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Objective: To provide a comprehensive narrative synthesis of recent advances in
the pharmacological actions and therapeutic potential of natural flavonoids in
atopic dermatitis (AD), with emphasis on their multi-target pharmacological
effects across core pathological mechanisms. The review also addresses
pharmacokinetic limitations, formulation challenges, delivery innovations,
safety concerns, and emerging clinical evidence to inform translational
research and therapeutic development.
Methods: This narrative review is based on a targeted literature search of
PubMed, Web of Science, ScienceDirect, and SpringerLink, covering English-
language, peer-reviewed articles published between 2010 and 2025. Search
terms included natural flavonoid metabolites (e.g., quercetin, baicalin,
epigallocatechin-3-gallate [EGCG]) combined using Boolean operators (e.g.,
AND, OR) with keywords related to atopic dermatitis, its underlying
mechanisms, and therapeutic interventions. Studies focusing on in vitro, in
vivo, or clinical evaluations of mechanistic pathways, therapeutic potential, or
delivery strategies were included, while those addressing synthetic flavonoids,
non-AD models, or lacking mechanistic relevance were excluded. This review
does not follow a systematic review protocol.
Results: Natural flavonoids exert multi-target effects in AD models by restoring
skin barrier integrity, modulating immune and chemokine dysregulation,
alleviating pruritus, regulating microbial homeostasis and programmed cell
death, and attenuating oxidative stress. However, pharmacokinetic and
physicochemical limitations such as poor solubility, low bioavailability,
metabolic instability, and limited dermal targeting currently constrain clinical
application. Potential safety concerns, including hepatotoxicity and endocrine
disruption, also warrant careful evaluation. To address these challenges,
advanced delivery platforms including microneedles, hydrogels, nanocarriers,
microsponges, and liposomes have been explored to improve dermal delivery.
Additionally, oral delivery systems developed in other inflammatory and
oncological models provide valuable insights for guiding translational
strategies in AD. Preliminary clinical evidence suggests potential benefits of
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flavonoid-based interventions; nevertheless, larger and well-controlled trials are
necessary to substantiate their pharmacological effects and evaluate long-
term safety.
Conclusion: Natural flavonoids exhibit multi-target effects in AD by modulating
core pathological processes. Although challenges such as limited bioavailability and
safety concerns continue to impede clinical translation, these limitations may be
addressed through the optimization of delivery strategies, rigorous
pharmacokinetic and toxicological assessments, mechanism-driven in vitro, in
vivo, ex vivo studies, and well-designed clinical trials.

KEYWORDS

natural flavonoids, atopic dermatitis, botanical drugs, multi-target pharmacological
actions, novel drug delivery systems

1 Introduction

Atopic dermatitis (AD) is a complex chronic inflammatory skin
disease driven by genetic predisposition (Loset et al., 2019), immune
dysregulation (Kim et al., 2019), and environmental factors (Chong
et al., 2022). Globally, the prevalence of AD reaches up to 20% in
children and approximately 10% in adults (Hadi et al., 2021;
Silverberg et al., 2021). Clinically, AD is characterized by intense
pruritus and eczematous lesions, frequently accompanied by sleep
disturbances and psychological comorbidities (Ariëns et al., 2019;
Schmidt and de Guzman Strong, 2021; Casella et al., 2024). These
symptoms substantially impair quality of life and impose a
significant socioeconomic burden.

Currently, topical corticosteroids, calcineurin inhibitors, and
antihistamines remain the mainstay treatments for AD; however,
long-term use is associated with skin atrophy, immunosuppression,
diminished efficacy, and a high risk of relapse (Broeders et al., 2016).
Although biologic agents have improved outcomes for patients with
moderate-to-severe AD, therapeutic responses remain
heterogeneous, and many patients experience suboptimal long-
term efficacy or intolerance (Bangert et al., 2021; David et al.,
2023; Rothenberg-Lausell et al., 2024). Moreover, treatment costs,
poor adherence, and psychological comorbidities continue to
challenge sustained disease management (Guttman-Yassky
et al., 2025).

Flavonoids are natural polyphenolic metabolites abundantly
found in medicinal herbs, fruits, vegetables, and tea (Hussain
et al., 2022). Owing to their antioxidant, anti-inflammatory, and
immunomodulatory properties, flavonoids have attracted growing
interest in pharmaceutical and biotherapeutic research (Dere and
Khan, 2020). Recent studies have highlighted their promising
potential in the prevention and treatment of AD (Wu et al.,
2021), attributed to their multifaceted activities such as anti-
inflammatory (Maleki et al., 2019), antioxidant (Fu K. et al.,
2024), immunomodulatory (Zeinali et al., 2017; Ribeiro et al.,
2018), and barrier-repairing effects (Park C.-H. et al., 2020).

This review provides a comprehensive narrative overview of
recent advances in flavonoid-based interventions for AD (Figure 1).
It emphasizes their multi-target pharmacological actions across key
pathological processes, including the restoration of skin barrier
integrity, modulation of immune and chemokine dysregulation,
itch signaling pathways, rebalancing of microbial homeostasis,
modulation of programmed cell death pathways, and attenuation
of oxidative stress and redox imbalance. Furthermore, the review

highlights delivery innovations, safety considerations, and
translational strategies, thereby providing a theoretical foundation
for future research and clinical application of flavonoid-based
therapies in AD. To ensure relevance and thematic focus, the
following section outlines the literature search strategy
underpinning this review.

2 Literature search strategy

To support the narrative synthesis, a focused literature search
was conducted across PubMed, Web of Science, ScienceDirect, and
SpringerLink, targeting English-language, peer-reviewed articles
published between 2010 and 2025. The search strategy employed
Boolean operators (e.g., AND, OR) to combine terms for natural
flavonoid metabolites (e.g., quercetin, baicalin, epigallocatechin-3-
gallate [EGCG]) with keywords related to AD and its underlying
mechanisms, including skin barrier dysfunction, immune
dysregulation, chemokine imbalance, pruritogenic signaling,
microbial dysbiosis, programmed cell death, oxidative stress, and
drug delivery.

We included in vitro, in vivo, and clinical studies that
investigated the mechanisms of action, therapeutic relevance,
or delivery approaches of flavonoids in AD models or patients.
Articles were excluded if they centered on synthetic flavonoids,
unrelated disease models, or lacked mechanistic or delivery-
specific data. The review does not adhere to a systematic
review framework but aims to offer a descriptive, theme-based
synthesis of current evidence.

3 Classification and pharmacology
of flavonoids

Flavonoids are defined by a characteristic C6–C3–C6 skeleton,
comprising two aromatic rings connected by an oxygen-containing
heterocyclic C-ring. Based on structural features, flavonoids are
commonly categorized into several subgroups, including flavones,
flavonols, flavanols, isoflavones, chalcones, etc. (Ku et al., 2020; Bo
et al., 2024), as shown in Figure 2. Structural modifications such as
the type and position of substituents and the degree of hydroxylation
can directly influence the physicochemical properties, biological
activities, and pharmacological profiles of different flavonoid
subclasses (Zouaoui et al., 2021; Abou Baker, 2022).

Frontiers in Pharmacology frontiersin.org02

Li et al. 10.3389/fphar.2025.1631977

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1631977


Flavones are characterized by an unsaturated 2-phenylchromen-
4-one backbone, with baicalin and luteolin being prominent
representatives (Espíndola, 2023). These flavonoids have
demonstrated the ability to reduce neuroinflammation and
promote neural plasticity in diverse experimental models (Jin
et al., 2019; Shi et al., 2021).

Flavonols feature a C3 hydroxyl group and a C2–C3 double
bond, both of which enhance their hydroxyl radical scavenging
capacity. These structural features allow flavonols to modulate
oxidative stress and inflammation-related signaling pathways,
resulting in both antioxidant and anti-inflammatory effects

(Treml and Šmejkal, 2016). Representative flavonols such as
quercetin and kaempferol have been shown to attenuate oxidative
stress (Ji et al., 2015).

Flavanols are defined bymultiple hydroxyl groups on the C-ring,
with EGCG, a major green tea polyphenol, being a representative
metabolite (Bernatoniene and Kopustinskiene, 2018; Payne et al.,
2022). Functionally, EGCG selectively induces apoptosis and
suppresses tumor cell proliferation (Kumazoe et al., 2022).

Isoflavones, a class of plant-derived phytoestrogens, are
predominantly found in Glycine max (L.) Merr. (soybean),
Trifolium pratense L. (red clover), and other leguminous plants

FIGURE 1
Pharmacological effects of flavonoids in AD. By BioRender. Note: ZO-, Zonula Occludens-; IL-, interleukin; TSLP, thymic stromal lymphopoietin;
IFN-γ, interferon-gamma; CXCL, C-X-C motif chemokine ligand; CCL, C-C motif chemokine ligand; CCR-, C-C chemokine receptor type 3.
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(Messina, 2014). These flavonoid metabolites exert estrogen-like
effects and can ameliorate postmenopausal osteoporosis by
modulating estrogen receptor (ER)-mediated signaling
pathways (Messina, 2016; Lambert and Jeppesen, 2018; Xiao
et al., 2018).

Chalcones are open-chain flavonoids characterized by a 1,3-
diphenylprop-2-en-1-one backbone and act as biosynthetic
precursors to flavonoids and isoflavonoids. Their α, β-
unsaturated carbonyl system contributes to their high reactivity
and broad pharmacological potential (Tekale et al., 2020). Chalcones
exhibit a wide range of biological activities, including anti-
inflammatory, antioxidant, antimicrobial, and anticancer effects,
largely through the modulation of signaling pathways such as
nuclear factor kappa B (NF-κB), phosphoinositide 3-kinase/
protein kinase B (PI3K/Akt), and cyclooxygenase (COX) enzymes
(Ugwu et al., 2016).

4 Pharmacological effects of flavonoids
in AD

Growing evidence indicates that numerous natural flavonoids
(Figure 3) exert therapeutic effects in AD through multi-targeted
pharmacological mechanisms (Table 1).

4.1 Restoration of skin barrier integrity

Disruption of the skin barrier, comprising the stratum corneum,
lamellar lipids, tight junctions, and cutaneous microbiota, is a
central pathophysiological hallmark of AD, as part of the broader
mechanisms illustrated in Figure 4. This dysfunction is characterized
by downregulated structural protein expression, disorganized
intercellular junctions, lipid imbalance, and microbial dysbiosis
(Melnik, 2015; Fujii, 2020). These alterations result in increased
transepidermal water loss (TEWL) and a diminished protective
barrier, which together permit the transcutaneous entry of
allergens and pro-inflammatory mediators. Consequently,
keratinocyte hyperactivation and immune dysregulation are
initiated, establishing a self-perpetuating cycle of barrier
disruption and inflammatory amplification that ultimately drives
disease progression (Katsarou et al., 2023; Çetinarslan et al., 2023).

At the molecular level, AD skin lesions exhibit significant
downregulation of structural proteins such as filaggrin and
claudin-1 (Melnik, 2015; Callou et al., 2022), as well as tight
junction-associated proteins, among which Zonula Occludens-
(ZO-) 1 and occludin shown to be significantly reduced in AD
skin lesions (Yuki et al., 2016), and ZO-3 expression diminished in
keratinocyte-based AD models (Hu et al., 2023; Trujillo-Paez et al.,
2024). These alterations collectively result in impaired keratinocyte

FIGURE 2
The chemical structures of flavonoids skeleton and corresponding subclasses involved in the paper. By KingDraw.
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cohesion and elevated TEWL. Notably, these alterations occur prior
to the onset of inflammation and induce the upregulation of
epithelial-derived cytokines such as thymic stromal
lymphopoietin (TSLP) and interleukin-33 (IL-33), which
subsequently activate the Th2 immune axis in a sustained
manner (Dai et al., 2022). Several flavonoid metabolites have

demonstrated potential to modulate barrier function through
multiple mechanisms. Chamaejasmine, stechamone, and orobol
have been shown to reduce TEWL, increase skin hydration,
mitigate erythema, pruritus, and xerosis, attenuate epidermal
hyperplasia and mast cell infiltration, and attenuate stratum
corneum damage (Jo et al., 2018; Kim et al., 2019; Lee C. H.

