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Colorectal cancer (CRC) is a common and aggressive malignancy of the
gastrointestinal tract with a severe disease burden. The role of Traditional
Chinese Medicine (TCM) and its natural active ingredients in enhancing the
therapeutic effects of radiotherapy and chemotherapy and preventing the
recurrence and metastasis of CRC has been increasingly recognized. Herba
Patriniae has shown significant clinical efficacy for the treatment of CRC.
Flavonoids has been found to be one of the main active anticancer
components of Herba Patriniae. This review summarizes the latest findings
from clinical trials and in vitro studies on anticancer mechanisms of Herba
Patriniae, and discusses the role of the flavonoids in combination therapy
against CRC. These flavonoids exert anticancer effects through diverse
mechanisms. For instance, they prevent the development of precancerous
lesions, regulate the cell cycle, modulate CRC cell proliferation, promote
tumor cell apoptosis, inhibite epithelial-mesenchymal transition, reverse drug
resistance, and modulate gut microbiota by acting on several key signaling
pathways, such as PI3K/Akt/mTOR, Wnt/β-catenin, and EGFR/ERK/MAPK.
Future research should prioritize clarifying the specific dosage and safety of
flavonoids under different pathological conditions, further conducting large-
scale, rigorously designed clinical studies to determine the efficacy differences
of flavonoids for patients with different pathological types of CRC and
simultaneously delving into the mechanisms of their anti-colorectal cancer
effects, as well as their interactions with the intestinal microbiota and tumor
microenvironment.
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Introduction

Based on the latest data from the International Agency for Research on Cancer (IARC),
new cases of CRC accounted for 10.2% of all incident malignant neoplasms, making it the
third most common cancer worldwide. CRC-associated death accounts for 9.3% of all
malignant neoplasms, making it the second deadliest cancer after lung cancer (Bray et al.,
2024; Global Nutrition Target Collaborators, 2025). Due to the influence of dietary habits,
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lifestyle and economic development (Vernia et al., 2021), CRC is
becoming more prevalent among younger people. The overall
burden of the disease is still increasing, particularly in developing
countries (Morgan et al., 2023), this presents a major challenge for
the clinical management of CRC. Genetically, colorectal cancer
(CRC) can be genetically divided into two main types: hereditary
and sporadic. Hereditary CRC primarily includes familial
adenomatous polyposis (FAP) and Lynch syndrome. Sporadic
CRC, which accounts for approximately 75% of cases, is mainly
caused by gene mutations triggered by environmental factors. The
occurrence and progression of sporadic CRC frequently involve the
inactivation of genes such as APC, DCC, and TP53, over-expression
of mutations in genes like KRAS, PIK3CA, and BRAF, as well as
deletions in DNA mismatch repair genes. Most cases of CRC cases
follow the “adenoma-cancer” sequence of progression, it takes
between 5 and 10 years for an adenoma to advance to cancer

(Zhu et al., 2020; Sun et al., 2024). Treatment for CRC mainly
includes surgical resection, alongside and radiotherapy. However,
25%–30% of patients have metastasis when their initial diagnosis,
and 50% of patients experience recurrent metastasis within 5 years of
surgery (Ciardiello et al., 2022). Patients diagnosed with advanced
CRC face many limitations, such as resistance to chemotherapy and
serious adverse reactions. In-depth studies on molecular subtypes
have greatly improved the 5-year survival rate of patients receiving
molecularly targeted drugs (Ciardiello et al., 2022), such as drugs
targeting vascular endothelial growth factor/vascular endothelial
growth factor receptor (VEGF/VEGFR) and epidermal growth
factor receptor (EGFR) (Xie et al., 2020). Such studies have also
improved the prognosis of patients by detecting their microsatellite
instability/mismatch repair (MSI/MMR) and programmed death
ligand 1 (PD-L1) status and adding immunotherapy (André et al.,
2025). Current pharmacological interventions for CRC primarily

FIGURE 1
Mechanisms of Flavonoids inhibit inflammation-associated CRC.
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focus on single-target agents; however, the therapeutic efficacy of
drugs inhibiting individual signaling pathways or biological targets
remains limited. In contrast, Traditional Chinese Medicine (TCM)
and its bioactive components exhibit distinct advantages through
their multi-target, multi-pathway, and multi-effect regulatory

mechanisms (Chen et al., 2023; Gou et al., 2023). These
compounds can markedly alleviate clinical symptoms, improve
quality of life, and stabilize lesions in patients with CRC. In
addition, when used in combination therapies, these compounds
can enhance treatment outcomes and minimize adverse effects.

FIGURE 2
Potential mechanism of flavonoids against colorectal cancer.

FIGURE 3
Flavonoids interact with gut microbiota against CRC.
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Herba Patriniae, a wild plant with recognized medicinal and
dietary value, has been utilized for over 2,000 years. It is derived
from Patrinia scabiosaefolia or Patrinia villosa of the Valerianaceae
family, with its rhizomes, roots, and entire herba employed for
therapeutic purposes. Widely distributed across tropical and
subtropical regions, Herba Patriniae is rich in bioactive
compounds, such as triterpenes, saponins, iridoids, and
flavonoids; remarkably, Patrinia villosa contains more flavonoids
(Gong et al., 2021). These constituents contribute to its diverse
pharmacological properties, including antioxidant, anti-tumor, anti-
inflammatory, antimicrobial, and antiviral activities, making it a
promising candidate for drug development (Li et al., 2018; Huang
et al., 2019; Zou et al., 2021; Liu et al., 2023a; Li K. et al., 2024).

Recently, many studies have supported the efficacy of Herba
Patriniae in preventing and treating CRC, although the underlying
mechanisms of action remain unclear. The anticancer compounds of
this plant have shown significant interactions with target proteins
involved in the progression of CRC (Qi et al., 2020). Studies have
suggested that Herba Patriniae acts through several signaling
pathways to inhibit CRC, with its high flavonoid content playing
a pivotal role. These flavonoids suppress cell proliferation (ZhangM.
et al., 2015; Yang et al., 2023), induce apoptosis (Liu et al., 2013),
mediate cell cycle arrest (Zhang M. et al., 2015), suppress
angiogenesis in the tumor microenvironment (Chen et al., 2013),
and ameliorate drug resistance (Huang et al., 2019). Despite their
potent bioactivity, flavonoids, as polyphenolic compounds, generally
have poor oral bioavailability, with only minimal metabolites
detectable in urine and blood. Their interaction with gut
microbiota is a critical mechanism underlying their biological
activity (Liu et al., 2023b). Building on these findings, we
reviewed the findings of clinical and preclinical studies focused
on effective flavonoids in Herba Patriniae and unraveled their
molecular mechanisms in CRC. This review provides a

foundation for the development of anticancer small molecules
derived from Herba Patriniae and help identify their potential
therapeutic targets.

