope of the study.

Additionally, this systematic review was registered in the
PROSPERO International Prospective Register of Systematic
Reviews (registration number: CRD420250637182) to help avoid
duplication and reduce the possibility of reporting bias by
comparing the completed evaluation with the planned protocol.

2.5 Statistical methods

Meta-analyses were performed using RevMan 5.1 software. For
categorical data, the risk ratio (RR) was used as the effect size
measure. For continuous data, the mean difference (MD) was
employed. When outcome measures shared identical units and
methods, the weighted mean difference (WMD) was calculated;
otherwise, the standardized mean difference (SMD) was used. All
effect sizes were reported with 95% confidence intervals (CI).
Heterogeneity among included studies was evaluated using
Cochran’s Q test (significance level: P < 0.1) and quantified by
the I* statistic. A fixed-effect model was applied when I* < 50%
indicated low heterogeneity, while a random-effect model was used
for high heterogeneity (I* > 50%), followed by exploration of
heterogeneity sources. Publication bias was initially assessed
visually via funnel plots. Additionally, StataSE 12.0 software was
used to conduct a leave-one-out method to investigate potential
heterogeneity sources, complemented by Egger’s test for publication
bias detection. Subgroup analyses and meta-regression analyses were
performed to identify the root causes of significant heterogeneity.

3 Results
3.1 Results of the literature review

The literature retrieval process for this meta-analysis is outlined
in Figure 2. A total of 616 relevant articles were identified through
searches in databases including PubMed. After systematic screening,
38 eligible studies see Table 1 for details. (Rios et al., 2022; Chen and
Wang, 2017; Fathiazad et al., 2019; Jiang and Zhang, 2016; Jiang and
Wei, 2016; Jiang, 2016; Lin et al., 2019; Luo et al., 2020; Lv, 2018; Liu
et al., 2022; Li et al., 2005; Li, 2021; Chen et al., 2011; Tang et al.,
2016; Tang, 2017; Tang et al., 2017a; Liu et al., 2019; Wu et al., 2023;
Wang SF. et al., 2020; Zhang et al., 2022; Xue et al., 2024; Xu et al.,
2010; Zhao, 2020; Zhang et al., 2007; Zhang, 2021; Wang Z. et al.,
2020; Cheng, 2017; Gong and Ke, 2024; He, 2013; Li et al., 2017; Li,
2013; Tang et al., 2017b; Wang et al., 2024; Wang XL. et al., 2021;
Yan et al., 2024; Zhang, 2012; Zhang, 2015; Zhang et al., 2023) were
included in the final analysis. Data extraction included study-specific
identifiers, experimental subjects, modeling methods, and other
study characteristics. Among the included studies, those with
three groups typically consisted of a sham operation group, a
model group, and an astragaloside IV treatment group. Studies
with five groups additionally incorporated three subgroups receiving
different doses of AS-IV, in addition to the sham and model groups.

This meta-analysis included 38 designs involving 1,334 rodent
models (891 in AS-IV treatment groups vs. 443 in control groups),
with species distribution as follows: 25 studies used Sprague-Dawley
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Identification of studies via databases and registers
o
Records identified from™:
c Pubmed (n=46)
o Embase (n=79) Records removed before
s Web of Science ( n=80) screening:
P Cochrane Library ( n=0) —> Duplicate records removed
E CNKI ( n=308) (n=165)
o] Wangfang ( n=82)
VIP (n=21)
y Records excluded (After reading
Refords screened > th: =s u3r(r)1£n )a Fy-and ¥ie)
(n=451) Unable to get full text (Article
Abstract Only )
(n=21)
A4
Reports assessed for eligibility
o (n=128) Reports excluded:
'E Reason 1 Reports involves
o interventions other than
b Astragaloside IV (n=11)
Reason 2 Reports data were
incomplete (n=70)
Reason 3 With outcome
indicators whose relevant
research were less than 3
(h=2)
Reason 4 Reports not
retrieved ( n=2 )
o Reason 5 Report units
S A4 incorrect (n=5)
E Studies included in review
= (n=38)
£

FIGURE 2
Flowchart of the eligible literature search process.

rats (Rios et al., 2022; Fathiazad et al., 2019; Jiang and Zhang, 2016;
Jiang and Wei, 2016; Lin et al., 2019; Luo et al., 2020; Li et al., 2005;
Chen et al,, 2011; Tang et al.,, 2016; Tang, 2017; Wu et al,, 2023;
Zhang et al., 2022; Xu et al., 2010; Zhang, 2021; Wang Z. et al., 2020;
Cheng, 2017; Gong and Ke, 2024; Li et al., 2017; Li, 2013; Tang et al.,
2017b; Wang XL. et al., 2021; Yan et al., 2024; Zhang, 2012; Zhang,
2015; Zhang et al., 2023), three studies used Wistar rats (Chen and
Wang, 2017; Lv, 2018; Liu et al., 2022), one study used Dahl SS rats
(Zhang et al., 2007), five studies used C57BL/6] mice (Jiang, 2016;
Tang et al., 2017a; Liu et al., 2019; Wang SF. et al.,, 2020; He, 2013),
two studies used BALB/c mice (Li, 2021; Zhao, 2020), and one study
each used Kunming mice (Xue et al.,, 2024) and ICR mice (Wang
et al., 2024).