FIGURE 3
Chemical structures of flavonoids involved in the paper. By KingDraw. Among them, (A) Luteolin (Molecular formula: C15H10O6); (B) Apigenin
(Molecular formula: C15H10O5); (C) Chrysin (Molecular formula: C15H10O4); (D) Nepetin (Molecular formula: C16H12O7); (E) Scutellarein (Molecular
formula: C15H10O6); (F) Skullcapflavone II (Molecular formula: C19H18O8); (G)Quercetin (Molecular formula: C15H10O7); (H)Myricetin (Molecular formula:
C15H10O8); (I) Kaempferol (Molecular formula: C15H10O6); (J) Baicalin (Molecular formula: C21H18O11); (K) Baicalein (Molecular formula: C15H10O5);
(L) Rutin (Molecular formula: C27H30O16); (M) Epigallocatechin-3-gallate (Molecular formula: C22H18O11); (N) Formononetin (Molecular formula:
C16H12O4); (O) Calycosin (Molecular formula: C16H12O5); (P) 7-Methoxyisoflavone (Molecular formula: C16H12O3); (Q) 7,3′,4′-Trihydroxyisoflavone
(Molecular formula: C15H10O5); (R) Puerarin (Molecular formula: C21H20O9); (S) Sophoricoside (Molecular formula: C21H20O10); (T) Butein (Molecular
formula: C15H12O5); (U) Chamaejasmine (Molecular formula: C30H22O10); (V) Stechamone (Molecular formula: C27H30O14), and (W) Orobol (Molecular
formula: C15H10O6).
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TABLE 1 Pharmacological effects of flavonoids in AD.

Metabolites Methods Models Routes of
administration

Targets Signal
pathways

Mechanisms References

Flavones

Luteolin In vivo NC/Nga mice,
Kun Ming mice

Topical Skin thickness↓, mast
cell number↓,

granulated mast cells
infiltration↓,

degranulated mast
cells infiltration↓,

mast cell
degranulation↓,
lymphocyte

infiltration↓, skin
hydration↑,

Filaggrin↑, IL-4↓, IL-
6↓, IL-17↓, TNF-α↓,

IgE↓, IFN-γ↑,
TEWL↓

JAK/STAT Modulate immune
imbalance, improve

skin barrier
function

Choi et al. (2010),
Tang et al. (2022)

Apigenin In vitro/In
vivo

RAW264.7,
RBL-2H3,

HaCaT, HMC-
1, SKH-1

hairless mice
(hr/hr); ICR

mice

Topical Lamellar body↑,
ABCA12↑, Filaggrin↑,
TEWL↓, HMG-CoA
reductase↑, SPT1↑,
FAS↑, CAMP↑,
mBD3↑, stratum

corneum hydration↓,
Loricrin↑, AQP3↑,

HA↑, HAS-1↑, HAS-
2↑, HAS-3↑, HBD-1↑,
HBD-2↑, HBD-3↑,

LL-37↑, NO↓, IL-1β↓,
IL-6↓, COX-2↓,

iNOS↓, β-
hexosaminidase↓,

TNF-α↓, IL-4↓, IL-5↓,
IL-13↓, IL-31↓,

Tryptase↓, FcεRIα↓,
FcεRIγ↓, p-Lyn↓,
p-Syk↓, p-PLCγ1↓

MAPK Modulate immune
imbalance, improve

skin barrier
function, attenuate
pruritus, modulate

skin and gut
microbiota

Hou et al. (2013),
Park et al. (2020a),
Che et al. (2019)

Chrysin In vitro/In
vivo

HaCaT, BALB/
c mice

Topical/Oral Skin thickness↓, mast
cell infiltration↓,

CCL5+ cells↓, CCL5↓,
IgE↓, TSLP↓, EGR1↓

NF-κB, MAPK Regulate
chemokines,

attenuate pruritus

Yeo et al. (2020),
Yeo et al. (2021)

Nepetin In vitro/In
vivo

HaCaT, BALB/
c mice

Oral Epidermal
hyperplasia↓,
immune cell
infiltration↓,

apoptosis rate↓, IL-
1β↓, IL-6↓, TNF-α↓,
ROS↓, iNOS↓, COX-
2↓, PGES2↓, NO↓

MyD88–MKK3/
6–Akt

Modulate oxidative
stress, regulate
programmed cell

death

Gong et al. (2024)

Scutellarein In vitro/In
vivo

HaCaT,
C57BL/6J mice

Subcutaneous
injection

Skin thickness↓,
TRPV3 current↓,
TRPV3 open

probability↓, TRPV3-
mediated Ca2+

influx↓, BrdU
incorporation↓,

PBMCs chemotaxis↓,
IgE↓, IL-1β↓, TNF-
α↓, IL-4↓, IL-6↓,

CXCL15↓

TRPV3 channels Regulate
chemokines,

attenuate pruritus

Wang et al.
(2022c)

Skullcapflavone II In vitro/In
vivo

BMDCs, Mouse
CD4+ T cells,

HaCaT,
Human
primary

Topical Skin thickness↓,
CD4+ T cell

proliferation↓, CD4+
T cell infiltration↓,
Gr-1+ neutrophil

infiltration↓, mast cell

STAT, NF-κB,
MAPK

Regulate
chemokines,

attenuate pruritus

Lee et al. (2022b)

(Continued on following page)
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TABLE 1 (Continued) Pharmacological effects of flavonoids in AD.

Metabolites Methods Models Routes of
administration

Targets Signal
pathways

Mechanisms References

keratinocytes,
BALB/c mice

infiltration↓,
eosinophil

infiltration↓, CTSS↓,
pro-CTSS↓, active-
CTSS↓, CXCL1↓,

CCL17/22↓, TSLP↓,
IL-4↓, IFN-γ↓, IL-6↓,
IL-12↓, IL-17A↓,
IgE↓, S100A8↓,

Mcpt8↓

Flavonols

Quercetin In vitro/In
vivo

HaCaT,
RAW264.7,
human mast
cells (HMC-1),
NC/Nga mice,
C57BL/6 mice

Topical/Oral Skin thickness↓, mast
cell infiltration↓,

eosinophil levels↓, IL-
1β↓, IL-1α↓, IL-4↓,
IL-5↓, IL-6↓, IL-8↓,
IL-10↑, IL-13↓, IL-

15↓, IL-33↓, TNF-α↓,
IFN-γ↓, IgE↓, TSLP↓,
CCL2/3/5/7/11/17/
22/27↓, TLR2↓,

TLR6↓, HMGB1↓,
COX-2↓, iNOS↓,
ICAM-1↓, VEGF↓,
caspase-3↓, caspase-
8↓, Bid↓, Nrf2↑, HO-

1↑, PPARα↑,
PPARγ↑,

glutathione↑, MMP-
1↓, MMP-2↓, MMP-
9↓, SOD1↑, SOD2↑,
catalase↑, GPx↑,
Twist↑, Snail↑,
E-cadherin↑,
Occludin↑

HMGB1/RAGE/
NF-κB, Nrf2/HO-
1, MAPK, JAK/
STAT, TLR2/

TLR6

Improve skin
barrier function,

regulate
chemokines,

modulate oxidative
stress

Karuppagounder
et al. (2016), Hou

et al. (2019),
Beken et al. (2020)

Myricetin In vitro/In
vivo

HaCaT, Balb/c
Mice, Kunming

mice

Topical Skin thickness↓, mast
cell infiltration↓,
CD4+ T cell
infiltration↓,
keratinocyte

integrity↑, lamellar
body secretion area↑,
TEWL↓, Filaggrin↑,
IL-1β↓, IL-4↓, IL-17↓,
IFN-γ↓, TNF-α↓,
IgE↓, histamine↓,
TSLP↓, CCL17/22↓,
T-bet↓, GATA-3↓,
TGF-β↓, iNOS↓,

COX-2↓

NF-κB, STAT1 Improve skin
barrier function,
modulate immune

imbalance

Hou et al. (2022),
Gao et al. (2023)

Kaempferol In vitro/In
vivo

Jurkat T cells,
CD4+ T cells

and splenocytes
from BALB/c
mice, BALB/c
mice, C57BL/

6 mice

Oral/Intraperitoneal
injection, i.p

Skin thickness↓,
CD3+ T cells↓, CD4+

T cells↓, CD68+
macrophages↓, mast
cell infiltration↓,

TEWL↓, Filaggrin↑,
Loricrin↑,

Involucrin↑, IL-2↓,
IL-4↓, IL-6↓, IL-13↓,
IL-17↓, IL-31↓, IFN-
γ↓, TSLP↓, CD69↓,
cleaved caspase-3/7/
9↓, MRP-1 activity↓,

Bcl-2↑, HO-1↓

NF-κB, MAPK Improve skin
barrier function,
modulate immune
imbalance, regulate
programmed cell

death

Lee and Jeong
(2021), Nasanbat

et al. (2023)

(Continued on following page)
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TABLE 1 (Continued) Pharmacological effects of flavonoids in AD.

Metabolites Methods Models Routes of
administration

Targets Signal
pathways

Mechanisms References

Baicalin In vivo BALB/c mice,
Pseudo germ-
free mice

Oral Skin thickness↓, mast
cell infiltration↓,
TEWL↓, TSLP↓,

MCP-1↓, IL-4↓, IFN-
γ↑, IgE↓, Filaggrin↑,

Loricrin↑,
Involucrin↑,

histamine↓, Alistipes
spp.↓,

Parabacteroides
spp.↓, Mycoplasma
spp.↓, Lactobacillus
spp.↑, Coprococcus 1

spp.↑,
Ruminiclostridium

6 spp.↑

JAK/STAT,
NF-κB

Improve skin
barrier function,
modulate immune

imbalance,
modulate skin and
gut microbiota

Wang et al.
(2022a)

Baicalein In vitro HaCaT — K1/K10↑ MAPK, Akt Improve skin
barrier function

Huang et al.
(2016a)

Rutin In vivo BALB/c J mice Topical Skin thickness↓,
eosinophil

infiltration↓, mast cell
infiltration↓, IL-4↓,

IL-5↓, IL-13↓, IL-31↓,
IL-32↓, IFN-γ↓, IgE↓,

histamine↓

— Modulate immune
imbalance,

attenuate pruritus

Choi and Kim
(2013)

Flavanols

Epigallocatechin-3-
gallate

In vivo Kunming mice,
Nc/Nga mice

Topical Skin thickness↓, mast
cell number↓, IFN-γ↓,
IL-4↓, IL-5↓, IL-6↓,
IL-13↓, IL-17A↓,
TNF-α↓, IgE↓,

histamine↓, LDH
activity↓, MDA↓,
SOD↑, GSH↑,

T-AOC↑, RIP1↓,
RIP3↓, MLKL↓

NF-κB, MAPK Modulate oxidative
stress, regulate
programmed cell
death, modulate
skin and gut
microbiota

Chiu et al. (2021),
Han et al. (2022)

Isoflavones

Formononetin In vitro/In
vivo

HaCaT, RBL-
2H3, BMMCs,
BALB/c mice

Oral/Intraperitoneal
injection, i.p

FcεRIγ, p-Lyn, p-Syk,
p-PLCγ, IL-13, TNF-
α, Filaggrin, Loricrin,

IgE,
β-hexosaminidase,
histamine, TSLP,
E-cadherin, IgE

NF-κB Improve skin
barrier function,
attenuate pruritus

Li et al. (2018),
Zhou et al. (2023)

Calycosin In vitro/In
vivo

HaCaT,
C57BL/6 mice

Oral Occludin↑, ZO-1↑,
TSLP↓, IL-33↓

TLR4/MyD88/
NF-κB

Improve skin
barrier function,
attenuate pruritus

Tao et al. (2017)

7-Methoxyisoflavone In vivo BALB/c mice Topical Skin thickness↓,
keratinocyte

hyperproliferation↓,
mast cell infiltration↓,

neutrophil
infiltration↓, IL-17+
Th17 cells↓, spleen
index↓, IL-4↓, IL-

17A↓, IgE↓, IFN-γ↓,
TSLP↓, CXCL1/2/3↓,

CCL17/22↓

MAPK-AP-1, NF-
κB, IL-17/STAT3

Modulate immune
imbalance, regulate

chemokines,
attenuate pruritus

Dong et al. (2022)

(Continued on following page)
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TABLE 1 (Continued) Pharmacological effects of flavonoids in AD.

