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Introduction: Temozolomide (TMZ) and Paclitaxel (PXT), crucial anti-cancer
drugs for glioblastoma (GBM) and primary breast cancer (BC), respectively,
face drug resistance. Therefore, we investigated the adjuvant potential of
characterized extracts of the lichens Evernia prunastri (L.) Ach. (Epr), Cladonia
arbuscula (Wallr.) Flot (Car) and their metabolites, evernic acid (EA) and usnic acid
(UA) alone or in combination with TMZ and PTX for their immunomodulatory and
chemosensitivity increasing potential.
Methods: TMZ-resistant U-87 cells, MCF7 BC-cells, and normal human skin
fibroblasts (HSKF) were treated with hexane (Hex), dichloromethane (DCM), and
acetonitrile (ACN) extracts of Epr (EprDCM, EprACN), Car (CarHex, CarACN), and
with EA and UA to measure cell metabolic activity. Molecular mechanisms were
predicted using ChemGPS-NP and validated by Western blot, RNA sequencing,
quantitative RT-PCR, and Wnt inhibitory factor 1 (WIF1) protein expression.
Combinatory effects were calculated by Combination Index (CI) and Zero
Interaction Potency methods (ZIP).
Results: Extracts and selected metabolites reduced concentration-dependent
cellular metabolic activity in U-87 and MCF7 cells. EprACN and EA (U-87 cells:
IC50 30 μg/mL), safe to HSKF, regulated key proteins in MAP kinases pathways,
supporting predictions made by ChemGPS-NP. The combination EA-TMZ
showed additive effects (TMZ-reduction: 3.4 fold), reduced transcription of
Wnt pathway members, and increased in U-87 cells protein releases of WiF1,
the central inhibitor of Wnt-signaling. Further gene expression data (GE) suggest
involvement of IL-17 receptor and BDNF.
Discussion: The combination EA-TMZ interacts with the Wnt pathway regulation
associated with sensitizing U-87 cells, without increasing GEs of pro-
inflammatory cytokines. EA deserves further investigation as an adjuvant.
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GRAPHICAL ABSTRACT

1 Introduction

Breast cancer (BC) is the most common cancer worldwide and
ranks fifth among cancer-related deaths (Zhang et al., 2023).
Projections indicate a significant increase in the global burden,
with cases expected to rise by nearly 40% and deaths by 68% by
2050 if current trends continue (Liao, 2025). Brain and central
nervous system cancer ranks approximately 12th in incidence and
8th in mortality in Europe based on age-standardized rates
(DeCordova et al., 2020). Glioblastoma (GBM), classified as a
WHO Grade 4 CNS tumor according to the 2021 WHO
Classification of Tumors of the Central Nervous System,
represents the most aggressive form of brain cancer (Louis et al.,
2021). The 5- and 10-year survival rates still remain at 5% and 2.6%,
respectively (Ma et al., 2022; Alcantara Llaguno et al., 2009). The
current standard of care for GBM follows the Stupp protocol,
established in 2005, which includes maximal safe surgical
resection, concurrent chemoradiotherapy, and adjuvant
temozolomide (TMZ) (Jezierzański et al., 2024).

The poor treatment prognosis, notably GBM, has been linked to
its diverse molecular profiles, resulting in distinct phenotypes also
associated with TMZ-resistance (DeCordova et al., 2020). Several

fundamental mechanisms contribute to GBM’s treatment resistance
and incurability. The blood-brain barrier represents a critical
obstacle, preventing most systemic chemotherapeutic agents from
reaching therapeutic concentrations in brain tissue (Zuccarini et al.,
2018). Glioblastoma stem cells (GSCs) constitute another major
resistance mechanism, exhibiting enhanced DNA repair capacity,
resistance to apoptosis, metabolic reprogramming, and self-renewal
capacity that maintains the tumor cell population (Nowak et al.,
2021; Guan et al., 2020). Methylation of the O6-methylguanine-
DNA methyltransferase (MGMT) promoter plays a critical role in
TMZ-resistance. Tumors with an unmethylated MGMT promoter
are significantly more resistant to TMZ, and prolonged treatment
may induce loss of MGMT methylation, further contributing to
acquired resistance (Li et al., 2021).