Frontiers in Pharmacology

Quality assessment results: The included studies were evaluated
using SYRCLE’s Risk of Bias tool for animal experiments. Among all
included studies, 25 clearly stated that they used the random
number table method to generate allocation sequences (Chen
and Wang, 2017; Fathiazad et al.,, 2019; Jiang and Zhang, 2016;
Jiang, 2016; Lin et al., 2019; Luo et al., 2020; Lv, 2018; Liu et al., 2022;
Li et al,, 2005; Chen et al., 2011; Tang et al., 2016; Tang, 2017; Tang
et al.,, 2017a; Liu et al., 2019; Wu et al., 2023; Wang SF. et al., 2020;
Zhang et al., 2022; Xue et al., 2024; Xu et al., 2010; Zhao, 2020; Zhang
et al,, 2007; Zhang, 2021; Wang Z. et al., 2020; Gong and Ke, 2024;
He, 2013; Li et al.,, 2017; Li, 2013; Tang et al., 2017b; Wang et al.,
2024; Wang XL. et al,, 2021; Zhang, 2012; Zhang, 2015; Zhang et al.,
2023; Jia et al, 2023), and two did not adopt this method for
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TABLE 1 Key characteristics of included studies.

Study

inclusion

Animal
species

Dosage

Treatment/
control

Administration
route

Treatment
duration
(days)

10.3389/fphar.2025.1625774

Modeling
method

CQ Sprague-Dawley AS-IV 30/10 Oral gavage 14 1SO-induced @ LVEF, ® LVES,
2017 (Chen and (SD) rat 20 mg/kg, model CVF, @ BW
Wang, 2017) 40 mg/kg, and
80 mg/kg
FF Male Wistar rats AS-IV 18/6 Oral administration 4 ISO-induced HR
2019 (Fathiazad 2.5 mg/kg, model
et al,, 2019) 5 mg/kg, and
10 mg/kg
JHQ Male AS-1IV 36/12 Oral gavage 28 Abdominal aortic | ® LVEDp, CVF,
2016.1 (Jiang Sprague-Dawley 20 mg/kg, constriction model =~ @ LVSP, ® +dp/
and Zhang, rats 40 mg/kg, and dtmax, ® —dp/dtmax
2016) 60 mg/kg
JHQ Male AS-IV 36/12 Oral gavage 28 Abdominal aortic | ® LVEDp, CVF,
2016.2 (Jiang Sprague-Dawley 20 mg/kg, constriction model =~ @ LVSP, ® +dp/
and Wei, 2016) rats 40 mg/kg, and dtmax, ® —dp/dtmax
80 mg/kg
JHQ Male AS-IV 39/13 Oral gavage 28 Abdominal aortic = @ LVESd, ®
2017 (Jiang, Sprague-Dawley 20 mg/kg, constriction model | LVEDd, ® LVEDp,
2016) rats 40 mg/kg, and @ LVSP, ® +dp/
60 mg/kg dtmax, ® —dp/dtmax
JML C57BL/6] mouse AS-1IV 20/20 Oral administration 28 DOX IP-induced | @ LVEF, ® LVFS,
2019 (Lin et al, 40 mg/kg model IVSd, ® LVPWd, @
2019) LDH, LVIDd
LQ Sprague-Dawley AS-IV 39/13 Oral gavage 56 Left atrial ® LVESd, @ LVEF,
2020 (Luo et al., (SD) rat 20 mg/kg, appendage root ® LVEDd, ® LVMI,
2020) 40 mg/kg, and ligation model ® LVFS
80 mg/kg
LQW Male AS-TV 40/20 - 56 Abdominal aortic | D LVESd, ®
2018 (Lv, 2018) = Sprague-Dawley 30 mg/kg and constriction model =~ LVEDd, ® LVMI, ®
rats 70 mg/kg LVEDp, ® LVPWd,
CVF, @ LVSP
LY Male Wistar rats AS-IV 5/5 Oral gavage 56 HFD/STZ-induced =~ ® LVESd, @ LVEF,
2022 (Liu et al., 6.9 mg/kg model ® LVEDd, ® LVFS
2022)
Lzp Male Wistar rats AS-IV 40/10 Intraperitoneal 28 LAD ligation HR
2005 (Li et al, 2.5 mg/kg, injection model
2005) 5.0 mg/kg,
10 mg/kg,
15 mg/kg, and
20 mg/kg
LMH Male AS-IV 8/8 Intravenous injection 28 LAD ligation @ LVEF, ® LVES, ®
2021 (Li, 2021) | Sprague-Dawley 40 mg/kg model LVIDs, @ LVIDd
rats
PC BALB/c mouse AS-IV 20/30 Oral administration 90 CVB3-induced @ LVEF, ® LVEDd,
2011 (Chen 0.6 mg/kg model via IP ® LVFS
et al., 2011) injection
TB Male AS-1IV 40/20 Oral gavage 56 Abdominal aortic | @ LVESd, ®
2016 (Tang Sprague-Dawley | 30 mg/kg and constriction model =~ LVEDd, @ LVMI, ®
et al., 2016) rats 70 mg/kg LVEDp, ® LVPWd,
CVF, @ LVSP, ®
+dp/dtmax, ® —dp/
dtmax, @ BW
TB Male AS-IV 44/22 Oral gavage 56 Abdominal aortic =~ @ LVESd, @ LVEF,
2017.2 (Tang, Sprague-Dawley | 25 mg/kg and constriction model =~ @ LVEDd, ®
2017) rats 50 mg/kg LVEDp, ® LVPWd,
® +dp/dtmax,
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TABLE 1 (Continued) Key characteristics of included studies.