Metabolites Methods Models Routes of
administration

Targets Signal
pathways

Mechanisms References

7,3′,4′-
Trihydroxyisoflavone

In vitro/In
vivo

HaCaT, NC/
Nga mice

Topical Skin thickness↓,
eosinophil

infiltration↓, mast cell
infiltration↓, IgE↓,

CCL17/22↓

MAPK Modulate oxidative
stress, regulate
chemokines

Park et al. (2020b)

Puerarin In vitro/In
vivo

HaCaT, BALB/
c mice

Oral Skin thickness↓, mast
cell infiltration↓, IL-
1β↓, IL-4↓, IL-5↓, IL-
6↓, IL-31↓, TNF-α↓,
IgE↓, PAR2↓, TSLP↓,
CCL2/5/17↓, CXCL8/

9/10/11↓

MAPK, NF-κB,
Akt, STAT1,
PAR2–NF-

κB–TSLP axis

Modulate immune
imbalance, regulate

chemokines,
attenuate pruritus

Lee et al. (2018)

Sophoricoside In vitro/In
vivo

C57BL/6 mice
naïve CD4+ T,
BALB/c mice

Topical Skin thickness↓, mast
cell infiltration↓,

IgE↓, IFN-γ↓, TNF-
α↓, IL-2↓, IL-4↓, IL-
5↓, IL-6↓, IL-12↓, IL-
17A↓, T-bet↓, GATA-

3↓, RORγt↓

— Modulate immune
imbalance,

attenuate pruritus

Kim and Lee
(2021)

Chalcones

Butein In vitro HaCaT, human
acute

monocytic
leukemia cell
line THP-1
(THP-1 cells)

Topical ICAM-1↓, monocyte
adhesion↓, IL-6↓, IP-
10↓, MCP-1↓, ROS↓

MAPK, NF-κB Modulate oxidative
stress

Seo et al. (2015)

Chamaejasmine In vitro/In
vivo

RBL-2H3,
SKH-1 hairless

mice

Topical Skin thickness↓, skin
hydration↑, TEWL↓,
mast cells↓, IgE↓, IL-

4↓, β-
hexosaminidase↓

— Improve skin
barrier function,
modulate immune

imbalance,
attenuate pruritus

Kim et al. (2019)

Stechamone In vitro/In
vivo

RBL-2H3,
SKH-1 hairless

mice

Topical Skin thickness↓, mast
cell↓, lymphocyte

infiltration↓, TEWL↓,
β-hexosaminidase↓,

IgE↓, IL-4↓

— Improve skin
barrier function,
modulate immune

imbalance,
attenuate pruritus

Jo et al. (2018)

Others

Orobol In vitro/In
vivo

HaCaT, NC/
Nga mice

Topical Skin thickness↓, skin
hydration↑, TEWL↓,

eosinophil
infiltration↓, mast cell
infiltration↓, CCL17/
22↓, IgE↓, IL-4↓,

IL-13↓

MAPK, NF-κB Improve skin
barrier function,

regulate
chemokines,

modulate immune
imbalance,

attenuate pruritus

Lee et al. (2022a)

Note: BMDCs, bone marrow-derived dendritic cells; BMMCs, bone marrow-derived mast cells; CD4+ T cells, cluster of differentiation 4 positive T lymphocytes; HaCaT, human immortalized

keratinocyte cell line; HMC-1, human mast cell line-1; Jurkat T cells, human T lymphocyte leukemia cell line; RBL-2H3, rat basophilic leukemia cells; RAW264.7, murine macrophage-like cell

line; SKH-1, hairless mice (hr/hr), hairless mouse strain used for dermatological research; ICR, mice, Institute of Cancer Research mice; THP-1, human acute monocytic leukemia cell line;

ABCA12, ATP-binding cassette subfamily A member 12; AQP3, aquaporin 3; Bcl-2, B-cell lymphoma 2; Bid, BH3-interacting domain death agonist; BrdU, 5-bromo-2′-deoxyuridine; CAMP,

cathelicidin antimicrobial peptide; CAT, catalase; CCL, C-C motif chemokine ligand; CD69, cluster of differentiation 69; COX-2, cyclooxygenase-2; CTSS, Cathepsin S; CXCL-, C-X-C motif

chemokine ligand; EGR1, early growth response 1; FAS, fatty acid synthase; FcεRIα, high-affinity IgE receptor subunit alpha; FcεRIγ, high-affinity IgE receptor subunit gamma; GATA-3,

GATA-binding protein 3; GPx, glutathione peroxidase; GSH, glutathione; HAS, hyaluronic acid synthase; HBD-, human beta-defensin; HMGB1, high mobility group box 1; HO-1, heme

oxygenase-1; ICAM-1, intercellular adhesion molecule 1; IFN-γ, interferon-gamma; IgE, immunoglobulin E; IL-, interleukin; iNOS, inducible nitric oxide synthase; K1/K10, keratin 1 and

keratin 10; LDH, lactate dehydrogenase; MAPK, mitogen-activated protein kinase; MCP-1, monocyte chemoattractant protein 1; MDA, malondialdehyde; Mcpt8, mast cell protease 8; MLKL,

mixed lineage kinase domain-like protein; mBD3, mouse beta-defensin 3; MMP-, matrix metalloproteinases, MRP-1, multidrug resistance-associated protein 1; MyD88, myeloid differentiation

primary response 88; NO, nitric oxide; Nrf2, nuclear factor erythroid 2-related factor 2; Occludin, tight junction protein occludin; PAR2, protease-activated receptor 2; PGES2, prostaglandin E

synthase 2; PGE2, prostaglandin E2; p-Lyn, phosphorylated Lyn; p-Syk, phosphorylated spleen tyrosine kinase; p-PLCγ1, phosphorylated phospholipase C gamma 1; PPARα, peroxisome

proliferator-activated receptor alpha; PPARγ, peroxisome proliferator-activated receptor gamma; RAGE, receptor for advanced glycation end-products; RIP1, receptor-interacting serine/

threonine-protein kinase 1; RIP3, receptor-interacting serine/threonine-protein kinase 3; RORγt, RAR-related orphan receptor gamma t; ROS, reactive oxygen species; S100A8, S100 calcium-

binding protein A8; Snail, zinc finger protein SNAI1; SOD, superoxide dismutase; SPT1, serine-palmitoyl transferase 1; STAT, signal transducer and activator of transcription; TEWL,

transepidermal water loss; T-bet, T-box transcription factor (TBX21); TGF-β, transforming growth factor beta; TLR-, Toll-like receptor; TNF-α, tumor necrosis factor-alpha; TRPV3, transient

receptor potential vanilloid 3; TSLP, thymic stromal lymphopoietin; Twist, twist-related protein 1; VEGF, vascular endothelial growth factor; ZO-, zonula occludens; Akt, protein kinase B; AP-1,

activator protein 1; JAK, janus kinase; MAPK, mitogen-activated protein kinase; MKK3/6, mitogen-activated protein kinase kinase 3/6; MyD88, myeloid differentiation primary response 88;

NF-κB, nuclear factor kappa B; TRPV3, transient receptor potential vanilloid 3 channel.
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et al., 2022). Baicalin and formononetin significantly upregulate the
expression of filaggrin and loricrin, reduce TEWL, suppress mast
cell infiltration, and ameliorate both epidermal disruption and
modified Eczema Area and Severity Index (EASI) scores in AD
mouse models (Wang L. et al., 2022; Zhou et al., 2023). Experimental
studies indicate that calycosin may modulate the Toll-like receptor
(TLR) 4/NF-κB signaling pathway, suppress the expression of TSLP
and IL-33, and increase tight junction proteins such as ZO-1 and
occludin in both human immortalized keratinocyte cell line
(HaCaT) and mouse AD models (Tao et al., 2017).

Adherens junctions (AJs) play a critical role in maintaining
epidermal integrity, with E-cadherin serving as a central adhesion
molecule. In AD, downregulation of E-cadherin disrupts
intercellular cohesion, resulting in elevated TEWL and increased
permeability to environmental allergens (Dong et al., 2024). In a
fluorescein isothiocyanate (FITC)-induced AD mouse model,

formononetin was observed to improve E-cadherin localization,
suppress the expression of TSLP and IL-33, reinforce the
epidermal barrier integrity, and attenuate immune activation (Li
et al., 2018). In HaCaT model, quercetin treatment was associated
with increased expression of E-cadherin and occludin, upregulation
of antioxidant enzymes including superoxide dismutase 1 (SOD1)
and superoxide dismutase 2 (SOD2) and catalase, and reduced levels
of pro-inflammatory cytokines and matrix metalloproteinases
(MMPs), which may support improved keratinocyte migration
and in vitro wound closure (Beken et al., 2020).

At the cytoskeletal level, keratins keratin 1 and keratin 10 (K1/
K10) are critical structural proteins that contribute to the
maintenance of epidermal mechanical integrity and barrier
stability; however, their expression is markedly suppressed in AD
skin lesions (Dai et al., 2021). In HaCaT model, baicalein was
associated with promoting the structural maturation of

FIGURE 4
The pathological mechanisms underlying AD (the part that flavonoids can intervene in). By BioRender. Note: HDM, house dust mite; TSLP, thymic
stromal lymphopoietin; IL-, interleukin; IFN-γ, interferon-gamma; TNF-α, tumor necrosis factor-alpha; ZO-, Zonula Occludens-; K1/K10, keratin 1 and
keratin 10; PPARα, peroxisome proliferator-activated receptor alpha; AQP3, aquaporin 3; HAS, hyaluronic acid synthase; Th-, T helper; T-bet, T-box
transcription factor (TBX21); GATA3, GATA-binding protein 3; RORγt, retinoic acid-related orphan receptor gamma t; CCR-, C-C chemokine
receptor; CCL, C-C motif chemokine ligand; CXCL-, C-X-C motif chemokine ligand; HBD, human beta-defensin; Staphylococcus aureus,
Staphylococcus aureus; Staphylococcus epidermidis, Staphylococcus epidermidis; LTA, lipoteichoic acid; IgE, immunoglobulin E; PGD2, prostaglandin
D2; CGRP, calcitonin gene-related peptide; CTSS, Cathepsin S.
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keratinocytes by upregulating the expression of K1/K10 (Huang K.-
F. et al., 2016).

Lamellar bodies, specialized organelles in the granular layer,
secrete polar lipids and enzymes to form the stratum corneum’s
intercellular lipid matrix (Elias and Wakefield, 2020; Shin et al.,
2020); their impaired formation contributes to barrier dysfunction
in AD (Cork et al., 2009). In addition, aquaporin 3 (AQP3) and
hyaluronic acid synthase (HAS) are essential regulators of skin
hydration and hyaluronic acid synthesis (Camilion et al., 2022;
Tricarico et al., 2022). Myricetin has been reported to increase
lamellar body secretion and support the structural integrity of the
epidermal lipid matrix in AD mouse model (Gao et al., 2023), while
apigenin has been reported to increase the expression of AQP3,
HAS, and filaggrin, upregulates skin hydration and lipid synthesis,
increase lamellar body density, and increase the expression of lipid-
synthesizing enzymes, indicating potential roles in epidermal
hydration and barrier maintenance in cell models (Hou et al.,
2013; Park C.-H. et al., 2020).

Peroxisome proliferator-activated receptor alpha (PPARα), a
key nuclear transcription factor that regulates keratinocyte
differentiation and epidermal lipid metabolism, is markedly
downregulated in AD (Kuai et al., 2024), leading to impaired
barrier integrity and defective lipid synthesis, which further
supported by PPARα agonist-induced barrier restoration in ex
vivo skin model (Majewski et al., 2021). In a house dust mite-
induced NC/Nga mouse model (a spontaneous AD model),
quercetin has been reported to activate the PPARα signaling
pathway, which may contribute to the improvements in lipid
biosynthesis, inflammatory status, and barrier integrity
(Karuppagounder et al., 2016).

4.2 Modulation of immune dysregulation

CD4+ T lymphocytes (CD4+ T cells) are central to adaptive
immunity and differentiate into functionally subsets such as T
helper (Th)1, Th2, Th17, and regulatory T cells (Tregs), which
mediate distinct immune responses. These lineages maintain
immune homeostasis through cytokine- and transcription factor-
driven cross-regulation. Among these, Th1, Th2, and Th17 subsets
are particularly implicated in the initiation and chronic progression
of AD (Su et al., 2017), as part of the broader mechanisms illustrated
in Figure 4.