Flavonoids in Herba Patriniae

Flavonoids, a class of polyphenolic compounds, have a
chemical structure composed of 15 carbon atoms, including
two benzene rings (A ring and B ring) and an oxygen-
containing ring (C ring). The basic structure of flavonoids is
generally C15H10O2, although their molecular formula vary based
on their substituent groups. Structural diversity among
flavonoids arises from substitutions on the A, B, or C rings,
such as amino, methyl, hydroxyl, or glycosyl groups, resulting in
derivatives with distinct biological activities (Zhang et al., 2007;
Lotito et al., 2011). With a deeper understanding of the role of gut
microbiota, studies have shown that flavonoid metabolism in the
body relies not only on liver enzyme systems but also on gut
microbiota. Through processes such as hydrolysis, reduction, and
metabolic transformation, gut microbiota modifies the structure
of flavonoids, enhances their biological activity, and affects their
bioavailability and pharmacological properties (Kumar Singh
et al., 2019; Landete, 2022). Epidemiological studies have
indicated that higher flavonoid intake and serum levels are
associated with a lower risk of colorectal inflammation and
CRC (Chang et al., 2018). Based on an analysis of the TCM
pharmacology database, we identified 13 flavonoid compounds
from 52 active ingredients in Herba Patriniae that have been
widely studied for their anticancer properties (Table 1, https://
www.tcmsp-e.com/). A comprehensive understanding of the
pharmacological effects of these flavonoids on CRC is critical
for advancing therapeutic strategies.

FIGURE 4
Mechanisms of action of flavonoids from patriniae in the anticancer activity against colorectol cancer.
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TABLE 1 The main flavonoids of Herba Patriniae.

Mol ID Molecule name Molecular formula Pubchem CID OB(%) Caco-2 HL Structure

MOL001678 Bolusanthol B C20H20O6 10594416 39.94 0.29 15.05

MOL001685 Orotinin C25H26O6 21721831 1.01 0.64 —

MOL001790 Linarin C28H32O14 5317025 39.84 −1.68 16.07

MOL001689 Acacetin C16H12O5 5280442 34.97 0.67 17.25

MOL002322 Isovitexin C21H20O10 162350 31.29 −1.24 16.45

MOL001695 Quercimeritrin C21H20O12 5282160 2.85 −1.36 —

MOL001696 Morusin C25H24O6 5281671 11.52 0.51 —

MOL000415 Rutin C27H30O16 5280805 3.2 −1.93 —

MOL000422 Kaempferol C15H10O6 5280863 41.88 0.26 14.74

MOL000006 Luteolin C15H10O6 5280445 36.16 0.19 15.94

MOL000498 Isoorientin C21H20O11 114776 23.3 −1.35 —

MOL000008 Apigenin C15H10O5 5280443 23.06 0.43 —

MOL000098 Quercetin C15H10O7 5280343 46.43 0.05 14.40

TABLE 2 Clinical studies on CRC prevention and treatment with the flavonoids.

Study design Sample
size(N)

Cancer type Dosages/Drugs Major outcome Ref.

Prospective cohort
comparison

N = 87 CRC/adenoma
polypectomy

20 mg apigenin and 20 mg
epigallocathechin-gallat

The combined recurrence rate for
neoplasia was 7% (1 of 14) in the treated

patients and 47% (7 of 15) in the
controls

Hoensch et al.
(2008)

Randomized,
multicenter, nutritional

intervention trial

N = 872 Colorectal
adenoma

Dietary flavonols Higher flavonol intakes and a reduction
in serum IL-6 concentrations during
the trial were associated both with
decreased incidence of high-risk

adenoma recurrence

Bobe et al.
(2010)

Cohort study N = 38,408
(middle-aged and
elderly women)

All cancer risk Dietary flavonols (quercetin、
kaempferol 、myricetin、apigenin、

luteolin)

There was also no significant
association between intake of

flavonoid-rich foods and the incidence
of total and site-specific cancers

Wang et al.
(2009)

Randomized,
controlled, two part,

single institution study

N = 180 Colon cancer Oral rutin at 1 of 3 doses twice a day (arms
III, IV, and V), oral quercetin at 1 of

3 doses twice a day (arms V, VI, and VII),
or at 1 of 3 doses oral curcumin twice a

day (arms VIII, IX, and X)

— NCT00003365

Clinical research N = 5 Familial
adenomatous
polyposis

Curcumin 480 mg and quercetin 20 mg
orally 3 times a day

All 5 patients had a decreased polyp
number and size from baseline after a
mean of 6 months of treatment with

curcumin and quercetin

Cruz-Correa
et al. (2006)
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Preclinical studies on the anticancer
effects of Herba Patriniae and
flavonoids against CRC

Crypts are deep grooves formed by epithelial cells in the colon.
Abnormal crypt foci (ACF) appear when these crypts undergo
significant morphological changes, such as hyperplasia, irregular
shapes, or abnormal cell differentiation. ACF are one of the earliest
precancerous lesions in CRC. Early detection and effective
intervention can significantly reduce the risk of CRC.

Flavonoid compounds can effectively prevent ACF. For
example, the number of abnormal crypts in the colons of stressed
mice was significantly reduced after treatment with quercetin (Ritter
and Dinh, 1992; Matsukawa et al., 1997; Volate et al., 2005).
Interestingly, in an obesity-related carcinogenesis model,
quercetin significantly inhibited precancerous lesions and reduced
serum leptin levels. Furthermore, in vivo studies revealed that
quercetin markedly suppressed the expression of leptin mRNA in
differentiated 3T3-L1 mouse adipocytes. These findings suggest that
quercetin has the potential to inhibit colorectal cancer induced by
obesity (Miyamoto et al., 2010). In the mice model of AOM-induced
CRC, a 0.5% quercetin diet effectively inhibited intestinal lesions
(Tutino et al., 2018). Similarly, a diet containing 0.1% apigenin
reduced the number of high-magnitude ACF (defined as >
4 abnormal crypts per focus) by 57% (P < 0.05) (Au et al., 2006;
Leonardi et al., 2010). Luteolin (1.2 mg/kg/day) mitigated AOM-
induced intestinal oxidative damage by reducing lipid peroxidation,
enhancing antioxidant defenses, and suppressing the formation of
precancerous lesions (Ashokkumar and Sudhandiran, 2008). In the
APCMin/+ mouse model, apigenin dose-dependent inhibited tumor
growth by phosphorylating the p53 protein in tumor tissue, thereby
regulating tumorigenesis (Zhong et al., 2010). Treatment with
kaempferol reduced tumor burden, restored impaired intestinal
barriers, and downregulated the expression of Ki67 and LGR5 in
APCMin/+ mouse model (Li X. et al., 2022). However, rutin exhibited
no preventive effect in the AOM-induced mouse model, likely due to
its low intestinal bioavailability. Improving the solubility of rutin
using solid dispersion technology and formulating it into
frankincense-based compression-coated tablets enhanced its

efficacy in inhibiting the development of CRC in vivo (Ismail
et al., 2023).

Chronic inflammation is a significant risk factor for CRC, as it
promotes cancer cell proliferation, invasion, and metastasis by
modulating the tumor microenvironment, activating oncogenes,
immune evasion, and dysbiosis (Yaeger et al., 2016; Chen et al.,
2024). Apigenin has been shown to effectively inhibit inflammatory
bowel disease (IBD) and colitis-associated cancer (CAC) in mice (Ai
et al., 2017). Similarly, vitexin mitigated AOM/DSS-induced chronic
colitis-associated carcinogenesis in mice (Chen et al., 2021). Linarin
(25 or 50 mg/kg/day) significantly reduced myeloperoxidase activity
in the colon and downregulated pro-inflammatory cytokines, such
as TNF-α and IL-1β, while upregulating the anti-inflammatory
cytokine IL-10. This effect alleviated DSS-induced intestinal
damage and the function of the mucosal and intestinal barrier
(Jin et al., 2022). In a TNBS-induced experimental colitis model
in Wistar rats, morusin (12.5 mg/kg) showed comparable efficacy to
sulfasalazine (50 mg/kg) in suppressing inflammation (Vochyánová
et al., 2017).

