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Background/Objectives: New computational methods, based on statistical,
machine learning, and deep learning techniques using drug-related entities
(e.g., genes, protein bindings, etc.), help reduce the costs of in-vitro
experiments through drug-drug interaction prediction (DDIp). This review
examines recent advances in DDIp. It presents an in-depth review of the
state-of-the-art studies relating to semi-supervised, supervised, self-
supervised learning, and other techniques such as graph-based learning and
matrix factorization methods for predicting DDIs. All possible interactions
between drugs are not known, and accurately predicting interactions is even
more difficult due to the complex nature of drug-drug interactions (DDI).

Methods: Of the 49 papers published in Web of Science in the last 6 years,
24 papers were considered relevant based on information presented in their titles
and abstracts. The included articles focus specifically on predicting DDIs using a
type of machine learning algorithm. Excluded articles focused on drug discovery,
drug repurposing, molecular representation, or the extraction of biomedical
interactions. The methodology, results limitations, and future research
directions were studied for each paper. Common challenges, limitations, and
future research directions were analyzed.

Results and conclusion: The main limitations are class imbalance, poor
performance on new drugs, limited explainability, and the need for additional
data sources.
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1 Introduction

Drug-drug interactions (DDIs) occur when the pharmacokinetics (how drugs are
absorbed, distributed, metabolized, and excreted) or pharmacodynamics (how drugs
affect the body) of one drug are altered by the presence of another (Rowland, 2019).
This can happen in patients taking multiple medications, whether for a single condition
requiring combination therapy, such as cancer or acquired immunodeficiency syndrome
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(AIDS), or for multiple conditions needing separate treatments.
While many drug interactions have no significant clinical impact,
those involving drugs with a narrow therapeutic window can lead to
serious consequences, including reduced effectiveness or increased
toxicity. Intentional interactions are often beneficial, but
unintentional interactions can result in ineffective treatment or
severe side effects, potentially limiting the use of the drugs
involved or even leading to their withdrawal from the market
(Rowland, 2019).

First clinical issues recognized due to DDIs were discovered and
acknowledged in the early 1960s (Sjöqvist and Böttiger, 2010). At that
time, it was a revelation that the drugs can interact with each other, by
changing their absorption, metabolism, and renal elimination (ADME),
even if the pharmacological notions of synergism, antagonism, and
potentiation were already known by pharmacists and chemists.

These reactions occur when two or more drugs are administered
together, changing how the drugs affect the body. A DDI can delay,
enhance, or decrease the absorption or the therapeutic effect of either/
both drugs and can cause an unanticipated side effect (Obach, 2009).
The stability and predictability of drugs can also affect DDIs by ensuring
consistent drug levels in the bloodstream and minimizing the risk of
unexpected interactions (Mircia et al., 2012; 2013).

Rational drug design, also referred to as drug design, involves
developing new drugs based on the understanding of biological
targets. Using this approach, more effective and safer medications
are created by adapting drug properties to interact precisely with
specific biological mechanisms (Smith and Williams, 2002).

Kashyap et al. (2013) showed in their study the existence of
severe drug-drug interactions, especially among elderly Indian
patients, since they have prescriptions for a greater number of
drugs. The study was assumed to determine the occurrence of
drug interactions as well as their predictors. The DDIs have
triggered the withdrawal of some specific high-profile drugs from
the market; hence, it is important to evaluate the potential
interactions of the drugs before prescribing them.

As more patients take multiple drugs, predicting DDIs becomes
more important. Traditional methods, like in-vitro and in-vivo
experiments, are time-consuming, labor-intensive, and often
ineffective at measuring DDI-related side effects (Yan et al.,
2022). Computational methods, however, offer a cost-effective
and highly accurate alternative for predicting new DDIs, making
them essential in bioinformatics research and drug development
(Yan et al., 2022). The advancement of medical technologies and the
growing application of multi-drug treatments further underscore the
urgent need for developing these computational approaches to
identify potential DDIs efficiently.

Machine learning (ML) techniques have greatly improved the
prediction of drug-drug interactions. For example, one study
(Hecker et al., 2024) used a deep neural network to predict DDIs
and drug-food interactions in patients with multiple sclerosis. In
another study (Seo et al., 2023), the researchers trained a deep
learning model to predict DDIs by integrating chemical structure
similarity and protein–protein interaction information from drug-
binding proteins. There are many more examples of how ML
algorithms are used in predicting DDIs. In this paper, we analyze
semi-supervised, supervised, and some other methods of predicting
DDIs with the objective of identifying the methods used in recent
studies, what their performance is, andwhat the limitations and possible

future directions of research are. By looking at the methodology of each
study, one can determine common patterns or get innovative ideas that
might power their research. Understanding the limitations of each
proposed method also brings important insights into what is and is not
possible using the analyzed methods. Also, coupled with the future
directions of each study, researchers can understand where each study
ends and how the research can be continued.

The upcoming part of the paper is organized as follows: the second
section outlines the methodology used for searching and selecting the
papers, as well as the findings of this selection. In the third section, the
studies are grouped by method type and analyzed, each paper
identifying the methodology that was used, the obtained results,
limitations, and future research directions. In the discussion section,
we provide an overview of the findings while giving a bird’s-eye view of
the research done on learning methods for predicting DDIs. We also
look at the limitations of the studies as possible future researches that
can be followed by researchers in the field. In the final section, we
conclude this review.

1.1 Scope and positioning

There have been a number of reviews on the subject of
predicting DDIs using ML in the last few years. For example Lin
et al. (2023), looked at deep learning and graph-based models and
how well they worked on different datasets. Han et al. (2022) gave a
more general overview of ML methods, listing the main problems
and classifying the methods into broad groups. Zhao et al. (2024)
looked at the subject differently by analyzing databases, web tools,
and common computational strategies that are used in the field.

While these contributions are significant, our review differs in both
scope and structure. Rather than concentrating exclusively on a
particular model family or dataset benchmark, we aim to provide a
synthesis of multiple learning paradigms—supervised, semi-supervised,
self-supervised, and structured methods—and see how these methods
work in real life, where data quality and model explainability are often
just as important as accuracy. The goal was not only to summarize the
methods but also to showwhere they tend towork best, where they have
trouble, and what gaps are still open for future research.

2 Methodology

We chose Web of Science (WoS) due to its curated indexing
quality, multidisciplinary scope, and compatibility with advanced
citation and bibliometric analysis tools. While databases such as
Scopus and Elsevier’s ScienceDirect also provide access to a wide
range of ML and pharmacology publications, a significant
proportion of high-impact articles indexed in those platforms are
also covered by WoS. To maintain methodological consistency and
reduce duplication during screening, we prioritized WoS-indexed
literature while acknowledging that complementary databases could
be incorporated in future systematic extensions of this review. The
authors conducted a comprehensive search in the WoS database
using the queries: “supervised learning drug-drug interaction”,
“semi-supervised learning drug-drug interaction”, “self-supervised
learning drug-drug interaction”, “structured learning drug-drug
interaction” across all fields (including topic, title, abstract, etc.)
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with the many variations of: “supervised learning”, “drug-drug
interaction”, “DDI”, a.s.o.), as illustrated in Figure 1. The
combination of keywords that was used also yielded articles that
did not use just supervised methods but also other ML methods or a
mix of methods. As a result, even though the studies did not use

strictly supervised methods to predict DDIs, the articles were
considered relevant and were included in the analysis.

The search yielded a total of 49 unique papers published starting
in 2011. Interest in this topic has significantly increased since 2018,
with a notable rise in publications over the last 6 years (2018–2024),

FIGURE 1
Overview of article selection and classification strategy used in this review.

FIGURE 2
The resulting papers grouped by publication year.
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as illustrated in Figure 2. 42 papers were published in these 6 years,
indicating a growing interest in ML methods for DDIp.

The majority of these papers were published by prominent
publishing houses such as Elsevier, IEEE, Springer Nature, and
Oxford University Press, as depicted in Figure 3. The rest of the
articles were spread out among other publishers.

Most of the authors are from research institutions located in the
People’s Republic of China and the United States of America.
According to Web of Science, the country is determined by
“countries or regions in author addresses, and not to countries or
regions where research studies were conducted” (WOS, 2024),
shown in Figure 4.

We assessed titles and abstracts to ensure paper relevance. Only
articles that specifically dealt with predicting DDIs with a type of ML
algorithm were considered relevant.

Some of the excluded articles focused on drug discovery, drug
repurposing, molecular representation, or extraction of biomedical
interactions (including DDIs). Papers that did not focus
specifically on DDIs were excluded from the analysis. For
example, some papers used neural networks to predict
molecular structures of drugs, which was useful for drug
discovery but not directly for predicting DDIs. Other studies
focused on mining DDIs from electronic health records but did
not use algorithms for predicting them.

We identified 24 papers highly relevant to ML methods for
DDI prediction. One paper did not have a full text available and
was excluded from the analysis. The selected papers form the basis
of our detailed analysis and review. Supervised, semi-supervised,
self-supervised, and other similar learning methods were
considered.

FIGURE 3
The resulting papers grouped by publisher.

FIGURE 4
The country of origin of the authors of the publications as per WoS.
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3 Learning methods for predicting DDIs

Emphasizing the several ML techniques applied in the drug-
interaction field, this review article examines recent developments in
supervised methods for predicting the DDIs. Each paper is analyzed
individually, and an overview of the methodologies employed, their
results, and respective strengths and limitations of each is presented
below. Three main groups—semi-supervised learning methods,
supervised learning methods, and other learning techniques,
including self-supervised learning, graph-based learning, and
matrix factorization methods—are used to categorize the
approaches in the analysis.

3.1 Semi-supervised learning methods

Semi-supervised learning techniques enhance model
performance using both labeled and unlabeled data. Given the
lack of labeled interaction data in DDIp, this method is especially
helpful. Semi-supervised learning leverages the abundant unlabeled
data to augment the learning process, enhancing the model’s ability
to generalize from limited labeled samples.

3.1.1 A meta-learning framework using
representation learning to predict drug-drug
interaction

The study performed by Deepika and Geetha (2018), integrated
representation learning, positive-unlabeled (PU) learning, and
meta-learning techniques. The authors used multiple data sources
to construct feature networks. These networks serve to represent
various drug-related entities such as substructures, target
interactions, side-effects, and therapeutic relationships. The Node
to Vector (node2vec) algorithm is applied for network embedding to
obtain dense, low-dimensional drug representations. The
representations are then used by a bagging Support Vector
Machine (SVM) classifier to predict drug interactions. This
classifier outperforms the traditional one-class SVM by leveraging
both labeled (positive) and unlabeled data. The final predictions are
refined using a meta-classifier that combines outputs from base
classifiers, further enhancing prediction reliability. The framework
significantly improves performance, achieving a 22% increase with
node2vec and a 12.7% boost with the PU learning approach
compared with traditional methods such as logistic regression
(LR), decision trees (DT), and k-nearest neighbors. The number
of new positive DDIp is relatively low due to the substantial
imbalance between positive (3,299 drug pairs) and unlabeled data
(149,878 pairs) with a ratio of 1:44. Enhancing the dataset with
additional positive DDIs from sources like TwoSides and Kyoto
Encyclopedia of Genes and Genomes (KEGG) could improve
prediction accuracy. TwoSides (TLab, 2024) is a comprehensive
database containing drug-drug-effect relationships with over
3,300 drugs and 63,000 combinations. KEGG, on the other hand,
is a database designed to explain high-level functions and utilities of
biological systems using molecular-level information, particularly
large-scale datasets produced by genome sequencing and other high-
throughput experimental technologies (KEGG, 2024). Furthermore,
the chemical-based classifier’s performance could be boosted by
considering more molecular fingerprints and 3D structures of drugs.

Future work could also explore integrating additional drug-related
features such as pathways, enzymes, transporters, and gene ontology
to enhance the model’s predictive power.

