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Objective: This study aims to systematically investigate the clinical efficacy and
mechanisms of glucagon-like peptide-1 (GLP-1) receptor agonists (GLP-1 RAs) in
the treatment of knee osteoarthritis (KOA), elucidate their underlying
mechanisms, and propose potential future research directions.
Design: This study followed the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses guidelines. We reviewed literature from PubMed, Embase,
Web of Science, Cochrane Library, and ClinicalTrials.gov up to 31 December
2024. The search strategy combined “GLP-1″ and “KOA”. We included studies on
GLP-1 RAs and KOA in humans and animals, excluding conference abstracts,
reviews, letters, case reports, and other similar types of publications.
Findings: Fifteen studies were included, covering six clinical investigations and
nine fundamental research studies. Clinical evidence showed GLP-1 RAs
significantly improved pain scores and function while reducing KOA incidence.
Mechanistic studies reveal multi-target effects, including: 1) Metabolic regulation,
2) Anti-inflammatory action, and 3) Cartilage preservation through autophagy
activation and apoptosis inhibition. Safety analysis notes gastrointestinal and
tumor events. At the same time, we are concerned about a declining trend in
long-term compliance with GLP-1 RAs.
Conclusion: These findings positioned GLP-1 RAs as promising disease-
modifying agents for metabolic-associated KOA, particularly in obese or
diabetic subpopulations. While current evidence supports therapeutic
potential, confirmatory phase III trials and long-term safety monitoring are
needed to establish clinical guidelines.
Systematic Review: https://www.crd.york.ac.uk/PROSPERO2/view/
CRD420250656321, Identifier, CRD420250656321.
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Introduction

Knee osteoarthritis (KOA), a prevalent chronic degenerative joint
disorder, is predominantly characterized by the progressive
deterioration of articular cartilage. Its pathogenesis involves aging,
obesity, joint injury, genetic predisposition, biomechanical imbalance,
and lifestyle factors (Giorgino et al., 2023; Gelber, 2024). As the disease
progresses, patients typically present with a constellation of
symptoms, including persistent joint pain, stiffness, swelling, and
progressive limitation of motion. A 2020 cohort study reported a
global prevalence of KOA of 16.0% among individuals aged ≥15 years,
increasing to 22.9% in those ≥40 years (Cui et al., 2020). Recent
projections suggested a substantial 74.9% increase in KOA prevalence
by 2050 compared to 2020 (Steinmetz et al., 2023). The disease burden
of KOA is profound, with lifetime medical costs per patient in the
United States reaching up to $140,300 and imposing significant
economic burdens through productivity losses that affect
individuals, families, and society (Losina et al., 2015; Leifer
et al., 2022).

Recent research underscores the link betweenmetabolic disorders,
particularly obesity and diabetes, and KOA (Dubey et al., 2018; Eitner
et al., 2021; Chowdhury et al., 2022; Wei et al., 2023). Obese
individuals face a threefold higher KOA risk compared to healthy-
weight individuals (Reyes et al., 2016). A cross-sectional study also
found a positive correlation between dietary glycemic index and KOA
prevalence in women (So et al., 2018). Intriguingly, overweight and
obese individuals also show an increased risk of hand osteoarthritis,
suggesting systemic effects beyond mechanical loading (Reyes et al.,
2016; Plotz et al., 2021; Badley et al., 2022). Given the established link
between metabolic dysregulation and KOA progression,
pharmacological interventions targeting metabolic pathways have
emerged as potential therapeutic candidates.

Glucagon-like peptide-1 (GLP-1) receptor agonists (GLP-
1 RAs), a novel class of antidiabetic agents acting on GLP-1
receptors, exert dual glycemic control and weight-loss effects via
enhancing insulin secretion, appetite suppression, and delayed
gastric emptying (Ard et al., 2021). Emerging evidence suggests
their potential extra-glycemic benefits, including anti-inflammatory
and chondroprotective properties, may synergistically ameliorate
KOA progression. The Phase 3 STEP9 trial showed that semaglutide,
a kind of GLP-1 RAs, reduces body weight and alleviates knee pain
in obese KOA patients (Bliddal et al., 2024). However, some studies,
like a placebo-controlled trial, found no significant pain reduction
with liraglutide (Gudbergsen et al., 2021). A case report also noted
joint pain in a patient on liraglutide, which resolved after
discontinuation (Ambrosio et al., 2014). Available evidence
indicates that GLP-1 RAs are commonly associated with
gastrointestinal adverse events, which may curtail long-term
adherence (Bliddal et al., 2024; Gudbergsen et al., 2021).

Among GLP-1 RAs, semaglutide and tirzepatide are primarily
indicated for weight management, while dulaglutide is
predominantly used for glycemic control and liraglutide for both
indications. However, since all GLP-1 RAs share a common
mechanistic pathway through GLP-1 receptor activation—and
given that this review focuses specifically on KOA outcomes—we
will analyze them collectively as a single pharmacological class
rather than distinguishing between individual agents. Currently,
there remains a critical gap in the literature regarding the

comprehensive effects of GLP-1 RAs on KOA. This study,
therefore, aims to (1) systematically evaluate the clinical efficacy
of GLP-1 RAs in KOA management, (2) elucidate their underlying
therapeutic mechanisms, and (3) identify key directions for future
research in this emerging field.

Methods

This systematic review was registered on the PROSPERO
(Registration number: CRD420250656321). This study followed
the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guidelines. (Appendix S1).

Literature search

We performed a comprehensive search across PubMed, Embase,
Web of Science, Cochrane Library, and ClinicalTrials.gov up to
31 December 2024. Reference lists of relevant reviews were also
screened. The search strategy combined MeSH terms and free-text
words, including “Glucagon-Like Peptide 1 [MeSH]”, “GLP-1″,
“Semaglutide”, “Liraglutide”, “Saxenda”, “Tirzepatide”,
“Albiglutide”, “Exenatide”, “Dulaglutide”, “Beinaglutide”,
“Polyethylene glycol loxenatide”, “Lixisenatide”, “Loxenatide”,
“Mashidutide”, paired with “Osteoarthritis, knee [MeSH]”,
“Degeneration of the knee”, “Knee joint”, “Knee OA”, and
“KOA”. The full search strategy is shown in Appendix S2.