In a CRC metastasis models, quercetin (Kee et al., 2016) and
luteolin (10 or 50 mg/kg) significantly reduced the number and
volume of lung metastases induced by CT26 cells (Kim H. Y. et al.,
2013). Moreover, luteolin (IC50 = 5.9 μM, indicating relatively low
anticancer activity) suppressed CT26-induced liver metastasis of
colon cancer by 24% (Naso et al., 2016).

Clinical studies on the anticancer
effects of flavonoids against CRC

A prospective cohort study involving 87 patients, consisting of
36 patients who underwent CRC surgery and 51 patients who
underwent adenoma polypectomy, investigated the preventive
effects of a flavonoid mixture (20 mg apigenin and 20 mg
epigallocatechin gallate) on tumor recurrence. After 3–4 years of
colonoscopy follow-up, the group receiving the flavonoid mixture
exhibited a tumor recurrence rate of 7% (1/14, 1 adenoma)
compared to a 47% recurrence rate (7/15, including 3 tumor
recurrence and 4 adenomas) in a matched untreated control

TABLE 3 Flavonoid nanostructures in the treatment of colorectal cancer.

Flavonoids Classification of
Materials

Cell Line Encapsulation
efficiency

Major Outcome

Quercetin Liposome HCT-116 p53+/+

cells
42% Loaded liposomes exhibit higher antitumor effects compared to free

quercetin

Quercetin Shellac nanocapsules HT-29、
HCT-116

80% 48% of encapsulated curcumin and quercetin were bioaccessible, with
increased cytotoxicity

Apigenin Whey protein isolate HT-29、HCT-
116、vivo

98.15% Enhancement of sub-G1 cell cycle arrest, possible induction of
apoptosis, and improved bioavailability of apigenin in mouse serum

and colonic mucosa

Apigenin Aptamer-conjugated
nanoparticle

HCT-116 17.5% ± 1.3% Enhanced therapeutic efficacy to colorectal cancer cells

Apigenin Gold nanoparticles CT26 — In the apoptosis triggered cell death in photothermal treatment

Apigenin Liposome HCT-15 and
HT-29 、vivo

89.98% ± 2.31% Stronger inhibition of angiogenesis, anti-proliferative, pro-apoptotic;
in vivo anti-tumorigenesis
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group of patients with CRC (n = 15). These findings suggest that
long-term treatment with flavonoids can reduce the recurrence rate
of colorectal tumors in patients undergoing surgery (Hoensch et al.,
2008). A 4-year nutritional intervention trial featuring a low-fat,
high-fiber, high-fruit, and high-vegetable diet found that the intake
of flavonoids, such as isoquercitrin, kaempferol, and quercetin, was
associated with decreased serum levels of IL-6 and a lower
recurrence rate of high-risk adenomas. This finding suggests a
potential correlation between flavonoid intake and a decreased
risk of adenoma recurrence (Bobe et al., 2010).

Patients with familial adenomatous polyposis (FAP) suffer from
a high risk of CRC. In a small clinical study, 6 months of combined
treatment with curcumin and quercetin after CRC surgery led to a
60% reduction in the number and size of polyps in the ileum and
rectum compared to baseline, indicating that the potential of this
combination therapy in reducing polyp burden in patient with FAP
(Cruz-Correa et al., 2006).

A Phase I clinical study on quercetin’s resistance and
pharmacokinetics revealed the safety of intravenous quercetin. At
a specific plasma concentration, it inhibited the activity of
lymphocyte tyrosine kinase, showing anti-tumor effects. In nine
patients with CRC, treatment with intravenous quercetin for 1 hour
suppressed the phosphorylation of serum lymphocyte protein
tyrosine for 16 h. Additionally, in a patient with cisplatin-
resistant ovarian cancer, treatment with quercetin (420 mg/m2)
reduced CA125 levels from 295 units/mL to 55 units/mL.
Similarly, another patient with liver cancer showed decreased
serum alpha-fetoprotein levels after treatment (Ferry et al., 1996).

However, a large retrospective clinical study with
38,408 participants assessed flavonoid intake using dietary
questionnaires and found no significant association between the
intake of five common flavonoids (quercetin, kaempferol, myricetin,
apigenin, and luteolin) or flavonoid-rich foods and CRC prevention
(Wang et al., 2009). This lack of correlation may be attributed to the
low flavonoid content in typical diets, antibiotic use, poor
dietary habits, etc.

Although Herba Patriniae is widely used in clinical practice and
its flavonoid compounds exhibit anti-CRC activity (Table 2), there is
currently no large-scale clinical research supporting their efficacy.
Andmost existing clinical studies used the combined administration
of two or more flavonoid compounds. Systematic clinical
evaluations of flavonoid interventions targeting for CRC
pathological diversity and mutational heterogeneity are notably
absent in current literature. Future research should also focus on
the effective dosage and safety of individual flavonoid compounds
from Herba Patriniae.

Mechanisms of action of flavonoids in
their anticancer activity against CRC

The majority of colorectal cancer cases follow the classical
adenoma-carcinoma sequence: normal colonic epithelium
-adenomatous polyp–adenocarcinoma (Li et al., 2021). This
carcinogenic progression begins with a mutation in the APC
gene, followed by further mutations in KRAS, TP53, DCC and
other critical genes (Schumacher et al., 2015). CRC pathogenesis
involves the dysregulation of multiple pivotal signaling pathways:

The Wnt/β-catenin pathway promotes tumor cell proliferation and
differentiation, the PI3K/AKT pathway enhances cancer cell growth,
survival, and metabolic adaptation, and the RAS/RAF/MEK/ERK
cascade drives cell cycle progression and aberrant proliferation. In
contrast, the transforming growth factor-β (TGF-β) pathway
exhibits tumor-suppressive effects in the early stages, but
promotes tumor invasion and metastasis through epithelial-
mesenchymal transition (EMT) in the advanced stages of the
disease. Current evidence demonstrates that flavonoids can
effectively suppress CRC progression through multi-target
mechanisms and the coordinated modulation of these oncogenic
pathways (Li Q. et al., 2024).

Inhibition of inflammation-
associated tumors

Due to severe oxidative stress, reactive oxygen species (ROS) are
released in chronic and sustained inflammation. Elevated levels of
ROS can lead to DNA damage, thereby promoting the development
of CRC. Interestingly, high levels of ROS in tumor cells present a
potential therapeutic target (Lyons et al., 2023). The colon cancer
inducer DMH has been shown to elevate ROS levels in the mouse
models of CRC. Quercetin, administered at doses of 25 or 50 mg/kg
can restore antioxidant response and mitigate membrane damage
(Wang et al., 2009). The cytotoxic effects of quercetin on CRC cells
are mediated through ROS-induced apoptosis and inhibition of cell
survival pathways (Raja et al., 2017). Additionally, quercetin reverses
DMH-induced oxidative stress and DNA damage by targeting the
NRF2/Keap1signalling pathway. Compared to healthy individuals,
patients with CRC exhibit more severe DNA damage in their
lymphocytes (Figure 1) (Darband et al., 2020). In vitro studies
have shown that quercetin (500 μM) reduces oxidative stress in
lymphocytes of patients with CRC. Similarly, luteolin has been
reported to suppress azoxymethane-induced CRC by activating
the NRF2 signaling pathway (Pandurangan et al., 2014a).
Elevated mitochondrial superoxide levels suggest that
mitochondrial oxidative damage arises from an imbalance
between anti-apoptotic and pro-apoptotic proteins, leading to
dose-dependent cellular injury. Prolonged treatment with
apigenin at growth-inhibitory doses was shown to induces
persistent oxidative stress, ultimately triggering cellular
senescence, a natural tumor suppression mechanism. In CRC cell
lines HT-29 and HCT-15, apigenin has been shown to induce
sustained oxidative stress at growth-inhibitory doses, leading to
cellular senescence (Banerjee and Mandal, 2015).