Recently, Weighted Gene Co-Expression Network Analysis
(WGCNA) was used to capture the molecular heterogeneity of
GBM patients on the molecular level. Authors constructed an
immune-related prognostic model to predict patient sensitivity to
checkpoint inhibitor blockade therapy (Ma et al., 2022). The high-
risk group (non-survival) was associated with epithelial-
mesenchymal transition (EMT), high immune cell infiltration,
immune activation, a low mutation number, and high
methylation, while the low-risk group had an adverse status (Ma
et al., 2022).

BC is also extremely variable in morphology and at the
molecular level, necessitating combinatorial therapy modalities
depending on the molecular subtype, which is defined by
hormone receptor (HR) status and human epidermal growth
factor receptor-2 (HER2) expression (Li et al., 2017; Kashyap
et al., 2022). These include HR-positive/HER2-negative (HR+/
HER2-), HR+/HER2+, HR-/HER2+, and triple-negative breast

Abbreviations: TMZ, Temozolomide; PXT, Paclitaxel; GBM, glioblastoma; BC,
breast cancer; EprDCM, dichloromethane extract from E. prunastri;
EprACN–acetonitrile extract from E. prunastri; CarHex, hexane extract
from C. arbuscula; CarACN–acetonitrile extract from C. arbuscula; EA,
evernic acid; UA, usnic acid; TMZ320EA35, combination of TMZ (320 µM =
62.13 μg/mL) with EA (35 µM = 11.63 μg/mL); TMZ380EA20, TMZ (380 µM =
73.78 μg/mL) with EA (20 µM = 6.65 μg/mL); TMZ580EA20, TMZ (580 µM =
112.61 μg/mL) with EA (20 µM = 6.65 μg/mL).
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cancer (TNBC), which lacks estrogen receptor, progesterone
receptor, and HER2 expression (Li et al., 2017). TNBC is
particularly aggressive, accounting for approximately 10%–15% of
all breast cancers but contributing to a disproportionately high
percentage of breast cancer-related deaths globally, estimated at
around 40% (Rosińska et al., 2024). The 5-year relative survival rate
for TNBC, combining all stages, is approximately 77%, with
significantly lower rates for distant metastatic disease (Baranova
et al., 2022).

The current standard of care in breast cancer varies by subtype
and stage. Early-stage breast cancer typically involves surgical
resection, adjuvant or neoadjuvant chemotherapy, radiation
therapy, hormone therapy for hormone receptor-positive tumors,
and targeted therapy for HER2-positive tumors (Bravo et al., 2023;
Grant et al., 2024).

The Wnt pathway is implicated in both BC and GBM,
significantly contributing to treatment resistance (Zhong and
Virshup, 2020), even though precise regulatory mechanisms
remain unclear (Kashyap et al., 2022). Crosstalk between Wnt
signaling and other pathways contributes to cancer development
and spread, including resistance to pathway inhibitors (Zhong and
Virshup, 2020). This understanding drives the development of novel
combination therapies to minimize toxicity and resistance (Zhong
and Virshup, 2020). Therefore, exploring unexamined plant extracts
or phytocompounds contributes to discovering safe, effective, and
novel combination therapies (Ulrich-Merzenich et al., 2017).

TMZ and paclitaxel (PTX), key chemotherapeutics for GBM and
BC, respectively, are under investigation for combination therapies
(Tan et al., 2020). TMZ, a DNA alkylating agent, induces cell death
by causing base mismatches and DNA strand breaks (Tan et al.,
2020). Ongoing 583 clinical trials worldwide explore treatments for
GBM (https://clinicaltrials.gov/), including immune checkpoint
inhibitors paired with CNS-penetrant or potent inhibitors
(Gueble et al., 2022). Despite multimodal treatments, GBM
patients face a low median survival of 12.1–16.6 months (Neff
et al., 2022; Minea et al., 2024; Fekete et al., 2023), emphasizing
the urgency for novel treatment strategies (Tan et al., 2020).