Inclusion and exclusion criteria

Eligible studies included original research investigating GLP-1
RAs in KOA, using either human participants or animal models,
which reported outcomes involving pain, function, safety, cartilage
degradation, or mechanistic pathways. Studies were excluded if they
constituted reviews, case reports, conference abstracts, or letters.

Literature screening and data
extraction

Two researchers independently screened and extracted data,
with a third resolving discrepancies. The process involved (1)
searching databases and removing duplicates; (2) excluding
irrelevant works (e.g., conference papers, reviews, case reports,
etc.); and (3) a full-text reading of remaining articles against
inclusion criteria. Data extracted included study details, clinical
trial characteristics, primary endpoints, and biochemical results.

Quality assessment

The quality of included randomized controlled trials (RCTs) was
assessed using the Cochrane tool “Risk of Bias 2”. For cohort studies,
quality evaluation was performed using the Newcastle-Ottawa Scale
(NOS) with a maximum score of 9 stars, where studies
scoring <7 stars were classified as moderate/low quality and those
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with ≥7 stars as high quality (Cook and Reed, 2015). Non-comparative
studies were appraised through the first 8 items of the Methodological
Index for Non-Randomized Studies (MINORS), yielding a total score of
16 points. Quality stratification was defined as follows: 0–4 points (very
low quality), 5-7 points (low quality), 8–12 points (moderate quality),
and ≥13 points (high quality) (Slim et al., 2003). Given the exploratory
nature of preclinical findings and heterogeneity in experimental designs,
quality assessment was intentionally restricted to clinical evidence
supporting primary outcomes.

Results

The initial literature search identified 656 potentially relevant
studies dedicated to 522 unique records. After excluding 194 non-
targeted publications (e.g., conference proceedings, reviews, letters,
case reports, research registries, etc.), 328 articles remained.
Screening of titles and abstracts yielded 30 articles for full-text
evaluation, with 15 meeting the inclusion criteria. The selection
process is summarized in Figure 1.

Characteristics of included studies

Fifteen studies included six clinical investigations and nine
fundamental research studies.

Clinical investigations

Three RCTs, two prospective cohort studies, and one single-arm
interventional study were included. Participants were individuals with
KOA who were obese or had diabetes, as well as obese individuals
without KOA. Interventions involved GLP-1 RAs such as tirzepatide,
semaglutide, liraglutide, etc. Treatment durations ranged from 6months
to 5 years, with some studies lacking specific timeframes. Despite the
potential overlap in research teams, studies were included based on
distinct data collection timelines andmethodological differences (Bliddal
et al., 2024; Gudbergsen et al., 2021; Bartholdy et al., 2022; Table 1).

Fundamental research

Focused on animal models and cellular experiments. Animal
studies assessed body weight, functional scores, pain behavior, and
histomorphological changes. Cellular experiments explored
inflammation, oxidative stress (OS), matrix metabolism,
apoptosis, autophagy, and signaling pathways.

Quality assessment

Two RCTs were rated as high risk of bias due to inadequate
reporting of randomization procedures (Figure 2). Both cohort

FIGURE 1
Flowchart of literature search and screening process.
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TABLE 1 Basic characteristics of the included clinical trials.

Study Country Study
design

Population Age (mean ±
SD)

Experimental/
Control

Sample size (F)
Experimental/

Control

Medical prescription Duration of
use of drugs

Follow-up
time

Outcome
indicators

NOS/
MINORS

Experimental Control

Bartholdy
et al. (2022)

Denmark Randomized
controlled trial

KOA with K-L graded
from 1 to 3
Age 18 to 74
Overweight or obesity
(BMI≥27 kg/m2), with
or without T2D (5.8%–
10.6%)
Weight loss ≥5% after
the 8-week intensive
dietary intervention

58.8 ± 11.3/58.6 ± 9.6 66(43)/69(44) Liraglutide: Starting with
0.6 mg/day increasing
biweekly by 0.6 mg/day
until 3 mg/day

Placebo: Identically
appearing placebo

1 year 1 year Physical activity
KOOS function
Body weight

Bliddal et al.
(2024)

Denmark Double-blind,
randomized,
placebo-controlled
trial

KOA with K-L graded
2 or 3
Age ≥18
Obesity with
BMI ≥30 kg/m2

WOMAC pain score
(0–100, the higher the
score, the worse the
pain.) ≥ 40

56.0 ± 10.0/56.0 ± 10.0 271(228)/136(104) Semaglutide: Once-weekly
subcutaneous semaglutide
(initiated at a dose of
0.24 mg, with dose
escalation intended to reach
the 2.4-mg target at
week 16)

Placebo: Visually
identical placebo

68 weeks 7 weeks Body weight
WOMAC
SF-36

Gudbergsen
et al. (2021)

Denmark Randomized
controlled trial

KOA with K-L graded
from 1 to 3
Age 18 to 74
Overweight or obesity
with BMI≥27 kg/m2

Weight loss ≥5% after
the 8-week intensive
dietary intervention

59.2 ± 10.8/59.3 ± 9.7 80(52)/76(49) Liraglutide: Starting with
0.6 mg/d and followed by
incremental biweekly dose
escalation steps of 0.6 mg/d
to liraglutide 3 mg/d

Placebo: Identically
appearing placebo

52 weeks Once at 4-week
intervals during

treatment

Body weight
KOOS pain
subscale
ICOAP
questionnaire
KOOS score
WOMAC
Anthropometry
Responder indices

Lavu et al.
(2024)

United States of
America

Retrospective
cohort study

Obese diabetic with
BMI ≥30 kg/m2

Had a T2D diagnosis
Followed up for at least
5 years
Pre-existing hip and/or
knee OA was excluded

55.4 ± 11.7/55.4 ± 12.4 15693(9037)/
15693(9003)

GLP-1 RAs No GLP-1 RAs Patients initiated
during their initial visit
between 2015 and
2017 and were

followed until the
conclusion of the study

in 2020–2022

At least 5 years Rates of diagnosis
for KOA/TKA
BMI
HbA1c

8

Obese non-diabetic with
BMI ≥30 kg/m2

Had no a T2D diagnosis
Followed up for at least
5 years
Pre-existing hip and/or
knee OA was excluded

47.4 ± 12.9/47.4 ± 12.9 1859(1502)/
1859(1507)

GLP-1 RAs No GLP-1 RAs Patients initiated
during their initial visit
between 2015 and
2017 and were

followed until the
conclusion of the study

in 2020–2022

At least 5 years Rates of diagnosis
for KOA/TKA
BMI
HbA1c

(Continued on following page)
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TABLE 1 (Continued) Basic characteristics of the included clinical trials.