3.1.2 MLRDA: a Multi-Task Semi-Supervised
Learning Framework for drug-drug interaction
prediction

Chu et al. (2019) integrated multiple drug features and leveraged
multi-task learning. Using an unsupervised disentangling loss
known as Cumulative Cross-Covariance (CuXCov) in
conjunction with a classification loss to separate DDI-relevant
from irrelevant ones, the authors created the Multi-Task Semi-
Supervised Learning Framework for DDI Prediction (MLRDA)
framework. CuXCov improves prediction performance relative to
conventional techniques, including logistic regression, decision
trees, and k-nearest neighbors, by separating the components of
the data representation that help predict DDIs from those that do
not. This method is meant to solve the problems with sparse DDI
labels and overfitting risk when using several drug features. Drug
features are encoded byMLRDA using an autoencoder structure; the
aggregation module aggregates predictions from several features
using an attention mechanism. The framework was tested on two
real-world datasets, C1IT and C2IS, using various drug features such
as chemical structures, indications, targets, and side effects. The
C1IT dataset includes detailed information on drug indications
together with their chemical structures, covering approximately
5,000 drugs, while the C2IS dataset focuses on drug targets and
side effects, containing data on around 3,000 drugs, providing a
comprehensive basis for interaction predictions. Experimental
results demonstrated that MLRDA significantly outperforms
state-of-the-art DDIp methods at that time (i.e., Nearest
Neighbor, Label Propagation, Dyadic Prediction, Graph
AutoEncoder, Deep DDI, Ladder Network), achieving up to a
10.3% improvement in the area under the precision-recall
curve (AUPR).

One limitation of Chu et al.’ study is the challenge of effectively
incorporating multiple drug features in a multi-task learning model
without overfitting, especially given the sparse nature of DDI labels.
This complexity increases the risk of overfitting due to the high
number of parameters when integrating multiple features. Another
limitation is the potential bias brought about by the representation
learnt by unsupervised techniques, which might entangle factors
relevant to DDI predictions with irrelevant fluctuations, so lowering
predictive accuracy. Future directions suggested developing
advanced techniques for using unlabeled data to improve
prediction accuracy and improving the disentangling mechanisms
to better separate relevant from irrelevant aspects. Further research
is also required to maximize the batch size for an improved estimate
of cross-covariance matrices without sacrificing generalizability.

3.1.3 Designing of information model for
prediction of drug-drug interactions based on
calculation of target and therapeutic similarity

Initially labeling data using the K-Means clustering algorithm, a
semi-supervised approach was used whereby classification with an
SVM predicted interactions. Better accuracy was shown by their
approach, which produced an area under the curve (AUC) of 98.5 ±
0.05 than by other models with AUCs of 0.968 and 0.912. These
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findings show that the model forecasts DDIs using biological and
therapeutic similarities with efficiency.

Still showing several restrictions is the paper (Marushchak and
Kosarevych, 2020). One main restriction is the reliance on
DrugBank data, which might not cover all possible DDIs, thus
influencing the comprehensiveness of the model. The 54% accuracy
of the clustering technique applied for data labeling shows room for
development in the data labeling process. Moreover, the work
applied a semi-supervised method that might not fully exploit
the possibilities of more intricate or alternative ML methods. The
authors propose addingmore elements to themodel, such as enzyme
similarity and transporter similarity, to raise the predictive accuracy
in next studies. To further generalize the applicability and resilience
of the model, they also advise investigating more complex data
labeling methods and assessing them against other datasets.

3.1.4 Semi-supervised learning algorithm for
identifying high-priority drug-drug interactions
through adverse event reports

The study (Liu et al., 2020) used adverse event reports from the
FDA’s FAERS database to identify high-priority DDIs. The FDA
Adverse Event Reporting System (FAERS) is a database supporting
the FDA’s post-marketing safety surveillance for drugs and
biologics. It contains adverse event and medication error reports
coded with MedDRA terminology and structured according to ICH
E2B guidelines (openFDA, n.d.). The authors integrated several data
sources, including FAERS, DrugBank, and Drugs.com, which
consisted of a combination of labeled and unlabeled data to
enhance model performance. DrugBank is a comprehensive

bioinformatics and cheminformatics database that contains
detailed chemical data with many drugs target information, and
contains over 4,100 drug entries and over 14,000 linked protein and
drug target sequences. It supports various applications such as in
silico drug target discovery, drug design, and pharmaceutical
education, with search capabilities and hyperlinks to other major
databases (Wishart et al., 2006). The approach involves extracting
features from adverse event reports, constructing a feature matrix
for drug pairs, and assigning class labels based on ONC High-
Priority and Non-Interruptive Datasets. A pair of stacked
autoencoders is trained separately on positive and negative
labeled samples, which then serve as screening tools to identify
reliable samples from the unlabeled set via reconstruction errors.
These reliable samples are added to the original labeled samples to
form an augmented training set for a weighted Support Vector
Machine (wSVM) algorithm. The results demonstrate that this
method effectively differentiates high-priority from low-priority
DDIs, achieving improved classification performance as
evidenced by metrics such as the F-measure and AUC score.
More specifically, the algorithm selected 719 high-confidence,
reliable samples from 35,988 unlabeled samples, significantly
boosting the predictive accuracy of the wSVM model.

The primary limitation of this study is the reliance on post-
marketing surveillance features, which limits applicability to new
drugs or those with few adverse event reports, potentially
introducing bias due to confounding factors such as drug
indications and patient demographics. Additionally, the study
only incorporates data from the FAERS database, excluding other
valuable clinical sources like electronic health records (EHRs). The

TABLE 1 Papers that study semi-supervised methods applied for DDIp.

Ref. No. Article title Method used Comparative analysis Comment

Deepika and
Geetha (2018)

A meta-learning framework using
representation learning to
predict DDI

Meta-learning,
Representation Learning, PU
learning algorithm

Meta-learning combined with
representation learning provides robust
DDIp, but the complexity of meta-learning
may limit scalability

The meta-learning approach offers a
new perspective but requires
extensive computational resources

Chu et al. (2019) MLRDA: A Multi-Task Semi-
Supervised Learning Framework
for DDIp

MLRDA (Multi-Label Robust
Disentangling Autoencoders)

Combines multi-task learning with semi-
supervised learning to leverage limited
labeled data effectively. Outperforms
traditional supervised methods

Emphasizes the value of multi-task
frameworks but highlights the need
for further validation with larger
datasets

Marushchak and
Kosarevych
(2020)

Designing of Information Model
for DDIp based on Calculation of
Target and Therapeutic Similarity

SVM and K-means based
information model

Focuses on calculating target and
therapeutic similarity. Effective but may
miss interactions not captured by these
similarities

Demonstrates a targeted approach
but may benefit from integrating
additional types of data

Liu et al. (2020) Semi-Supervised Learning
Algorithm for Identifying High-
Priority DDI Through Adverse
Event Reports

Stacked autoencoders and
weighted SVM

Utilizes adverse event reports for
DDIp. Effective for high-priority
interactions but may not generalize well to
all interactions

Highlights the potential of using
adverse event data but underscores
the need for comprehensive datasets

Tan and Ma
(2020)

SeHNE: Semi-supervised
Heterogeneous Network
Embedding for Drug Combination

SeHNE (Semi-Supervised
Learning, Heterogeneous
Network Embedding) model

Uses heterogeneous network embedding to
capture complex relationships. Shows
improvements over homogeneous models

A strong approach but requires
high-quality network data for
optimal performance

Yan et al. (2022) Predicting DDIp based on
Integrated Similarity and Semi-
Supervised Learning

Integrated Similarity, Semi-
Supervised Learning

Integrates multiple similarity measures
with semi-supervised learning. Effective but
computationally intensive

Integrates various data types
effectively but may require
optimization for speed

Lv et al. (2024) Measuring drug similarity using
drug-drug interactions

Spectral clustering and
hierarchical clustering

Focuses on measuring drug similarity
through DDIs. Useful for understanding
drug relationships but may miss novel
interactions

Provides a foundational approach
but needs enhancement for
discovering new interactions
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scarcity of labeled training data also restricts the comprehensiveness
of the predictive results, highlighting the need for more expert-
confirmed labeled samples. Future research could focus on
integrating drug property features such as chemical and
biological attributes to enhance model accuracy, exploring
alternative classifiers like random forest or gradient boosting, and
continuously refining the high-priority DDI list and alert
mechanisms based on user feedback and retrospective data analysis.

3.1.5 SeHNE: semi-supervised heterogeneous
network embedding for drug combination

Semi-supervised Heterogeneous Network Embedding for Drug
Combining (SeHNE) is a semi-supervised method used in (Tan and
Ma, 2020) study, an approach that builds a comprehensive
heterogeneous network by combining drug-drug similarity, drug-
target interactions, and protein-protein interaction (PPI). From
these networks, the method extracts and learns features using
non-negative matrix factorization (NMF), which subsequently
finds use in classification and drug combination prediction. The
model has the advantage of the joint learning framework. Here, the
feature extraction is guided by a classifier, enhancing the
discriminative power of the features. In their experimental
results, the authors demonstrate that SeHNE outperforms state-
of-the-art methods for that time, namely, the Ensemble Prediction
framework of Synergistic Drug Combinations–EPSDC (Ding et al.,
2019) and gradient tree boosting (GTB) in terms of accuracy,
particularly when using a polynomial kernel for the SVM
classifier. The paper’s findings suggest that SeHNE’s joint
learning approach significantly improves the prediction of
synergistic and antagonistic drug combinations (with an AUC
around 0.7), highlighting its potential for aiding drug discovery
and combination therapy development.

Nevertheless, there are several limitations and suggested future
research directions. One notable limitation is the potential time-
consuming nature of the current network-based algorithms, which
could hinder the application of SeHNE to large-scale networks. Even
though SeHNE shows better accuracy than current approaches,
there is still space for development by means of algorithm
optimization to lower computational complexity and
investigation of more effective embedding techniques to manage
large data sets. Integration of other kinds of biological data to
strengthen the network and maybe enhance prediction
performance is another direction that can be advised for
next studies.

3.1.6 Predicting drug-drug interactions based on
integrated similarity and semi-supervised learning

Yan et al. (2022) proposed a method named Drug-Drug
Interaction Information System - Supervised Learning (DDI-IS-
SL) that integrates multiple sources of drug information to predict
DDIs. The method uses a Regularized Least Squares (RLS) classifier
as a semi-supervised model. The feature similarity of drugs was
calculated using the cosine similarity on high-dimensional binary
vectors representing chemical, biological, and phenotypic data.
Additionally, the Gaussian Interaction Profile (GIP) kernel
similarity was computed based on known DDIs. These
similarities were then combined to form a final similarity
measure. For prediction, the RLS classifier computed the

interaction possibility scores of the drug pairs. The model’s
performance was evaluated using 5-fold and 10-fold cross-
validation, as well as de novo drug validation, showing superior
results compared to other methods with AUC values of 0.9691,
0.9745, and 0.9292, respectively. The study highlights that DDI-IS-
SL not only effectively integrates various drug data types but also
performs efficiently, demonstrating its practical utility in predicting
both known and novel DDIs.

Although DDI-IS-SL is an effective method for predicting
potential DDIs, there are areas that need improvement. For
instance, more advanced techniques could be used to better
integrate chemical, biological, and phenotypic drug data.
Additionally, exploring other prediction models, such as deep
learning and matrix approximation methods, could enhance the
identification of DDIs in future research.