Study

inclusion

Animal
species

Dosage

Treatment/
control

Administration
route

Treatment
duration
(days)

10.3389/fphar.2025.1625774

Modeling
method

TB Male Sprague- AS-IV 20/20 Oral gavage 56 Abdominal aortic | @ LVESd, ®
2017.1 (Tang Dawley rats 30 mg/kg constriction model = LVEDd, ® LVEDp,
et al,, 2017a) ® LVPWd, @ LVSP,
® +dp/dtmax,
—dp/dtmax
TLL C57BL/6] mouse AS-IV 20/20 Oral gavage 14 CVB3-induced ® LVEF, ® LVPWd
2019 (Liu et al, 100 mg/kg model via IP
2019) injection
WFF C57BL/6] mouse AS-IV 15/15 Intraperitoneal 30 1SO-induced ® LVEF, @ LDH
2023 (Wu et al,, 100 mg/kg injection model
2023)
WSF Male AS-IV 20/20 Oral gavage 56 Left atrial @ LVEF, ® LVES, ©®
2020 (Wang Sprague-Dawley 2 mg/kg appendage root TNF-a
et al., 2020a) rats ligation model
wz C57BL/6] mouse AS-IV 10/10 Intraperitoneal 28 LAD ligation @ LVEF, ® LVFS,
2022 (Zhang 10 mg/kg injection model 1VSd, @ LVIDs,
et al., 2022) LVIDd
XSY XXL2010 AS-IV 30/10 Oral gavage 42 DOX IP-induced ® LVESd, @ LVEF,
2024 (Xue et al,, 20 mg/kg, model ® LVEDd, @ TNF-a
2024) 40 mg/kg, and
80 mg/kg
XXL Male Kunming AS-IV 16/8 Oral gavage 14 ISO-induced @ LVEF, ® LVFS, ®
2010 (Xu et al,, mice 40 mg/kg and model LVIDs, @ LVIDd
2010) 80 mg/kg
ZK Male AS-IV 16/8 Oral gavage 63 Abdominal aortic | @ LVEF, ® LVMI,
2020 (Zhao, Sprague-Dawley 40 mg/kg and constriction model 1VSd, ® LVPWd
2020) rats 80 mg/kg
ZSC BALB/c mouse AS-IV 30/30 Oral administration 90 CVB3-induced CVF
2007 (Zhang 0.6 mg/kg model via IP
et al., 2007) injection
ZXX Male Dahl SS rats AS-IV 15/5 Oral gavage 56 High-salt diet- @ LVEF, ® IVSd, ®
2021 (Zhang, 10 mg/kg, induced model LVPWd, @ LVIDd,
2021) 20 mg/kg, and HR
40 mg/kg
ZYW Male AS-IV 10/5 Oral gavage 56 HFD/STZ-induced = ® LVEDp, @ LVSP,
2020 (Wang Sprague-Dawley | 80 mg/kg and model ® +dp/dtmax,
et al., 2020b) rats 200 mg/kg —dp/dtmax
CJ Male AS-IV 20/10 Oral gavage 56 LAD ligation ® LVEDp, @ TNF-q,
2017 (Cheng, Sprague-Dawley | 30 mg/kg and model @ LVSP, ® +dp/
2017) rats 70 mg/kg dtmax, ® —dp/
dtmax, ® HR
GS Sprague-Dawley AS-IV 30/10 Subcutaneous injection 14 Subcutaneous ® LVEDd, ® LVFS
2024 (Gong and rats 10 mg/kg, implantation of
Ke, 2024) 20 mg/kg, and Angll slow-release
50 mg/kg pump
HHY Sprague-Dawley AS-IV 16/8 Oral gavage 84 Abdominal aortic =~ @ LVMI, @ TNF-a
2013 (He, 2013) rats 40 mg/kg and constriction model
80 mg/kg
LMF C57BL/6] mouse AS-IV 12/6 Oral gavage 8h Intraperitoneal @ LVEF, ® LVFS, ®
2017 (Li et al., 40 mg/kg and LPS injection TNF-a, ® LVIDs,
2017) 80 mg/kg LVIDd
LZZ Male AS-1IV 30/10 Intraperitoneal 7 1SO-induced ® LVEDp, @ LVSP,
2013 (Li, 2013) = Sprague-Dawley 5 mg/kg, injection model ® LDH
rats 10 mg/kg, and
20 mg/kg
(Continued on following page)
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TABLE 1 (Continued) Key characteristics of included studies.

10.3389/fphar.2025.1625774

Study Animal Dosage  Treatment/ Administration Treatment Modeling
inclusion species control route duration method
(days)
TB Sprague-Dawley AS-IV 38/18 Oral gavage 56 Abdominal aortic | @ LVESd, ®
2017.3 (Tang rats 40 mg/kg and constriction model = LVEDd, ® LVEDp,
et al,, 2017b) 80 mg/kg ® LVPWd, ® CVF,
® LVSP, ® +dp/
dtmax, ® —dp/dtmax
WLY Male AS-IV 24/8 Oral gavage 56 LAD ligation @ LVESd, @ LVEF,
2024 (Wang Sprague-Dawley 20 mg/kg, model ® LVEDd, @ LVMI,
et al., 2024) rats 40 mg/kg, and ® LVFS
80 mg/kg
WXL ICR mice AS-IV 10/10 Oral gavage 10 DOX IP-induced = @ LVEF, ® LVFS, ©
2021 (Wang 80 mg/kg model TNF-a, @ LDH,
et al.,, 2021b) HR
YJY Male AS-IV 24/8 Oral gavage 14 LAD ligation @ LVEF, ® LVFS
2024 (Yan et al, = Sprague-Dawley 10 mg/kg, model
2024) rats 20 mg/kg, and
40 mg/kg
YJY Male AS-IV 20/8 Oral gavage 28 LAD ligation @ LVEF, ® LVFS
2024.1 (Yan Sprague-Dawley 10 mg/kg, model
et al.,, 2024) rats 20 mg/kg, and
40 mg/kg
Z] Sprague-Dawley AS-IV 30/15 Intraperitoneal 84 Abdominal aortic | @ LVMI, ® LVEDp,
2012 (Zhang, rats 1 mg/kg and injection constriction model =~ @ LVSP, ® +dp/
2012) 5 mg/kg dtmax, ® -dp/
dtmax, HR
ZSP Male AS-IV 10/10 Oral gavage 14 ISO-induced ® LVMI
2015 (Zhang, Sprague-Dawley 80 mg/kg model
2015) rats
ZYH Male AS-IV 16/8 Intraperitoneal 28 ISO-induced @ LVEF, ® LVFS,
2023 (Zhang Sprague-Dawley 20 mg/kg and injection model ® LDH
et al,, 2023) rats 40 mg/kg
JTWW Male AS-IV 16/8 Intraperitoneal 28 1SO-induced ® LVEF, ® LVES,
2023 (Jia et al., Sprague-Dawley 20 mg/kg, injection model ® LDH
2023) rats 40 mg/kg, and
80 mg/kg