Study Country Study
design

Population Age (mean ±
SD)

Experimental/
Control

Sample size (F)
Experimental/

Control

Medical prescription Duration of
use of drugs

Follow-up
time

Outcome
indicators

NOS/
MINORS

Experimental Control

Non-obese diabetic
patients with
BMI ≤30 kg/m2

Had a T2D diagnosis
Followed up for at least
5 years
Pre-existing hip and/or
knee OA was excluded

58.3 ± 11.5/58.0 ± 12.2 6019(3382)/
6019(3320)

GLP-1 RAs No GLP-1 RAs Patients initiated
during their initial visit
between 2015 and
2017 and were

followed until the
conclusion of the study

in 2020–2022

At least 5 years Rates of diagnosis
for KOA/TKA
BMI
HbA1c

Zhu et al.
(2023)

China Prospective,
observational,

multicentre cohort
study

KOA with T2D
K-L graded from 1 to 3
Followed up for at least
5 years

60.7 ± 8.7/61.2 ± 8.6 233(174)/1574(1145) Among GLP-1 RA users,
93.5% were concurrently
prescribed oral antidiabetic
drugs and 63.5% received
concomitant insulin
therapy

Among Non-GLP-
1 RAs users, 92.4%
were concurrently
prescribed oral
antidiabetic drugs
and 63.0% received
concomitant insulin
therapy

At least 2 years,
average about 4.9 years

At least 5 years,
average

7.7–7.8 years

Knee surgery
incidence
Pain-relieving
medication use
Number of intra-
articular Therapies
WOMAC
Cartilage thickness
Medial femorotibial
joint cartilage
thickness

9

Samajdar
et al. (2024)

India Single-arm,
record-based
observational

study

KOA with T2D
Age ≥60 years
Conventional treatment
for at least 3 months

67.1 ± 4.5 98 (40) Patients received
dulaglutide added to
ongoing anti-diabetes
regimens; existing
medications like sitagliptin,
linagliptin and vildagliptin
were stopped. Concomitant
OA treatments (including
NSAIDs) were used for at
least 3 months prior

At least 6 months Baseline, after
3 months and
6 months

Glycemic metrics
VAS scores
NSAIDs
consumption
Body weight
BMI.

7

BMI, body mass index; F, female; GLP-1 RAs, Glucagon-like peptide-1 receptor agonists; HbA1c, Hemoglobin A1c; ICOAP, intermittent and constant osteoarthritis pain; K-L, Kellgren-Lawrence score; KOA, knee osteoarthritis; KOOS, knee injury and osteoarthritis

outcome score; MINORS, Methodological Index for Non-randomized Studies; NOS, Newcastle-Ottawa scale; NSAIDs, Non-steroidal anti-inflammatory drugs; SD, standard deviation; SF-36, 36-Item Short Form Health Survey; T2D, Type 2 diabetes; TKA, total knee

arthroplasties; VAS, visual analogue scale; WOMAC, Western Ontario and McMaster Universities Osteoarthritis Index.
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studies achieved NOS scores exceeding 7 stars, meeting predefined
thresholds for high methodological quality. The single-arm study
received a low-quality rating (MINORS score: 7/16) primarily
attributable to its non-prospective design and substantial loss to
follow-up (12.5%) (Table 1).

Clinical efficacy of GLP-1 RAs on KOA

The primary outcomes, which include weight, pain, joint
function, KOA risk, and safety, are summarized in Table 2.

Body weight

Six studies evaluated body weight changes. One RCT
(Gudbergsen et al., 2021) reported a 2.8 kg weight loss with
liraglutide at 52 weeks versus a 1.2 kg gain in the placebo group
(P = 0.008). A significantly higher proportion of patients in the
liraglutide group achieved >5% weight loss compared to the placebo
group (35% vs. 17.1%, P = 0.024), although no difference reached
statistical significance for the more stringent >10% weight loss
threshold. Another RCT (Bartholdy et al., 2022) found that
liraglutide produced significantly greater weight loss than placebo
in participants with overweight or obesity (mean between-group
difference 4.1 kg, 95% CI −6.0 kg to −2.1 kg; P < 0.0001). Similarly,
semaglutide led to a 13.7% weight loss at 68 weeks, compared to
3.2% in the placebo group (P < 0.001) (Bliddal et al., 2024). A cohort
study (Zhu et al., 2023) of KOA patients with type 2 diabetes (T2D)
reported significantly greater weight loss in the GLP-1 RAs group
(mean difference −7.29 kg; 95% CI −8.07 to −6.50 kg; P < 0.001),
although 42.06% of GLP-1 RAs users still maintained or gained
weight. In the single-arm study by Samajdar et al. (2024) of
40 patients with KOA and T2D, dulaglutide reduced mean body
weight from 81.6 ± 8.4 kg to 73.3 ± 7.5 kg (−8.3 kg, P < 0.001) and
mean body mass index (BMI) from 30.6 ± 3.5 kg/m2 to 27.5 ± 3.2 kg/
m2 (−3.1 kg/m2, P < 0.001) over 6months. However, an investigation
(Lavu et al., 2024) found no statistically significant difference in BMI
changes over 2 years between patients receiving GLP-1 RAs and
those who did not.

Pain

Four studies assessed pain. One RCT (Gudbergsen et al., 2021)
found no significant differences between the groups in pain
trajectory or the Western Ontario and McMaster Universities
Osteoarthritis Index (WOMAC) pain subscale scores over
52 weeks. Another RCT (Bliddal et al., 2024) reported that
semaglutide significantly reduced the WOMAC pain subscale
scores (41.7 vs. 27.5 points, P < 0.001) and the use of non-
steroidal anti-inflammatory drugs (NSAIDs) or acetaminophen.
A cohort study (Zhu et al., 2023) reported significant WOMAC
pain subscale score improvements in the GLP-1 RAs group,
independent of weight loss or Hemoglobin A1c (HbA1c).
Compared to the non-GLP-1 RAs group, the GLP-1 RAs group
showed only numerical, non-statistically significant reductions in
the annual consumption of oral NSAIDs, acetaminophen, topical

NSAIDs, opioids, and the number of intra-articular treatments. The
frequency of intra-articular steroid injections was markedly
diminished in the GLP-1 RAs group, with an adjusted mean
difference of −0.087 injections per year (95% CI −0.14 to −0.036;
P < 0.001). Within-group, the GLP-1 RAs group revealed significant
improvements in all pain-related metrics except for opioid use.
Similarly, a single-arm study (Samajdar et al., 2024) demonstrated
that dulaglutide improved pain and reduced NSAIDs consumption.