3.1.7 Measuring drug similarity using drug-drug
interactions

In the study (Lv et al., 2024) performed in 2024 was introduced a
new approach to assessing drug similarity was introduced by
focusing on the network structure of DDIs. Their method
leveraged both unsupervised and semi-supervised learning
techniques. Initially, the study used unsupervised learning
methods, specifically spectral and hierarchical clustering,
enhanced by t-SNE for dimension reduction, to group drugs
based on their interaction profiles. This clustering facilitates the
identification of almost monochromatic group-group interactions
and the functional annotation of compounds with unknown
mechanisms of action (MoA). The authors then implement a
semi-supervised learning framework to predict unknown DDIs.
This involved constructing an affinity matrix from node
similarity measures and applying a network projection method to
handle the interaction data. The semi-supervised approach, which
integrates known interaction data, surpasses traditional methods
that rely on chemical structure or MoA, as demonstrated by
improved precision, recall, and F1 scores in the prediction tasks.
It can be concluded that the approached network-based similarity
measure not only enhances DDI prediction, but also aligns well with
MoA similarity, thereby offering a robust tool for drug discovery and
combination therapy development.

A summary of the analyzed papers that use semi-supervised
methods is presented in Table 1.

3.2 Supervised learning methods

In model training, supervised learning techniques draw on a
labeled dataset. Although these techniques are simple, high
performance depends on large labeled datasets. From classic
regression models to sophisticated neural networks with different
architectures, supervised learning methods are rather varied.

3.2.1 Predicting potential drug-drug interactions
on topological and semantic similarity features
using statistical learning

Kastrin et al. (2018) conducted a study that combines
topological and semantic similarity features within a statistical
learning framework. They first constructed DDI networks from
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multiple databases, such as DrugBank, KEGG, NDF-RT,
SemMedDB, and Twosides. National Drug File Reference
Terminology (NDF-RT) by the Veterans Health Administration
organizes the VHA National Drug File into a structured format that
can be used to model drug characteristics and is utilized in FDA
Structured Product Labeling (National Cancer Institute, 2018). The
Semantic MEDLINE Database (SemMedDB) is a repository
containing semantic predications (subject-predicate-object triples)
extracted by SemRep, a semantic interpreter for biomedical texts
(SemMedDB, 2024). Topological features used for prediction
include common neighbor, Jaccard’s coefficient, Adamic/Adar
index, preferential attachment, resource allocation, and their
variants, while semantic features contain drug therapeutic-based
similarity (ATC), chemical structure-based similarity (CHEM),
MeSH-based similarity (MESH), and adverse drug effect-based
similarity (ADE). The study used both unsupervised and
supervised learning techniques, with the latter using classifiers
like decision trees, k-nearest neighbors, support vector machines,
random forest, and gradient boosting machines. The results indicate
that topological information has a higher predictive power than
semantic features. Showcasing their precision, recall, F1 measure,
and area under the ROC curve (AUC-ROC), the SVM and gradient
boosting machine attained the highest predictive performance. This
approach uses a larger data set and a balanced distribution of DDI
pairs to overcome constraints in earlier studies, thus offering a
stronger framework for DDIp.

The research suggests the need to include semantic relations for
more expressiveness and accuracy, since it treats possible
interactions as simple co-occurrences rather than significant
links. By including a weighting system to reflect the confidence
score of every relationship, the research also ignores the weights of
links, so treating all interactions equally, which could be improved.
To improve predictive accuracy, the suggested future directions call
for the integration of genomic covariates and free-text data as well as
the development of procedures to separate possible from clinically
confirmed interactions. Furthermore, taken into account would be
the dynamic character of DDI networks by means of temporal
elements. The authors of this work intend to create a web-based
application to enable larger access for the research community to
their approach and to extend the methodology to other forms of
interaction, such as drug-target, drug-disease, or drug-food
interactions.

3.2.2 MTMA: multi-task multi-attribute learning for
the prediction of adverse drug-drug interaction

In the paper Zhu et al. (2020) the authors present a way of
leveraging multi-task learning and multi-attribute (MTMA) data for
predicting adverse drug-drug interactions (ADDIs). The MTMA
model uses two drug attributes (molecular structure and side effects)
to model adverse interactions. Two interpretable tensors are used,
one for molecular structure interactions and another for side effect
interactions, to determine the mechanisms behind these
interactions. The model uses l2,1-norm regularization to enforce
sparsity in the predicted attribute matrices. This helps to identify
molecular substructures and significant side effects for specific
ADDIs. The MTMA optimization is done by alternatively using
an algorithm based on low-rank tensor decomposition and
stochastic gradient descent. From the experimental results,

MTMA significantly outperforms nine baseline methods and
their variants.

The baseline models used in the evaluation are: a large-scale
model that measures Molecular Structure Similarities between two
drugs (MSSA) (Vilar et al., 2012), Label propagation Prediction of
drug-drug interactions based on clinical Side Effects (LPSE) (Zhang
et al., 2015), Computational Prediction based on drugs Functional
Similarities (CPFS) (Ferdousi et al., 2017), Multi-task Dyadic
regression Model (MDM) (Jin et al., 2017), Deep Learning
Method (DLP) (Ryu et al., 2018), Topological and Semantic
Similarity Learning method (TSSL) (Kastrin et al., 2018),
heterogeneous network-assisted inference framework (MLMA)
(Cheng and Zhao, 2014), Similarity-based Model for predicting
Large Scale ADDI(SMLS) (Vilar et al., 2014), Sparse Feature
Learning ensemble method with Linear Neighborhood
regularization (SFLLN) (Zhang et al., 2019). The variants used in
the evaluation either did not consider the supervision of attributes
(MTMA-S), did not consider self-representation of attributes
(MTMA-R), or did not explore leading molecular substructures
and side effects (MTMA-E) (Zhu et al., 2020). The MTMA model
achieved an AUC of 0.9247 and an AUPR of 0.7515, showing
superior predictive performance and ability to discover adverse
mechanisms.

MTMA can sometimes be outperformed by the SFLLN
algorithm in terms of AUPR, suggesting a need for further
refinement. Future research could focus on exploring the
intrinsic properties of predicted attribute matrices, such as
orthogonality, low-rank, and positive semi-definite properties.
The contribution of different attributes to the modeling of
ADDI can be done using more sophisticated integration
strategies. The paper suggests that incorporating more drug
attributes beyond molecular structure and side effects, such as
targets, enzymes, and pathways, could improve the
comprehensiveness and accuracy of predictions.

3.2.3 Integrated random negative sampling and
uncertainty sampling in active learning improve
clinical drug safety, drug-drug interaction
information retrieval

Xie et al. (2021) used an active learning (AL) approach to
enhance the performance of DDI information retrieval from
PubMed abstracts. The four AL techniques the authors looked at
were traditional AL, traditional AL with random negative sampling,
AL with two separate ML algorithms integrated with random
negative sampling, and AL with two separate ML algorithms
integrated with both random negative sampling and validation
sample updates. Both SVM and LR algorithms were used. The
integration of random negative sampling is cost-effective as it
does not require manual curation and the updating of both
training and validation datasets to mitigate sampling biases. The
outcome displayed substantial improvements in the precision,
especially in the second round of training. For example, for the
manually labeled negative samples, the precision increased from
0.45 to 0.83 using SVM. Similarly, for the random negative samples,
from 0.70 to 0.82. LR also showed similar trends. This technique
improved the retrieval of clinically relevant DDI abstracts by
efficiently addressing the problems of imbalanced data and
biassed sampling.
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Despite the fact it combines uncertainty sampling and random
negative sampling, the proposed AL method still has potential for
performance and generalizability improvement. Future research
could incorporate several natural language processing (NLP)
approaches and investigate their application across several DDI
knowledge domains to raise effectiveness and robustness.

3.2.4 MDDI-SCL: predicting multi-type drug-drug
interactions via supervised contrastive learning

Multi-type Drug-Drug Interaction - Supervised Contrastive
Learning (MDDI-SCL) developed by Lin et al. (2022), uses
supervised contrastive learning based on a three-module
framework: a drug feature encoder using a mean squared error
(MSE) loss, a drug latent feature fusion module with supervised
contrastive loss, and a multi-type DDI prediction module with
classification loss. While the feature fusion module aggregates
latent features of drug pairs, optimizing them by supervised
contrastive learning to improve classification performance, the
drug feature encoder learns low-dimensional drug representations
using a multi-head self-attention mechanism and an autoencoder.
Evaluated on two datasets and three tasks, the model showed either
better or equivalent performance to state-of- the-art approaches like
Generative Adversarial Network for Drug-Drug Interaction (GAN-
DDI) and Deep Drug-Drug Interaction (DeepDDI). On the first
dataset, MDDI-SCL, for instance, exceeded other models in terms of
AUPR and accuracy across several tasks by achieving an AUPR of
0.9782 and an accuracy of 0.9378 for predicting of unseen

interaction types between known drugs. Furthermore, ablation
tests verified the efficiency of supervised contrastive learning and
case studies verified the practical relevance of the model by pointing
up fresh possible DDIs.

One significant limitation is the unbalanced DDI datasets,
leading to poor performance in predicting rare interaction types.
Additionally, the current methods, including MDDI-SCL, tend to
perform well in predicting interactions between known drugs but
often struggle with new drugs. Furthermore, the hyperparameters
used in the model were not optimized across all datasets and tasks,
which may have affected performance. Future research could focus
on refining these hyperparameters and exploring advanced
strategies like knowledge graph integration to improve the
robustness and applicability of these models.

3.2.5 DeConDFFuse: predicting drug-drug
interaction using joint deep convolutional
transform learning and decision forest
fusion framework

Gupta et al. (2023) used Deep Convolutional Network for Drug
Feature Fusion (DeConDFFuse), a supervised deep learning
approach, combined with decision forests. This utilizes a
representation learning architecture, which engages a
convolutional transform learning (CTL) in order to provide
categorical and interpretable features for every medication pair.
These features are then processed through a multi-channel
architecture, where bioactivity descriptors generated by the

TABLE 2 Papers that study supervised methods of learning for DDIp.

Ref. Article title Method used Comparative analysis Comment

Kastrin
et al.
(2018)

Predicting potential DDI on
topological and semantic similarity
features using statistical learning

Supervised link prediction model
with topological and semantic
similarity features

Outperforms unsupervised approaches
and has better prediction performance
on large-scale DDI networks compared
to models based solely on topological
features

Highlights topological information
importance over semantic
information

Zhu et al.
(2020)

MTMA: Multi-task multi-attribute
learning for the prediction of
adverse DDI

Multi-Task Multi-Attribute
(MTMA) model

Integrates multiple drug attributes and
uses tensors for uncovering underlying
mechanisms of adverse DDIs, unlike
prior black-box models

Also uses l2,1-norm regularization

Xie et al.
(2021)

Integrated Random Negative
Sampling and Uncertainty Sampling
in Active Learning Improve Clinical
Drug Safety DDI Information
Retrieval

Active Learning method with
random negative sampling and
uncertainty sampling (SVM
and LR)

Better precision and recall over
traditional active learning approaches;
updates training and validation data and
combines random negative sampling
with uncertainty sampling

Improves the retrieval of clinically
relevant DDI toxicity abstracts from
PubMed, and addresses biased sample
sets and unbalanced data in large-
scale text mining tasks

Lin et al.
(2022)

MDDI-SCL: predicting multi-type
DDIs via supervised contrastive
learning

Multi-type Drug-Drug Interaction
Supervised Contrastive Learning

Better prediction accuracy and
robustness in multi-type DDI prediction
than DeepDDI and MDF-SA-DDI

Uses focal loss and label smoothing to
address data imbalance and small
sample sizes

Gupta
et al.
(2023)

DeConDFFuse: Predicting drug-drug
interaction using joint deep
convolutional transform learning and
decision forest fusion framework

DeConDFFuse - a combination of
deep convolutional transform
learning (DeConFuse) and a
decision forest (DF)

Better AUC-ROC and precision than
KGNN and Graph Embedding DDI,
through joint optimization of feature
extraction and classification

Efficiently identifies known-to-
interact drug pairs and addresses
feature redundancy and non-unique
representations found in CNN-based
models

Gill et al.
(2023)

Evaluating the performance of
machine-learning regression models
for pharmacokinetic drug-drug
interactions

Support Vector Regression (SVR),
Random Forest, Elastic Net

SVR model outperforms other regression
models, including Random Forest and
Elastic Net

Early pharmacokinetic data (i.e., CYP
activity and fraction metabolized) are
effective predictors in regression
models

Lee et al.
(2023)

Co-Attention Graph Pooling for
Efficient Pairwise Graph Interaction
Learning

Co-Attention Graph Pooling
(CAGPool) for pairwise graph
interaction learning

Outperforms state-of-the-art models
(e.g., MPNN-Concat, SimGNN) by
capturing graph-level interactions

It reduces computational complexity
by focusing on graph-level rather than
node-level interactions
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Signaturizer tool are used as input. The generated features are
integrated and refined by a decision forest predictor, ensuring an
efficient and robust end-to-end learning process. The dataset used
for training and evaluation comes from Stanford’s Biosnap,
comprising 1,514 drugs and 48,514 interactions. In comparative
evaluations against state-of-the-art methods like Knowledge Graph
Neural Network (KGNN) (Lin et al., 2020), Convolutional Long
Short-Term Memory (Conv-LSTM), and Graph Embedding DDI,
the proposed method demonstrates better performance in key
metrics such as precision, AUC-ROC, and AUPRC. Although
Graph DDI achieved higher accuracy, F1-score, and recall, the
authors’ method does a great job in predicting known-to-interact
interactions, which can be used for identifying potential adverse
reactions. Emphasizing its adaptability against feature unavailability
issues, the study describes the capacity of the method to manage a
wide spectrum of bioactivity descriptors and hence relates to drugs
with inadequate historical information.