During inflammation, immune cells are recruited to the
intestines, where they release ROS and pro-inflammatory
cytokines, such as TNF-α, IL-1, and IL-6. These factors can alter
the intestinal microenvironment, promoting the growth and
metastasis of CRC cells. Quercetin has been shown to inhibit the
production of TNF-α and IL-6 (Han et al., 2016). Isoorientin, on the
other hand, suppresses DSS-induced production of TNF-α, IL-β,
and TNF-α induced activation of NF-κB by upregulating AHR,
thereby protecting the integrity of the intestinal barrier (Mu
et al., 2023).

Pro-inflammatory cytokines secreted by inflammatory cells can
also activate the expression of various oncogenes and inhibit tumor
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suppressor genes. In the AOM/DSS-induced inflammation-
associated tumor mouse model, quercetin inhibited the
expression of COX-1, COX-2, and iNOS (Warren et al., 2009).
Additionally, quercetin (IC50 = 10.5 μmol) effectively
downregulated the transcription of COX-2 in human CRC DLD-
1 cells (Mutoh et al., 2000).

Inflammation not only induces mutations through DNA
damage but can also affect cancer-related genes via epigenetic
modification, thereby silencing key tumor suppressor genes.
Luteolin was shown to reduce methylation levels in the promoter
region of Nrf2 and decreased protein levels and enzyme activities of
DNMTs and HDACs in HCT116 cells. This finding suggests that
luteolin may exert antitumor effects partly by epigenetically
modulating the Nrf2 gene, thereby activating downstream
antioxidant stress pathways via the Nrf2/ARE signaling pathway
(Zuo et al., 2018). Following a thorough database screening, six key
genes targeted by rutin in CRC were identified, including TP53,
PCNA, CDK2, LDHA, CDKN1A and CCNB1. Molecular docking
studies revealed that rutin exhibited a strong binding affinity for
these targets. Following 48 h of rutin treatment in HT29 cells, the
mRNA expression levels of the CRC target genes PCNA, CDK2,
LDHA and CCNB1 decreased significantly. Conversely, TP53 and
CDKN1A expression levels increased. Taken together, these results
suggest that rutin treatment exerts regulatory effects in HT-29 cells
and is involved in the ROS pathway (Gatasheh, 2024).

Inhibition of CRC cell lines proliferation

PI3K/Akt/mTOR signaling
The PI3K/Akt pathway is a critical signaling pathway in CRC

development, which promotes cell survival and growth and cell cycle
progression. Due to its estrogen-like structure, quercetin can bind to
CB1-R, which is an estrogen-responsive receptor. This binding
inhibits the PI3K/AKT/mTOR pathway in human colorectal
adenocarcinoma cells (Caco2 and DLD-1) and activates the pro-
apoptotic JNK/JUN pathway (Zuo et al., 2018). Quercetin also
directly interacts with PI3K, reducing the expression of p-PI3K
and p-AKT proteins and upregulating Bax and caspase-3 proteins.
Consistently, quercetin inhibited cell proliferation and promoted the
apoptosis of SW480 cells (Na et al., 2022). Additionally, quercetin
downregulates the ErbB2/ErbB3 signaling pathway and the Akt
pathway and lowered Bcl-2 levels, which suppressed the growth
of HT29 and SW480 cells and induced their apoptosis (Kim et al.,
2005). Luteolin exerts cytotoxic effects by inhibiting Akt activation
and SphK2, thereby reducing S1P, an activator of Akt (Figure 2)
(Kim et al., 2005).

Wnt/β-catenin signaling
In CRC, mutations in the APC gene or excessive activation of β-

catenin can lead to its accumulation and nuclear translocation,
which promotes the transcriptional activation of oncogenes, such
as c-Myc and Cyclin D1, thereby accelerating cell proliferation. The
interaction between β-catenin and TCF4 acts as a “molecular
switch” in the Wnt signaling pathway. Treatment of SW480 cells
with quercetin (160 μmol/L) for 24 h reduced the transcriptional
activity of β-catenin/TCF by 18-fold, dose-dependently
downregulated the transcription and protein expression of Cyclin

D1 and survivin, inhibiting cell proliferation (Shan et al., 2009).
Similarly, morusin inhibits Akt, which leads to an increased
expression and activation of Gsk-3β. The activated Gsk-3β
subsequently reduces the expression of β-catenin, resulting in a
decrease in TCF4 expression. Consequently, morusin suppresses key
downstream targets of the Wnt/β-catenin pathway (c-Myc and
survivin) in a concentration-dependent manner (Zhou et al.,
2021). Apigenin-induced dysfunction of APC is a key mechanism
responsible for inducing cell cycle arrest in HT29-APC cells.
Additionally, apigenin enhances APC expression and promotes
apoptosis in wild-type APC cells (Figure 2) (Chung et al., 2007).

EGFR/ERK/MAPK signaling
The activation of EGFR triggers the Ras/Raf/MEK/ERK

signaling cascade, which promotes cell proliferation, migration,
and invasion. Luteolin was found to mediate the MAPK signaling
pathway, thereby inhibit the proliferation of CRC cells (HCT116,
HT29), and inducing cell cycle arrest, DNA damage, and apoptosis
(Chung et al., 2007). A combination of apigenin (25 μmol) and
chrysin (25 μmol) synergistically inhibited CRC cells growth and
metastasis by suppressing the P38-MAPK/AKT pathway (Zhang
et al., 2021). Quercetin inhibited the ERK/MAPK pathway and
targets LKB1 to activate AMPK, thereby enhancing autophagy in
radioresistant human CRC cells (HT500) (Russo et al., 2023).
Quercetin also enhanced the expression of Sestrin 2 and p53, and
activated AMPK/p38, AMPK-mTOR, and AMPK/COX-2 pathways
(Lee et al., 2009; Kim et al., 2010; Kim G. T. et al., 2013; Kim
et al., 2014).

Tumor cell growth is closely associated with cell cycle
progression. Luteolin exhibited potent anti-proliferative
properties in human CRC cells by promoting apoptosis,
increasing the number of cells in the G1 phase, and reducing the
number of cell in the S phase, while enhancing the proliferation of
HF cells (Gennari et al., 2011). Furthermore, luteolin shifted
oxaliplatin-induced G0/G1 arrest in HCT116 cells to apoptosis
(Jang et al., 2019). Phytoestrogens mimic the effects of estradiol
and induce apoptosis by interacting with ERα and ERβ. Quercetin
modulates hormone receptor ESR2 and GPR30 related signaling
pathways, arresting HT-29 cells in the G0/G1 phase, while
fermented quercetin (FEQ) extract induces S phase arrest
(García-Gutiérrez et al., 2023). The combination of ERβ ligands
and tamoxifen (TMX) was found to induce tumor stasis in CRC cells
(García-Gutiérrez et al., 2023). Moreover, apigenin reduces ER-
mediated YAMC cell growth (Yang et al., 2015).