Function

Four studies evaluated functional outcomes. Liraglutide
(Bartholdy et al., 2022) improved the Knee Injury and
Osteoarthritis Outcome Score (KOOS) function scores by
3.7 points (baseline 81.0 ± 15.1) versus −0.1 for placebo (baseline
85.1 ± 10.7); between-group difference 3.8 points (95% CI 0.9–6.7,
P = 0.01). Semaglutide (Bliddal et al., 2024) reduced WOMAC
physical function by 14.9 points (95% CI −20.4 to −9.3, P < 0.001)
and stiffness by 15.9 points (95% CI −23.2 to −8.6, P < 0.001), and
increased 6-min walk distance by 42.6 m versus placebo (95% CI
25.6–59.7, P < 0.001). However, one RCT (Gudbergsen et al., 2021)
found no significant differences in KOOS subscales. A cohort study
(Zhu et al., 2023) found the GLP-1 RA group achieved significantly
greater WOMAC total score improvement than controls (adjusted
mean difference −1.46, 95% CI −2.84 to −0.08; P = 0.038).

KOA risk

Two cohort studies examined KOA risk. One (Zhu et al., 2023)
found a lower surgery rate in the GLP-1 RAs group (1.7% vs. 5.9%,
P = 0.005), while another (Lavu et al., 2024) reported a higher KOA
prevalence in GLP-1 RAs users (11.0% vs. 7.4%, P < 0.05).

Other outcomes

Cartilage Degeneration:A cohort study (Zhu et al., 2023) found
slower cartilage degeneration in GLP-1 RA users (P = 0.026),
independent of weight loss or HbA1c.

Glycemic Control: A single-arm study (Samajdar et al., 2024)
reported dulaglutide improved HbA1c, fasting glucose, and
postprandial glucose, with pain reduction correlating with HbA1c
improvements.

Blood Pressure: Semaglutide reduced systolic and diastolic
blood pressure (Bliddal et al., 2024).

Treatment Adherence: A cohort study (Lavu et al., 2024) noted
declining GLP-1 RAs utilization over time.

Safety

Three studies reported adverse events. Liraglutide had a higher
withdrawal rate (12.5% vs. 5.3%), primarily due to gastrointestinal
disorders (Gudbergsen et al., 2021). Semaglutide showed a slightly
higher adverse event rate (10.0% vs. 8.1%), with tumor-related and
gastrointestinal events being the most common (Bliddal et al., 2024).
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Dulaglutide was generally well-tolerated, with manageable
gastrointestinal side effects (Samajdar et al., 2024).

Fundamental research on the effects of
GLP-1 RAs on KOA

GLP-1 receptor expression

Multiple studies have reported GLP-1 receptor expression in
articular cartilage, synovium, and other joint tissues. Compared with
healthy cartilage, degenerated cartilage shows lower GLP-1 receptor
expression (Chen et al., 2018); similar downregulation is observed in
monosodium iodoacetate (MIA) -treated rat cartilage (Que et al.,
2019). In human chondrocytes, advanced glycation end products
(AGEs) further reduce GLP-1 receptor levels. GLP-1 receptors are
distributed across cartilage, meniscus, bone marrow, and synovial

tissue in both KOA and healthy models (Meurot et al., 2022).
Liraglutide treatment increases GLP-1 receptor expression in
degenerative models (Que et al., 2019).

Analgesic effects

Meurot et al. (2022) showed that the GLP-1 RA liraglutide
produces robust, dose-dependent analgesia in a murine model of
osteoarthritis. A single intra-articular injection elevated paw-
withdrawal thresholds within 3 days, and the benefit persisted
through day 10. At 20 μg, liraglutide matched 20 µg
dexamethasone on days 3 and 7 and surpassed it on day 10,
while simultaneously attenuating synovitis. In a 28-day regimen,
liraglutide sustained analgesia beyond the corticosteroid’s waning
effect, outperforming dexamethasone on day 14 and matching it on
days 21 and 28.

FIGURE 2
Risk of bias for RCTs. (A) Summary of risk of bias; (B) Percentage of risk of bias.

TABLE 2 Clinical trial outcomes of GLP-1 RAs in the treatment of KOA.

Study Body weight Pain Function Risk of KOA Other Safety

Bartholdy et al. (2022) + +

Bliddal et al. (2024) + + + -

Gudbergsen et al. (2021) + = = -

Lavu et al. (2024) = -

Samajdar et al. (2024) + = Blood glucose (+)

Zhu et al. (2023) + + + + Cartilage (+)

The symbol “+” indicates a favoring of the GLP-1 RAs group; the symbol “ = “ indicates that the two groups are equivalent; and the symbol “-“ indicates a favoring of the control group.

GLP-1 RAs, Glucagon-like peptide-1 receptor agonists; KOA, knee osteoarthritis.
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Body weight
Two studies investigated the effects of GLP-1 RAs on body weight

in murine models of osteoarthritis, yet reported contradictory
findings. The first study (Que et al., 2019) demonstrated a
significant reduction in body weight in osteoarthritis model rats
following liraglutide administration. In contrast, the second study
(Meurot et al., 2022) revealed that neither short-term (10-day) nor
extended (28-day) liraglutide treatment exerted any measurable effect
on body weight in osteoarthritis model mice.