The higher proportion of false positives in this study compared
to Graph DDI highlights the need for improving specificity in
prediction results as one of its primary limitations. The main
focus of the forthcoming studies should be on lowering these
false positives, thus enhancing the dependability of the method.
The present method is meant to control interactions between pairs
of drugs; yet, in reality, many times, combinations of several drugs
are involved. Therefore, extending the model to include several
medication interactions concurrently shows a major direction for
future research. Broadening the use of their framework, another
study topic consists in the architecture adaptation for additional
biological interaction problems, including drug-target prediction,
protein-protein interaction, and drug repositioning.

3.2.6 Evaluating the performance of machine-
learning regression models for pharmacokinetic
drug-drug interactions

Gill et al. (2023) uses regression-based ML models in order to
predict the changes in the drug exposure due to DDIs. The data for
the training was collected from 120 clinical DDI studies. This
included drug characteristics such as: structure, physicochemical
properties, and cytochrome P450 (CYP450) metabolic activity. The

study involved RF, elastic net, and support vector regression (SVR)
models. The performance has been measured via 5-fold cross-
validation. The SVR model demonstrated the highest
performance, with 78% of predictions within 2-fold of observed
exposure changes. It was found that models using early drug
discovery features, particularly CYP450 activity and fraction
metabolized data, could predict changes in drug exposure with
reasonable accuracy. Significant limitations involve the
underestimation of more potent inhibition cases, likely related to
the lack of features detailing mechanisms like transporter-mediated
DDI, as well as the skewed distribution of sample classes that biased
the model towards predicting values within more prevalent
data ranges.

Additionally, there are limitations on the small sample size
related to the feature set, which raises concerns about overfitting,
despite nested cross-validation being employed to mitigate this.
Research on the transporter effects’ integration and the use of
rectifying techniques for class imbalance techniques, such as
synthetic minority oversampling, could be conducted in future
studies. Another study could involve validating the model on
datasets from different sources to confirm generalizability and
applying deep learning algorithms to potentially improve
prediction accuracy.

3.2.7 Co-attention graph pooling for efficient
pairwise graph interaction learning

The study (Lee et al., 2023) introduces the CAGPool method,
which uses co-attention mechanisms to predict DDIs and evaluate
graph similarity. The method uses graph convolution networks
(GCNs) to represent each drug as a graph, embedding the nodes
as atoms and the edges as chemical bonds. Then, a co-attention
mechanism is applied to dynamically generate node scores based on
the interaction between pairs of graphs. This interaction-aware
pooling method reduces computational complexity. The most
relevant nodes for the interaction representation are selected,
which draws the focus on the significant subgraphs. The
experimental evaluation demonstrates that CAGPool outperforms
several baseline models–concatenated features method, the Decagon
method, Message Passing Neural Network (MPNN) with

TABLE 3 Summary of data sources used in the supervised models analyzed.

Study Primary data source Number of drugs Number of
interactions

Key preprocessing
steps

Topological and Semantic
Features

DrugBank, KEGG, NDF-RT,
SemMedDB, TWOSIDES

5.7M (DrugBank) 19K (Twosides) Graph construction, feature
selection

MTMA TWOSIDES, DrugBank, SIDER 555 576K Multi-task feature encoding

Active Learning and Uncertainty
Sampling

PubMed abstracts, Clinical DDI corpus 600 (positive) + 400
(negative)

N/A NLP preprocessing, negative
sampling

MDDI-SCL DrugBank 1,258 323K Supervised contrastive learning

DeConDFFuse Biosnap DDI dataset 1,059 48K Convolutional feature
transformation

PK-DDI Regression Washington Drug Interaction Database,
SimCYP

120 clinical studies N/A Regression model training

CAGPool Decagon 4.5M (total) 964 DDI types Graph neural network
transformation
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Concatenation-based Feature Aggregation (MPNN-Concat), Late-
Outer, Context-Aware DDI (CADDI), Multi-Head Context-Aware
DDI (MHCADDI) –, including those leveraging additional features
such as protein-protein interactions, by only using the structural
information of drug compounds. The results show superior
performance across various metrics, including AUROC, AUPRC,
and AP@50 on the Decagon dataset for DDI prediction and MSE,
Spearman’s rank correlation coefficient, and Kendall’s rank
correlation coefficient for graph similarity tasks.

A limitation identified by this study is that it does not analyze the
extracted subgraphs and understand the functional groups
(subgraphs) related to specific side effects in DDI. These are
challenging to interpret due to their complex biological pathways.
For future research, the authors suggest that their method can
facilitate further studies by identifying subgraphs that are likely
related to functional groups responsible for side effects between
drugs. The paper also hints at extending the current model to a
graph transformation version. This could include all nodes in the
final aggregated clusters without information loss. This would
address the issue of discarding nodes during the pooling process.
These directions imply a deeper exploration of subgraph
functionalities and even improvements in graph pooling techniques.

All the analyzed papers in this section using supervised methods
are presented in Table 2 in chronological order.

3.2.8 Data sources and preprocessing strategies
The preparation techniques, provenance, and extent of the used

datasets differ greatly among the investigated studies. Most research
depends on publicly available sources, including DrugBank,
TWOSides, KEGG, NDF-RT, and Decagon, each of which
presents different angles on DDIs, as seen in Table 3. For
example, although DrugBank offers complete pharmacokinetic
and pharmacodynamic data, TWOSides concentrates especially
on negative medication interactions. Graph-based approaches
often use Biosnap and Decagon datasets because of their ordered
presentation of DDIs. The modeling paradigm also influences the
preprocessing methods.

3.3 Self-supervised methods

Self-supervised learning methods generate labels from the data
itself, often using pretext tasks to learn useful representations.

3.3.1 Multidrug representation learning based on
pretraining model and molecular graph for drug
interaction and combination prediction

The paper Ren et al. (2022) presents a method for DDIp and
drug combinations that uses a multidrug representation learning
framework named Molecular Graph Pretraining for Drug
Representation (MGP-DR). The MGP-DR model integrates a
large amount of unlabeled drug molecular graph and target
information, employing self-supervised learning strategies to
mine contextual information within and between drug molecules.
This method uses two pretraining tasks: mask atoms prediction,
which involves masking and predicting atoms in the molecular
graph, and SAB (Separation A-B) score prediction, which measures
the network proximity of drug-target modules A and B within a

human protein-protein interaction network. The two tasks help
learn context-sensitive atomic representations and global drug pair
representations. The pretrained transformer encoder is then fine-
tuned with a two-layer fully connected neural network for DDI and
drug combination prediction.

According to Ren et al. (2022), MGP-DR was compared with
multiple state-of-the-art methods including: logistic regression (LR),
natural product, mol2Vec, Molecular Variational Autoencoder
(MolVAE), DeepDDI, ChemicAl SubstrucTurE Representation
(CASTER), Graph Convolutional Network with Bond-aware
Message Propagation (GCN-BMP), Link Prediction model based
on Multifeature Fusion (LPMF), Link Prediction with Subgraph,
Structural Equivalence, and Optimal Structural Equivalence (LP-
Sub/SE/OSE), Siamese Sequence-Projection Multi-Layer Perceptron
(SSP-MLP), Genetic Algorithm-based method, Neural Fingerprint
(NFP), Graph Isomorphism Network (GIN), Complex Embeddings
for Simple Link Prediction (ComplEx), Knowledge Base Adversarial
Network (KBGAN), Simple Embedding (SimplE), Relational
Rotational Embedding (RotatE), a. s.o. The MGP-DR managed to
outperform the other methods across multiple metrics (ROC-AUC,
PR-AUC, F1, ACC). The model also shows strong potential for DDI
predictions, validated through multiple experimental setups.

The paper mentions several limitations and future research
directions. Firstly, the current MGP-DR model only performs a
simple linear combination of losses, which corresponds to different
drug pretraining tasks. This indicates that more sophisticated
methods could potentially improve performance. The paper also
suggests that incorporating multitask learning strategies during the
training phase could improve the model’s ability to learn different
aspects of drug interactions from a large number of unlabeled drugs.
One other potential area for future research is extending the model
to higher-order drug representation learning, which could support
combination therapies better.

3.3.2 Predicting drug-drug adverse reactions via
multi-view graph contrastive
representation model

The authors of this study (Zhuang et al., 2023a) propose the
DMVDGI, a self-supervised multi-view graph learning framework
designed to predict drug-drug adverse reactions (DDADRs). In this
method, multiple biomedical views—such as enzyme, indication,
side effect, and transporter data—are used to create comprehensive
drug feature representations. A signed network is used to capture
positive and negative drug interactions. Contrastive learning is then
used to optimize the model by maximizing mutual information
between local and global representations. The model was then
evaluated on three benchmark datasets: Decagon (a multimodal
graph containing protein-protein interactions, drug-protein target
interactions, and polypharmacy side effects, represented as DDI
with each side effect as a unique edge type) (Zitnik et al., 2018),
CRDs (dataset with common CYP-related DDIs containing
807 drugs and 10,106 interactions, with embedded biomedical
views including ATC code, molecular fingerprint, protein-based,
and target-based information for drug representation) (Rohani and
Eslahchi, 2019), and NCRDs (dataset with non-CYP-related DDIs
with 807 drugs and 45,737 interactions, and also includes ligand-
based, pathway-based, side effect-based, and target-based
information for drug representation) (Rohani and Eslahchi,
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2019). The baseline models used in the comparison are: GAT
(applies the attention mechanism to homogeneous graphs for
link prediction tasks) (Veličković et al., 2018), HAN (uses node-
level attention and semantic-level attention to capture information
from all meta-paths for link prediction tasks) (Wang et al., 2019),
MBS - model based on similarity (a fully connected neural network
model for prediction tasks using similarity calculation for feature
representation) (Kumar and Sharma, 2022), RANEDDI (a relation-
aware network embedding model for link predictions integrating
relation-aware network structure information) (Yu et al., 2022a),
DANN-DDI (a deep attention neural network model for DDADRs
prediction that concatenates learned drug embeddings and uses an
attention neural network for drug-drug pair representations) (Liu
et al., 2023), BiGI (performs link prediction by relating local and
global representations) (Cao et al., 2021), SLiCE (learns contextual
node representations using localized attention and global
information from the entire graph before conducting link
prediction experiments) (Wang et al., 2021), DMGI (maximizes
agreements between specific node embedding and graph-level
summary representation in each relation graph for link
prediction) (Park et al., 2020), SUGAR (uses a reinforcement
learning algorithm to adaptively select and learn discriminative
representations of subgraphs for high-quality feature
representation before performing link prediction) (Sun et al.,
2021), and Subg-Con (contrasts node embeddings and their
context subgraphs to learn regional graph structure information
for feature representation, and then performs link prediction) (Jiao
et al., 2020). Results show that DMVDGI is significantly better than
the baseline models and has achieved the highest AUROC of
0.93182. It also showed robust performance across various
metrics, including AUPRC and F1 scores. The study highlights
the model’s ability to learn high-quality drug representations
with minimal reliance on labeled data.