@® LVESd; @ LVEF; ® LVEDd; @ LVML; ® LVES; ® LVEDp; @ TNF-o; ® IVSd; ® LVPWd; @ CVF; @ LVSP; @ LDH; ® LVIDs; @ LVIDd; ® +dp/dtmax; ® —dp/dtmax; @ BW;

HR.

determining allocation sequences (Jiang and Wei, 2016; Li, 2021).
Studies that did not adopt the random number table method may
introduce a certain degree of subjectivity into the grouping process,
making it difficult to ensure fairness and comparability between
groups, thereby affecting the reliability of the research results. Two
studies provided no clear description of how they allocated subjects
(Cheng, 2017; Yan et al., 2024), and the scientificity and rationality
of their allocation sequence generation are questionable, which
increases the risk of bias. However, none of the studies
mentioned allocation concealment, random housing of animals,
or blinding of relevant personnel and outcome assessors. The
absence of these key links may introduce biases throughout the
process from grouping and feeding to outcome assessment,
ultimately undermining the credibility of the experimental
conclusions regarding astragaloside IV. All included animals were
incorporated into the final analysis, with no instances of selectively
choosing animals for evaluation. Although three studies contained
incomplete data (Chen and Wang, 2017; Lin et al., 2019; Liu et al,,

2019), these gaps were accurately explained and reasonably justified,
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confirming the completeness of reporting and ruling out any
association with selective reporting see Table 2 for details.

3.2 Meta-analysis results

AS-IV  significantly  influenced  cardiac  morphological
parameters (CVF, LVESd, LVEDd, 1VSd, LVPWd, and LVMI),
hemodynamic indices (LVFS, LVEDp, LVSP, LVEF, and +dp/
dtmax), and biochemical/physiological indicators (LDH, TNF-a,
BW, and HR) in rodent models of cardiac disease. However, it
exerted no significant statistical effect on LVIDd and LVIDs.

3.2.1 Effects of astragaloside IV on cardiac
morphological parameters in rodent myocardial
fibrosis models

A random-effects meta-analysis revealed that AS-IV significantly
reduced cardiac morphological parameters in experimental models of
ME, including CVF [MD = -2.90, 95%CI (-3.45, -2.35), P < 0.01],
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TABLE 2 Risk of bias assessment of included studies.

Study inclusion

CQ2017 (Chen and Wang, 2017) Y Y U U U N U Y N U
FF2019 (Fathiazad et al., 2019) Y Y U U U N U N N U
JHQ2016.1 (Jiang and Zhang, 2016) Y Y U U U N U N N U
JHQ2016.2 (Jiang and Wei, 2016) N Y U U U N U N N U
JHQ2017 (Jiang, 2016) Y Y U U U N U N N U
JML2019 (Lin et al., 2019) Y Y U U U N U Y N U
L£Q2020 (Luo et al.,, 2020) Y Y 18 U U N U N N U
LQW2018 (Lv, 2018) Y Y U U U N U N N U
LY2022 (Liu et al., 2022) Y Y U U U N U N N U
LZP2005 (Li et al., 2005) Y Y U U U N U N N U
LMH2021 (Li, 2021) N Y U U U N U N N U
PC2011 (Chen et al,, 2011) Y Y U U U N U N N U
TB2016 (Tang et al., 2016) Y Y U U U N U N N U
TB2017.2 (Tang, 2017) Y Y U U U N U N N U
TB2017.1 (Tang et al., 2017a) Y Y U U U N U N N U
TLL2019 (Liu et al., 2019) Y Y U U U N U Y N U
WEFF2023 (Wu et al.,, 2023) Y Y U U U N U N N U
WSF2020 (Wang et al., 2020a) Y Y U U U N U N N U
WZ2022 (Zhang et al., 2022) Y Y U U U N U N N U
XSY2024 (Xue et al., 2024) Y Y U U U N U N N U
XXL2010 (Xu et al., 2010) Y Y U U U N U N N U
ZK2020 (Zhao, 2020) Y Y U U U N U N N U
ZS5C2007 (Zhang et al., 2007) Y Y U U U N U N N U
ZXX2021 (Zhang, 2021) Y Y U U U N U N N U
ZYW2020 (Wang et al., 2020b) Y Y U U U N U N N U
CJ2017 (Cheng, 2017) U Y U U U N U N N U
GS2024 (Gong and Ke, 2024) Y Y U U U N U N N U
HHY2013 (He, 2013) Y Y U U U N U N N U
LMF2017 (Li et al., 2017) Y Y U U U N U N N U
L772013 (Li, 2013) Y Y U U U N U N N U
TB2017.3 (Tang et al., 2017b) Y Y U U U N U N N U
WLY2024 (Wang et al., 2024) Y Y U U U N U N N U
WXL2021 (Wang et al., 2021b) Y Y U U U N U N N U
YJY2024 (Yan et al., 2024) U Y U U U N U N N U
YJY2024.1 (Yan et al,, 2024) U Y U U U N U N N 1)
ZJ2012 (Zhang, 2012) Y Y U U U N U N N U
ZSP2015 (Zhang, 2015) Y Y U U U N U N N U
ZYH2023 (Zhang et al., 2023) Y Y 18 U U N U N N U
JWW2023 (Jia et al., 2023) Y Y U U U N U N N U