Anti-inflammatory
Seven studies have demonstrated the anti-inflammatory effects

of GLP-1 RAs. Liraglutide (Que et al., 2019) and lixisenatide (Li
et al., 2019) both suppress tumor necrosis factor-α (TNF-α),
interleukin (IL) −6, and IL-1β. Consistently, exenatide-4 (Tong
et al., 2019) and liraglutide (Mei et al., 2019) concurrently
attenuate gene and protein expression of TNF-α, IL-1β, IL-6, and
monocyte chemoattractant protein (MCP) −1. Dulaglutide further
elevates prostaglandin E2 (PGE2) and its synthesizing enzyme
cyclooxygenase 2 (COX-2) while repressing IL-6, IL-8, and MCP-
1 in human SW1353 chondrocytes at both transcriptional and
translational levels (Li et al., 2020). In murine primary
chondrocytes, liraglutide dose-dependently diminishes secretion
of nitrite, PGE2, and IL-6, and similar concentration-dependent
reductions in nitric oxide (NO), PGE2, and IL-6 release—together
with decreased expression of IL-6, COX-2, and TNF-α—are
observed in RAW264.7 macrophages. Mechanistically, liraglutide
skews macrophage polarization toward an anti-inflammatory
phenotype by down-regulating M1-associated MCP-1 and
CD38 while up-regulating the M2 marker early growth response
protein 2 (Meurot et al., 2022). Finally, one study (Zhang et al., 2024)
showed that liraglutide blunts AGEs–induced production of IL-1β,
IL-6, IL-12, and TNF-α in primary chondrocytes, underscoring its
broad anti-inflammatory potential.

Oxidative stress

Four studies demonstrated that GLP-1 RAs reduce OS. One
study (Tong et al., 2019) found that exendin-4 dose-dependently
lowered reactive oxygen species (ROS) production and reversed
AGEs-induced glutathione depletion. Similarly, another study (Li
et al., 2019) showed that lixisenatide (20 nM) normalized OS
markers 4-hydroxynonenal (4-HNE) and NADPH oxidase 4
(NOX-4) to near-basal levels. One study (Mei et al., 2019)
reported that liraglutide dose-dependently suppressed TNF-α-
induced ROS in osteoarthritis. Additionally, one study (Li et al.,
2020) observed that dulaglutide (50 and 100 nM) significantly
reduced AGEs-induced OS from 4.2-fold to 2.5-fold and 1.7-fold.

Anti-catabolic

Eight studies demonstrated the anti-catabolic effects of GLP-1
RAs. Four studies showed that liraglutide downregulates the
expression of matrix metalloproteinase-1/3/13 (MMP-1/3/13) and
A disintegrin and metalloproteinase with thrombospondin motifs-
4/5 (ADAMTS-4/5) while reducing glycosaminoglycan release from

the cartilage extracellular matrix (ECM) (Chen et al., 2018; Meurot
et al., 2022; Mei et al., 2019; Zhang et al., 2024), preserving type II
collagen and aggrecan. Similar effects were observed with
lixisenatide, exenatide, and dulaglutide, which also suppressed
MMP-3/13 and ADAMTS-4/5 (Li et al., 2019; Tong et al., 2019;
Li et al., 2020). Additionally, geniposide protected against MIA-
induced osteoarthritis in rats by reducing MMP-13 and enhancing
type II collagen expression (Huang et al., 2023).

Apoptosis
Two studies explored the role of GLP-1 RAs in apoptosis. One

study (Chen et al., 2018) demonstrated that liraglutide reduced pro-
apoptotic proteins (cleaved-caspase 3, Bax) while increasing anti-
apoptotic Bcl-2 in chondrocytes. In rats, it decreased C/EBP
homologous protein (CHOP) and caspase-3, alleviating
osteoarthritis. A recent study (Zhang et al., 2024) further showed
that liraglutide (>100 nM) attenuated AGE-induced chondrocyte
apoptosis by suppressing caspase-3 and downregulating the receptor
for advanced glycation end products (RAGE).

Autophagy
One study (Huang et al., 2023) demonstrated that GLP-1 RAs

enhance autophagy in human normal chondrocyte C28/I2 cells by
decreasing p62 and increasing Beclin-1 and LC3-II expression,
thereby protecting chondrocytes.

Mitochondrial dysfunction

A study (Li et al., 2019) demonstrated that lixisenatide dose-
dependently restored AGE-induced reductions in mitochondrial
membrane potential (MMP) and adenosine triphosphate (ATP),
with 20 mg nearly normalizing both parameters.

Signaling pathway
Seven studies indicate that GLP-1 RAs protect articular cartilage

by modulating Nuclear Factor Kappa-B (NF-κB), Protein Kinase A
(PKA)/cyclic adenosine monophosphate response element-binding
protein (CREB), Phosphoinositide 3-Kinase (PI3K)/Protein Kinase
B (Akt), and AMP-activated Protein Kinase (AMPK)/Mammalian
Target of Rapamycin (mTOR) pathways.

NF-κB pathway
The NF-κB pathway, linked to inflammation, apoptosis, and

matrix degradation, is inhibited by liraglutide (Chen et al., 2018;
Mei et al., 2019). Lixisenatide reduces AGE-induced IkBα
phosphorylation, p65 nuclear translocation, and NF-κB activation
(Li et al., 2019). Exendin-4 suppresses NF-κB activation by decreasing
p38 phosphorylation, p65 nuclear translocation, and luciferase activity
dose-dependently (Tong et al., 2019). Dulaglutide inhibits NF-κB
activation by reducing AGE-mediated p65 nuclear translocation and
luciferase activity in chondrocytes dose-dependently (Li et al., 2020).

PKA/CREB pathway
A study (Que et al., 2019) demonstrated that liraglutide activates

the PKA/CREB pathway by upregulating PKA/p-PKA/CREB/
p-CREB protein expression, contributing to its anti-
inflammatory effects.
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PI3K/Akt pathway
One study (Chen et al., 2018) showed that liraglutide inhibits

endoplasmic reticulum (ER) stress through activation of PI3K/Akt
signaling, which in turn reduces apoptotic protein activity and exerts
a protective effect on cartilage.

AMPK/mTOR pathway
A recent study (Huang et al., 2023) demonstrated that

geniposide dose-dependently upregulated GLP-1 receptor
expression and protected articular cartilage through AMPK/
mTOR-mediated autophagy (inhibiting mTOR while
activating AMPK).

Discussion

A notable strength of this review lies in its integration of diverse
mechanistic evidence, spanning anti-inflammatory, anti-catabolic,
and metabolic pathways. By synthesizing preclinical and clinical
data, we elucidate how GLP-1 RAs may modulate key pathological

processes in KOA, such as NF-κB inhibition, autophagy activation,
and macrophage polarization. These insights not only support their
therapeutic potential but also identify actionable targets for future
research. Our findings demonstrated that GLP-1 RAs exerted
significant therapeutic benefits, including pain alleviation,
functional improvement, and reduced risk of KOA. These effects
are mediated through multiple mechanisms, such as weight loss,
anti-inflammatory, anti-catabolic, anti-apoptotic, regulation of
ROS, and autophagy, demonstrating a comprehensive protective
effect on KOA (Table 3). However, safety concerns have been
identified regarding the clinical application of these medications,
particularly their potential association with the complications of
gastrointestinal and tumors, which warrant further investigation.