The excessive inclusion of view information can introduce noise
and reducemodel performance, and is perceived as a limitation of this
method. Also, while the model shows strong results, there is an over-
reliance on the similarity threshold in constructing the drug-drug
interaction signed network (DDISN). This can potentially lead to
sparsity or noise issues. The model also has trouble optimizing
hyperparameters such as the number of biomedical views and the
GCN layers. Another limitation is the over-reliance on labeled data,
which is scarce and valuable. For future research, the authors suggest
improving the negative sampling strategy. This can be a promising
direction for self-supervised graph representation learning.
Additionally, they propose integrating more features from
extensive views to enhance the robustness of the model further.

3.3.3 Adaptive dual graph contrastive learning
based on a heterogeneous signed network for
predicting adverse drug reaction

The methods utilized in the study involve the development of an
Adaptive dual graph contrastive learning method (ADGCL). This
approach uses heterogeneous signed networks to predict adverse
drug reactions (ADRs). It explicitly models positive and negative
DDIs using a heterogeneous signed network, which helps in learning
rich semantic drug feature representations. A dual graph contrastive
learning strategy is used that contains a hybrid of self-supervised
contrastive learning and micro-supervised learning to capture high-

level features. An adaptive negative sampling method generates
high-quality negative samples, and an encoder based on implicit
graph neural networks (IGNNs) is designed to capture long-range
dependencies in the network. This improves the drug feature
representation. The ADGCL method, as a result, combines self-
supervised learning with a small degree of supervision. The model
was compared with several baseline models: BPNN (Back
Propagation Neural Network) (Rumelhart et al., 1986), XGboost
(eXtreme Gradient Boosting) (Chen and Guestrin, 2016), GAT
(Graph Attention Network) (Veličković et al., 2018), HAN
(Heterogeneous Graph Attention Network) (Wang et al., 2019),
KGNN (Lin et al., 2020), DeepDDI (Ryu et al., 2018), STNN-DDI (a
Substructure-aware Tensor Neural Network) (Yu et al., 2022b),
DDIMDL (a multi-modal deep learning framework) (Deng et al.,
2020), DM-DDI (deep fusion integrated drug features and topological
connections) (Kang et al., 2022), deepMDDI (a deep graph
convolutional network framework) (Feng et al., 2022). The results
from comprehensive experiments on real-world datasets (Decagon
(SNAP, 2024), DrugBank, SIDER (Side Effect Resource) (Kuhn et al.,
2016)) demonstrate that ADGCL outperforms the baseline methods,
showing significant improvements in AUROC, AUPRC, and
F1 scores (Zhuang et al., 2023b).

The authors acknowledge that they had challenges with
insufficient data and excessive time complexity. Future studies
plan to incorporate more clinical information into the model and
use optimization algorithms to enhance its efficiency. Further
research can be done on improving the model’s interpretability.
This aims to make the model more robust and practical for real-
world applications.

3.3.4 Learning self-supervised molecular
representations for drug-drug interaction
prediction

Kpanou et al. (2024) used in their study a two-step framework
leveraging self-supervised contrastive learning to predict DDIs. Their
proposed method, self-supervised molecular representation for DDI
(SMR-DDI), first involved pre-training a 1D convolutional neural
network (CNN) on a large dataset of SMILES strings derived from the
ChEMBL22 database. In drug development, ChEMBL is a bioactivity
database including special chemical entities, bioactivity
measurements, pharmacokinetic data, and pharmacological targets
(Ferdousi et al., 2017). In pre-training, they maximized the similarity
between many enhanced images of the same molecule using a
contrastive loss function, thereby decreasing the similarity between
distinct molecules. This way, they created a robust molecular feature
space. This pre-trained model served as a feature extractor in the
second step, where a feed-forward neural network was trained on the
DrugBank dataset to classify the side effects of drug pairs. The
approach uses various strategies to handle class imbalance in the
data, including batch balancing and weighted random sampling.
SMR-DDI achieved competitive performance across multiple tasks,
particularly in scenarios involving known drug interactions, but
showed slightly reduced efficacy in predicting interactions
involving new drugs. The results highlighted the model’s ability to
effectively use limited data through data augmentation.

Nevertheless, the reliance on a relatively low-dimensional
feature space (262 dimensions), which may not capture the full
complexity of molecular interactions compared to higher-
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dimensional models like Extended-Connectivity Fingerprint (ECFP)
or ChemBERT trained on 77 million SMILES strings (ChemBERTa-
77M), can be regarded as a limitation of the study. This lower
dimensionality could explain the model’s slightly lower performance
on certain tasks, particularly those involving interactions with new
drugs. Another limitation is the imbalance in the dataset, which
requires techniques like batch balancing and weighted random
sampling to improve model performance. Future research could
explore increasing the dimensionality of the feature space and using
a larger, more diverse training dataset. A propagation algorithm for
SMILES enumeration could be developed. It can potentially improve
the quality of vector representations. Finally, the model’s
performance on predicting interactions involving new drugs
remains an area for improvement.

3.3.5 Detecting side effects of adverse drug
reactions through drug-drug interactions using
graph neural networks and self-
supervised learning

The paper Chandra Umakantham et al. (2024) presents a
framework that uses GNNs and self-supervised learning to predict
side effects of ADR due to DDIs. In their approach, drugs are modeled
as molecular graphs where atoms are nodes and bonds are edges,
capturing the spatial and physical properties of the drugs. A dual-input
graph neural network with a 2-stage training phase was developed.
Each reactant was pre-trained using a Variational Graph Autoencoder
(VGAE) to create a knowledge base. This framework was then trained
and tested on the TwoSIDES Polypharmacy Dataset, achieving results
with a precision of 75% and an accuracy of 90%. Themodel was further
validated on the DrugBank dataset, showing excellent results with
precision, F1, and accuracy of 99%.

One primary limitation of this study is the complexity versus
interpretability of the model. The complex model is difficult to
interpret due to the architecture of the framework that uses

multiple stages and GNNs to model chemical interactions. Also,
the study relies on a single dataset, the TwoSIDES Polypharmacy
Side Effects Dataset. This is a limitation because it may introduce
potential biases and the inability to generalize across different
distributions. The authors suggest training and testing on
additional datasets, which might enhance the model’s reliability
and generalizability. Furthermore, although the dual-path GNN
demonstrated stable training, the inherent instability in training
multi-path graph neural networks remains a challenge, leading to a
need for more robust training techniques. Future research directions
include developing more interpretable models, expanding the
framework to include additional datasets, and improving the
stability and generalizability of the multi-path training framework.

Table 4 provides a comparative overview of key studies that
apply to self-supervised learning for DDI prediction. It summarizes
the data sources, methods used, and model architectures,
highlighting methodological diversity.

3.4 Structured learning methods

3.4.1 Graph-based learning methods
Another large category of learning methods that were studied in

the analyzed papers was graph-based learning methods. They model
the interactions between drugs as a graph, using GNNs or other
graph-based techniques to predict DDIs.

3.4.1.1 Predicting combinations of drugs by exploiting
graph embedding of heterogeneous networks

Building on the advancements introduced in the semi-
supervised heterogeneous network embedding (SeHNE)
framework by Tan and Ma (2020), the study by Song et al.
entitled “Predicting combinations of drugs by exploiting graph
embedding of heterogeneous networks,” (2022) (Song et al., 2022)

TABLE 4 Analysis of the papers presenting self-supervised methods of DDIp.

Ref. Article title Method used Comparative analysis Comment

Ren et al. (2022) Multidrug representation learning
based on pretraining model and
molecular graph for drug interaction
and combination prediction

MGP-DR (Molecular
Graph Pretraining for
Drug Representation)

Outperforms state-of-the-art models (e.g.,
CASTER, GCN-BMP, DEEPDDI) with
better accuracy across multiple drug-
related prediction tasks

Leverages self-supervised learning
and molecular graph-based
pretraining

Zhuang et al.
(2023a)

Predicting ADEreactions via multi-
view graph contrastive representation
model

DMVDGI (Drug Multi-
View Deep Graph
Infomax)

Better AUROC score than state-of-the-art
models (e.g., Subg-Con, DANN-DDI) and
several supervised models

Integrates multiple biomedical views
and applies a signed network for drug
interaction representation

Zhuang et al.
(2023b)

Adaptive dual graph contrastive
learning based on heterogeneous
signed network for predicting adverse
drug reaction

ADGCL (Adaptive Dual
Graph Contrastive
Learning)

Superior AUROC and AUPRC comapred
with baseline models (DeepDDI, KGNN)

Leverages a heterogeneous signed
network and dual contrastive
learning while reducing dependency
on labeled data with robust
performance

Kpanou et al.
(2024)

Learning self-supervised molecular
representations for DDIp

SMR-DDI (Self-
supervised Molecular
Representation for DDIp)

Comparable or superior results to state-
of-the-art molecular representation
methods (e.g., ChemGPT, Mol2Vec, GIN-
based models)

Training on smaller datasets and
potential for generalizing to new
drugs and drug interactions by pre-
training on diverse, large-scale
unlabeled datasets

Chandra
Umakantham et al.
(2024)

Detecting Side Effects of ADRs
Through DDI Using GNNs and Self-
Supervised Learning

GNNs with self-
supervised learning

State-of-the-art results on the TwoSIDES
Polypharmacy Dataset, while surpassing
other methods without molecular
structures or GNNs for side-effect
prediction

The model was also validated on the
DrugBank dataset.
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further enhances the methodology by emphasizing the topological
structure of heterogeneous networks. The previous study by Tan
and Ma (2020), based on the SeHNE framework, leveraged non-
negative matrix factorization (NMF) within a semi-supervised
learning context, integrating drug-drug similarity, drug-target
interactions, and protein-protein interaction (PPI) networks. In
contrast, the 2022 study by Song et al. (2022) refines this approach
by incorporating regularization techniques to preserve local
topological structures and integrating Anatomical Therapeutic
Chemical (ATC) similarity to capture therapeutic and
functional similarities between drugs. This joint learning
framework, guided by support vector machines, significantly
enhances the discriminative power of the features, resulting in
improved prediction accuracy across various metrics, including
AUC and average precision.

The (Song et al., 2022) study focuses on graph embedding
techniques and introduces new similarity measures. It demonstrates
significant improvements comparedwith state-of-the-artmethods (GTB
and EPSDC) on various metrics, such as the AUC, average precision
(AP), and accuracy, particularly in terms of robustness and effectiveness
in identifying potential drug combinations. As a result, it provides amore
accurate and comprehensive framework for predicting drug-drug
interactions (DDIs), demonstrating the potential of graph-based
learningmethods in the realm of pharmacovigilance and drug discovery.

Still, SeHNE focuses solely on drug pairs rather than higher-
order combinations, due to the exponential increase in candidate
space. Future research needs to develop strategies for narrowing this
space to feasibly explore high-order drug combinations. Another
limitation is that SeHNE primarily uses topological structures of
heterogeneous networks, neglecting intrinsic drug attributes such as
chemical structure and function. Incorporating these intrinsic

features could improve the modeling and characterization of
drugs. Additionally, SeHNE currently integrates only drug and
protein information without considering gene expression, drug
responses, or the immune microenvironment. Future work
should aim to include these aspects to enhance the identification
of effective drug combinations.