Induction of apoptosis in CRC cells

Intrinsic Pathway
The intrinsic pathway activates cell death through the release of

apoptosis-related factors from themitochondria. Quercetin has been
shown to activate p38 in DLD-1 cells, promoting caspase-3
activation, PARP cleavage, and cell death (Bulzomi et al., 2012).
Additionally, quercetin mediates apoptosis in HT-29 cells by
modulating Akt phosphorylation and promoting the degradation
of CSN6 protein, which affects the expression levels of Myc, p53,
Bcl-2, and Bax. This suggests that quercetin-induced apoptosis in
HT-29 cells may involve the Akt-CSN6-Myc signaling axis (Yang
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et al., 2016). Apigenin induces apoptosis in CRC cells by
simultaneously inhibiting Bcl-1and Mcl-1 via the
STAT3 signaling pathway (Maeda et al., 2018).

Extrinsic Pathway
In the extrinsic pathway, FADD activates caspase-8, finally

initiating apoptosis by activating caspase-3. Apigenin enhances
the expression and phosphorylation of FADD, potentially leading
to CRC cell apoptosis and inhibiting tumor growth (Wang et al.,
2011). Tumor necrosis factor ligand superfamily member 10
(TRAIL) triggers apoptotic signaling by binding to its receptors
DR4 (TRAIL-R1) and DR5 (TRAIL-R2). Quercetin facilitates the
redistribution of DR4 and DR5 on the cell surface, enhancing
TRAIL-induced caspase cascade (Psahoulia et al., 2007) and the
NF-κB pathway to induce apoptosis (Zhang X. A. et al., 2015). A
novel dual-targeting oncolytic adenovirus, combining complement
CD55-TRAIL, synergistically suppresses tumor growth and induces
CRC cell apoptosis both in vitro and in vivo (Xiao et al., 2017).
Apigenin disrupts TRAIL resistance in HTLV-1-associated ATL by
transcriptionally downregulating c-FLIP (a key inhibitor of death
receptor signaling) and upregulating TRAIL-R2 (Ding et al., 2012).

JNK and p38 MAPK Pathways
KRAS-mutant cells are more sensitive to quercetin-induced

apoptosis compared to wild-type cells (Xavier et al., 2009).
Quercetin selectively activates the c-Jun N-terminal kinase (JNK)
pathway in KRAS-mutant cells (Yang et al., 2019). By inhibiting NF-
κB, luteolin was shown to enhance TNF-α-induced activation of
JNK (Shi et al., 2004).

P53 Pathway, miRNA Regulation, and Others
Isovitexin induces apoptosis and cell cycle arrest via activating

p53, thereby protecting against CRC (Li et al., 2023). Apigenin (Lee
et al., 2014) and kaempferol (Choi et al., 2018) were shown to induce
PARP cleavage and decrease the levels of caspases −8, −9, and −3,
finally promoting apoptosis in CRC cells, however, the pro-
apoptotic effects of kaempferol were reversed by ROS and
p53 signaling.

miRNA-215-5p acts as a tumor suppressor, directly binding to
and degrading the mRNA of E2F1 and E2F3, and inhibiting their
protein synthesis. E2F1 and E2F3 play key roles in the G1/S phase of
the cell cycle. Apigenin was found to downregulates their expression,
resulting in cell cycle arrest and reduced cancer cell proliferation of
CRC cells (Cheng et al., 2021). Kaempferol inhibits the nonoxidative
pentose phosphate pathway (PPP), reducing ribose-5-phosphate
(R5P) production and causing DNA damage. Mechanistically,
kaempferol upregulates microRNA-195/497 (miR-195/497),
which directly binds to the 3′-UTR of PFKFB4 mRNA to
suppress PFKFB4 expression. This downregulation inhibits key
nonoxidative PPP enzymes transketolase (TKT) and transaldolase
(TALDO) (Wu et al., 2025). Apigenin also induces G2/M phase
arrest in SW480 and Caco-2 cells (Wang et al., 2004).
Concentration-dependent inhibition of HCT116 cell growth by
apigenin leads to G2/M arrest, suppression of cyclin B1 and its
activation partners cDC2 and CDC25C, and increased expression of
the cell cycle inhibitors p53 and p53-dependent p21 (CIP1/WAF1).

Acacetin induces apoptosis in a caspase-independent manner by
triggering mitochondrial ROS-mediated cell death through

apoptosis-inducing factor in SW480 and HCT-116 CRC cells
(Prasad et al., 2020). Luteolin regulates apoptosis signaling in BE
CRC cells by downregulating the expression of calpain, UHRF1, and
DNMT1 (Krifa et al., 2014). PKM2 is a key enzyme involved in the
metabolic reprogramming of cancer cells, and studies have indicated
that apigenin can target the K433 site of PKM2, inhibit glycolysis
and suppress the proliferation of CRC cells and tumor progression
both in vitro and in vivo (Shi et al., 2023).

Inhibition of CRC cell invasion and
metastasis

Approximately 90% of cancer-related deaths are attributed to
distant metastasis. CRC is known for its high metastatic potential,
making the inhibition of metastasis crucial for effective treatment.
The mechanisms underlying metastasis are complex, with epithelial-
mesenchymal transition (EMT) being a key process. Tumor cells
need to undergo EMT and lose their epithelial characteristics to
acquire invasive and migratory capabilities. Downregulation of
E-cadherin and upregulation of N-cadherin are two
hallmarks of EMT.

Quercetin has been identified as a promising therapeutic agent
for the treatment of refractory cancers and preventing EMT-
mediated metastasis. It modulates EMT markers such as
E-cadherin, N-cadherin, β-catenin, and Snail, thereby inhibiting
the migration and invasion of Caco-2 and CT26 cells (Han et al.,
2016; Kee et al., 2016). TGF-β is a well-known inducer of EMT, and
quercetin has been shown to reverse TGF-β1-induced
morphological changes and EMT-like phenotypes in SW480 cells
by inhibiting the expression of Twist1 (Feng J. et al., 2018). Similarly,
luteolin suppresses EMT in CRC cells at the transcriptional level by
downregulating CREB1 expression (Liu et al., 2017). Isovitexin
reduces the levels of p-PI3K, p-Akt, p-mTOR, and Bcl-2 in
tumor tissues, thereby inhibiting the migration, invasion, and
EMT of cancer cells (Zhu et al., 2021). Additionally, isoorientin
inhibits EMT and reversed cancer stem cell-like traits in oral
squamous carcinoma by blocking the Wnt/β-catenin/STAT3 axis
(Liu et al., 2021).