In AD, an imbalance between Th1 and Th2 cells is recognized as
one of the most prominent immunological hallmarks. Th1 cells
differentiate in response to IL-12 and interferon-gamma (IFN-γ), a
process regulated by the transcription factor T-bet (Jankovic and
Feng, 2015). These cells predominantly secrete IFN-γ and tumor
necrosis factor-alpha (TNF-α). In contrast, Th2 cells are induced by
IL-4, which promotes the expression of GATA-binding protein 3
(GATA3) and leads to the production of IL-4, IL-5, and IL-13, all of
which play key roles in driving allergic inflammation (Ruterbusch
et al., 2020). During the acute phase of AD, Th2 cytokines are
markedly upregulated, facilitating immunoglobulin E (IgE)
production, eosinophil infiltration, and suppression of
Th1 responses, thereby amplifying Th1/Th2 imbalance (Spergel
et al., 1999). Among these, IL-4 and IL-13 have been identified
as central pathogenic mediators that induce inflammation, impair

skin barrier integrity, and provoke pruritus (Sehra et al., 2010;
Bieber, 2020). In the chronic phase, Th1-related activity becomes
predominant, characterized by increased production of IFN-γ and
TNF-α (Moss et al., 2004), which further contribute to tissue damage
and sustained immune dysregulation (Salama and Fowell, 2020).
Several flavonoids have been reported to restore Th1/Th2 balance by
targeting key signaling pathways. Apigenin has been reported to
modulate allergic responses in both in vitro and in vivo models. In
IgE-sensitized rat basophilic leukemia cells (RBL-2H3) cell model,
apigenin treatment was associated with the suppression of FcεRI-
mediated activation and downstream MAPK signaling,
accompanied by reduced levels of Th2 cytokines (IL-4, IL-5, IL-6,
IL-13) and TNF-α (Park C.-H. et al., 2020). Complementary findings
in a compound 48/80-induced AD mouse model demonstrated
attenuation of mast cell activation and IL-31-associated signaling
pathways (Che et al., 2019). Similarly, in HaCaT model, myricetin
treatment was associated with the downregulation of T-bet and
GATA3 expression, accompanied by decreased levels of IL-4 and
IFN-γ, suggesting a potential role in modulating Th1/Th2-
associated immune signaling (Hou et al., 2022).

In addition to Th1 and Th2 subsets, Th17 cells and their
associated cytokines are also involved in the
immunopathogenesis of AD. In acute AD lesions, Th17-derived
cytokines such as IL-17 and IL-22 are markedly elevated (Simon
et al., 2014), which aggravates skin inflammation and disrupts
epidermal barrier integrity (Asarch et al., 2008; Korn et al.,
2009). The differentiation of Th17 cells is regulated by the
lineage-specific transcription factor retinoic acid-related orphan
receptor gamma t (RORγt) (Zhao et al., 2021; Hall et al., 2022).
Luteolin has been observed to inhibit the Janus kinase 2 (JAK2)/
STAT3 signaling pathway in AD mouse model, along with reduced
IL-17 expression and diminished Th17-mediated inflammatory
responses (Tang et al., 2022). Experimental evidence from AD
mouse models suggests that 7-methoxyisoflavone exhibits dual
immunomodulatory effects in both Th2- and Th17-predominant
settings. In the Th2-driven FITC-induced model, it is associated
with the downregulation of IL-4 and IFN-γ, while in the Th17-
driven oxazolone (OXZ) model, it suppresses phosphorylated
STAT3 (p-STAT3) and IL-17A expression, ultimately
contributing to the coordinated regulation of Th1, Th2, and
Th17 immune axes (Dong et al., 2022). Experimental studies
integrating both in vitro and in vivo models have investigated the
immunomodulatory properties of sophoricoside. In vitro,
sophoricoside was shown to inhibit CD4+ T cell differentiation
into Th1 (T-bet), Th2 (GATA3), and Th17 (RORγt) subsets,
accompanied by reduced expression of IFN-γ, IL-4, and IL-17A.
In a corresponding AD mouse model, sophoricoside treatment was
associated with attenuated inflammatory cell infiltration and
cytokine production in lesional skin, thereby mitigating AD-like
pathological manifestations (Kim and Lee, 2021).

4.3 Modulation of chemokine dysregulation

Chemokines are small, secreted proteins produced by both
structural and immune cells that regulate immune responses at
sites of inflammation by directing immune cell migration through
interactions with G protein-coupled receptors, including CC

Frontiers in Pharmacology frontiersin.org11

Li et al. 10.3389/fphar.2025.1631977

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1631977


chemokine receptors (CCR) and CXC chemokine receptors (CXCR)
(Liu J. et al., 2021). In AD, chemokines serve as critical mediators
bridging innate and adaptive immunity (Sun et al., 2021), as part of
the broader mechanisms illustrated in Figure 4. They coordinate the
temporal recruitment of immune cell subsets and facilitate the
progression from acute to chronic inflammation (Nedoszytko
et al., 2014). In addition, chemokines play essential roles in
driving Th2-skewed immune responses, disrupting skin barrier
function, and amplifying downstream inflammatory signaling
cascades (Kitahata et al., 2022).

During the acute phase of AD, Th2-associated chemokines play
a dominant role in promoting inflammation. C-C motif chemokine
ligand 17 and 22 (CCL17 and CCL22), predominantly secreted by
keratinocytes and dendritic cells, bind to C-C chemokine receptor 4
(CCR4) and selectively recruit Th2 cells to lesional skin. These
chemokines are widely recognized as key biomarkers of disease
activity (Carola et al., 2021; He et al., 2021). Quercetin has been
reported to attenuate Th2-mediated inflammation in MC903-
induced AD mouse model along with reduced expression of
CCL17 and CCL22, which may contribute to reduced Th2 cell
infiltration. In HaCaT model, quercetin treatment was associated
with decreased secretion of CCL17 and CCL22 secretion, potentially
through modulation of the TLR2/6 and MAPK signaling pathways
(Hou et al., 2019). Similarly, other flavonoids such as 7,3′,4′-
trihydroxyisoflavone, skullcapflavone II, and orobol have been
reported to downregulate CCL17 and CCL22 expression both in
mouse and HaCaT AD models. These effects appear to be primarily
associated with the modulation of signaling pathways such as
MAPK, NF-κB, and STAT. By interfering with chemokine-
mediated immune cell recruitment, these flavonoid metabolites
have been associated with attenuated cutaneous inflammation,
including erythema, pruritus, and barrier disruption (Park S. H.
et al., 2020; Lee Y. et al., 2022; Lee et al., 2022 C. H.).

In addition to Th2-associated chemokines, CCL5 is also
significantly upregulated in AD, although it is not Th2-specific.
This chemokine acts on Th1 cells, eosinophils, and mast cells to
promote immune cell infiltration and epidermal hyperplasia, which
functions as a mediator linking acute and chronic phases, as
supported by its upregulation across disease stages (Yu et al.,
2020; Matsui et al., 2022). Recent studies have reported that
chrysin mitigates inflammatory cell infiltration and
histopathological alterations in AD mouse model, potentially via
suppression of the NF-κB signaling pathway and downregulation of
CCL5 expression (Yeo et al., 2020).

As inflammation progresses, neutrophil-associated CXC
chemokines play an increasingly prominent role in the
pathogenesis of AD. Among them, C-X-C motif chemokine
ligand 1 and 2 (CXCL1 and CXCL2) are significantly upregulated
in lesional skin and primarily mediate neutrophil recruitment
through interaction with the CXCR2 receptor, thereby
aggravating tissue damage and acute symptoms such as erythema
and edema (Sakai et al., 2021). Transcriptomic analyses by Chen
et al. revealed that CXCL1 and CXCL2 are highly enriched in IL-17-
related signaling pathways, which participate in acute immune
responses triggered by microbial coinfections (Chen et al., 2019).
Experimental evidence indicates that skullcapflavone II
downregulates CXCL1 expression in MC903-induced AD mouse
model, which is associated with reduced infiltration of CD4+ T cells,

eosinophils, and neutrophils (Lee Y. et al., 2022). In addition, 7-
methoxyisoflavone has been reported to significantly suppress
CXCL1, CXCL2, and CXCL3 expression in both FITC- and
oxazolone-induced AD models, which was associated with
reduced neutrophil infiltration and attenuated skin erythema and
edema (Dong et al., 2022).

CXCL15, a murine neutrophil chemotactic factor, is markedly
upregulated during the early inflammatory stage in 2,4-
dinitrochlorobenzene (DNCB)-induced model of AD. It acts
synergistically with CXCL1 and CXCL2 to promote neutrophil
infiltration and enhance inflammatory cell accumulation in the
skin (Zheng et al., 2023). In carvacrol- and 2,4-
dinitrofluorobenzene (DNFB)-induced mouse models, scutellarein
treatment was associated with reduced secretion of CXCL15 and
related pro-inflammatory cytokines, thereby alleviating AD-like
symptoms (Wang Y. et al., 2022).

As AD progresses into the chronic phase, Th1-mediated
immune responses become increasingly dominant, characterized
by the sustained overexpression of IFN-γ-induced chemokines such
as CXCL9, CXCL10, and CXCL11. These chemokines play a critical
role in maintaining chronic inflammation and driving tissue damage
(Drozhdina and Suslova, 2021). Studies by Renert-Yuval et al. (2021)
and Kibalina et al. (2022) have shown that CXCL9, CXCL10, and
CXCL11 are significantly upregulated and co-expressed with IFN-γ
in the lesional skin of adult AD patients, further substantiating their
role in the Th1-dominant inflammatory axis. Puerarin has been
reported to suppress the expression of Th1-associated chemokine
(CXCL9, CXCL10, CXCL11) in TNF-α/IFN-γ-stimulated HaCaT
model, and to attenuate inflammation and skin tissue damage in a
DNCB-induced AD mouse model (Lee et al., 2018).

4.4 Modulation of itch signaling pathways

Persistent or recurrent pruritus is a hallmark symptom of AD,
and its pathogenesis is driven by complex interactions among
upstream inflammatory mediators, neuronal sensitization
mechanisms, and immune-driven processes (Tominaga and
Takamori, 2022). Recent evidence suggests that AD-associated
itch is mediated by a broad spectrum of signaling molecules,
including pro-inflammatory cytokines such as IL-31 (Duca et al.,
2022), IL-33 (Nakajima et al., 2021) and TSLP (Meng J. et al., 2021);
sensory ion channels such as members of the transient receptor
potential (TRP) family (Meng J. et al., 2021); immune effector events
such as IgE-mediated mast cell degranulation (Mollanazar et al.,
2016); and proteolytic mediators including Cathepsin S (CTSS)
(Ruppenstein et al., 2021). These factors may act synergistically
amplify peripheral itch perception and contribute to the persistence
and exacerbation of chronic pruritus through multiple signaling
cascades, as partially illustrated in Figure 4 and in greater detail
in Figure 5.

TSLP and IL-33 serve as upstream alarmins in AD, initiating
both immune and sensory signaling. TSLP is abundantly expressed
in keratinocytes of AD lesions and promotes Th2-type inflammation
while directly activating transient receptor potential ankyrin 1
(TRPA1) channels on sensory neurons, enhancing pruritus
(Wilson et al., 2013; Meng J. et al., 2021). It also upregulates IL-
33 and synergizes to suppress barrier proteins such as filaggrin and
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claudin-1, exacerbating epidermal dysfunction (Dai et al., 2022).
Upon cellular damage, IL-33 activates type 2 innate lymphoid cells
(ILC2s) and basophils to produce IL-5 and IL-13, and
simultaneously enhances IL-31 signaling, forming a self-
reinforcing loop of inflammation and itch (Imai, 2023;
Yamamura et al., 2024). As a Th2 effector, IL-31 correlates with
itch severity and signals via IL-31 receptor alpha (IL-31RA)/
Oncostatin M receptor beta (OSMRβ) receptors on sensory
nerves to release calcitonin gene-related peptide and drive
neurogenic inflammation (Fassett et al., 2023). Several flavonoids
have been reported exhibit pharmacological effects in alleviating
itch-associated inflammatory responses in AD models. In DNCB-
induced AD mouse model, puerarin treatment was associated with
reduced expression of pruritogenic cytokines including IL-31 and
TSLP, indicating its potential anti-inflammatory activity (Lee et al.,
2018). In addition, in a Dermatophagoides farinae extract and
DNCB-induced AD mouse model, rutin was reported to
downregulate Th2-type cytokines including IL-31, IL-4, and IL-
13, along with decreased serum histamine levels and suppressing
mast cell infiltration in lesional skin (Choi and Kim, 2013).

In addition to classical Th2 cytokines, non-canonical sensory
pathways are essential contributors to chronic pruritus in AD. CTSS,

a protease strongly associated with itch, is markedly upregulated in
AD lesions and sustains neuroimmune activation by cleaving
PAR2 or directly stimulating sensory nerve endings (Ruppenstein
et al., 2021). In parallel, the transient receptor potential vanilloid 3
(TRPV3) calcium channel, overexpressed in keratinocytes and
sensory neurons, increases neuronal excitability and contributes
to persistent itch (Meng J. et al., 2021). In HaCaT model,
skullcapflavone II was reported to suppress the expression of
CTSS, a pruritogenic protease, through inhibition of the STAT1/
NF-κB/p38 MAPK signaling pathway (Lee Y. et al., 2022). Likewise,
in AD mouse model, scutellarein was reported to inhibit
TRPV3 channel activity, accompanied by reduced, accompanied
by reduced neural hyperexcitability, lower serum IgE levels, and
decreased expression of proinflammatory cytokines including IL-1β,
TNF-α, IL-4, IL-6, and CXCL15 (Wang Y. et al., 2022).