3.4.1.2 CLDDI: a novel method for predicting drug-drug
interaction events based on graph contrastive learning

Xu et al. (2023) use graph contrastive learning in their paper (Xu
et al., 2023). Their proposed framework, named CLDDI, consists of
three primary components: the contrastive learning module, the
drug network structure embedding module, and the DDI prediction
module. The contrastive learning module generates two graph views
by randomly corrupting the original knowledge graph (KG) and
maximizes the agreement of node representations between these
views using a contrastive loss. These node embeddings are then used
as initial representations in the drug network structure embedding
module, which applies a graph convolutional neural network (GCN)
to extract relational information from multi-relational DDI
networks. The final drug embeddings are obtained by aggregating
the embeddings from both modules and are used in the DDIp
module to compute interaction-specific scores, combining
contrastive and supervised loss for end-to-end learning.
Experiments on real datasets demonstrate that CLDDI
outperforms baseline methods in terms of AUC of 0.9923 and
AUPR of 0.9886, showing significant improvements in accuracy,
robustness, and generalization, particularly in sparse data scenarios.

Still, the study has some limitations, like the simplicity of the
graph data augmentation techniques that were used, more
specifically, the edge removal and node feature masking. More

TABLE 5 Overview of the analyzed papers that use structured learning methods.

Method Ref. Article title Method used Comparative analysis Comment

Graph based Song
et al.
(2022)

Predicting combinations of drugs
by exploiting graph embedding of
heterogeneous networks

SeHNE (Semi-supervised
Heterogeneous Network
Embedding)

Superior AUC and average precision
scores compared to state-of-the-art
methods (e.g., gradient tree boosting,
EPSDC)

The joint learning of feature
extraction and prediction and
insensitivity to classifiers leads to a
stable performance across drug
similarity measures

Xu et al.
(2023)

CLDDI: A Novel Method for DDIp
Events Based on Graph Contrastive
Learning

CLDDI (graph contrastive
learning model)

Superior performance over baselines
(e.g., Decagon, GMPNN-CS) in
accuracy, F1 score, AUC and AUPR.

Strong generalization and
robustness, especially on sparse
datasets

Gu et al.
(2023)

A model-agnostic framework to
enhance KG-based drug
combination prediction with DDI
data and SCL

Model-agnostic framework Outperforms models that rely on
random negative sampling, with better
accuracy, precision, recall, and
F1 score

Uses DDI data as a negative
dataset and supervised contrastive
learning for drug embedding
vector optimization

Deng
et al.
(2024)

MAVGAE: a multimodal
framework for predicting
asymmetric DDIp based on VGAE

MAVGAE (multimodal
framework with Variational
Graph Autoencoder)

Superior results in AUC, AUPR, and
accuracy for asymmetric DDI
prediction compared with DGAT-
DDI and DGGAN.

Uses multimodal data sources and
variational autoencoders for
predicting non-symmetric drug
interactions

Hu et al.
(2024)

MPHGCL-DDI: Meta-Path-Based
Heterogeneous Graph Contrastive
Learning for DDIp

MPHGCL-DDI (Meta-
Path-based Heterogeneous
Graph Contrastive Learning
model)

Better performance than baseline
models (MDDI-SCL, MM-GANN-
DDI, MCFF-MTDDI, MP-DDI,
RaGSECo)

Uses three levels of data
augmentation strategies, which
makes it effective at predicting
rare DDI events

Matrix
factorization

Zhu
et al.
(2021)

Attribute Supervised Probabilistic
Dependent Matrix Tri-
Factorization Model for the
Prediction of Adverse Drug-Drug
Interaction

Attribute Supervised
PDMTF (Probabilistic
Dependent Matrix Tri-
Factorization) model

Outperforms eight baseline methods
(e.g., matrix factorization-based
models and ADDI prediction models)

Incorporates drug dependencies
in ADDI prediction, and leverages
molecular structures and side
effect correlations
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efficient and general methods for augmenting large, heterogeneous
graph-structured data remain an open research direction. The issue
of sparsity, not only in drug nodes but also in DDI events, with some
events appearing infrequently in the dataset, can be noticed. Future
research could address these unbalanced conditions by developing
methods that can further enhance model performance in such
scenarios. Key areas of investigation include the exploration of
more advanced graph data augmentation techniques and
addressing event sparsity.

3.4.1.3 A model-agnostic framework to enhance
knowledge graph-based drug combination prediction with
drug-drug interaction data and supervised
contrastive learning

Gu et al. (2023) applied supervised contrastive learning (SCL) in
combination with biomedical knowledge graphs (KG) on DDI data

to obtain drug combination predictions with high accuracy.
Initially, the embeddings are extracted using various network
embedding algorithms (random walk-based and graph neural
networks). Then, pretraining is done with SCL to refine drug
embeddings. Finally, a fully connected classifier is used for
prediction. The DDIs from the TwoSides database were used as
negative samples, which improved prediction accuracy through
realistic negative examples, unlike randomly sampled drug pairs.
The experimental results show significant performance
improvements across multiple metrics for various algorithms,
with the DREAMwalk algorithm showing the highest overall
performance. DREAMwalk is a network embedding algorithm
that can be used to generate embeddings from a knowledge
graph. The visualization of embedding vectors using t-SNE and
the robust performance in class-imbalanced settings are also
evidence of the effectiveness of this framework.

FIGURE 5
Universal pipeline for DDI prediction showing the typical workflow from input data to clinical application. This framework reflects common steps
used across all 24 reviewed models, with some variation in preprocessing and modeling components.
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TABLE 6 Overview of 24 important DDI prediction models grouped by learning type. Includes data, features, performance, and main observations.

Learning
type

Model (Ref.) Data used (main) Features used
(core)

Reported
performance†

Notes/limitations

Semi-Supervised Meta-learning + PU
SVM (Deepika and
Geetha, 2018)

DrugBank + aux. networks Node2Vec embeddings +22% AUPR vs. LR/DT;
+12.7% vs. 1-class SVM

Only relative gains reported;
absolute metrics not given

MLRDA (Chu et al.,
2019)

C1IT, C2IS Chem, indications,
targets, SE

C1IT AUPR 0.440 (+0.10 over
baselines); AUROC 0.667. C2IS
AUPR 0.483; AUROC
0.697 ijcai.org

Multi-feature disentangling;
small AUPR but largest
relative lift

Info-model TK-sim
(Marushchak and
Kosarevych, 2020)

DrugBank Target + therapeutic sim AUC 0.985 ± 0.05 Clustering step only 54%
accurate

Stacked-AE wSVM (Liu
et al., 2020)

FAERS + DrugBank +
Drugs.com

AE-derived AE-features AUC: ≈ 0.868
F-measure: ≈ 0.816
Recall: ≈ 0.871
Precision ≈ 0.761

Relies exclusively on FAERS
post-marketing reports. Peak
gain occurs when ≤ 30% of
data are labeled

SeHNE (Tan and Ma,
2020)

Drug-drug sim. +DTI
+ PPI

NMF embeddings AUC ≈ 0.70 (vs. 0.63 GTB) Scalability constraints

DDI-IS-SL (Yan et al.,
2022)

DrugBank Chem/bio/phenotype
+ GIP

5-fold AUC: 0.9691
10-fold: 0.9745; de novo: 0.9292

High but limited to similarity
kernels

Net-projection (Lv et al.,
2024)

E.coli MG1655 DDI net
(19 × 19) and
BW25113 DDI net (68 × 68)

Spectral + hierarchical
clustering → affinity
matrix → semi-supervised
graph projection

MG1655— Acc 0.95, Prec 1.00,
Rec 0.75, F1 0.86
BW25113 — Acc 0.81, Prec
0.88, Rec 0.64, F1 0.74

Pure topology (no chem/
MoA); clusters correlate with
MoA (ρ = 0.37); performance
sensitive to σ ≥ 0.3 cut-off;
scalability to large
heterogeneous DDIs not yet
shown

Supervised TSSL SVM/GBM
(Kastrin et al., 2018)

DrugBank
KEGG
NDF-RT
TwoSides

Topological and semantic
sims

AUPR 0.93 (RF/GBM) Topology > semantics;
weights ignored

MTMA (Zhu et al., 2020) DrugBank Mol-struct + side-effect
tensors

AUC 0.9247
AUPR 0.7515

AUPR still beaten by SFLLN.

Active-Learning IR (Xie
et al., 2021)

PubMed abstracts TF-IDF + uncertainty Precision ↑ 0.45 →
0.83 (SVM)/0.70 →
0.82 (LR)

Focus on retrieval, not DDI
classif

MDDI-SCL (Lin et al.,
2022)

DrugBank Attention + contrastive AUPR 0.9782
Acc 0.9378 (task 1)

Weak on rare types/new
drugs

DeConDFFuse (Gupta
et al., 2023)

BIOSNAP Bioactivity signaturizer AUC-ROC 0.897
AUPRC ↑ over KGNN

Higher FPs than Graph-DDI.

PK-DDI SVR (Gill et al.,
2023)

120 clinical studies CYP450, fm, phys-chem 78% predictions within 2-fold
exposure

Undershoots strong
inhibitors

CAGPool (Lee et al.,
2023)

Decagon Co-attention GNN AUROC 0.872
AUPRC 0.832
AP@50 0.803

Pair-level graph pooling

Self-Supervised MGP-DR (Ren et al.,
2022)

DrugBank + unlabeled
graphs

Mask-atom and SAB pre-
tasks

RMSE 0.4009
MAE 0.4066

Only relative gains published

DMVDGI (Zhuang et al.,
2023a)

Decagon
CRDs
NCRDs

Multi-view graph AUROC 0.9318
(Decagon) – beats
HAN/GAT

View-choice and threshold
sensitive

ADGCL (Zhuang et al.,
2023b)

Decagon + DrugBank Heterog. signed network ↑AUROC and AUPRC over
DeepDDI/KGNN

Time complexity high

SMR-DDI (Kpanou et al.,
2024)

ChEMBL22 (pre-train) +
DrugBank

SSL CNN on SMILES Balanced Acc 0.90 (task 1); ↓ on
new-drug task (figures in pdf)

262-dim latent space limits
expressiveness

(Continued on following page)
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Still, notable limitations are challenges in inferring combinations
of drugs not included in the original KG. This issue can be mitigated
by retraining the model with updated KGs that include new drugs
and their relationships. Incorporating clinical knowledge, such as
dosing plans and side effect severities, to enhance the clinical
applicability of predictions could be a future research basis.
Additionally, the framework could benefit from explicitly
integrating disease entities into the prediction process, as current
methods only implicitly use disease information. The study also
suggests combining the strengths of KG-based and high-throughput
screening (HTS)-based approaches to leverage both static, curated
information from KGs and dynamic, cell-line-specific
data from HTS.

3.4.1.4 MAVGAE: a multimodal framework for predicting
asymmetric drug-drug interactions based on variational
graph autoencoder

Deng et al. (2024) introduced in 2024, the Multimodal
Asymmetric Variational Graph Autoencoder (MAVGAE)
framework that was designed to predict asymmetric DDI using a
VGAE architecture where the encoder consists of a two-layer GCN.
It integrates multimodal data, including drugmolecular fingerprints,
target interactions, enzyme interactions, and pathway information,

and constructs a feature set for each drug. The network generates
mean and standard deviation for the latent variables, capturing the
relationships within the drug interaction network. The graph is
reconstructed by the decoder with a vector dot product. The model
was trained on a large-scale dataset with stratified subsets for
training, validation, and testing. It was evaluated with metrics
such as AUC, AUPR, accuracy, and F1-score. MAVGAE
outperformed several benchmark methods, with a significant
improvement in AUC and AUPR values by 2%–3% points.
Including pathway, enzyme, and target data, along with the
variational autoencoder component, significantly improves the
model’s predictive performance, achieving an AUROC of 0.971,
AUPRC of 0.964, and ACC of 0.913.