Apigenin also exhibited strong anti-EMT properties by
inhibiting the Wnt/β-catenin (Xu et al., 2016) and NF-κB/Snail
signaling pathways in human CRC cells (Tong et al., 2019). It
hindered the migration, invasion, and metastasis of CRC cells
through the NEDD9/Src/Akt cascade (Dai et al., 2016). Notably,
apigenin upregulates cell surface protein CD26 and enhanced
DPPIV activity in HT-29 and HRT-18 human CRC cells, further
inhibiting tumor metastasis. The combination of apigenin with
chemotherapeutic agents, such as irinotecan, 5-fluorouracil, and
oxaliplatin, enhanced the CD26 for advanced CRC (Lefort and Blay,
2011). Pu et al. found that circ_0000345 promotes CRC metastasis
by activating the JMJD2C/β-catenin pathway through miR-205-5p
(Pu et al., 2024). In addition, they observed that kaempferol
suppresses the expression of circ_0000345, effectively blocking
JMJD2C/β-catenin signaling and inhibiting the lung
metastasis of CRC.

MMPs are critical effectors in the EMT process. Quercetin and
luteolin downregulate the expression of metastasis-related proteins
MMP-2 andMMP-9 (KimH. Y. et al., 2013; Han et al., 2016), as well

Frontiers in Pharmacology frontiersin.org09

Zhang et al. 10.3389/fphar.2025.1633286

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1633286


as tissue inhibitors of metalloproteinases (TIMPs) (Pandurangan
et al., 2014b; Kee et al., 2016). Apigenin upregulates TAGLN, which
in turn downregulates MMP-9 expression and prevents cell
proliferation and migration by reducing Akt phosphorylation at
Ser473 and particularly at Thr308 (Chunhua et al., 2013).

Enhancing cell sensitivity to drugs
or radiation

Recently, natural compounds in cancer treatment has gained
increasing attention in clinical practice. Studies have shown that
flavonoids found in Patrinia scabiosaefolia, such as quercetin,
luteolin, apigenin, and isoorientin, can enhance the cytotoxic
effects of various chemotherapeutic agents on tumor cells, which
may provide more options for CRC (Özerkan, 2023).

Cisplatin (CP) and oxaliplatin are the most commonly used
platinum-based chemotherapeutics agents for treating CRC.
However, their application is limited by their toxic effects on
normal tissues and drug resistance. Quercetin, when combined
with CP, has been shown to reduce ACF while enhancing the
efficacy of CP and mitigating its nephrotoxicity (Li et al., 2016).
Apigenin inhibits tumorigenesis in cisplatin-resistant CRC cells
both in vitro and in vivo by inducing autophagy, and
programmed cell death and targeting the mTOR/PI3K/Akt
signaling pathway (Chen et al., 2019). Additionally, isoorientin
activates the SIRT1/SIRT6/Nrf2 pathway to reduce oxidative
stress and apoptosis, thereby alleviating cisplatin-induced
nephrotoxicity (Fan et al., 2020). Kaempferol has been shown to
inhibit AP-1 transactivation, thereby enhancing the inhibitory effect
of oxaliplatin on HCT116 and HT29 cells (Park et al., 2021).

P-glycoprotein (P-gp)-mediated multidrug resistance (MDR)
presents a significant challenge to successful chemotherapy.
Studies have indicated that quercetin enhances the
antiproliferative effects of doxorubicin on P-gp-overexpressing
SW620/Ad300 cells by inhibiting ATP-driven transport activity,
which increases the intracellular accumulation of doxorubicin. The
study also suggests that quercetin may reverse MDR by disrupting
D-glutamine and D-glutamate metabolism (Zhou et al., 2020).
Moreover, isoorientin reduces doxorubicin-induced cardiotoxicity
by activating MAPK, Akt, and caspase-dependent pathways (Li S.
et al., 2022).

OCTN2, a member of the solute carrier superfamily and a key
determinant for oxaliplatin uptake. Luteolin enhanced oxaliplatin
absorption and intracellular accumulation through the PPARγ/
OCTN2 pathway, thereby sensitizing SW480 cells to oxaliplatin
(Qu et al., 2014). By inhibiting AMPK, luteolin synergistically
improves the antitumor efficacy of oxaliplatin in CRC (Jang
et al., 2022), and sensitized oxaliplatin-resistant CRC cells to
chemotherapy by suppressing the Nrf2 pathway (Chian et al.,
2014). Combined treatment with quercetin and oxaliplatin
synergistically inhibited glutathione reductase activity, increasing
ROS production, and induced glutathione depletion, thereby
enhancing oxaliplatin sensitivity in CRC cells (Lee et al., 2023).

5-Fluorouracil (5-FU) is a commonly administered
chemotherapeutic agent for treating CRC, but its efficacy is often
limited by acquired resistance in advanced stages. Thymidylate
synthase (TS), the target protein of 5-FU, is upregulated in CRC

and contributes to 5-FU resistance. Apigenin has been shown to
enhance the inhibitory effect of 5-FU on cell viability, induce
apoptosis in HCT116 cells, and promote cell cycle arrest, likely
by inhibiting TS expression (Yang et al., 2021). Likewise, kaempferol
synergistically enhanced the effects of 5-FU by suppressing TS
expression and inhibiting p-Akt (Li et al., 2019). Additionally,
studies have shown that miR-27a can promotes the proliferation
of CRC cells through the Wnt/β-catenin pathway. A combination of
quercetin and 5-FU exhibitsed stronger cytotoxicity than 5-FU
alone. Besides, quercetin enhanced 5-FU sensitivity in CRC by
inhibiting the miR-27a/Wnt/β-catenin signaling axis (Terana
et al., 2022). Furthermore, quercetin downregulates 5-FU-induced
TS levels, upregulates p53 expression, induced ROS production and
Ca2+ dysregulation through non-5-FU-dependent pathways in CRC
cells. Moreover, quercetin enhanced sensitivity to 5-FU in mice with
colitis-associated CRC (Yang et al., 2022). Kaempferol reduced
glucose uptake and lactate production in drug-resistant CRC
cells, and increased the expression of microRNA-326 (miR-326),
which targets PKM2 and inhibits glycolysis, thereby reversing 5-FU
resistance (Wu et al., 2022).

Luteolin has also been shown to reverse inflammation and
oxidative imbalance induced by irinotecan via PPARγ-dependent
downregulation of IL-1β and iNOS (Boeing et al., 2022). Treatment
with quercetin enhanced the expression of NKG2D ligands on
cancer cells, making them more susceptible to NK cell-mediated
cytotoxicity (Bae et al., 2012). Furthermore, the combination of
quercetin and ionizing radiation (IR) targeted colon cancer stem
cells and inhibits Notch-1 signaling (Li et al., 2020). Both apigenin
and luteolin exhibited efficacy in targeting the PI3K/Akt/mTOR
axis, making them as promising non-toxic alternatives to synthetic
chemical drugs used for the treatment of CRC (Sain et al., 2022).

Interaction of flavonoids with gut
microbiota

Gut microbiota plays a crucial role in the progression of CRC,
and targeting gut microbiota is an important pharmacological
strategy for treating CRC (Jia et al., 2024). Flavonoids are not
easily absorbed by the human body after oral intake. Most
flavonoids are metabolized by gut microbiota into smaller, more
absorbable active metabolites, thus enhancing their bioactivity.