During the acute phase of AD, the interplay between immune
cells and the peripheral nervous system plays a pivotal role in
initiating and amplifying pruritus (Steinhoff et al., 2022). Among
these mechanisms, IgE-mediated mast cell degranulation serves as a
key driver of immediate itch responses. Upon activation, mast cells
rapidly release pruritogenic mediators such as histamine,
prostaglandin D2 (PGD2), tryptase, and β-hexosaminidase (Poto

FIGURE 5
The itch signaling underlying AD (the part that flavonoids can intervene in). By BioRender. Note: Th2, T helper 2 cell; TSLPR, thymic stromal
lymphopoietin receptor; IL-13RA, interleukin-13 receptor alpha; OSMRβ, oncostatin M receptor beta; IL-33R, interleukin-33 receptor; PAR2, protease-
activated receptor-2; TRPV3, transient receptor potential vanilloid 3.
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et al., 2022), which collectively stimulate C-type sensory nerve fibers
and trigger neuroimmune amplification (Siiskonen and Harvima,
2019). Tryptase can further potentiate itch signal transmission by
activating sensory neurons through PAR2. Several natural
metabolites have shown inhibitory effects on mast cell-mediated
pruritic signaling. For instance, Daphnopsis costaricensis Barringer
and Grayum extract identified with 11 flavonoid metabolites and
stechamone were observed to suppresse β-hexosaminidase release,
reduce mast cell degranulation and IL-4 production, and were
associated with attenuated scratching behavior in mouse AD
models (Jo et al., 2018; Bae et al., 2022). Chamaejasmine was also
observed to attenuate degranulation in IgE-sensitized RBL-2H3 and
was associated with reduced serum levels of histamine, IgE, and IL-4
in AD mouse model (Jo et al., 2018; Kim et al., 2019). Moreover,
luteolin has been shown to reduce serum IgE levels and attenuate
scratching behavior in AD mouse model (Choi et al., 2010), with
additional evidence showing its pharmacological effects in various
pruritus models suggests that luteolin may inhibit mast cell
degranulation and suppression of IL-4/IgE and PGD2–IL-33
signaling pathways (Gendrisch et al., 2021).

4.5 Regulation of skin and gut microbial
homeostasis

In AD, the disruption of skin and gut microbial homeostasis is
increasingly recognized as a critical factor contributing to the
initiation and persistence of chronic inflammation and epithelial
barrier dysfunction (Pessôa et al., 2023; Chen et al., 2024), as part of
the broader mechanisms illustrated in Figure 4. Under normal
conditions, commensal skin microbiota help preserve
homeostasis by regulating cutaneous pH, promoting barrier
protein expression, and shaping local immune responses (Naik
et al., 2012). Among them, Staphylococcus epidermidis and other
resident species strengthen skin integrity and immune tolerance by
producing antimicrobial peptides, maintaining an acidic
microenvironment, and preventing pathogenic colonization
(Olesen et al., 2021).

In patients with AD, cutaneous microbial diversity is markedly
reduced, often accompanied by predominant colonization by S.
aureus (Staphylococcus aureus), which contributes significantly to
recurrent inflammation and skin barrier dysfunction (Demessant-
Flavigny et al., 2023). Notably, the hands, as characteristically dry
sites, harbor distinct microbial communities that help maintain
acidic pH and microbial balance (Huang et al., 2025); however,
repeated scratching disrupts this equilibrium, promotes
pH neutralization, and facilitates S. aureus adhesion and
inflammatory responses (Bay et al., 2025).

Staphylococcus aureus in AD skin has also been shown to
accumulate in keratinocyte lysosomes and trigger IL-1α secretion
via TLR9 activation, thereby promoting inflammation (Moriwaki
et al., 2019). It also secretes multiple virulence factors such as
superantigens, α- and δ-toxins, and lipoteichoic acid (LTA),
which activate T cells to produce IL-4, IL-5, TSLP, and IL-31
(Chung et al., 2022); collectively promote IgE class switching and
Th2 polarization (Gough et al., 2022); and contribute to heightened
pruritus and inflammation in AD (Aziz et al., 2024). In parallel, S.
aureus downregulates the expression of key barrier-associated

proteins such as filaggrin and loricrin (Cau et al., 2021),
compromising keratinocyte cohesion and exacerbating skin
barrier dysfunction (Demessant-Flavigny et al., 2023). A
mechanism-oriented systematic review identified 85 flavonoid
metabolites with anti-MRSA activity, approximately 70% of
which demonstrated potent in vitro pharmacological effects
(MIC ≤16 μg/mL) via membrane disruption, biofilm inhibition,
and efflux pump suppression, suggesting their potential suitability
for topical application in managing S. aureus-associated skin
microbiota dysbiosis (Xu et al., 2024). Among them, a study
reported that pure EGCG, at a concentration of 80 μg/mL,
achieved a 99.999% (log5) reduction in clinical MRSA isolates
within 4 h, indicating potent antibacterial effects (Aljuffali et al.,
2022; Feilcke et al., 2023). Given EGCG’s multi-target
pharmacological effects in AD models (Śladowska et al., 2025),
incorporation of an S. aureus-induced model may facilitate
investigation into its potential microbiota-modulating
mechanisms. This model is characterized by pronounced Th1/
Th17 inflammation and microbial dysbiosis, thereby providing a
relevant experimental platform to examine how flavonoids
contribute to restoring gut–skin axis homeostasis in AD (Zhang
et al., 2024).

In addition to its local cutaneous effects, gut microbiota
dysbiosis plays a significant role in systemic immune regulation
via the gut–skin axis (Melli et al., 2020). Patients with AD frequently
exhibit reduced gut microbial diversity (Melli et al., 2020),
characterized by decreased abundance of beneficial genera such
as Lactobacillus app. and Bifidobacterium app., along with increased
abundance of pro-inflammatory taxa including Clostridioides
difficile (Ahn, 2023). This dysbiosis leads to impaired production
of short-chain fatty acids, disruption of the intestinal epithelial
barrier (Pessôa et al., 2023), reduced differentiation of Tregs, and
exaggerated Th2-type immune responses, all of which contribute to
heightened skin sensitivity and inflammation (Chen et al., 2024).
Emerging studies have demonstrated that glycosylated flavonoids
exert microbiota-modulatory effects by selectively enriching
beneficial bacterial taxa and suppressing pathogenic bacteria,
thereby contributing to the reestablishment of gut microbial
homeostasis (Pan et al., 2023; Xiong et al., 2023). Recent study
suggests that the flavonoid baicalin may modulate gut microbiota
composition and is associated with the alleviation of AD-like
phenotypes. In DNCB-induced AD mouse model, baicalin was
found to modulate gut microbial balance by increasing the
abundance of Lactobacillus app. and Coprococcus 1 app., while
reducing Parabacteroides app. and Alistipes app., an effect further
supported by fecal microbiota transplantation experiments (Wang
L. et al., 2022).

The downregulation of antimicrobial peptides (AMPs) is an
important factor contributing to the increased susceptibility of AD
patients to microbial infections (Ong et al., 2002). In lesional skin,
the expression of key AMPs, including human β-defensin 1, 2, and 3
(HBD-1, HBD-2, HBD-3), the cathelicidin LL-37 (Szabó et al.,
2023), and its encoding gene cathelicidin antimicrobial peptide
(CAMP) (Ma et al., 2022), is markedly reduced. This reduction
compromises the skin’s innate immune defense capacity. Apigenin
has been shown to robustly upregulate AMP expression in both in
vivo and in vitro models. In a C57BL/6J mouse model of AD,
apigenin significantly upregulated the expression of CAMP and

Frontiers in Pharmacology frontiersin.org14

Li et al. 10.3389/fphar.2025.1631977

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1631977


mouse β-defensin 3 (mBD3), which may contribute to increased
local antimicrobial activity (Hou et al., 2013). Similarly, in HaCaT
model, apigenin was found to upregulate the expression of HBD-1,
HBD-2, HBD-3, and LL-37, which may enhance antimicrobial
peptide-mediated defenses under inflammatory conditions (Park
C.-H. et al., 2020).

4.6 Modulation of programmed cell death

In AD pathogenesis, programmed cell death maintains immune
homeostasis, modulates inflammation, and supports skin barrier
integrity (Lossi, 2022; Tanaka et al., 2022). Beyond classical
apoptosis, necroptosis (Luo C.-H. et al., 2024) and activation-
induced cell death (AICD) (Cencioni et al., 2015) have also been
implicated in AD progression and the regulation of immune and
epithelial cell function (Figure 6).

Apoptosis is a caspase-dependent form of programmed cell
death that proceeds through two major pathways: the extrinsic
Fas cell surface death receptor/Fas ligand (Fas/FasL) axis and the
intrinsic mitochondrial pathway (Rebane et al., 2012). In the

extrinsic pathway, IFN-γ secreted by cutaneous lymphocyte-
associated antigen-positive (CLA+) T cells upregulates Fas
expression on keratinocytes (Trautmann et al., 2000), rendering
them sensitive to FasL-mediated signaling. This cascade activates
caspase-8 and downstream caspase-3 (Takahashi et al., 1999),
leading to DNA fragmentation and keratinocyte apoptosis
(Simon et al., 2006).

The intrinsic pathway is typically activated by TNF-α or
oxidative stress, which disrupts the Bcl-2-associated X protein to
B-cell lymphoma 2 (Bax/Bcl-2) ratio, promoting mitochondrial
outer membrane permeabilization (MOMP) and cytochrome c
release (Tait and Green, 2010), which subsequently activates
caspase-9 and initiates the apoptotic cascade (Martinou and
Youle, 2011). In AD, elevated expression of Fas and FasL
increases keratinocyte vulnerability to IFN-γ-induced apoptosis
(Rebane et al., 2012), thereby contributing to skin barrier
breakdown and exacerbation of eczematous inflammation
(Szymanski et al., 2018). In the TNF-α-stimulated HaCaT model,
baicalin treatment was associated with attenuation of inflammatory
injury via inhibition of the STAT3/NF-κB signaling pathways. This
effect involved reduced production of pro-inflammatory cytokines

FIGURE 6
The programmed cell death underlying AD (the part that flavonoids can intervene in). Note: Fas, Fas cell surface death receptor; FasL, Fas ligand;
FADD, Fas-associated death domain; TNFR1, tumor necrosis factor receptor 1; TRAF, TNF receptor-associated factor; cIAP, cellular inhibitor of apoptosis
protein; KC, keratinocyte; BID, BH3-interacting domain death agonist; tBID, truncated BID; Bax, Bcl-2-associated X protein; Bcl-2, B-cell lymphoma 2;
MOMP, mitochondrial outer membrane permeabilization; Cytc, cytochrome c; ROS, reactive oxygen species; RIPK-, receptor-interacting protein
kinase; MLKL, mixed lineage kinase domain-like protein; TRADD, TNFR1-associated death domain protein; CYLD, cylindromatosis tumor suppressor;
AICD, activation-induced cell death.
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and modulation of apoptotic regulators including Bax, Bcl-2, and
caspase-3 (Wu et al., 2020).

Necroptosis is a regulated, caspase-independent form of
programmed cell death mediated by the receptor-interacting
protein kinase 1 (RIPK1), RIPK3, and mixed lineage kinase
domain-like protein (MLKL) signaling axis (Fritsch et al., 2019).
Although mechanistically distinct, it mimics necrosis
morphologically, including membrane rupture and inflammatory
content release (Karlowitz and van Wijk, 2023). Under caspase-8
inhibition, RIPK1/RIPK3 phosphorylation initiates necrosome
formation and MLKL activation, triggering membrane
breakdown and the release of pro-inflammatory damage-
associated molecular patterns (DAMPs) (Fritsch et al., 2019;
Meng Y. et al., 2021). In AD, TNF-α, oxidative stress, or
microbial cues induce keratinocyte necroptosis, resulting in IL-33
release and ILC2 activation, thereby promoting Th2-skewed
inflammation. This necroptotic axis is significantly elevated in
AD lesions and correlates with disease severity, highlighting its
role in chronic inflammation (Luo C.-H. et al., 2024). In a mouse
model of AD, treatment with EGCG-loaded nanoparticles (EGCG-
NPs) was associated with decreased expression of necroptosis-
related markers including RIPK1, RIPK3, and MLKL, as well as a
reduction in Terminal deoxynucleotidyl transferase dUTPNick-End
Labeling- (TUNEL-) positive keratinocytes, suggesting potential
inhibition of keratinocyte necroptosis (Han et al., 2022).
Additionally, the flavonoid nepetin has been reported to
attenuate oxidative stress, suppress pro-inflammatory cytokines
production, and reduce cell death by modulating the myeloid
differentiation primary response 88 (MyD88) –mitogen-activated
protein kinase kinase 3/6 (MKK3/6) –Akt signaling pathway, a
potential role in the regulation of necroptosis or other non-
apoptotic forms of programmed cell death (Gong et al., 2024).