Taxanes, like PTX, used in BC treatment, were derived from the
Pacific yew’s bark (Wani et al., 1971). PTX induces cell death by
stabilizing microtubules, causing G2/M arrest and initiating
apoptosis (Manthey et al., 1992). Resistance to PTX and other
anti-cancer drugs (Das et al., 2021; Bukowsk et al., 2020) is
common for BC, just as resistance in GBM to TMZ (Lee, 2016).
The resistance of BC to PTX is thought to be a consequence of a
disequilibrium in various signaling pathways, mutations in certain
genes, and epigenetic deregulations (Abu et al., 2019). In particular,
the genes of the ATP-binding cassette (ABC) superfamily of drug
efflux, including P-glycoprotein (P-gp), are involved in the
resistance to PTX by leading to an overexpression of P-gp in BC-
cells (Abu et al., 2019). In MCF7 cells, aberrantly regulated
expression of FOXM1 and KIF20A was associated with PTX-
resistance (Abu et al., 2019; Khongkow et al., 2016). Further, the
overexpression of miR-200c-3p contributed to the resistance of BC
cells to PTX by an aberrant regulation of SOX2 (Abu et al., 2019).

This diversity of resistance mechanisms promotes a search for
natural compounds as adjuvants (Persano et al., 2022). Therapies
triggering multiple pathways (and specifically addressing crucial
survival pathways) may be more promising (Sestito et al., 2018).

Lichens have been utilized in traditional medicine for ages
(Crawford and Ranković, 2015). They are symbiotic organisms
consisting of a fungus (mycobiont) and either algae or
cyanobacteria (photobiont) (Schwendener, 2011). They are a
promising source for novel organic small molecules and
synergistic therapeutic strategies. Evernia prunastri L. and
Cladonia arbuscula (Wallr.) Fot. were selected based on their
published bioactivity. Evernic acid (EA), the main metabolite of
E. prunastri L., has shown antimicrobial, cytotoxic, neuroprotective,
and anti-inflammatory properties in prior studies (Fernández-
Moriano et al., 2017; Lee et al., 2021; Gökalsın and Sesal, 2016;
Shcherbakova et al., 2019). However, its role in cancer therapy
remains largely unexplored. Usnic acid (UA), a prominent
secondary metabolite isolated from C. arbuscula (Wallr.) Fot., has
shown potent antiproliferative effects in several cancer types.
Notably, UA exhibited promising cytotoxicity against T-47D
breast cancer cells, Capan-2 pancreatic cancer cells (Einarsdottir
et al., 2010), and MCF7 breast cancer cells as well (Bačkorová et al.,
2011; Galanty et al., 2017; Kiliç et al., 2019; Brisdelli et al., 2013).

We investigated extracts from E. prunastri L. (Parmeliaceae) and
C. arbuscula (Wallr.) Fot. (Cladoniaceae) along with their major
metabolites, evernic acid (EA) and usnic acid (UA), for their
potential to reduce metabolic activity in U-87 glioma and
MCF7 breast cancer cells.

Both cell lines were selected as representative in vitromodels for
glioblastoma and breast cancer, respectively, due to their widespread
use, well-characterized molecular profiles, and relevance to the
mechanisms under investigation. U-87 cells are among the most
commonly used GBM models and exhibit key features of primary
glioblastoma, such as rapid proliferation, resistance to
temozolomide (TMZ) (Xie et al., 2015). Similarly, MCF7 cells are
commonly used for BC, characterized by estrogen receptor positivity
and moderate sensitivity to chemotherapeutics like paclitaxel (PTX),
making them a standard model for studying HR+ BC and
mechanisms of taxane resistance (Neve et al., 2006).

U-87 and MCF7 remain widely accepted platforms for early-
stage anticancer research. In this study, they were used to evaluate
not only the ability of the lichen extracts and their metabolites to
influence cancer cell metabolic activity, but also their potential to
synergize with standard chemotherapeutics (TMZ or PTX). Extracts
and combinations showing efficacy were further assessed for
possible mechanisms of action. This included chemographic
prediction tools, cytokine response profiling, and evaluation of
their potential to modulate cellular pathways involved in drug
sensitivity, forming a foundation for future translational
investigations.