Numerous studies have established a link between obesity,
diabetes, and KOA progression. A study (Chen et al., 2020)
demonstrated that overweight and obesity increase knee joint
loading, which further exacerbates cartilage damage and joint
deformity, thereby inducing and accelerating the onset and
development of KOA. A meta-analysis (Williams et al., 2016)
adjusted for BMI revealed a significant association between T2D

TABLE 3 The mechanism of action of GLP-1 RAs on KOA.

Study GLP-
1 RAs

Anti-catabolic Anti-
inflammatory

Oxidative
stress

Apoptosis Autophagy Pathway

Chen et al.
(2018)

Liraglutide Type II collagen (+)
MMP-3 (−)

ER stress (−) CHOP, Caspase-
3, Bax (−)
Bcl-2 (+)

NF-Kb (−);
PI3K/Akt (+)

Huang et al.
(2023)

Geniposide Type II collagen (+)
MMP-13 (−)

p62 (−)
Beclin-1 and LC 3-

II (+)

AMPK
(+)/mTOR (−)

Li H et al.
(2020)

Dulaglutide MMP-3/13 and ADAMTS-4/
5 (−)

Type II collagen and
aggrecan (+)

PGE2(COX-2) (−)
IL-6, IL-8, MCP-1 (−)

ROS (−) NF-κB (−)

Li X et al.
(2019)

Lixisenatide MMP-3/13 and ADAMTS-4/
5 (−)

Type II collagen and
aggrecan (+)

TNF-α, IL-6 (−) 4-HNE and NOX-4
(−)

Mitochondria:
MMP and ATP (+)

NF-κB (−)

Mei et al.
(2019)

Liraglutide MMP-3/13 and ADAMTS-4/
5 (−)

Type II collagen and
aggrecan (+)

IL-6 and MCP-1 (−) ROS and NOX-
4 (−)

NF-κB (−)

Meurot et al.
(2022)

Liraglutide MMP-3/13 and ADAMTS-4/
5 (−); Glycosaminoglycan (−)

Nitrite, PGE2, IL-6, NO
(−)

M1 to M2 macrophage
shift

Que et al.
(2019)

Liraglutide TNF-α, IL-6 and IL-
1β (−)

PKA/CREB (+)

Tong et al.
(2019)

Exenatide MMP-3/13 and ADAMTS-4/
5 (−)

Type II collagen and
aggrecan (+)

TNF-α and IL-1β (−) ROS (−)
Glutathione (+)

NF-κB (−)

Zhang et al.
(2024)

Liraglutide MMP-1/3/13 and ADAMTS-
4/5 (−)

IL-1β, IL-6, IL-12 and
TNF-α (−)

Caspase-3 and
RAGE (−)

4-HNE, 4-hydroxynonenal; ADAMTS, 4/5, A disintegrin and metalloproteinase with thrombospondin motifs 4/5; Akt, Protein Kinase B; AMPK, AMP-activated Protein Kinase; ATP,

adenosine triphosphate; CHOP, C/EBP, homologous protein; COX-2, Cyclooxygenase 2; CREB, Cyclic adenosine monophosphate response element-binding protein; ER, endoplasmic

reticulum; GLP-1 RAs, Glucagon-like peptide-1 receptor agonists; IL, interleukin; KOA, knee osteoarthritis; MCP, monocyte chemoattractant protein; MMP 1/3/13,Matrix metalloproteinase 1/

3/13; MMP, mitochondrial membrane potential; mTOR, mammalian target of rapamycin; NF-κB, Nuclear Factor Kappa-B; NO, nitric oxide; NOX-4, NADPH, oxidase 4; PGE2, Prostaglandin

E2; PI3K, Phosphoinositide 3-Kinase; PKA, Protein Kinase A; RAGE, receptor for advanced glycation end products; ROS, reactive oxygen species; TNF-α, tumor necrosis factor alpha.
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and osteoarthritis symptoms. Data from the Osteoarthritis
Initiative further showed that diabetes worsens KOA severity
and impairs physical and mental health (Eitner et al., 2021). A
further analysis (Alenazi et al., 2020) revealed that patients with
poorer glycemic control exhibited heightened pain severity
compared to those with better-controlled HbA1c levels.
Conversely, a mediterranean diet with a lower glycemic index
was associated with reduced KOA risk (Veronese et al., 2017). The
evidence from these studies suggests that weight loss and glycemic
control are crucial factors in KOA management in patients with
obesity and/or diabetes.

Obesity or diabetes contributes to KOA development through
multiple mechanisms. Adipose tissue in obese individuals secretes
adipokines (e.g., leptin, lipocalin, resistin) and inflammatory factors
(e.g., TNF-α, IL-1, IL-6), impacting KOA progression (Chang et al.,
2018; Urban and Little, 2018). Leptin, for instance, promotes
cartilage degradation by activating the NF-κB pathway and
increasing inflammatory factors and MMP-1/13 (Abella et al.,
2017). Diabetes affects KOA via chronic hyperglycemia,
proinflammatory cytokines, OS, and insulin resistance (Wei et al.,
2023). High glucose levels induce AGEs, which bind to chondrocyte
RAGE receptors, activate NF-κB and mitogen-activated protein