1 Random sequence generation; 2 Baseline comparability; 3 Allocation concealment; 4 Random housing of animals; 5 Blinding of caregivers/researchers; 6 Random selection for outcome
assessment; 7 Blinding of outcome assessors; 8 Incomplete outcome data; 9 Selective outcome reporting; 10 Other sources of bias; Y, yes; N, no; U, unclear.
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FIGURE 3
Forest plots of morphostructural parameters.

LVESd [MD = -0.93, 95%CI (-1.06, —0.81), P < 0.01], LVEDd
[MD = -0.98, 95%CI (~1.20, -0.75), P < 0.01], IVSd [MD = —0.37,
95%CI (~0.68, —0.06), P = 0.02], LVPWd [MD = —0.50, 95%CI
(-0.68, -0.32), P < 0.01], and LVMI [MD = -0.50, 95%CI
(-0.65, —0.35), P < 0.01]. Statistically significant reductions were
observed for all parameters except LVIDd [MD = —0.11, 95%CI
(-0.57, 0.34), P = 0.63] see Figure 3. LVIDd, an indicator reflecting
ventricular size, has relatively stable values. In clinical practice, patients
with myocardial fibrosis often undergo a long-term pathological
process; thus, significant changes in LVIDd may be difficult to
observe in short-term animal experiments. Inherent variations in
pathological phenotypes induced by different modeling approaches
lead to significant heterogeneity in baseline LVIDd levels and sensitivity
to astragaloside IV. Additionally, the small sample size and systematic
errors introduced by operators during ultrasonic measurements might
have masked the potential effects of AS-IV.

3.2.2 Effects of astragaloside IV on hemodynamic

parameters in rodent myocardial fibrosis models
A random-effects meta-analysis revealed that AS-IV

significantly improved cardiac hemodynamic parameters in
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experimental models of MF, including LVFS [MD = 10.83,
95%CI (8.72, 12.95), P < 0.01], LVEF [MD = 14.91, 95%CI
(12.96, 16.86), P < 0.01], +dp/dtmax [MD = 682.15, 95%CI
(317.10, 1047.21), P < 0.01], and —dp/dtmax [MD = 769.49,
95%CI (511.67, 1027.31), P < 0.01]. Conversely, AS-IV
significantly reduced LVEDp [MD = -9.41, 95%CI
(-11.54, —7.28), P < 0.01] and LVSP [MD = —14.11, 95%CI
(-20.84,-7.39), P < 0.01]. No statistically significant effect was
observed on LVIDs [MD = -0.04, 95%CI (-0.64, 0.56), P =
0.07] see Figure 4. The reasons for this lack of statistical
significance are presumably similar to those for LVIDd
LVIDs, like LVIDd, is an
indicator reflecting ventricular size and has relatively stable

discussed in Section 3.2.1:
values. In clinical practice, patients with myocardial fibrosis
often undergo a long-term pathological process; thus,
significant changes in LVIDs may be difficult to observe in
short-term animal experiments. Moreover, inherent variations
in pathological phenotypes induced by different modeling
approaches lead to significant heterogeneity in baseline
LVIDs levels and sensitivity to AS-IV. Additionally, the
small sample size and systematic errors introduced by
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Forest plots of hemodynamic parameters.

operators during ultrasonic measurements might have masked
the potential effects of AS-IV.

3.2.3 Effects of astragaloside IV on biochemical and
physiological parameters in rodent myocardial
fibrosis models

A random-effects meta-analysis revealed that AS-IV
significantly reduced levels of LDH [MD = -644.44, 95%CI
(-983.17, -305.71), P < 0.01], TNF-a [MD = -83.71, 95%CI
(-105.07, —62.35), P < 0.01], and HR [MD = —22.41, 95%CI
(-43.69, -1.14), P 0.04] in experimental models of MF.
Conversely, AS-IV significantly increased BW [MD = 16.92, 95%
CI (10.91, 22.94), P < 0.01] see Figure 5. All observed differences
reached statistical significance (P < 0.05).
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3.2.4 Sensitivity analysis and publication bias

To ensure the credibility of the conclusions drawn from this meta-
analysis, we conducted a sensitivity analysis to assess whether any
individual study would significantly affect the overall results. Using
RevMan 5.1 software, for indicators with an I> > 50% and more than
three included studies, we sequentially excluded each study one by one
and separately measured the changes in the pooled effect size and
heterogeneity after each exclusion see Figure 6. The analysis results
showed that regardless of which study was removed, there was no
significant fluctuation in the overall pooled effect size or heterogeneity,
indicating that the results of this meta-analysis have good stability. The
corresponding plot is shown in Supplementary Material 2.