AICD is a specialized form of programmed cell death that
occurs in chronically stimulated T cells following prolonged
antigen exposure, serving as a critical mechanism to maintain
immune homeostasis and peripheral tolerance (Arakaki et al.,
2014). AICD is primarily mediated through the Fas/FasL
signaling axis. Upon sustained activation, T cells upregulate
FasL, which binds to Fas receptors on themselves or
neighboring cells, initiating caspase-8 activation and leading to
apoptosis (Zhang et al., 2000; Nakano et al., 2007). This leads to
the downstream activation of effector caspases, including
caspase-3, -7, and -9, ultimately resulting in apoptotic cell
death. Both in vitro and ex vivo studies have shown that
Th1 cells exhibit greater susceptibility to AICD than Th2 cells,
a difference largely attributed to more efficient Fas ligand surface
expression in Th1 cells, which in turn contributes to the Th2-
biased immune profile observed in AD (Oberg et al., 1997; Akdis
et al., 2003). Recent research has reported that in DNCB and dust
mite-induced AD mouse models, kaempferol attenuates disease
symptoms, potentially through modulation of T cell
overactivation and apoptosis. Mechanistic in vitro findings
suggest that kaempferol preserves the expression of anti-
apoptotic and apoptotic regulatory proteins, including Bcl-2
and caspase-3, -7, and -9, thereby reducing AICD-induced cell
death in T cells (Lee and Jeong, 2021). Additionally, in vivo
evidence indicates that kaempferol improves skin barrier
function and attenuates oxidative stress (Nasanbat et al., 2023).

4.7 Attenuation of oxidative stress and
redox imbalance

Oxidative stress is increasingly recognized as a central pathogenic
factor in the progression of AD (Galiniak et al., 2022), as shown in
Figure 7. In lesional skin, excessive accumulation of ROS compromises
the epidermal barrier, facilitates TEWL and allergen penetration,
activates pro-inflammatory signaling cascades, and disrupts immune
homeostasis (Raimondo et al., 2023). Together, these processes establish
a self-perpetuating cycle of oxidative damage, inflammation, and
immune dysregulation that contributes to the chronicity and severity
of the disease.

Persistent accumulation of ROS induces lipid peroxidation in
keratinocyte membranes and structural proteins, resulting in
impaired barrier function and increased TEWL (Yang et al., 2022;
Berdyshev, 2024). In parallel, ROS activate inflammatory signaling
cascades such as the NF-κB and MAPK pathways, which promote
the expression of pro-inflammatory cytokines including IL-1β, IL-6, and
TNF-α, thereby reinforcing inflammation through a self-amplifying loop
(Yang et al., 2022; Herath et al., 2024). Experimental evidence indicates
that butein reduces ROS generation and suppresses IL-6 and intercellular
adhesionmolecule-1 (ICAM-1) expression in TNF-α-stimulatedHaCaT
model. These effects are associated with inhibition ofMAPK and NF-κB
pathway activation, suggesting potential antioxidant and skin barrier-
protective properties activities in vitro (Seo et al., 2015). Similarly, in LPS-
stimulated HaCaT model, nepetin has been shown to attenuate ROS
accumulation and reduce the production of inflammatory cytokine,
potentially through modulation of the MyD88-MKK3/6–Akt–NF-κB
signaling pathway (Gong et al., 2024).

Downstream of ROS accumulation, COX-2 and iNOS are key pro-
inflammatory enzymes that amplify oxidative and immune-mediated
damage. COX-2 catalyzes the synthesis of prostaglandin E2 (PGE2)
(Ilari et al., 2020), while iNOS produces nitric oxide (NO), which
together contribute to the formation of reactive nitrogen species (RNS)
(Zhao et al., 2022), thereby exacerbating tissue inflammation and
oxidative injury. In addition, ROS promote Th2-skewed immune
responses and impair Treg function (Nakajima et al., 2021),
resulting in the upregulation of type 2 cytokines such as IL-4 and
IL-13 (Fu Z. et al., 2024), which further exacerbate chronic allergic
inflammation in AD. Among natural antioxidants, in LPS-stimulated
RAW264.7 macrophages, apigenin has been shown to suppresses the
expression of COX-2, iNOS, as well as the inhibition of the MAPK
signaling pathway and in IgE-sensitized RBL-2H3 cells, it suppresses of
the FcεRI signaling pathway, suggesting potential anti-allergic and anti-
inflammatory activities (Park C.-H. et al., 2020). Similarly, quercetin
and its derivatives have been shown to downregulate the expression of
iNOS, COX-2, and Th2-associated cytokines (IL-4, IL-5, and TSLP),
while reducing serum IgE levels and eosinophil counts in AD mouse
model, suggesting that they may concurrently mitigate oxidative stress
and modulate immune responses (Jafarinia et al., 2020).

To counteract the toxicity of ROS, the body depends on a complex
network of endogenous antioxidant systems, including SOD, glutathione
(GSH), glutathione peroxidase (GPx), and heme oxygenase-1 (HO-1)
(Jegadheeshwari et al., 2024), which collectively maintain cellular redox
homeostasis (Meca et al., 2021). Among these, SOD and GPx function
cooperatively to neutralize ROS (Bhat et al., 2014; Ighodaro and
Akinloye, 2018), GSH preserves the intracellular reducing
environment, and HO-1 expression is upregulated by the nuclear
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factor erythroid 2-related factor 2 (Nrf2) (Liu F. et al., 2021; Peng et al.,
2024), thereby enhancing cytoprotective responses. In contrast,
malondialdehyde (MDA), a terminal product of lipid peroxidation,
serves as a widely recognized biomarker of oxidative stress and
cellular injury (Mas-Bargues et al., 2021). In DNCB-induced AD
mouse model, EGCG-NPs were associated with increased activity of
antioxidant enzymes such as SOD and GSH, decreasedMDA levels, and
enhanced total antioxidant capacity (T-AOC), collectively contributing
to the restoration of epidermal redox balance (Han et al., 2022). In
addition, quercetin has been reported to exert similar protective effects
by activating the Nrf2/HO-1 signaling pathway, enhancing antioxidant
enzyme expression, and mitigating hydrogen peroxide-induced
oxidative stress in keratinocytes (Jafarinia et al., 2020).

5 Limitations and safety concerns in
conventional oral and topical delivery
of flavonoids

5.1 Pharmacokinetic limitations to the oral
bioavailability of flavonoids

Flavonoids exhibit broad pharmacological activities, particularly
in dermatological disorders. Nonetheless, their clinical translation is

substantially limited by pharmacokinetic barriers. The low oral
bioavailability of flavonoids results primarily from structural
characteristics, transport mechanisms, metabolic clearance, and
tissue distribution.

Most natural flavonoids exist predominantly as O-glycosides
and C-glycosides, whose high hydrophilicity and limited
lipophilicity restrict their ability to traverse the intestinal
epithelium and enter systemic circulation. It is increasingly
recognized that these glycosides are generally believed to
require hydrolysis in the intestinal lumen by host enzymes or
gut microbiota into more membrane-permeable aglycones for
efficient absorption (Nakamura et al., 2020). Animal studies
further confirm that unmetabolized glycosides, such as
quercetin-3-O-sophoroside, cannot penetrate the intestinal
epithelium (Nakamura et al., 2018). O-glycosides (e.g.,
isoquercitrin) are typically hydrolyzed in the upper
gastrointestinal tract to release aglycones like quercetin, while
C-glycosides (e.g., orientin, vitexin), due to their structural
stability, are only metabolized into absorbable forms in the
colon by gut microbiota (Xie et al., 2022). Notably, human gut
microbiota can transform C-glycosides such as orientin and vitexin
into their corresponding aglycones, luteolin and apigenin,
suggesting an important role of the gut microbiota as a key
contributor to their metabolic conversion (Wang S. et al., 2022).

FIGURE 7
The oxidative stress underlying AD (the part that flavonoids can intervene in). Note: TLR4, Toll-like receptor 4; ROS, reactive oxygen species; MDA,
malondialdehyde; NF-κB, nuclear factor kappa B; MAPK, mitogen-activated protein kinase; Keap1, Kelch-like ECH-associated protein 1; Nrf2, nuclear
factor erythroid 2-related factor 2; GSH, glutathione; GPX, glutathione peroxidase; SOD, superoxide dismutase; CAT, catalase; HO-1, heme oxygenase-1;
COX-2, cyclooxygenase-2; iNOS, inducible nitric oxide synthase; NO, nitric oxide; PGE2, prostaglandin E2.
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Metagenomic analyses reveal that while O-glycosidases are widely
expressed in the gutmicrobiota, their expression levels vary significantly
among individuals, leading to highly personalized hydrolysis efficiency
and absorption outcomes (Goris et al., 2021). This is supported by the
observation that glycosylated flavonoids are nearly undetectable in
plasma, with aglycones generally considered to be the predominant
bioactive forms (Chen et al., 2022).

Flavonoid absorption is also influenced by transmembrane transport
mechanisms. Studies using the Caco-2 Brush Border Expressing clone
1 cell line (Caco-2 BBe1)model demonstrate that glycosylated flavonoids
are primarily absorbed via Sodium-dependent glucose transporter 1- and
Glucose transporter 2-mediated active transport, whereas aglycones are
mainly taken up by passive diffusion (Zhang et al., 2020). These
mechanisms not only affect transepithelial flux but also play a key
role in determining oral bioavailability.

Even after successful absorption into the circulatory system,
flavonoids face significant first-pass metabolic barriers. In both the
intestinal epithelium and liver, they are rapidly transformed into
hydrophilic metabolites through phase II enzymatic reactions such
as glucuronidation, sulfation, and methylation, catalyzed by
enzymes including uridine 5′-diphospho-glucuronosyltransferase,
sulfotransferase, and catechol-O-methyltransferase. These
transformations are generally associated with reduced bioactivity
and lower plasma concentrations (Najmanová et al., 2020). For
instance, the oral bioavailability of morin is only 0.45%, whereas
systemic exposure reaches 92.9% following intravenous
administration, clearly illustrating the limiting impact of first-
pass metabolism on the pharmacological potential of oral
administration (Li et al., 2019).

In addition, flavonoids also undergo phase I metabolism mediated
by hepatic cytochrome P450 (CYP450) enzymes. For example, EGCG
can be oxidatively metabolized by CYP450 enzymes (Zhao et al., 2019),
while quercetin undergoes glucuronidation by uridine 5′-diphospho-
glucuronosyltransferase 1A1 to form quercetin-3-glucuronide, which
can re-enter systemic circulation via enterohepatic recycling (Zhang
et al., 2020). Although this recycling prolongs the residence time of
flavonoids in the body, it is often accompanied by reduced bioactivity,
posing challenges for maintaining consistent pharmacological activity.

Furthermore, flavonoids predominantly circulate in conjugated
forms and exhibit high plasma protein binding affinity, which limits
their distribution to target tissues. Although flavonoids are detectable in
organs such as the liver, kidneys, and lungs, their concentrations at
disease sites are typically low and transient, thereby limiting their
therapeutic potential (Teng et al., 2023). Additionally, several
flavonoids exhibit remarkably short plasma half-lives. For example,
ikarisoside A exhibits a half-life of 3.15 h and a clearance rate of
42.9 L/h/kg (Cong et al., 2018), while isoformononetin has a half-life of
just 1.9 h and an oral bioavailability of 21.6% (Raju et al., 2019). These
pharmacokinetic features, characterized by rapid clearance and short
systemic exposure, further challenge their preclinical-to-clinical
applicability.

5.2 Limitations of conventional topical
flavonoid delivery

Although certain flavonoids such as naringenin and flavanone
exhibit enhanced skin permeability under inflamed or barrier-

compromised conditions, their transdermal absorption remains
limited in intact skin, often necessitating the use of penetration
enhancers to achieve therapeutic depth (Alalaiwe et al., 2020). The
stratum corneum, with its tightly packed lipid matrix, serves as a
major barrier impeding the cutaneous deposition of natural
bioactive metabolites including flavonoids (Wang et al., 2024).

Moreover, key flavonoids such as quercetin (Khursheed et al.,
2020) and fisetin (Szymczak and Cielecka-Piontek, 2023) exhibit
extremely poor aqueous solubility and high lipophilicity, resulting in
limited dispersibility in topical formulations and thereby potentially
limiting skin permeation. As a result, their unformulated free forms
demonstrate minimal cutaneous bioavailability and markedly
limited topical pharmacological potential.