2 Materials and methods

2.1 Chemicals, media, and assays

Usnic acid (UA) (purity 98%), paclitaxel, resazurin tox kit,
insulin (Sigma Aldrich, Germany); evernic acid (EA) (purity
98%), temozolomide (Cayman Chemical, United States);
(phospho-AKT rabbit polyclonal antibody (1:2000), ß-actin
rabbit polyclonal antibody (1:2000), phospho-p44/42 (Thr202/
Tyr204) rabbit polyclonal antibody (1:2000), p44/42 mouse clonal
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antibody (1:2000), goat anti-rabbit IgG-HRP conjugated to
horseradish peroxidase (1:2000) (Santa Cruz Biotechnology,
United States); phospho-c-Jun (Ser73) rabbit polyclonal antibody
(1:2000) (Cell Signaling Technology, United States); Minimum
Essential Medium (MEM), Roswell Park Memorial Institute
(RPMI) 1,640 Medium, Dulbecco’s Modified Eagle’s Medium
(DMEM, fetal bovine serum (FBS), non-essential amino acids
(MEM NEAA), sodium pyruvate, penicillin/streptomycin
(Gibco™, United States); Human WIF-1 DuoSet ELISA (R&D
Systems, United States), RNeasy MiniPlus kit (QIAGEN,
Netherlands).

2.2 Lichens material

Samples of E. prunastri (L.) Ach. and C. arbuscula (L.) Hoffm.
were collected in the Mari El Republic of Russia on the campus of the
Volga State University of Technology. The lichens were identified by
lichenologist G.A. Bogdanov at the Bolshaya Kokshaga Natural
Reserve. The voucher specimens of the lichens were deposited at
the Institute of Forestry and Nature Management, Volga State
University of Technology, Yoshkar-Ola, Russia, with the references
Epr_06.2012 (E. prunastri) and Car_06.2012 (C. arbuscula).

2.3 Extraction and characterisation

Extracts were obtained and characterized as described earlier
(Shcherbakova et al., 2021). Air-dried powdered thalli of the
lichens were extracted by sequential maceration with hexane,
dichloromethane (DCM), or with 60% acetonitrile in water (ACN)
at room temperature (RT) for 24 h with each solvent. The extracts
were filtered and then concentrated under reduced pressure in a rotary
evaporator Rotavapor R (Buchi Labortechnik AG, Flawil,
Switzerland). The dry extracts were stored at RT until usage.

2.4 Chemographic prediction of the mode
of action

ChemGPS-NP (http://chemgps.bmc.uu.se) provides a
multidimensional (8D) map of physicochemical property space.
On this map, molecules are positioned based on their estimated
physico-chemical properties. Compounds with similar structures
and hence properties are positioned on the map in mutual
proximity. Thus positions and distances between compounds can
be used to predict their biological activities. This method has been
specifically validated for anti-cancer modes of action as well as for a
broad range of other experimentally demonstrated activities
(Buonfiglio et al., 2015). It was used to predict possible modes of
action of EA.

2.5 Cell culture and cytotoxicity assay

2.5.1 Cell lines and culture
Human primary glioblastoma (U-87), human breast

adenocarcinoma (MCF7), and human skin fibroblast (HSKF) cell

lines were purchased via Cell Line Services (CLS) from the German
Collection of Microorganisms and Cell Cultures (DSMZ) and
Promocell and grown as described earlier (Ammar and Ulrich-
Merzenich, 2017). HSKF was included as a non-malignant cell line
to assess the general cytotoxicity and selectivity of the tested extracts,
metabolites, and compounds, distinguishing between broad cellular
effects and specific anti-cancer activity.

2.5.2 Metabolic activity assay as measure for
cell viability

Cells (5 × 103 cells/well) were seeded into 96-well plates and
treated as described (Ulrich-Merzenich et al., 2017). For the
treatment with the CarHex, CarACN, EprDCM, and EprACN
extracts, a concentration range of 6.25–100 μg/mL was used. For
EA and UA, the tested concentration range was 4.15–66.46 μg/mL
and 4.30–68.86 μg/mL, respectively (corresponding to
12.5–200 µM). TMZ was tested in a range of 9.71–155.32 μg/mL
(50–800 µM), and PTX in a range of 21.35–341.56 μg/mL
(25–400 µM). All treatments were performed for 24 h. Metabolic
activity of the cells, as an indirect measure of cell viability, was
measured by resazurin fluorometric assay (Sigma) as described
(Ulrich-Merzenich et al., 2017). The concentration range was
selected based on the published data (Einarsdottir et al., 2010;
Kiliç et al., 2019; Brisdelli et al., 2013; Emsen et al., 2018; Bézivin
et al., 2004). The 24-h time point was selected for all viability assays
to ensure consistency and comparability across all experimental
conditions. This time frame is widely used for resazurin-based
cytotoxicity assays and is sufficient to capture early drug-induced
effects on cell viability, as well as to minimize secondary effects such
as nutrient depletion or over-confluence in culture.