Publication bias serves as a method to examine potential
biases in the outcomes of systematic reviews. In this study, we
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FIGURE 5
Forest plots related to hemodynamics.

comprehensively employed funnel plots, Begg’s test, and Egger’s
test to evaluate the overall extent of publication bias among the
included studies. Specifically, the funnel plots for four
indicators—LVEDd, LVESd, LVEFS, and LVSP—exhibited
obvious asymmetry see Figure 7. Further application of Begg’s
and Egger’s tests to these four indicators yielded P-values
all below 0.05, the
publication bias see Figure 8. The corresponding plot is shown

suggesting presence of significant
in Supplementary Material 2.

Additionally, for the LVESd and LVEDd indices, we
incorporated two pieces of virtual data (marked as squares in the
figure) using the trim-and-fill method to assess the impact of
missing studies on the pooled results. The findings indicated that
no reversal occurred, leading to the comprehensive conclusion that
the results of these indices exhibit good robustness. For the LVES
and LVSP indices, the trim-and-fill method did not detect any
missing studies caused by publication bias see Figure 9. Based on
this, we further explored the sources of heterogeneity through meta-
regression and subgroup analysis to more thoroughly unravel the
potential influencing factors of the effect size.

3.3 Meta-regression

In the present study, meta-regression analyses were conducted
on indicators exhibiting high statistical heterogeneity with 10 or
more included studies. Using species type, administration dose, and
administration duration as covariates, these analyses aimed to
explore sources of heterogeneity. The results
demonstrated that species-related factors exerted a significant
regulatory effect on LVPWd and CVF (P < 0.05); administration
dose significantly influenced the effect sizes of LVEDd, LVEDp,
LVPWd, and CVF (P < 0.05); and administration duration, in turn,

exerted a significant regulatory influence on the effect sizes of LVFS,

potential
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LVEDp, LVPWd, and +dp/dtmax (P < 0.05). Species, dose, and
duration, operating through distinct mechanisms, emerged as
significant contributors to the heterogeneity observed in the
aforementioned indicators. Meanwhile, indicators such as IVSd,
LVIDs, and body weight, due to having fewer than 10 included
studies, lacked adequate data support. The sources of their
heterogeneity require subsequent analysis with an expanded
sample size.

3.4 Subgroup analysis

Additionally, given the significant heterogeneity in studies
examining astragaloside IV’s effects on outcome indicators, we
conducted concurrent subgroup analyses based on the basic
characteristics of the included literature. These analyses aimed to
further explore, validate, and refine the conclusions drawn from the
meta-regression.

3.4.1 Species subgroup analysis of astragaloside IV
in rodent MF models

Subgroup analyses were performed based on experimental
animal types, restricted to subgroups with >3 included studies.
For indicators such as CVF, LVEDd, LVPWd, HR, and TNF-q,
the number of mouse studies was small (1-2 articles); after
exclusion, AS-IV still significantly reduced these indicators in rat
models, consistent with pre-exclusion results. For LVIDd, after
excluding studies on rats (only two articles), no significant
intervention effect was observed, which remained unchanged.
Studies on LVEF and LVEFS included data from both rats and
mice, and subgroup analyses for each species showed significant
improvements. The core effects remained stable after excluding
literature on different species, indicating that the effect of AS-IV
intervention is consistent across species. This provides evidence for
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FIGURE 6
Leave-one-out sensitivity analysis plots of partial cardiac indicators.

clinical translation. The corresponding plot is shown in

Supplementary Material 3.

3.4.2 Dose subgroup analysis of astragaloside IV in
rodent MF models

Subgroup differences in AS-IV
administration doses (with >3 included studies per subgroup)

analysis based on
revealed a dose-dependent response of cardiac structural
parameters IV: in CVF
20-60 mg/kg, with effects strengthening as the dose increased;
improvements in LVESd and LVEDd at 30-80 mg/kg (higher
doses yielding superior outcomes); reduction in LVPWd at
30-40 mg/kg and in LVMI at 40-80 mg/kg, with both effects
intensifying with increasing doses. For hemodynamic
parameters, 10-80 mg/kg elevated LVFS and LVEF (more
pronounced effects at higher doses); 10-70 mg/kg reduced
LVEDp in a dose-dependent manner; 30-60 mg/kg lowered
LVSP; and 10-60 mg/kg increased +dp/dtmax. Regarding
physiological and biochemical parameters, all tested doses
reduced LDH levels and TNF-a expression, while HR showed
an overall decreasing trend. In summary, astragaloside IV

to astragaloside reduction at
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showed predominantly positive regulatory effects on the
parameters examined, with clear dose dependence observed
for indicators including CVF, LVFS, and LVEF, supporting the
exploration of optimal dosing strategies. The corresponding plot
is shown in Supplementary Material 3.

3.4.3 Duration subgroup analysis of astragaloside
IV in rodent myocardial fibrosis models

Subgroup analysis by duration
(with >3 included studies per subgroup) showed that 28-day
and 56-day interventions reduced CVF, with the 56-day
intervention yielding superior effects, indicating a time-effect
relationship. A 56-day intervention improved indicators such as
LVEDd, LVESd, LVMI, and LVPWd with significant efficacy,
while a 28-day intervention had a limited impact on LVIDd.
Among hemodynamic parameters, 14-day, 28-day, and 56-day
interventions increased +dp/dtmax, LVEF, and LVFS, and
decreased LVEDp and LVSP; the 56-day intervention showed
more significant effects, suggesting a correlation between

administration

duration and functional improvement. A 28-day intervention
significantly reduced LDH, confirming its role in improving
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FIGURE 7

Funnel plots of partial cardiac indicators.

myocardial injury and providing support for related research. The
corresponding plot is shown in Supplementary Material 3.