In addition, flavonoid molecules generally exhibit poor
physicochemical stability under conditions such as light exposure,
elevated temperature, and pH fluctuations, making them prone to
degradation and potentially affecting their pharmacological activity.
In particular, the phenolic hydroxyl groups are highly reactive and
susceptible to oxidation, cleavage, and photochemical
transformation. A spectroscopic analysis involving 177 flavonoid
metabolites revealed their pronounced instability under ultraviolet
irradiation, with this issue being particularly relevant in topical
application settings (Taniguchi et al., 2023). For example, free
quercetin displays structural instability under light or oxidative
stress, resulting in a substantial decline in both antioxidant and
anti-inflammatory activities, potentially rendering it therapeutically
ineffective (Vale et al., 2021).

5.3 Potential toxicities and safety
considerations of oral flavonoids

While flavonoids are valued for their therapeutic effects,
accumulating evidence indicates that high doses or prolonged
exposure can result in toxicity, highlighting the need for a
comprehensive safety assessment in future research.

With respect to hepatotoxicity, animal studies have
demonstrated that high doses of quercetin can markedly elevate
serum transaminase levels and induce lipid peroxidation as well as
glutathione depletion in hepatic tissues (Singh et al., 2021),
indicating that excessive quercetin intake may contribute to
hepatocellular injury by activating oxidative stress pathways.
Similarly, under oxidative stress, EGCG not only failed to
provide protection in hydrogen peroxide-induced model but also
worsened mitochondrial membrane potential loss, caspase-3
activation, and DNA fragmentation, suggesting potential pro-
apoptotic and mitochondria-damaging effects under such
conditions (Sahadevan et al., 2023).

In terms of genotoxicity, isoquercitrin, a quercetin derivative, has
demonstrated mild mutagenic activity in the Ames test, indicating that
potential DNAdamagemay occur under certain structural ormetabolic
conditions (Kapoor et al., 2022). Regarding endocrine disruption,
common flavonoids such as genistein, quercetin, and apigenin have
been reported to activate estrogen receptor signaling pathways at low
concentrations, thereby exhibiting phytoestrogen-like activity (Zhang
and Wu, 2022). These findings indicate that, at certain exposure levels,
these metabolites have the potential to disrupt endocrine homeostasis
and increase the risk of reproductive or developmental toxicity.
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In vitro studies have shown that certain flavonoids, at high
concentrations, can inhibit the growth of probiotic bacteria such as
Lactobacillus app., while promoting the proliferation of
opportunistic pathogens and inducing the accumulation of
harmful metabolites, including H2S and NH3 (Pan et al., 2023),
which may adversely affect gut microbial homeostasis under specific
conditions.

Moreover, quercetin and its metabolites have been shown
in vitro to exert weak to moderate inhibitory effects on key drug-
metabolizing enzymes, including cytochrome P450 isoforms
CYP3A4 and CYP2C19, as well as several major drug
transporters (Mohos et al., 2020). These findings raise concerns
that high-dose quercetin supplementation could potentially
interfere with the metabolism and clearance of co-administered
drugs, thereby raising the possibility of clinically relevant drug-drug
interactions.

Given the documented risks associated with high-dose or long-
term use of flavonoids, including hepatotoxicity, genotoxicity,
endocrine disruption, gut microbiota dysbiosis, and drug
interactions, it is imperative to develop optimized oral and
topical delivery strategies. Rational modulation of dosage and
release kinetics is equally essential to facilitate the clinical
translation and standardized application of flavonoid-
based therapies.

6 Delivery of flavonoids using novel
strategies

6.1 Topical delivery strategies for flavonoids

Innovative transdermal delivery systems have demonstrated
measurable improvements in enhancing the topical bioavailability
of poorly soluble agents. For example, a micelle-in-hydrogel
formulation containing only 0.075% hydrocortisone achieved a
9.2-fold increase in skin flux and a 50-fold improvement in
cumulative permeation compared to a 1% commercial cream,
revealing the advantage of follicular targeting in transdermal
drug delivery (Yuan et al., 2020). Similarly, dissolvable
microneedles loaded with 0.25% dexamethasone enabled rapid
intradermal release and effectively attenuated AD symptoms,
reducing epidermal thickness by >70% and spleen index by over
50%, without observable toxicity (Ben David et al., 2023). Moreover,
accumulating evidence supports the potential of novel transdermal
systems to enhance flavonoid delivery and therapeutic effects in
preclinical AD models (Table 2).

6.1.1 Microneedles
A promising approach to enhance the topical delivery of

flavonoids is the use of microneedle systems, which painlessly
penetrate the stratum corneum and enable direct intradermal
deposition of active metabolites (Luo Z. W. et al., 2024). For
example, dissolvable poly (γ-glutamic acid) microneedles co-
loaded with EGCG and L-ascorbic acid retained 95% EGCG and
93% antioxidant activity after 4 weeks at 4 °C, and delivered 63%
EGCG and 62% ascorbic acid up to 600 μm into the skin. A once-
weekly dose (358 μg EGCG, 438 μg ascorbic acid) reduced serum IgE
from 12,156 to 5,555 ng/mL and histamine from 81 to 40 pg/mL,

highlighting their low-dose, high-efficiency therapeutic potential
(Chiu et al., 2021).

6.1.2 Polymeric nanoparticles
Another widely explored approach for enhancing the delivery

efficiency of flavonoids is nanoscale encapsulation, which enhances
solubility, physicochemical stability, and skin-targeting efficiency
(Huang P.-H. et al., 2016). A recent study showed polyethylene
glycol-poly (lactic-co-glycolic acid) (PEG–PLGA)
nanoencapsulation of EGCG was shown to reduce epidermal
thickness from 109.4 μm to 43.6 μm after 21 days of topical
application, accompanied by decreases in lactate dehydrogenase
and MDA, and increases SOD, GSH, and T-AOC by 35%–60%.
Compared to free EGCG, the nanoparticles showed greater
suppression of IL-4, TNF-α, and IL-17A, which may contribute
to modulating Th1/Th2/Th17 immune balance (Han et al., 2022).

6.1.3 Hydrogels
As semi-solid matrices with excellent biocompatibility and

hydration properties, hydrogel-based systems have been proposed
as a favorable platform for controlled flavonoid delivery and
enhanced dermal deposition (Arora and Nanda, 2019). Notably,
a pH-responsive carboxymethyl cellulose/2-hydroxyethyl acrylate
hydrogel was reported to enhance the stability and transdermal
delivery of naringenin. After 30 days at 40 °C and 75% humidity, the
formulation maintained stable release. Drug release reached 73% at
pH 8.5, compared to 42% at pH 5.5. Skin permeation efficiency
increased to 58.8%, significantly outperforming conventional 1,3-
butylene glycol systems (43.5% and 42.4%), with reduced stratum
corneum retention and improved dermal deposition. No
cytotoxicity was observed in HaCaT cells, with cell viability
maintained above 90%, and the system achieved high dermal
delivery efficiency at a moderate drug loading level of 51.5%
(Park et al., 2018).

6.1.4 Microsponges
Microsponge-based carriers have been investigated as a

potential platform for transdermal flavonoid delivery, providing a
porous structure conducive to prolonged release and enhanced skin
deposition (Grillo et al., 2019). Ethyl cellulose-based microsponges
loaded with naringenin achieved a cumulative in vitro release of
92.3% within 24 h. Compared to the plain gel, the Carbopol gel
formulation (NGMSG1%) exhibited a 2.1-fold release (87.5% vs.
42.4%) and achieved a skin deposition of 802.9 μg/cm2,
approximately 3.7 times greater than that of the conventional
formulation. In vivo, the formulation significantly reduced ear
thickness and white blood cell counts, indicating sustained-
release performance, improved skin retention, and notable anti-
inflammatory effects (Nagula and Wairkar, 2020).

6.1.5 Liposomes
In addition, liposomal carriers have been shown to enhance

transdermal absorption and immunomodulatory effects of
flavonoids (Zhang and Michniak-Kohn, 2020). Topical
application of 1% taxifolin (TAX) glycoside significantly
attenuated TNCB-induced AD-like lesions, with clinical scores
reduced by 72.3% and 82.2% in the TAX and TAX + L
(liposome) groups, respectively. TAX treatment decreased TEWL
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and increased skin hydration, while TAX + L restored hydration to
normal levels, with a strong inverse correlation between TEWL and
hydration (r = −0.61). Both treatments markedly reduced serum IgE
levels, with greater suppression observed in the TAX + L group,
accompanied by downregulation of IL-4 and upregulation of IFN-γ.
Liposomal encapsulation significantly enhanced transdermal
delivery and barrier recovery, suggesting potential benefits in
terms of stability, permeability, and immune modulation (Kim
et al., 2015).

Taken together, these innovative delivery platforms have been
shown to enhance the transdermal bioavailability of flavonoids and
improve their pharmacological effects and biocompatibility. Such
multi-dimensional advantages may support the rational design of
flavonoid-based topical formulations with potential for clinical
translation in AD and related inflammatory skin disorders.

6.2 Oral delivery strategies for flavonoids

Despite their diverse pharmacological activities, the systemic
application of flavonoids remains constrained by limited aqueous
solubility, low oral bioavailability, rapid metabolic clearance, and
insufficient targeting to skin and immune tissues. While direct
evidence in AD models remains scarce, oral delivery systems
developed in oncology and inflammatory conditions may provide
mechanistic insights with potential translational relevance
(Vazhappilly et al., 2021).

For example, poly (lactic-co-glycolic acid) nanoparticles co-
loaded with baicalin and CpG oligodeoxynucleotides promoted
macrophage repolarization and T cell-mediated cytotoxicity in
tumors (Han et al., 2021), whereas dual-drug nanostructured
lipid carriers functionalized with R9dGR peptide achieved >73%
tumor inhibition without systemic toxicity (Ma et al., 2020). In
inflammatory models, cerium oxide–quercetin nanocomposites
(CeO2@QU) effectively scavenged ROS and contributed to the
maintenance of redox homeostasis (Wang et al., 2021). Exosome-
based systems further expand this potential, providing
biocompatible and targetable platforms for oral flavonoid delivery
(Ferreira et al., 2022). Notably, hesperidin-loaded bovine milk
exosomes enhanced oral bioavailability by approximately 2.5-fold

and significantly suppressed melanoma progression in vivo with no
apparent systemic toxicity (Kumar et al., 2024).

Taken together, these findings suggest a mechanistic basis for
exploring for oral flavonoid delivery in AD, although targeted
preclinical validation remains essential.

6.3 Limitations of novel delivery systems

Although recent studies have reported substantial
improvements in the delivery efficiency and therapeutic
performance of flavonoids using advanced delivery systems,
including enhanced stability, bioavailability, and targeting
efficiency (Costa et al., 2021; Delgado-Pujol et al., 2025), several
practical and clinical limitations have been identified, which merit
further investigation and refinement.

For topical administration routes, including dermal and ocular
delivery, hydrogels and nanogels are often limited by suboptimal
skin permeability, poor adhesiveness, and challenges in large-scale
manufacturing (Grillo et al., 2019; Labie and Blanzat, 2023). While
microneedle technology effectively overcomes the stratum corneum
barrier, its clinical application remains constrained by low drug-
loading capacity and insufficient mechanical strength (Han et al.,
2025). Liposomal formulations, commonly used for local and ocular
delivery, may still be affected by particle size heterogeneity,
suboptimal encapsulation efficiency, and difficulties in industrial-
scale production (Akar et al., 2024). Even with chitosan surface
modification, such systems have shown limitations in overcoming
mucosal barriers, whichmay reduce their retention and permeability
(Khalil et al., 2020). Moreover, targeted microsponge-based gels
developed for dermal diseases have exhibited variable
pharmacodynamic effects and inconsistent release profiles
(Nagula and Wairkar, 2020).

For oral administration, polymeric nanoparticles offer
controlled release and high drug-loading potential, but are prone
to protein corona formation in vivo, which compromises targeting
capabilities. In addition, degradation within the gastrointestinal tract
and first-pass metabolism substantially reduce systemic
bioavailability, and preclinical animal findings may not
consistently predict human pharmacokinetics and efficacy (Beach

TABLE 2 Topical delivery strategies for flavonoids in AD.