Gut microbiota can transform flavonoids by altering their
chemical structure and biological functions, thereby enhancing
their anticancer potential (Figure 3). Specific bacterial strains,
such as Bifidobacterium and Lactobacillus, play essential roles in
this metabolic process. Flavonoids mainly exist as glycosides, with
only 5%–10% being directly absorbed, resulting in low
bioavailability. The majority of flavonoids are metabolized by gut
microbiota into smaller molecules, such as phenolic acids, which
increases the abundance of beneficial bacteria and stimulates the
production of short-chain fatty acids (SCFAs) (Gonzales et al., 2015;
Feng X. et al., 2018). C-glycoside flavonoids are highly metabolized
in the gut. For example, enzymes expressed by Caco-2 cells can
cleave C-C bonds in vitro, breaking the bonds between sugar and
aglycone residues in orientin and isoorientin to produce
glucuronidated or sulfated derivatives of luteolin and apigenin
(Dihal et al., 2006; Tremmel et al., 2021). Studies have shown
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that Bacillus glycinifermentans, Flavonifractor plautii, Bacteroides
eggerthii,Olsenella scatoligenes, and Eubacterium eligens can degrade
quercetin. B. glycinifermentans produces metabolites like 2,4,6-
THBA and 3,4-DHBA, which inhibit the proliferation of CRC
cells (Sankaranarayanan et al., 2021). 3,4-Dihydroxyphenylacetic
acid, a microbial metabolite derived from quercetin, was shown to
strongly inhibit the CRC-promoting properties of heme chloride
than quercetin itself and prevent heme-induced malignant
transformation of colonic epithelial cells and mitochondrial
dysfunction (Catalán et al., 2020). The metabolism of flavonoids
is a complex process involving various gut microbiota, which can
sustain or even enhance their anticancer effects (Zhang et al., 2014;
Cattivelli et al., 2023).

On the other hand, flavonoids can regulate the composition of
gut microbiota by promoting the growth of beneficial bacteria and
inhibiting the proliferation of pathogenic and pro-inflammatory
bacteria. In a mouse model of cancer, luteolin has been shown to
significantly reduce the abundance of disease-associated or
inflammation-associated genera, such as Clostridium UCG-014
and Turicibacter, while increasing the abundance of
Muribaculaceae, a health-promoting genus. This finding supports
its antitumor effect through microbiota modulation (Pérez-Valero
et al., 2024). Similarly, apigenin can mitigate gut dysbiosis by
increasing the abundance of beneficial bacteria, such as
Lachnospiraceae, Muribaculaceae, and Bifidobacterium (Rithidech
et al., 2024), and affecting the growth and gene expression of
Enterococcus (Wang et al., 2017). Interestingly, the anticancer
effects of apigenin relied on gut microbiota (Bian et al., 2020).
Isoorientin has significant advantages in preventing colon damage
and gut dysbiosis induced by benzo [a]pyrene (BaP). Isoorientin was
found to changes the abundance of gut microbiota, especially
Feacalibaculum, Lactobacillus, Acetobacter, Desulfovibrio, and
Alistipes, after exposure to BaP. Isoorientin also improves
metabolic disorders of gut microbiota after exposure to BaP.
Particularly, it improved perturbations in pathways involving LPS
and sulfur compounds (He et al., 2019). Linarin reversed DSS-
induced gut microbiota dysbiosis, affecting the abundance of
different genera, such as Alistipes, Rikenella, and Clostridia UCG-
014_norank. It also increased the abundance of SCFA-producing
bacteria, like Lactobacillus, Roseburia, Parabacteroides, and Blautia
(Jin et al., 2022).

Dysbiosis of gut microbiota can affect the production of
metabolites, such as bile acids (BAs), LPS, choline, and SCFAs.
Quercetin canmodulate the composition of gut microbiota, improve
the integrity of the intestinal barrier (Mohammadhasani et al., 2024),
and reduce serum levels of hippuric acid (HA), a polyphenol-derived
metabolite, observed in patients with Crohn’s disease. HA levels in
the gut were found to be positively correlated with polyphenol
intake, the abundance of flavonoid-degrading bacteria, and SCFA
production (Xiang et al., 2024). Kaempferol can increase the
expression of enzymes such as sterol CYP27A1 and sterol
CYP8B1, thereby increasing the decreased levels of CDCA and
12α-hydroxylated bile acids and upregulating FXR expression.
This finding suggests that kaempferol can downregulate
secondary bile acid synthesis pathways, increase G-protein-
coupled receptor activity, and decrease NLRs activity, thereby
influencing cell differentiation, proliferation, survival, and
apoptosis (Li X. et al., 2022). However, further exploration is

needed to fully explore the mechanisms through which
flavonoids interact with gut microbiota and their metabolites.

Through their bidirectional interaction with gut microbiota,
flavonoids promote gut health and inhibit the development of
CRC. They are transformed into more active metabolites and
modulate the composition of gut microbiota, resulting in anti-
inflammatory, antioxidant, and immunomodulatory anticancer
effects in cancer. This interaction provides new insights and
research directions for the prevention and treatment of CRC.

Construction and application of drug
delivery systems

Flavonoids have shown significant potential in the prevention
and treatment of CRC. However, their poor water solubility limits
both their bioavailability and therapeutic efficacy. Additionally, the
metabolism of flavonoids can further reduce their bioavailability and
diminish their therapeutic potential. Nanomaterials offer unique
advantages in targeted drug delivery. They can protect drugs against
degradation, enhance drug solubility, reduce toxicity, and enhance
pharmacodynamics and pharmacokinetics. The application of
nano-engineered flavonoids not only improves the antitumor
effects of chemotherapy drugs but also reduces their systemic
toxicity (Table 3).

Quercetin, for example, exhibits low solubility in neutral and
hydrophilic fluids. Encapsulation with soybean polysaccharide and
chitosan has been shown to enhance the stability and solubility of
quercetin-loaded flavonoids. Multiple independent studies have
confirmed that quercetin-nanocarriers can improve their
pharmacokinetics and absorption, thereby enhancing their
anticancer efficacy against CRC. For instance, encapsulating
quercetin in nanocapsules potentiated its antioxidant and
cytotoxic activity in HT-29 and HCT116 cells (Jain et al., 2023).
Additionally, the co-administration of quercetin with
nanosynthesized drugs revealed improved antitumor efficacy
(Colpan and Erdemir, 2021).

Flavonoids also exhibit antioxidant properties by chelating
transition metals involved in free radical generation. Metal-
flavonoid complexes act as more potent free radical scavengers
than isolated flavonoids. For example, a quercetin-ruthenium
complex reduced HT29 cell proliferation and induce tumor cell
apoptosis by upregulating p53 and Bax and downregulating
Bcl2 expression. The radical scavenging ability and antimicrobial
activity of isoorientin-Zn were significantly stronger than those of
isoorientin alone (Wang et al., 2021). Furthermore, the use of
microencapsulated Bifidobacterium bifidum and Lactobacillus
gasseri, either alone or in combination with quercetin, inhibited
of CRC progression in ApcMin/+ mice (Benito et al., 2021).

Apigenin nanoformulations have been applied for targeted
tumor cell treatment. Nano-encapsulation of apigenin enhanced
cellular uptake, pro-apoptotic effects, and bioavailability in mouse
blood and colonic mucosa (Dutta et al., 2018; Amini et al., 2021;
Hong et al., 2022). Liposomal nanocarriers of apigenin exhibited
anti-angiogenic properties, reduced cell proliferation, and increased
cell apoptosis. Preclinical trials using these formulations in nude
mouse xenograft models revealed enhanced antitumor effects (Sen
et al., 2019). Luteolin has low oral bioavailability due to its poor
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water solubility, which maks its intravenous or intraperitoneal
administration impossible. Nanoformulations help overcome
these challenges, improving the anticancer efficacy of luteolin.