FIGURE 3
Potential mechanisms of GLP-1 RAs on KOA. This figure illustrates the potential mechanisms by which GLP-1 RAs may influence the pathological
process of KOA through multiple pathways. The main mechanisms include: (1) suppressing appetite and reducing joint load; (2) improving insulin
sensitivity and reducing systemic inflammation levels; (3) inhibiting inflammatory responses and regulating chondrocyte metabolism through activation
of GLP-1 receptors; (4) promoting autophagy aiding in cellular homeostasis. These mechanisms may collectively contribute to slowing the
progression of KOA. ADAMTS 4/5, A disintegrin and metalloproteinase with thrombospondin motifs 4/5; AGEs, Advanced glycation end products; Akt,
Protein Kinase B; AMPK, AMP-activated Protein Kinase; ATP, Adenosine triphosphate; CHOP, C/EBP homologous protein; ER, Endoplasmic reticulum;
GLP-1 RAs, Glucagon-like peptide-1 receptor agonists; IL, Interleukin; MAPK, Mitogen-activated protein kinase; MCP, Monocyte chemoattractant
protein; MMP 1/3/13, Matrix metalloproteinase 1/3/13; MMP, Mitochondrial membrane potential; mTOR, Mammalian Target of Rapamycin; NF-κB,
Nuclear Factor Kappa-B; NO, Nitric oxide; PGE2, Prostaglandin E2; RAGE, Receptor for advanced glycation end products; ROS, Reactive oxygen species;
TNF-α, Tumor necrosis factor alpha.
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kinase (MAPK) pathways, and promote inflammatory factor release
(e.g., IL-6, IL-8) and MMP-13 expression, exacerbating
inflammation and ECM degradation (Rasheed et al., 2011).
Hyperglycemia and adipose tissue create a low-grade
inflammatory state, increasing pro-inflammatory factors (e.g.,
TNF-α, IL-1β, IL-6) and ECM degradation (Rogero and Calder,
2018; Wang and He, 2018). Obesity and diabetes elevate ROS levels,
creating a pro-inflammatory environment that increases M1-type
macrophages and cytokines, worsening OS and mitochondrial
dysfunction (Niemann et al., 2017; Ahmed et al., 2021). ROS
overproduction activates MAPK and NF-κB pathways, disrupting
cartilage balance (Lepetsos et al., 2019; Rendra et al., 2019). Insulin
resistance notably impacts KOA more severely in T2D patients
(Eymard et al., 2015). Diabetes leads to severe synovial inflammation
and elevated TNF-α levels in obese KOA patients, upregulating pro-
inflammatory factors and MMP-13, and damaging joints (Hamada
et al., 2016; Qiao et al., 2020). Additionally, leukocyte cell-derived
chemotaxin 2, a metabolic factor primarily expressed in the liver,
may influence glucose metabolism and obesity-related insulin
resistance, potentially advancing the pathogenesis of KOA (Zhu
et al., 2022).

The existing studies suggest that GLP-1 RAs protect against
KOA through anti-inflammatory, anti-apoptotic, autophagy
regulation, macrophage polarization mechanisms, etc. GLP-1 RAs
reduce blood glucose, decreasing AGEs and their binding to RAGE
receptors, which inhibits NF-κB and MAPK pathways, reducing
pro-inflammatory factors like NO, PGE2, IL-1β, TNF-α, MCP-1,
etc. They also lower 4-HNE, NOX-4, and ROS levels, reducing
MMP-3/13 and ADAMTS-4/5 expression, thereby protecting type II
collagen and aggrecan. Additionally, GLP-1 RAs inhibit ER stress via
the PI3K/Akt pathway, decreasing CHOP, Caspase-3, and Bax while
increasing Bcl-2, and restoring MMP and ATP levels in the
mitochondrion, reducing ROS and apoptosis. They promote
autophagy by lowering p62, increasing Beclin-1 and LC3-II, and
activating AMPK while inhibiting mTOR, aiding in cellular
homeostasis. GLP-1 RAs also shift macrophages from M1 to
M2 type, altering the joint inflammatory microenvironment.
These mechanisms collectively reduce inflammation, protect
chondrocytes, regulate metabolism, and improve joint function,
highlighting GLP-1 RAs’ therapeutic potential in KOA (Figure 3).

Preclinical studies demonstrate consistent dose- and time-
dependent effects of GLP-1 RAs in osteoarthritis. Liraglutide
(1–20 μg) (Meurot et al., 2022) and exenatide/lixisenatide
(10–20 nM) (Li et al., 2019; Tong et al., 2019) showed dose-
dependent efficacy, with higher doses providing stronger anti-
inflammatory, anti-catabolic, and analgesic effects—20 μg
liraglutide even outperformed dexamethasone. Temporally,
liraglutide induced rapid (≤7 days) and sustained (≥28 days)
benefits (Meurot et al., 2022), correlating with GLP-1 receptor/
PKA/CREB activation, while untreated osteoarthritis saw
progressive GLP-1 receptor decline (nadir at day 20) (Que et al.,
2019). Exenatide/lixisenatide, though lacking multi-timepoint
analyses, exerted acute NF-κB suppression (2–24 h) (Tong et al.,
2019). These differences highlight the need for standardized
protocols to reconcile dose- and time-response relationships in
future research.

GLP-1 RAs such as liraglutide, exenatide, lixisenatide,
dulaglutide, and geniposide share common chondroprotective

mechanisms in osteoarthritis, including suppression of NF-κB
(reducing IL-6, TNF-α, and COX-2), inhibition of matrix-
degrading enzymes (MMP-3/13, ADAMTS-4/5), and attenuation
OS (Meurot et al., 2022; Li et al., 2019; Tong et al., 2019). However,
each agent exhibits distinct pathways: liraglutide activates PI3K/Akt
and PKA/CREB while antagonizing RAGE (Que et al., 2019; Zhang
et al., 2024); exenatide targets p38 MAPK pathway to suppress NF-
κB and enhances glutathione (Tong et al., 2019); lixisenatide restores
mitochondrial function (Li et al., 2019); and geniposide induces
autophagy via AMPK/mTOR (Huang et al., 2023). These findings
underscore the multifaceted therapeutic potential of GLP-1 RAs
signaling in osteoarthritis, thereby providing a mechanistic
framework to inform and refine future clinical trial design.

Furthermore, compared to traditional weight-loss interventions
such as lifestyle modifications, bariatric surgery, or other
pharmacotherapies (e.g., orlistat), GLP-1 RAs offer unique
advantages, including combined glycemic control and weight
reduction, as well as potential anti-inflammatory benefits specific
to KOA. However, their higher cost and gastrointestinal side effects
may limit accessibility and long-term adherence. While bariatric
surgery demonstrates superior weight loss, GLP-1 RAs provide a less
invasive option with broader metabolic effects. Future comparative
studies are warranted to optimize patient stratification and
treatment selection.