2.6 Western blot analysis

Western blot analysis was performed to investigate the
expression and phosphorylation levels of Akt, Erk1/2, and c-Jun
in U-87 cells treated with EprACN or EA as described (Ulrich-
Merzenich et al., 2007) and in Supplementary Material S1. Antibody
(Ab) details (pAKT, pErk1/2, Erk 1/2, p-cJun, ß-actin, secondary
Abs) are provided in Supplementary Material Table S1.

2.7 Synergy screening

Cells (as described under Section 2.5.2) were treated with
7 different combinations of metabolites/compounds.
Concentrations for the combinations were chosen based on the
results with the single extracts/metabolites (Chou, 2010) (see also
Section 3.1 and Supplementary Material S2). A total of five
concentrations were chosen with the following concentration
ranges for the different metabolites/drugs: 1) TMZ
(9.75–155.32 μg/mL = 50–800 µM) and EprACN (6.25–100 μg/
mL); 2) TMZ (9.75–155.32 μg/mL = 50–800 µM) and EA
(4.15–66.46 μg/mL = 12.5–200 µM); 3) TMZ (9.75–155.32 μg/
mL = 50–800 µM) and UA (4.30–68.86 μg/mL = 12.5–200 µM);
4) PTX (5.34–85.39 μg/mL = 6.25–100 µM) and EprACN
(6.25–100 μg/mL); 5) PTX (5.34–85.39 μg/mL = 6.25–100 µM)
and EA (4.15–66.46 μg/mL = 12.5–200 µM); 6) PTX
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(5.34–85.39 μg/mL = 6.25–100 µM) and UA (4.30–68.86 μg/mL =
12.5–200 µM); 7) TMZ (62.13–124.26 μg/mL = 320–640 µM) and
EA (6.65–13.29 μg/mL = 20–40 µM). For details, see Supplementary
Material S3. Drug combinations were tested in comparison to their
respective controls.

2.7.1 Synergy calculation
Synergism was calculated using the CompuSyn software

(https://compusyn.software.informer.com/) based on the Chou
and Talalay Combination Index (CI) method (Chou, 2010) and
by the web application “SynergyFinder” (v.1) employing the Zero
Interaction Potency (ZIP) model (Ianevski et al., 2017). For the CI
and the Dose Reduction Index (DRI) calculation, the following
ratios of the combined drugs were used: 1) TMZ: EP – 1.5:1 (c:c); 2)
TMZ: EA – 8:1 (c:c); 3) TMZ: UA – 8:1 (c:c); 4) PTX: EP – 1:1.2 (c:c);
5) 4) PTX: EA – 1:2 (c:c); 6) 4) PTX: UA – 1:2 (c:c); 7) TMZ: EA – 16:
1 (c:c).

2.8 RNA deep sequencing of primary
glioblastoma cells (U-87)

2.8.1 Cell culture
U-87 cells (106 cells/well) were seeded in 6-well plates and

stimulated for 24 h with the following treatments: 1) EA (9.97 μg/
mL = 30 µM); 2) EA (14.95 μg/mL = 45 µM); 3) TMZ (116.49 μg/
mL = 600 µM); 4) EA (6.65 μg/mL = 20 µM) + TMZ (73.78 μg/mL =
380 µM); 5) EA (6.65 μg/mL = 20 µM) + TMZ (112.61 μg/mL =
580 µM); 6) EA (11.63 μg/mL = 35 µM) + TMZ (62.13 μg/mL =
320 µM); 7) untreated controls.

2.8.2 RNA isolation and sequencing
RNA was extracted as described (Ulrich-Merzenich et al.,

2017) 100 ng/μL was used for RNA sequencing. The RNA
sequencing was performed by the NGSCore Facility of the
University Hospital Bonn. RNASeq data were deposited into the
Gene Expression Omnibus database under accession number

GSE245919 (URL: 154 https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE245919).

2.8.3 Data evaluation
Data evaluation was performed according to the guidelines

provided on the Galaxy Training website (https://training.
galaxyproject.org/) and with Ingenuity Pathway Analysis
(QIAGEN IPA). GeneMANIA (Warde-Farley et al., 2010) was
used to construct the network based on data on co-expression,
genetic interaction, and pathways (https://genemania.org/).