4 Discussion

This meta-analysis shows that AS-IV can effectively reduce
CVF, LVESd, LVEDd, IVSd, LVPWd, and LVMIL It also
significantly lowers LVEDp and LVSP, while boosting LVES,
LVEF, and +dp/dtmax. In addition, AS-IV markedly decreases
blood levels of LDH and TNF-a, regulates HR in rodent models,
and promotes weight gain. Notably, it has no significant impact on
LVIDd and LVIDs. Previous basic research on astragaloside IV’s
anti-myocardial fibrosis effects has been scattered and lacked
comprehensive integration (Li et al., 2023b; Shan et al., 2024).

This study systematically synthesizes existing evidence, offering
a theoretical basis and strategic guidance for the clinical use of AS-IV
in cardiac diseases. It also helps assess the compound’s safety and
therapeutic efficacy, laying the groundwork for future human
clinical trials and drug development efforts. To further clarify the
complex regulatory network through which AS-IV exerts its anti-
fibrotic effects, a schematic diagram is provided below (Figure 10),
which visually summarizes its multi-targeted mechanisms and key
regulatory pathways in mitigating myocardial fibrosis.
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4.1 Effects of AS-IV on structural parameters
related to MF

CVF stands as a key histological metric for gauging MF severity,
offering a quantitative readout of fibrotic burden by assessing
collagen content in myocardial tissue. Higher CVF values signify
greater collagen accumulation and more marked fibrotic features
(Lang et al., 2025). The current study showed that AS-IV notably
lowers CVF, pointing to its potential to alleviate MF. Moreover,
these findings suggest CVF regulation in MF ties to the TGF-p/Smad
signaling pathway (Xu et al., 2023).

In rat models with MF, CVF was significantly elevated alongside
phosphorylated Smad2
(P-Smad2), and type I collagen—changes that in turn promote

upregulated expression of TGF-pI,
collagen synthesis and deposition (Zeng et al., 2023). These

results mirror those from hypoxia-induced myocardial
hypertrophy models, where AS-IV reduces collagen deposition
(particularly type I collagen) by inhibiting the TGEF-p1/
Smad2 pathway, lowers CVF, and also increases IVSd and LVMI
(Zhang et al., 2024).

Meanwhile, increases in LVESd and LVEDd raise myocardial
wall tension, in turn exacerbating myocardial injury and fibrosis.
Reducing LVESd and LVEDd thus plays a key role in improving

ventricular perfusion. AS-IV has been shown to mitigate ventricular

frontiersin.org


mailto:Image of FPHAR_fphar-2025-1625774_wc_f7|tif
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1625774

Li et al.

10.3389/fphar.2025.1625774

LVFS

Egger's publication bias plot
40 °

standardized effect

precision
Egger’s publication bias plot
0
L °
° °
3
°
-5+ °
8
P _‘w—\
= % 0
3 °
& -10 o Q
= °
2 o
s
3 °
15 4
°
220 -
] 50 100

precision

FIGURE 8
Egger’s plots of partial cardiac indicators.

dilation by repairing myocardial damage, boosting contractile
function, reducing lipid accumulation, and downregulating pro-
fibrotic factor expression (Li et al, 2023a). Additionally, its
derivative HHQI16 acts directly on cardiomyocytes, helping
reverse myocardial hypertrophy and post-infarction ventricular
remodeling, reducing LVESd and LVEDd, and significantly
improving cardiac function (Wan et al,, 2023).

Taken together, AS-IV regulates CVF, lowers such markers as
LVESd, LVEDd, IVSd, and LVMI, and inhibits activation of the
TGF-B/Smad pathway—effects that in turn reduce collagen buildup
and effectively curb MF.

4.2 Regulatory effects of AS-IV on
myocardial cell apoptosis and
inflammatory response

TNF-a is a core pro-inflammatory mediator, and AS-IV can
improve its level. It may alleviate 2-deoxy-D-glucose (2-DG)-
induced apoptosis in PCI12 cells by inhibiting endoplasmic
reticulum stress and blocking the opening of the mitochondrial
permeability transition pore (mPTP), thereby significantly
reducing the expression of the apoptotic marker Caspase-3

Frontiers in Pharmacology

14

LVSP

Egger's publication bias plot

20
8 ° ©
s °
¥ o
°
5 ° o
5 °
g °
[
s
% °
o o "
B
o, °
°
20 °
@
T T T T
0 2 4 (]

precision

LVEDd

Egger's publication bias plot

standardized effect

20 S

T
40
precision

(Wan et al, 2023) and further mitigating the inflammatory
it M2  microglial
polarization by activating the PI3K/AKT signaling pathway,

response. Furthermore, can promote
thereby alleviating neuroinflammation and cerebral damage
(Wang Z. et al,, 2024). These findings suggest that AS-IV may
exert cardioprotective effects through similar molecular
mechanisms.

In a lipopolysaccharide (LPS)-induced cardiac dysfunction
model, AS-IV dampens NLRP3 inflammasome activation,
reducing the release of pro-inflammatory cytokines like IL-
1B. At the same time, it reins in mitochondrial function and
curbs the production of reactive oxygen species (ROS) (Fu et al.,
2020; Feng et al., 2021). It also increases the PPARY signaling
pathway, strengthens the Nrf2/HO-1 antioxidant pathway, and
reduces excessive iNOS and nitric oxide production (Liang
et al.,, 2023).