The model’s interpretability and dataset constraints are two
main limitations in the current MAVGAE framework. The
complexity and opacity of the variational graph autoencoder
make it difficult to understand the model’s decision-making
processes. This creates challenges for practical application and
trust in the results. Furthermore, the restricted availability of
datasets on asymmetric drug interactions limits the evaluation of
the model’s performance, which has an impact on the overall
assessment of its accuracy and generalizability. Enhancing the
interpretability of the model to make its operations more

TABLE 6 (Continued) Overview of 24 important DDI prediction models grouped by learning type. Includes data, features, performance, and main
observations.

Learning
type

Model (Ref.) Data used (main) Features used
(core)

Reported
performance†

Notes/limitations

Dual-path GNN
(Chandra Umakantham
et al., 2024)

TwoSIDES
DrugBank

VGAE pre-train TwoSIDES: Precision 0.75, Acc
0.90
DrugBank
Precision/F1/Acc: 0.99

Interpretability and multi-
path stability

Structured SeHNE (Song et al.,
2022)

Hetero net (sim + DTI
+ PPI)

NMF + SVM AUC ≈ 0.78
AP ≈ 0.55

Computationally time-
consuming on large
networks. Scalability and
integration of additional
drug attributes highlighted as
future work

CLDDI (Xu et al., 2023) Multi-rel
KG

Contrastive GCN AUROC 0.9923
AUPR 0.9886

Strong on sparse events

SCL + KG (Gu et al.,
2023)

Multi-scale Interactome KG
+ DCDB 2.0 a CDCDB +
TWOSIDES

DREAMwalk embeds Acc 0.923, Prec 0.946, Rec 0.898,
F1 0.921

Needs re-training for unseen
drugs. Uses real DDI
negatives → robust to class
imbalance

MAVGAE (Deng et al.,
2024)

Multimodal
DDI graph

Variational GAE AUROC 0.971
AUPRC 0.964
Acc 0.913

Black-box; asymmetric data
scarce

MPHGCL-DDI (Hu
et al., 2024)

DrugBank + PPI Meta-path contrastive Known-known: Acc 0.9487/
AUPR 0.9897 (D1); Acc 0.9541/
AUPR 0.9927 (D2)
Known-new: Acc 0.6872/AUPR
0.7208 (D1); Acc 0.6685/AUPR
0.6995 (D2)
New-new: Acc 0.4634/AUPR
0.4227 (D1); Acc 0.4847/AUPR
0.4436 (D2)

Cold-start for new drugs.
Handles rare events better via
contrastive view

Matrix Fact PDMTF (Zhu et al.,
2021)

DrugBank Mol + SE corr MAE ↓ 23.7% vs.
PMF; RMSE ↓ 15%

Needs convergence proof;
cannot tell interaction type

† Where authors gave multiple dataset splits; we list the headline/best value.

↑ Denotes a statistically significant improvement but no absolute figure in open text.
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transparent and developing richer, more diverse datasets to better
evaluate and improve the model’s robustness and applicability in
various contexts could represent future directions of research.

3.4.1.5 MPHGCL-DDI: meta-path-based heterogeneous
graph contrastive learning for drug-drug interaction
prediction

Hu et al. (2024) predicts DDIs using a meta-path-based
heterogeneous graph contrastive learning model, MPHGCL-
DDI. The model contains two main contrastive views: an
average graph view and an augmented graph view, constructed
from multi-source drug information, including direct biological
attributes and PPIs. The study uses three levels of data
augmentation schemes—feature, edge, and sub-graph
augmentation—to enhance the robustness and performance of
the model. Unsupervised and supervised contrastive losses are
combined along with a multi-relation prediction loss to optimize
the training process. The MPHGCL-DDI model was evaluated on
three prediction tasks across two datasets. It demonstrated
superior performance over several models: MDDI-SCL (Multi-
type Drug-Drug Interaction - Supervised Contrastive Learning)
(Lin et al., 2022), MM-GANN-DDI (Multimodal graph-agnostic
neural networks for predicting drug-drug interaction events)
(Feng et al., 2023), MCFF-MTDDI (Multi-Channel Feature
Fusion model for multi-typed DDI prediction) (Han et al.,
2023), MP-DDI (Meta Path DDI) (Zhao et al., 2023), RaGSECo
(Relation-aware graph structure embedding) (Jiang et al., 2024), by
achieving higher accuracy, macro-F1, and other evaluation

metrics. The macro-F1 is determined by calculating the
F1 score independently for each class and then taking the
average (without considering the class imbalance). It is
particularly useful when all classes are equally important,
regardless of their frequency. The MPHGCL-DDI approach
addresses the challenge of class imbalance in DDI datasets and
reveals latent drug relations through integrated biological
information.

Some limitations of the MPHGCL-DDI model can be noticed.
For example, the model tends to assign higher scores to DDI events
with more instances due to the highly imbalanced distribution of
instances across different DDI events. This issue suggests a need for
further research on sampling methods and algorithmic models to
address data imbalance, such as employing over-sampling methods
for the minority class during model training. Additionally, the
model demonstrates poor performance in predicting DDIs
between two new drugs, which is useful in drug discovery. Future
studies should prioritize resolving these ‘cold start’ challenges by
focusing on the development of methods that can better handle new
drug interactions.

3.4.2 Matrix factorization methods
3.4.2.1 Attribute supervised probabilistic dependent matrix
tri-factorization model for the prediction of adverse drug-
drug interaction

Zhu et al. (2021) used matrix factorization methods to
decompose interaction matrices into lower-dimensional
representations to predict unknown drug interactions. More

FIGURE 6
Performance versus computational complexity of the 24 reviewed DDI prediction models. Performance metrics from Table 6 plotted against
estimated complexity scores, color-coded by learning paradigm.

Frontiers in Pharmacology frontiersin.org18

Gheorghita et al. 10.3389/fphar.2025.1632775

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1632775


specifically, it uses the Attribute Supervised Probabilistic Dependent
Matrix Tri-Factorization (PDMTF) model. The PDMTF model
incorporates two key drug attributes: molecular structure and
side effects, alongside their correlation for effective adverse drug-
drug interaction (ADDI) modeling. A probabilistic matrix tri-
factorization approach was used. The adverse interaction matrix
is decomposed into three matrices, capturing the predicted
molecular structure and side effect matrices, and a dependent
matrix to model drug dependencies. The optimization of PDMTF
involves an alternating algorithm combining stochastic gradient
descent (SGD) and alternating direction method of multipliers

(ADMM). PDMTF outperforms several baseline models: SVMs,
Multi-Dya (a multi-task dyadic regression model) (Jin et al., 2017),
DLM (a deep learning method) (Ryu et al., 2018), BSNMF (a
balanced semi-nonnegative matrix factorization model) (Shi
et al., 2019), SFLLN (a sparse feature learning ensemble method
with linear neighborhood regularization) (Zhang et al., 2019), PMF
(classical probabilistic matrix factorization method) (Salakhutdinov
and Mnih, 2007), CPMF (a context-aware probabilistic matrix
factorization model) (Ren et al., 2017) and SC-PMF (Probabilistic
Matrix Factorization with Social relationship and Content of items)
(Tan et al., 2016) on evaluation metrics such as MAE, RMSE, and

FIGURE 7
Taxonomy of the 24 reviewed DDI prediction models, grouped by learning paradigm (supervised, semi-supervised, self-supervised, structured) and
showing their core methodological components.

TABLE 7 Practical recommendations for choosing ML models in DDI prediction based on data constraints, interpretability, scalability, and reproducibility.

Method type Best when data is
limited

Good
interpretability

Handles
imbalance

Scales to large
data

Reproducibility

Supervised Needs labeled data Yes (e.g., RF, linear) Sensitive to bias Yes (classical ML) High (open tools)

Semi-Supervised Works with few labels Medium (graph embeddings) Some use PU learning Varies by graph model Often underreported

Self-Supervised Excellent for low labels Limited (autoencoders) Contrastive helps Yes (scales well) Often no code/docs

Structured
(GNN/MF)

Needs full graph/data Often black-box GCNs resist imbalance Slower on large graphs Reproducibility varies
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accuracy by achieving the lowest MAE and RMSE, and the highest
accuracy. Specifically, PDMTF shows improvements of 23.67% in
MAE compared to the classical probabilistic matrix factorization
method and 15.06% and 9.79% improvements over its variants
PDMTF-A and PDMTF-D in MAE, respectively.

Nevertheless, the paper notes the need for theoretical proof of
the convergence of the optimization algorithm used in the PDMTF
model. Second, it can be noticed that adverse drug-drug
interactions are influenced by various attributes beyond
molecular structure and side effects; hence, future work will
involve incorporating more attributes and their correlation
matrices into the model. Third, can be further investigated the
pharmacogenetic and metabolic relationships among drugs to
better understand the biological mechanisms underlying ADDIs.
While the current work focuses on predicting whether a drug pair
would lead to adverse interaction, it does not identify the specific
types of adverse interactions. Future research should aim to predict
detailed ADDIs, such as specific side effects like insomnia or
gastrointestinal discomfort.

Table 5 displays a comparative overview of studies that
employed structured learning techniques. Here are detailed the
datasets, modeling strategies, and methods used together with the
comparative analysis. The table highlights both matrix factorization
and graph-based methods.

4 Discussion

Recently, ML techniques have been shown to be very promising
for predicting DDIs. By looking at research performed in the last
6 years on predicting DDIs, we aimed to analyze the innovative
methods and frameworks that were recently developed for
predicting DDIs and find new avenues of research based on the
limitations of the research studied.

The analyzed papers significantly contributed to DDI
prediction. Integrating various data sources into predictive
models is one of them. Studies have shown that combining
chemical, biological, and phenotypic data can be very effective in
creating rich feature sets used in ML models. This has led to more
accurate and comprehensive DDIp. For instance, the use of multi-
source drug information, including substructures, target
interactions, side effects, and therapeutic relationships, has led to
the construction of feature networks that significantly enhance
prediction reliability.

The development and application of semi-supervised learning
frameworks is another noteworthy contribution. These methods,
particularly those employing (PU) learning and meta-learning
techniques, have shown improvements in handling data sparsity
and imbalance. These frameworks can generalize better and achieve
higher predictive performance as they leverage both labeled and

FIGURE 8
Decision guide for selecting appropriate DDI prediction approaches based on data characteristics and computational or interpretability constraints.
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unlabeled data. One example is the implementation of the node2vec
algorithm for network embedding, followed by bagging SVM
classifiers. This can significantly improve prediction accuracy.
Graph-based learning methods represent another significant
advancement. GCNs and VGAEs have been shown to be very
effective in modeling drug interactions. They can capture the
complex relationships within heterogeneous networks, improving
metrics such as AUC and AUPR. The introduction of graph
contrastive learning enhances these models by maximizing the
agreement between different graph views. This improves the
model’s robustness and generalization, especially when the data
is sparse.

Self-supervised learning and contrastive learning have
introduced new ways to pre-train models on large datasets,
creating robust molecular feature spaces. These methods have
shown themselves to be competitive, particularly in predicting
known drug interactions. They use data augmentation and batch
balancing strategies to handle class imbalance.

Matrix factorization techniques, such as the PDMTFmodel, also
offer efficient solutions for decomposing interaction matrices. These
methods improve the prediction of ADEs by incorporating key drug
attributes, such as molecular structure and side effects, alongside
their correlations.

The general structure followed by most DDI prediction methods
is shown in Figure 5. It outlines the common steps from data input
and feature extraction to model training and clinical use.

4.1 Comparative analysis of learning models
for DDI prediction

Table 6 includes 24 models grouped by their learning type:
supervised, semi-supervised, self-supervised, and structured, and it
was created as a summary table to help compare the most important
models discussed in this review. For each model, we show what data
it used, what features it learned from, how well it performed (if
performance was reported), and a few notes about its strengths or
known issues. This overview gives a quick way to see how different
approaches compare, and may help researchers choose the right
method depending on their needs and data.