Current challenges and
future prospects

The flavonoids found in Herba Patriniae possess extensive anti-
tumor properties, and their therapeutic effects in CRC have gained
significant attention. These flavonoids show great promise for the
development of new therapeutic agents.

Regarding pharmacological mechanisms, current studies
suggest that flavonoids exert anti-tumor effects through various
pathways (Figure 4). For instance, it was shown that flavonoids can
reduce ACF, regulate cell cycle, inhibit the growth and proliferation
of CRC cells, promote apoptosis, and suppress EMT, reversing CRC
resistance, and modulate the composition of gut microbiota. A
growing number of studies have focused on the crucial role of
the tumor microenvironment (TME) in cancer progression. Recent
findings unveiled that flavonoids fromHerba Patriniae can affect the
TME, including macrophage phenotypes. However, most studies
have primarily observed the effects of flavonoids on stromal cells,
and a deeper understanding of their mechanisms of action is
still needed.

Well-designed randomized controlled trials are needed to
confirm the safety and efficacy of flavonoid-based therapies.
Although Herba Patriniae is widely consumed in tropical and
subtropical regions, few clinical trials have administered Herba
Patriniae and its flavonoids to patients with CRC. Such studies
should evaluate the safety and tolerability of Herba Patriniae, and
determine the maximum tolerated dose (MTD) and dose-limiting
toxicity (DLT). High-quality Phase II–III clinical studies can provide
higher-level evidence regarding efficacy. In addition, large-scale
longitudinal interventional studies are important for
understanding the metabolic variability of flavonoids for
developing personalized therapeutic strategies based on gut
microbiota.

Low bioavailability is also a major obstacle limiting the clinical
application of flavonoids in Herba Patriniae. However, the
development of novel nanoformulations holds promise for
improving drug delivery, targeting specific tissues, and enhancing
the bioavailability of these compounds. Modifying flavonoids based
on their mechanisms of action can also advance the therapeutic use
of natural plant compounds in the treatment of CRC.

Although some progress has been made in understanding the
interaction between gut microbiota and flavonoid metabolites, there
are many unknown aspects. The ability of gut microbes to
metabolize flavonoid and the specific metabolites involved in the
pathogenesis of CRC are still poorly understood, with limited data
from clinical samples. More evidence from sterile mouse models and
clinical studies is needed to address these gaps and explore the
specific mechanism.
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Glossary
ACF Abnormal crypt foci

AHR Aryl hydrocarbon receptor

AKT protein kinase B or PKB

AOM Azoxymethane

APC Adenomatous Polyposis Coli gene

AP-1 Activator protein-1

ARE AU-rich element

ATL Adult T-cell leukemia/lymphoma

Bax Bcl-2-associated X protein

Bcl-2 B-cell lymphoma 2

CAC Colitis-associated cancer

CA125 Cancer antigen 125

CB1-R Cannabinoid receptor 1

CDCA Chenodeoxycholic acid

cDC2 Type 2 conventional dendritic cell

CDC25C Cell division cycle 25C

CDK6 Cyclin-dependent kinase 6

CD55 Decay-accelerating factor,DAF

c-FLIP Cellular FLICE (FADD-like IL-1β-converting enzyme)-
inhibitory protein

COX-1 Cyclooxygenase-1

COX-2 Cyclooxygenase-2

CP Cisplatin

CRC CRC

CREB1 cyclic-AMP response binding protein 1

CSCs Cancer stem cells

CSN6 Constitutive photomorphogenesis 9 signalosome subunit 6

c-Myc Myc proto-oncogene protein

CCND1 Cyclin D1

CYP8B1 Sterol 12-alpha-hydroxylase

CYP27A1 Cytochrome P450 Family 27 Subfamily A Member 1

DPPIV Dipeptidyl peptidase IV

TRAIL-
R1

TNF-related apoptosis-inducing ligand receptor 1,DR4

TRAIL-
R2

TNF-related apoptosis-inducing ligand receptor 2,DR5

DSS Dextran sulfate sodium

DMH 1,2-dimethylhydrazine

DNA DeoxyriboNucleic Acid

DNMTs DNA methyltransferases

DNMT1 DNA methyltransferase1

EGFR Epidermal Growth Factor Receptor

EMT Epithelial-mesenchymal transition

ERα Estrogen receptor α

ERβ Estrogen receptor β,ESR2

ErbB2 Human epidermal growth factor receptor 2

ErbB3 Human epidermal growth factor receptor 3

ERK Extracellular regulated protein kinases

E2F1 E2F Transcription Factor 1

E2F3 E2F Transcription Factor 3

FADD Fas-associated protein with death domain

FAP Familial adenomatous polyposis

FEQ Fermented quercetin

FXR Farnesoid X Receptor

GPR30 G protein-couple receptor 30,GPER

HDACs Histone deacetylases

HTLV-1 Human T-lymphotropic virus 1

IBD Inflammatory bowel disease

IL-1β Interleukin-1 beta

IL-6 Interleukin-6

IL-10 Interleukin-10

iNOS Inducible nitric oxide synthase

JMJD2C Jumonji domain 2c

JNK c-Jun N-terminal kinase

JUN Jun proto-oncogen

Ki67 marker of proliferation

KRAS Kirsten rat sarcoma viral oncogene

LGR5 Leucine-rich repeat-containing G protein-coupled receptor 5

LKB1 Liver kinase B

LPS lipopolysaccharides

MAPK Mitogen-activated protein kinase

MDR Multidrug resistance

MEK Mitogen-activated protein kinase kinase, MAPKK

mTOR Mammalian target of rapamycin

MMP Matrix metalloproteinases

NEDD9 Neural Precursor Cell Expressed, Developmentally Downregulated 9

NLRs Nucleotide-binding and oligomerization domain-like receptors

NF-κB Nuclear factor kappa-B

NK Natural killer

NKG2D Natural killer group 2D

NRF2 Nuclear factor erythroid 2-related factor 2

OCTN2 Organic cation/carnitine transporter 2

PARP Poly ADP-ribose polymerase

p-Akt Phospho-protein kinase B

P-gp P-glycoprotein
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PI3K Phosphatidylinositol 3-kinase

p-PI3K Phospho- Phosphatidylinositol 3-kinase

PKM2 Pyruvate kinase M2

PPARγ Peroxisome proliferators-activated receptorsγ

Ras Rat sarcoma

Raf Raf-1 proto-Oncogene

ROS Reactive oxygen species

SCFAs Short-chain fatty acids

SIRT1 Silent information regulator 1

SIRT6 Silent information regulator 6

SphK2 sphingosine kinase2

SRC SRC Proto-Oncogene

STAT3 Signal transducer and activator of transcription 3

S1P Sphingosine-1-phosphate

TAGLN Transgelin

TCF4 T-cell factor 4

TIMPs Tissue inhibitors of metalloproteinases

TNBS 2,4,6-trinitrobenzenesulfonic acid sol

TNF-α Tumor necrosis factor-α

TRAIL TNF Superfamily Member 10, TNFSF1O

TS Thymidylate synthase

UHRF1 Ubiquitin-like with PHD and RING finger domains 1

Wnt Wingless/Integrated
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