These mechanisms point to AS-IV’s ability to exert a
synergistic regulatory effect on cardiomyocyte apoptosis and
inflammatory responses via multi-target actions. Its impacts
span antioxidation, mitochondrial protection, and metabolic
reprogramming—all of which lay a theoretical groundwork for
its use in cardiovascular diseases (Chen et al., 2021; Zaman et al.,

2022; Zhai et al., 2024).
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FIGURE 9

Trim-and-fill analysis plots of cardiac indicators.

4.3 Ameliorative effects of AS-1V on cardiac
hemodynamic parameters

AS-IV reduces LVEDp significantly by boosting myocardial
diastolic function. In myocardial ischemia-reperfusion (I/R)
injury models, pre-treating with AS-IV reduces microvascular
leakage (MVL), which in turn eases cardiac edema and diastolic
dysfunction, consistent with the drop in LVEDp (He et al., 2022). At
the same time, AS-IV can repair mitochondrial function, curb ROS
buildup, and improve calcium handling in cardiomyocytes, all of
which lower LVEDp (Wang et al., 2024b; Wang et al., 2024c).

In sepsis-induced cardiomyopathy models, AS-IV increases
myocardial contractility by restoring mitochondrial balance and
endoplasmic reticulum function (Su et al., 2022). It also increases
endothelial nitric oxide synthase (eNOS) activity, spurring more
nitric oxide (NO) production. This mitigates oxidative stress-related
myocardial damage and keeps LVSP stable (Meng et al., 2021; Leng
et al., 2020).

Studies show AS-IV improves ventricular geometric remodeling
by shrinking LVEDp and LVSP. In chronic kidney disease (CKD)
models with concurrent myocardial injury, AS-IV eases ventricular
dilation by blocking the renin-angiotensin system (RAS) and fibrotic
signaling pathways (Li et al, 2023b; Li et al, 2022). Notably,
combining AS-IV with other active compounds like tanshinone
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ITA synergistically enhances LVEDp and LVSP, yielding a more
robust cardioprotective effect (Zhai et al., 2024).

In short, AS-IV eases cardiac dysfunction by comprehensively
regulating LVEDp and LVSP through a multi-target mechanism.

4.4 Enhancing effects of AS-IV on cardiac
systolic and diastolic function

AS-1V, the primary bioactive component in Astragalus, delivers
a range of cardioprotective effects by boosting both systolic and
diastolic heart function. Under hypoxic conditions, it significantly
eases myocardial hypertrophy and cardiac injury—effects likely tied
to curbing oxidative stress and regulating energy metabolism (Zhang
et al.,, 2024).

What is more, in diabetic cardiomyopathy (DCM), AS-IV helps
repair myocardial damage, increases contractile function, and reduces
lipid buildup (Li et al., 2023a). It also enhances vascular relaxation by
reversing oxidative stress-induced endothelial dysfunction, doing so
by increasing eNOS activity and boosting NO levels.

AS-IV markedly improves cardiac systolic and diastolic function
through multi-target, multi-pathway actions. Its key mechanisms include
antioxidant and anti-inflammatory activity, regulating mitochondrial
dynamics, and tweaking various signaling pathways (He et al., 2022).
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4.5 Potential role of BW and HR regulation in
AS-1V-mediated anti-fibrosis

Myocardial cells in underweight individuals often suffer from
long-term malnutrition, which impairs their energy metabolism and
weakens their self-repair capacity (Fernandez-Patron et al., 2024).
Studies show AS-IV can boost body weight in rodent models,
hinting that the compound might aid myocardial repair and
regeneration by ensuring adequate protein supply, thus slowing
fibrosis progression.

Weight gain correlates with preserving key cardiac function
markers like myocardial contractility and cardiac output, which may
ease fibrosis’s harmful impact on heart performance. What is more,
a reduced heart rate can improve myocardial oxygen use, reduce
cardiac afterload, and, in turn, slow the progression of MF.

4.6 Analysis of limitations

This systematic review has certain limitations: 1) Currently,
the pharmacokinetic characteristics of astragaloside IV in humans
remain unclear, and the efficacy observed in animal experiments
cannot be directly extrapolated to clinical dosing regimens in
humans; 2) most animal experiments involve short-term
interventions, which do not align with the actual clinical
scenario of long-term fibrosis requiring continuous treatment.
This may lead to an underestimation of long-term drug efficacy
or overlook delayed adverse reactions, thereby affecting the
benefit-risk assessment; 3) the pathogenic mechanisms of
animal models differ significantly from those of human chronic

fibrosis, resulting in model-dependent bias; 4) there is uncertainty
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regarding the application of allocation concealment in all included
studies, and it remains unclear whether implementers of
which
considerable selection bias into the results; 5) variations in

interventions used blinding methods, introduces
administration dosages and intervention durations are likely to
induce heterogeneity in outcomes, undermining the stability,
reliability, and generalizability of the conclusions. It is
anticipated that more high-quality literature will be included in
studies to obtain robust  evidence-based

future more

medical evidence.

5 Conclusion

This meta-analysis found that AS-IV significantly alleviates
myocardial injury and oxidative stress in rodent MF models,
effectively improving ventricular diastolic and systolic function
while reducing cardiomyocyte necrosis and apoptosis.
Additionally, BW and HR may indirectly regulate fibrosis
progression by influencing myocardial oxygen supply-demand
balance. Future studies should adopt standardized experimental
designs and dose-optimization strategies, with inclusion of
higher-quality evidence to enhance the robustness of findings and
support clinical translation.
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