2.9 Quantitative RT-PCR (qRT-PCR)

The same RNA samples analyzed by RNASeq were used for
quantitative reverse transcription (qRT-PCR) as described earlier
(Abdel-Aziz et al., 2015). See also Supplementary Material S3, S4.

2.10 Protein Wnt-inhibitory factor 1
(WIF1) release

Cells were treated as described under 2.5.2. Treatment was either
with EA (6.65, 13.29, and 19.94 μg/mL = 20, 40, and 60 µM) or TMZ
(58.25, 87.37, and 116.49 μg/mL = 300, 450, and 600 µM) alone or in
combinations. The WIF1 release was determined by Human WIF-1
DuoSet ELISA (R&D Systems).

2.11 Statistical analysis

All values are expressed as mean ± SEM of three independent
experiments. Experiments were performed with at least 3 replicates
for each condition, if not otherwise mentioned. Statistical analyses
were performed with SigmaStat (v.4.0) (http://www.systat.de/
SigmaStat4_PR.html) and Origin 2018 software (https://www.
originlab.com/origin) packages.

TABLE 1 Effect of lichen extracts, lichen metabolites, and reference drugs on cell viability.

Extract/Compound IC50, fibroblasts IC50, U-87 SI_U-87 IC50, MCF7 SI_MCF7

E. prunastri (EprDCM) 29 ± 5 μg/mL 13 ± 3 μg/mL* 2.3 ± 0.19 72 ± 8 μg/mL* 0.4 ± 0.02

E. prunastri (EprACN) 79 ± 6 μg/mL 31 ± 6 μg/mL* 2.6 ± 0.15 107 ± 13 μg/mL 0.7 ± 0.03

C. arbuscula (CarHex) 44 ± 2 μg/mL 35 ± 3 μg/mL* 1.3 ± 0.03 85 ± 14 μg/mL* 0.5 ± 0.02

C. arbuscula (CarACN) 16 ± 2 μg/mL 33 ± 2 μg/mL* 0.5 ± 0.02 67 ± 7 μg/mL* 0.2 ± 0.01

Evernic acid (EA) >66.46 μg/mL (200 μN) 20.60 ± 2.99 μg/mL
62 ± 9 µM*

3.3 ± 0.13 >66.46 μg/mL (200 µM) 1.0

Usnic acid (UA) >68.86 μg/mL (200 μN) 69.90 ± 5.16 μg/mL
203 ± 15 μN

1.0 ± 0.02 57.50 ± 9.30 μg/mL
167 ± 27 μN

1.2 ± 0.05

Temozolomide (TMZ) >155.32 μg/mL (800 μN) 115.13 ± 6.40 μg/mL (593 ± 33 μN) 1.4 ± 0.02 —

Paclitaxel (PTX) >341.56 μg/mL (400 μN) — 116.13 ± 12.81 μg/mL
136 ± 15 μN

3.0 ± 0.1

The effect is represented as an IC50 value. SI, selectivity index defining the ratio between IC50s of fibroblasts and cancer cells, as higher the SI as better the selectivity. For experimental details see

Material and Methods.

*p-value <0.05 in comparison to TMZ or PTX. Experiments were performed with 3 replicates.
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FIGURE 1
Synergy assessments (a) Surface plots illustrating the cell viability expressed as a percentage of the control (Z-axes) depending on the treatment with
the combination of TMZ or PTX (X-axes) and EprACN or EA or UA (Y-axes) at different concentrations. (b) Plots indicating the relation of CI and DRI to Fa.
The CI < 1 denotes synergy, CI = 1 addition, and CI > 1 antagonism. (c) Surface plots illustrating the δ-score (Z-axes) indicating synergy (red), additive effect
(white), or antagonism (green) for the combinations of TMZ or PTX (Y-axes) with EprACN, EA, or UA (X-axes) at various concentrations. Experiments
were performed with 3 replicates.
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3 Results

3.1 Effects of lichen extracts andmetabolites
on cancer cells and fibroblasts

The ability of the lichen extracts, metabolites, and reference
drugs to reduce the metabolic activity of TMZ-resistant U-87 and
MCF7 cell lines and normal human skin fibroblasts (HSKF) is
displayed in Table 1 and Supplementary Material S2.