Delivery
system

Flavonoid(s) Carrier materials Key results References

Microneedles EGCG + Ascorbic
acid

Poly (γ-glutamic acid), dissolvable
microneedle

95% EGCG retention after 4 weeks; skin delivery up to 600 μm;
serum IgE reduced from 12156 to 5555 ng/mL

Chiu et al. (2021)

Polymeric
nanoparticles

EGCG PEG-PLGA nanoparticles Reduced epidermal thickness from 109.4 μm to 43.6 μm;
improved antioxidant enzymes (SOD, GSH, T-AOC) by

35%–60%

Han et al. (2022)

Hydrogel Naringenin Carboxymethyl cellulose/2-
hydroxyethyl acrylate hydrogel

Enhanced release at pH 8.5 (73%) vs. pH 5.5 (42%); 58.8% skin
permeation; >90% HaCaT cell viability

Park et al. (2018)

Microsponge Naringenin Ethyl cellulose-based microsponge,
Carbopol gel

92.3% cumulative release; skin deposition 802.9 μg/cm2; reduced
ear thickness and WBC count in vivo

Nagula and Wairkar
(2020)

Liposome Taxifolin Liposome Clinical score reduction: 72.3% (TAX) vs. 82.2% (TAX + L);
greater IgE suppression and hydration restoration with TAX + L

Kim et al. (2015)

Note: EGCG, epigallocatechin-3-gallate; IgE, immunoglobulin E; PEG, polyethylene glycol; PLGA, poly (lactic-co-glycolic acid); SOD, superoxide dismutase; GSH, glutathione; T-AOC, total

antioxidant capacity; WBC, white blood cells; TAX, taxifolin; TAX + L, taxifolin + liposome.
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et al., 2024). Although hydrogels and nanogels hold promise in oral
formulations, their physicochemical stability and delivery accuracy
under dynamic digestive conditions remain suboptimal (Delgado-
Pujol et al., 2025). Therefore, despite notable advances in enhancing
flavonoid pharmacokinetics, both topical and oral delivery systems
still require further optimization to meet clinical standards. In
particular, greater emphasis is required on material design,
biological barrier modulation, scalable fabrication, and in vivo
transformation mechanisms to meet the stringent demands for
safety, stability, reproducibility, and standardization necessary for
clinical translation.

7 Clinical experimental research

Recent clinical investigations have begun to explore the
therapeutic potential of natural flavonoids in AD, with early-
phase studies suggesting possible reductions in inflammation,
pruritus, and skin barrier impairment. Notably, flavonoids such
as quercetin, silymarin, EGCG, and grape seed proanthocyanidins
have shown reported to exhibit beneficial effects in topical and
systemic interventions, with preliminary data indicating acceptable
safety profiles (Table 3).

As a classical flavonoid complex, silymarin presents notable
challenges in transdermal delivery, which have prompted

formulation innovations. A preclinical study developed a
Pluronic lecithin organogel (PLO) system to enhance the dermal
delivery of silymarin. Topical application in AD patients resulted in
visible reductions in erythema and inflammation (Mady et al., 2016).
Although the study lacked a control group and primarily focused on
formulation optimization and percutaneous absorption, the
observed outcomes may support the need for further clinical
investigation. A randomized, double-blind, controlled clinical
trial evaluated the clinical therapeutic efficacy of a topical
botanical drug cream containing Fumaria officinalis L. extract
and silymarin in patients with mild to moderate AD (Iraji et al.,
2022). A total of 40 patients were enrolled and randomly assigned to
receive either the botanical drug cream or 0.1% mometasone cream
for 2 weeks. Both groups exhibited significant reductions in
SCORing Atopic Dermatitis (SCORAD) scores, with no
significant difference between them, indicating that the botanical
drug formulation was non-inferior to low-potency corticosteroid
treatment. These findings support the anti-inflammatory potential
of silymarin and its synergistic plant-derived metabolites in
clinical settings.

In another single-blind human study using a skin irritation
model, the soothing and antipruritic effects of 1% Quercevita®

cream, a phytosomal formulation of quercetin, were assessed
(Maramaldi et al., 2016). Thirty healthy volunteers were
subjected to induced skin irritation via UV exposure, histamine,

TABLE 3 Clinical experimental research.

Metabolites/
Drugs

Population Design Intervention Outcomes References

Silymarin + Fumaria
officinalis L. extract

40 eczema patients Randomized,
double-blind

controlled clinical
trial

Topical cream with Fumaria
officinalis L. extract and

silymarin vs.
mometasone 0.1%

SCORAD score reduced from 26.05 ±
7.1 to 6.94 ± 2.6 in botanical drug
group (p = 0.04); comparable to

mometasone group (27.66 ± 5.9 to
4.77 ± 1.6, p = 0.03); no adverse effects

reported

Iraji et al. (2022)

Quercetin 30 healthy volunteers;
UV, histamine, SLS,

GA-induced skin stress

Single-blind clinical
study

Topical Quercevita® (1%
quercetin phytosome)

Quercetin 1% significantly reduced
erythema (−10.05%, p = 0.00329),
wheal diameter (−13.25%), and itch
VAS score after histamine stimulation;
improved hydration and reduced

TEWL vs. placebo

Maramaldi et al.
(2016)

Silymarin Number of subjects not
specified; topical
application in AD

Formulation
development and
clinical application

Silymarin-loaded (PLO) Optimized PLO (20% pluronic, 3%
lecithin) showed enhanced silymarin
skin penetration; In vivo topical
application significantly reduced

erythema, swelling, and inflammation
in AD patients

Mady et al.
(2016)

EGCG + Vitamin E +
Grape seed procyanidins

44 patients with mild-
to-moderate AD (face/

neck)

Randomized,
controlled, double-
blind clinical study

MD2011001 cream (vitamin
E, EGCG, grape seed

procyanidins)

MD2011001 reduced Investigator’s
Global Assessment (IGA) score

significantly over 28 days; faster lesion
area reduction vs. placebo; well
tolerated on face and periocular

regions (n = 44)

Patrizi et al.
(2016)

Whey protein + Dodder
(Cuscuta campestris
Yunck.) seed extract

52 adults with
moderate-to-severe AD

Randomized,
double-blind,

placebo-controlled
clinical trial

Oral whey protein with
Cuscuta campestris Yunck.

extract

After 15-day treatment, skin moisture
and elasticity significantly increased

(p < 0.001); pruritus and sleep
disturbance significantly reduced at
day 15 (p < 0.05) and day 30 (p <
0.001); pigmentation also decreased
(p < 0.001); no serious adverse effects

Mehrbani et al.
(2015)

Note: EGCG, epigallocatechin-3-gallate; GA, glycolic acid; PLO, pluronic-lecithin organogel; SCORAD, SCORing, Atopic Dermatitis; SLS, sodium lauryl sulfate; UV, ultraviolet radiation; VAS,

visual analog scale; TEWL, transepidermal water loss.
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sodium lauryl sulfate, and fruit acids. The quercetin formulation
significantly reduced erythema, wheal formation, and subjective itch
scores, exhibiting anti-inflammatory effects comparable to 1%
desloratadine cream and supporting its potential utility as a
topical anti-inflammatory agent. A double-blind randomized
controlled trial also investigated the therapeutic efficacy and
safety of MD2011001, a non-steroidal combination cream
containing EGCG, grape seed proanthocyanidins, and vitamin E,
in 44 patients with mild to moderate AD involving the face and neck
(Patrizi et al., 2016). After 28 days of treatment, significant
reductions in lesion size and improvements in Investigator
Global Assessment (IGA) scores were observed. The formulation
was well tolerated, with no serious adverse events reported.

In addition to topical applications, the oral administration of
flavonoids has also received preliminary clinical investigation. A
randomized, double-blind, placebo-controlled clinical trial
involving 52 adults with moderate to severe AD assessed the
efficacy of oral supplementation with whey protein combined
with Cuscuta campestris Yunck. seed extract (Mehrbani et al.,
2015). This combination contains multiple flavonoids including
quercetin, kaempferol, and rutin. After 15 days of administration,
patients exhibited notable improvements in skin hydration,
elasticity, pruritus, and sleep disturbances. These improvements
persisted for at least 2 weeks after treatment cessation,
supporting a sustained symptomatic relief and skin barrier-
restorative effects.

Collectively, current clinical studies suggest that natural
flavonoids, particularly quercetin, silymarin, EGCG, and grape
seed proanthocyanidins, may exert therapeutic effects in both
topical and systemic interventions for AD, with generally
favorable safety profiles. However, most trials to date have
involved small sample sizes, lacked placebo controls, or utilized
multi-metabolite formulations, limiting the interpretability of
individual flavonoid effects. Future studies should prioritize large-
scale, well-controlled clinical trials with optimized dosage forms and
advanced delivery systems to validate efficacy, assess safety, and
define appropriate treatment strategies.

8 Discussion and perspectives

AD is a chronic multifactorial inflammatory skin disease
resulting from the interplay of genetic, immunological,
environmental, and microbial factors. Although corticosteroids
and biologics have shown clinical benefits, their long-term use is
often constrained by high costs, adverse effects, heterogeneous
patient responses, and limited applicability across AD subtypes.
Consequently, these limitations have catalyzed increasing interest in
natural metabolites with multi-target pharmacological properties
and favorable safety profiles.

As highlighted in this review, flavonoids have emerged as
promising therapeutic candidates due to their broad-spectrum
actions on key pathophysiological processes in AD, including
immune modulation, oxidative stress attenuation, barrier
restoration, microbial regulation, pruritus relief, and regulation of
programmed cell death. In particular, we extend current
understanding by incorporating underexplored yet
mechanistically relevant dimensions, such as the skin–gut axis,

necroptosis, and AICD, thus providing a more integrated and
updated perspective compared with existing literature.

However, despite robust pharmacodynamic potential in
preclinical studies, the clinical translation of flavonoids remains
hindered by multiple challenges, including poor solubility, low oral
and dermal bioavailability, rapid systemic clearance, and insufficient
toxicological profiling in humans. Moreover, the lack of
standardized formulations, dose–response analyses, and long-
term safety data significantly impedes regulatory progress and
scientific reproducibility.

Although flavonoids are widely explored as multi-target natural
metabolites in the pharmacological interventions for AD, some
structurally reactive metabolites may function as pan-assay
interference compounds (PAINS), thereby confounding
mechanistic interpretation. PAINS often cause false-positive
results through nonspecific redox activity, metal chelation,
covalent protein modification, or membrane disruption (Baell,
2016; Bolz et al., 2021). For example, EGCG and quercetin can
oxidize into ortho-quinones that non-selectively react with
nucleophilic residues, leading to broad, non-targeted activity
(Baell, 2016). Other flavonoids without classical redox structures,
such as genistein and resveratrol, have also been shown to disturb
membrane dipole potential or lower energy barriers, which can alter
protein conformation and interfere with signaling (de Matos et al.,
2021; Magalhães et al., 2022). Without orthogonal or in vivo
validation, such effects may mislead interpretation, especially in
in vitro models evaluating membrane-related functions (Bolz et al.,
2021). Given that many mechanistic insights presented in this
review are primarily derived from in vitro studies, and rigorously
designed in vivo studies remain limited, future research should aim
to reduce potential PAINS-related artifacts and enhance
translational relevance by integrating pharmacokinetic and
pharmacodynamic data, systematically evaluating membrane-
related interference, and rigorously validating target specificity.

Furthermore, to address translational bottlenecks, we propose
three strategic directions for future research. First, advanced delivery
platforms, including microneedles, nanoparticles, and hydrogel-
based systems, should be designed to enhance cutaneous
retention, epithelial penetration, and pharmacokinetic stability.
Concurrently, oral bioavailability can be improved through
structural optimization, bioenhancer co-administration, or
targeted nanoformulations that increase gastrointestinal
absorption and metabolic resistance. Second, well-powered and
mechanistically informed clinical trials are required to validate
therapeutic efficacy, define human dosing thresholds, and ensure
long-term safety. Third, the implementation of standardized
manufacturing and quality control systems will be critical to
ensure consistency, scalability, and regulatory compliance.
Together, these approaches will be instrumental in transforming
flavonoids from preclinical candidates to standardized therapeutic
options for AD, while minimizing confounding assay artifacts and
enhancing translational relevance.

9 Conclusion

In summary, flavonoids constitute a promising multi-target
therapeutic platform for AD, providing a robust mechanistic
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foundation for translational advancement. Addressing
pharmacokinetic limitations and safety concerns, alongside the
advances in delivery strategies, could support the development of
flavonoid-based therapies as disease-modifying interventions.
These efforts align with precision dermatology’s emphasis on
targeted, mechanism-informed care that integrates epithelial,
immune, and microbial dimensions. Realizing this potential
will require sustained collaboration across dermatology,
pharmacology, toxicology, and pharmaceutical science to
ensure the safe, efficacious, and scalable clinical application of
flavonoid-based interventions.
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