While GLP-1 RAs demonstrate therapeutic promise, their safety
profile warrants nuanced evaluation. Gastrointestinal adverse events
(e.g., nausea, vomiting) may stem from GLP-1 RAs-mediated
delayed gastric emptying, particularly during dose escalation (Ard
et al., 2021). Tumor-related concerns, though rare in trials, require
vigilance given GLP-1 receptor expression in pancreatic and thyroid
tissues (Waser et al., 2015; Yang et al., 2022). Long-term data reveal
declining adherence (Lavu et al., 2024), possibly reflecting
tolerability challenges. Importantly, the risk-benefit ratio favors
obese/diabetic KOA patients, where metabolic benefits may
outweigh risks, whereas non-metabolic populations necessitate
caution pending further evidence.

This study has several limitations. First, given the substantial
heterogeneity in experimental designs across preclinical studies (e.g.,
variations in animal models, dosing regimens, and in vitro
experiments), we deliberately abstained from quality assessment
of these investigations. Instead, our analysis focused on elucidating
the consistent mechanistic pathways through which GLP-1 RAsmay
modulate KOA progression, as evidenced by convergent findings
from in vivo and in vitro models. Second, quantitative pooling was
not conducted due to the limited number of studies, diverse study
types, and significant variability in outcome measures, which forced
us to forego meta-analysis and may have led to the lack of
persuasiveness of our findings. Third, our study solely
investigated the effects of GLP-1 RAs on KOA; emerging
evidence from mechanistic studies and observed risk reductions
in osteoarthritis at other anatomical sites collectively point to a
potential systemic therapeutic effect of these agents (Baser et al.,
2024a; Baser et al., 2024b). Fourth, the mechanism of GLP-1 RAs in
KOA is highly complex, and our proposed hypothesis requires
further research and validation. Fifth, although GLP-1 RAs
yielded statistically significant results in several outcomes—for
example, intra-articular steroid injections fell by 0.087 per
year—these changes may not translate into clinically meaningful
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benefit. Future research should therefore emphasize patient-
centered endpoints to clarify the real-world value of GLP-1 RAs
in KOA. Finally, while tirzepatide’s dual glucose-dependent
insulinotropic polypeptide (GIP)/GLP-1 receptor agonism
distinguishes it from selective GLP-1 RAs, we included it due to
its shared GLP-1 receptor activation—the primary focus of our
mechanistic review. Its inclusion aligns with our goal to explore the
broader therapeutic potential of GLP-1 pathway modulation in
KOA, though we acknowledge the need for future studies to
dissect GIP-specific effects.

Future directions

Based on the available studies, we found that many issues need
to be addressed regarding GLP-1 RAs in improving KOA. First,
there remains a paucity of robust evidence from multicenter, large-
sample RCTs and real-world cohort studies. Second, variability in
drug dosage, intervention duration, and follow-up time in clinical
trials complicates the assessment of GLP-1 RAs’ efficacy, which has
been shown to have dose- and time-dependent effects. Third, the
clinical outcomes of different GLP-1 RAs vary widely,
necessitating comparative studies. Fourth, comparative studies
evaluating GLP-1 RAs against other antidiabetic medications
(e.g., Metformin) in terms of clinical outcomes, mechanistic
pathways, and safety profiles—especially for patients with
concurrent diabetes and KOA—represent a critical area for
future investigation. Fifth, higher adverse events, primarily
gastrointestinal disorders and neoplasms, in the GLP-1 RAs
group compared to controls, may hinder their widespread use.
Sixth, while a potential mechanism of GLP-1 RAs in KOA has been
proposed, further validation is needed due to its complexity.
Seventh, a significant proportion of patients maintained or
increased weight despite GLP-1 RAs treatment, which may
suggest limited applicability to specific subgroups (e.g., age, sex,
or diabetic status). Eighth, the efficacy of GLP-1 RAs in non-obese
or non-diabetic KOA patients warrants further investigation.
Ninth, we acknowledge the absence of fundamental studies
involving semaglutide or tirzepatide in the current literature,
and agree that future preclinical research on these agents would
be valuable for elucidating their mechanisms in KOA. Finally,
combining GLP-1 RAs with other interventions, such as dietary
changes and physical activity, presents a promising
research avenue.

Conclusion

GLP-1 RAs held therapeutic potential for KOA patients with
obesity or diabetes, but current evidence remained insufficient,
warranting further high-quality RCTs and mechanistic studies to
confirm their efficacy and safety.
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Glossary
4-HNE 4-hydroxynonenal

ADAMTS-
4/5

A disintegrin and metalloproteinase with thrombospondin motifs-
4/5

AGEs Advanced glycation end products

Akt Protein Kinase B

AMPK AMP-activated Protein Kinase

ATP Adenosine triphosphate

BMI Body mass index

CHOP C/EBP homologous protein

COX-2 Cyclooxygenase 2

CREB Cyclic adenosine monophosphate response element-binding protein

ECM Extracellular matrix

ER Endoplasmic reticulum

F Female

GIP Glucose-dependent insulinotropic polypeptide

GLP-1 RAs Glucagon-like peptide-1 receptor agonists

GLP-1 Glucagon-like peptide-1

HbA1c Hemoglobin A1c

ICOAP Intermittent and Constant Osteoarthritis Pain

IL Interleukin

K-L Kellgren-Lawrence score

KOA Knee osteoarthritis

KOOS Knee Injury and Osteoarthritis Outcome Score

MAPK Mitogen-activated protein kinase

MCP Monocyte chemoattractant protein

MIA Monosodium iodoacetate

MINORS Methodological Index for Non-randomized Studies

MMP-1/3/13 Matrix metalloproteinase-1/3/13

MMP Mitochondrial membrane potential

mTOR Mammalian Target of Rapamycin

NF-κB Nuclear Factor Kappa-B

NO Nitric oxide

NOS Newcastle-Ottawa scale

NOX-4 NADPH oxidase 4

NSAIDs Non-steroidal anti-inflammatory drugs

OS Oxidative stress

PGE2 Prostaglandin E2

PI3K Phosphoinositide 3-Kinase

PKA Protein Kinase A

PRISMA Preferred Reporting Items for Systematic Reviews and
Meta-Analyses

RAGE Receptor for advanced glycation end products

RCT Randomized controlled trial

ROS Reactive oxygen species

SD Standard deviation

SF-36 36-Item Short Form Health Survey

T2D Type 2 diabetes

TKA Total knee arthroplasties

TNF-α Tumor necrosis factor alpha

VAS Visual analogue scale

WOMAC Western Ontario and McMaster Universities Osteoarthritis Index.
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