Looking at the table, we notice a few common patterns.
Supervised models do well on training data, but they can have
trouble when they are tested on new or noisy data. Semi-supervised
models try to use both labeled and unlabeled data, but they work best
with certain types of input. Self-supervised models are good when
there is not much labeled data, but they are harder to understand.
Graph-based methods and other structured models are good for
showing how drugs interact with each other in complicated ways,
but they are often harder to reproduce because they need a lot of data
and settings. There are pros and cons to each type of model. The best
choice depends on the data you have and whether accuracy,
explainability, or scalability is more important.

It is helpful to look at how each model performs compared to
how much computing power it needs. In Figure 6, are plotted the
results from the papers we reviewed basically matching how well
the models did with how demanding they are to run. The way we
scored complexity was not exact, but more of a general estimate:
simpler algorithms like RF or SVM were marked as low, and more

advanced stuff like GNNs or multi-view learning ended up on
the higher end.

Some patterns show up when you look at the plot. Sure, a lot of the
time, the more complex models do better, but not always. A good
example is DDI-IS-SL. It gets great results (around 0.97 AUROC)
without needing a high amount of resources. That’s a good middle
ground for people who want solid performance without using heavy
computing power. There are models like MPHGCL-DDI or
MAVGAE—top performers, but they also need serious horsepower.
Meanwhile, standard supervised models tend to sit in the lower-left
corner—not too heavy, pretty stable, but not outstanding either.

So, depending on what matters more—speed, accuracy, or just
something that runs easily—this comparison gives a decent starting
point for picking the right approach.

Key Insights from Real Performance Data:

• Top Performers: MPHGCL-DDI (0.95 AUROC) and
MAVGAE (0.97 AUROC) lead in performance but require
high computational complexity

• Efficiency Champions: TSSL achieves 0.93 AUPR with
relatively low complexity (classical ML approach)

• Semi-Supervised Sweet Spot: DDI-IS-SL (0.97 AUC) and
MLRDA show excellent performance-complexity balance

• Self-Supervised Promise: Limited data points, but SMR-DDI
shows competitive performance with moderate complexity

• Complexity vs. Performance: Clear trend showing higher
complexity often (but not always) correlates with better
performance

• Method Selection: For resource-constrained environments,
consider TSSL or classical supervised methods. For maximum
performance, opt for structured methods like MPHGCL-DDI

To better illustrate the differences between the reviewed models,
Figure 7 organizes them into categories based on their learning type
and methodological approach.

4.2 Model recommendations and
practical guidance

Different ML models have their strengths and trade-offs, and
picking the right one really depends on what kind of data you have
and what you’re trying to achieve. Somemethods need lots of labeled
data, while others can manage with less. A few are easier to interpret,
which helps when you need to explain how the predictions were
made. Others do better when the data is noisy or imbalanced. In
Table 7, below, we’ve pulled together a simple overview to help
compare these methods. It is not just about performance—it is also
about what works best for your situation.

Figure 8 provides a practical guide to choosing a suitable model
based on data availability and constraints such as scalability,
interpretability, or the presence of class imbalance.

4.3 Common challenges and limitations

Data imbalance is the most common challenge across studies.
Many datasets used in DDIp are disproportionate, because most of
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the data consists of negative interactions (no interaction) and only a
few are positive interactions (actual DDIs). This imbalance causes
models to become biassed toward the majority class, so lowering
their sensitivity and precision in spotting real positive interactions.
This is especially apparent in the underperformance of models
trying to forecast rare or novel DDIs. In this regard, strategies
including advanced methods like PU learning, under-sampling the
majority class, or oversampling the minority class are usually
advised to minimize this issue.

Many studies mostly rely on particular databases including
DrugBank, KEGG, and FAERS, which might have only few DDIs.
Models taught just from DrugBank data may overlook interactions
reported in other databases or in the real-world clinical environment.
This reduces the generalizability of the outcomes since the models
might not perform as well on unprocessed data coming from many
sources. EHRs and other clinical databases could help to boost model
resilience and augment the data sources.

Reproducibility and methodological transparency remain
consistent challenges across many of the reviewed studies.
Although most models are developed using publicly available
datasets, efforts to replicate results are frequently limited by the
absence of shared source code, detailed training configurations, and
clearly documented hyperparameter settings. Consequently, this
review relies solely on the information explicitly reported within
the articles themselves—namely, in the main text, figures, and
appendices. While this restricts the ability to independently
validate reported outcomes, it also highlights a broader issue
within the field. Encouragingly, some recent works have begun to
embrace more open research practices, offering public repositories
and clearer methodological documentation. Moving forward,
greater emphasis on open-source implementations, standardized
reporting, and reproducible workflows would substantially improve
the reliability and comparability of DDI prediction models.

DL and graph-based approaches are advanced models that often
demand large computing capability and long training times, which
limits their application in real-world clinical environments. Their
complexity makes them difficult to understand as well; decisions in
medicine are rarely clear-cut, which erodes confidence and
acceptance. Still, the key is to improve interpretability and efficiency.

A common situation in drug development, manymodels also battle
unseen or understudied drugs. Usually, this results from overreliance on
known interactions and limited labeled data. In such situations,
techniques like transfer learning could help to improve generalization.

The choice of negative samples raises still another problem.
Random pairing may cause skew results and mislabeling of data.
Both model accuracy and stability could be enhanced by active
learning—that is, by using smarter sampling techniques.

These difficulties taken together affect the DDI prediction tool’s
dependability and applicability. To get these approaches toward
more general clinical use moving forward, better data, simpler
models, and smarter training pipelines are needed.

4.4 Future research directions and proposed
improvements

Based on the limitations of the actual researches, future
researches should prioritize the integration of diverse and

comprehensive data sources, improving the robustness and
generalizability of DDI prediction models. One idea would be to
incorporate the EHR, real-world evidence, and additional clinical
databases alongside existing sources like DrugBank and KEGG. In
this manner, researchers can create more holistic models that
capture a wider range of DDIs. Deep insights into the biological
mechanisms underlying DDIs can be obtained by also integrating
genomic, proteomic, and metabolomic data.

Future studies should explore advanced sampling and data
augmentation to address data imbalance. Techniques such as
synthetic minority oversampling (SMOTE) and generative
adversarial networks (GANs) can be used to generate synthetic
data for underrepresented classes, thereby balancing the dataset.
Refinement of training data can also be done using active learning
strategies, which iteratively select the most informative samples for
labeling, with the scope to improve the model performance on
imbalanced datasets.

Managing the interpretability of complex models, including DL
and graph-based approaches, can help to be adopted in clinical
practice. Next studies should try to produce more interpretable
models and apply methods that make the decision-making process
of these models more transparent, also, should include explainable
artificial intelligence (XAI) frameworks, feature importance analysis,
and attention mechanisms to help to clarify how forecasts
are produced.

Without sacrificing performance, methods including model
pruning, quantization, and the use of more efficient neural
network architectures—e.g., transformers—can greatly improve
computational efficiency linked with advanced ML techniques.
Real-time applications can find these models more accessible if
improvements lower training times and computational
resource needs.

The ability of models to generalize to new or less-studied drugs
makes them useful in drug discovery and development. Future
studies should explore transfer learning and continual learning
approaches that allow models to adapt to new data
incrementally. Techniques should be improved to learn from
small amounts of data, such as few-shot learning and meta-
learning, which can also help models predict interactions for
unknown compounds more accurately.

Prediction model performance depends heavily on the selection
of negative samples. Developing more informed and accurate
methods for negative sample selection is another avenue that can
be followed in future research. Using high-confidence negative
samples allows the models to iteratively enhance the training set,
thereby raising the general quality of the training data. Furthermore,
assisting in the choice of more biologically plausible negative
samples is domain knowledge.

Advancing DDIp would greatly benefit from other learning
frameworks, including self-supervised learning, contrastive
learning, and hybrid models combining several learning
paradigms. Large unlabeled datasets can be used to pre-train
models, which are then fine-tuned on labeled data, creating
robust and high-performance models. These frameworks can be
researched further.

Other clinical knowledge, such as dosing regimens, patient
demographics, and comorbidities, could also be included in
DDIp models, which might improve their practical applicability.
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Next studies should aim to integrate these factors to provide more
contextually relevant predictions. Additionally, developing models
that can account for the dynamic nature of drug interactions, such as
time-dependent effects and varying drug response profiles, can
further improve the clinical relevance of predictions.

5 Conclusion

5.1 Semi-supervised learning models

Using both labeled and unlabeled data, semi-supervised
learning methods explored have shown great promise in
DDIp. These methods enhanced the models’ performance
in situations with few annotations. Data sparsity and imbalance
have been sufficiently addressed by methods including: network
embedding, meta-learning, and PU learning. As mentioned,
reproducibility remains difficult since many studies lack open-
source code, thorough hyperparameter documentation, and
consistent dataset partitioning. To improve the replication of
the model so it can be compared across studies, future studies
should give methodological transparency, clear benchmarking
procedures top priority. Open-access implementations are of
secondary importance.

5.2 Supervised learning models

Strong predictive performance in DDIp has come from both DL
architectures and supervised ML techniques, including conventional
models like RF and SVMs. The availability of well-labeled datasets
determines the general efficacy of these models; while beneficial,
their applicability in real-world situations when such labels are rare
is limited. Furthermore, adding to reproducibility difficulties are
dataset variability, variations in feature engineering, and
inconsistent preprocessing methods. Adoption of supervised
models in clinical decision support systems needs standardized
evaluation systems, better model interpretability, and
computational efficiency enhancements.

5.3 Self-supervised learning models

By decreasing the demand for large-scale labeled datasets in
order to enhance molecular representation learning, these models
have developed into a promising paradigm for DDIp. Variational
autoencoders and contrastive learning, along with other graph-
based techniques, highlight the capability to capture complex
drug relationships. However, many of these studies lack
meticulous statistical validation. This makes it harder to evaluate
the applicability of the stated results of each research. The lack of
open-source implementations and clear experimental settings
makes it more challenging to replicate each study. Furthermore,
a scalability provocation is the computational inefficiency. To
achieve a balance between predictive performance and
computational costs, future studies should prioritize the adoption
of: benchmark datasets, open methodological reporting, and
algorithmic optimizations.

5.4 Structured learning models

Graph-based and matrix factorization techniques, as well as
other structured learning models, have given fresh ideas for drug
interaction prediction and representation. Though they call for large
computational resources, GCNs and contrastive learning
approaches have improved drug representation learning.
Although matrix-based techniques increase model interpretability,
they sometimes require large amounts of data preprocessing, which
can cause variations across studies. Establishing standardized
protocols for statistical validation, guaranteeing open-access
documentation, and investigating optimization strategies that
lower computational complexity yet preserve predictive accuracy
will help to forward structured learning in DDI research.

5.5 General conclusion

DDI prediction has made major progress through advances in
feature representation, data integration, and accuracy. Reliable
interaction modeling has resulted from methods including
network embedding, GNN, and ensemble learning. Common
difficulties still exist, though, in all learning paradigms, including
data imbalance, computational efficiency limits, and model
interpretability. Meaningful cross-study comparisons depend on
open-access datasets, transparent methodologies shared, and
consistent evaluation metrics guaranteeing reproducibility.

Improving model robustness using data integration from several
biological, chemical, and clinical sources should be the main
emphasis of the next studies. Furthermore, techniques like
continuous learning and transfer learning can enable models to
better generalize to hitherto unmet drug interactions. Using their
integration into clinical decision support systems (CDSSs), these
predictive models will be much appreciated in their practical
application since they will help healthcare professionals to make
more informed prescribing decisions, reduce adverse drug
interactions, and maximize therapeutic strategies. Addressing
these challenges will help bridge the gap between computational
models and clinical use.
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