The IC50 of TMZ against U-87 cells was high, confirming
resistance to TMZ (Lee, 2016). All lichen extracts and
metabolites significantly reduced the metabolic activity of U-87
cells. EprDCM had the highest potency, however, it also affected
HSKF at a similar concentration, showing undesirable off-target
action. EprACN, CarHex, and CarACN showed comparable
reduction in U-87 cell metabolic activity. CarACN showed a high
effect on HSKF, while EprACN demonstrated favorable specificity
with a high selectivity index (SI) for U-87.

EA and UA did not significantly affect the metabolic activity of
HSKF at concentrations up to 66.46 μg/mL and 68.86 μg/mL
(equivalent to 200 µM), respectively. In U-87 cells, EA demonstrated
greater activity and more favorable response comparing to UA. The
results indicated that while the compounds were effective against cancer
cell lines, they exhibited reduced activity toward HSKF cells, suggesting
a degree of selectivity toward malignant cells.

The lichen extracts did not reduce themetabolic activity ofMCF7with
the SI value below 1, indicating a lack of selectivity. Both EA and UA
showed activity against MCF7 cells, but their SI was comparatively lower
than that of PTX, leading to the discontinuation of further experiments
with MCF7 cells. In the next step, combinations were investigated.

3.2 Combinatorial effects of lichen
metabolites with TMZ or PTX

Figure 1a demonstrates the effects of combining TMZ or
PTX with EprACN, EA, or UA on the metabolic activity of U-87

and MCF7 cells. The combination Index (CI) and the Dose
Reduction Index (DRI) are shown in Figure 1b and the δ-score
in Figure 1c.

The combination of EprACN with TMZ exhibited antagonism
(CI = 3.07) and with PTX additive effects (CI = 1.04) (Figure 1b).
Despite the additive effect of EprACN-PTX, metabolic activity
remained above 50%. Consequently, combinations involving
EprACN were not pursued. The UA-TMZ combination also
displayed limited modulation of the metabolic activity
(Figure 1a), and was therefore excluded from further investigations.

Although the EA-TMZ combination demonstrated antagonism,
EA increased the sensitivity of U-87 cells to TMZ by 3.4 times
(DRI = 3.4). Synergistic effects were observed at Fa < 0.5 (Figure 1b)
with a CI of 0.97 for the combination of EA (8.31 μg/mL = 25 µM)
and TMZ (77.66 μg/mL = 400 µM) at a 1:4 ratio (Figure 1c),
resulting in approximately 50% reduction in metabolic
activity (Figure 1a).

Effects of the EA-PTX and UA-PTX combinations were similar,
with enhanced effectiveness leading to up to 60% in metabolic
activity reduction (Figure 1a). These combinations had a
primarily additive effect (Figure 1b, CI ≈ 1), transitioning to
synergistic effects at concentrations of EA (4.15–33.23 μg/mL =
12.5–100 µM) – PTX (5.34–85.39 μg/mL = 6.25–100 µM) and UA
(4.30–34.43 μg/mL = 12.5–100 µM) – PTX (5.34–85.39 μg/mL =
6.25–100 µM) (Figure 1c, δ-score > 0).

Since synergistic effects are influenced not only by drug
concentrations but also by their ratio (Ammar and Ulrich-
Merzenich, 2017), further research focused on the ratio (1:16)
that demonstrated synergy (Figure 2).

At a ratio of 1:16, the TMZ-EA combination reached the
maximum reduction of metabolic activity (75%). The IC50 of the
drug combination was lower than the IC50 values of the single drugs
(Figure 2a). Both metabolites showed a dose reduction (DRI > 1),
and the CI value indicated additive effects (Figures 2 b,c). The δ-
score demonstrated synergistic effects (Figure 2d). These promising
results led to the investigation of the potential mechanisms
underlying EA’s action (Figure 3).

FIGURE 2
U-87 cell viability and synergy calculations for the combinations of TMZ with EA at a ratio of 1:16. (a) Surface plot illustrating the cell viability as a
percentage of the control (Z-axes) with the combination of TMZ (X-axes) and EA (Y-axes) at different concentrations. (b) The plot illustrates the relation of
DRI to Fa. (c) The plot illustrates the CI according to Fa. (d) The surface plot illustrates the δ-score (Z-axes) indicating synergy for TMZ (Y-axes) with EA
(X-axes) combination at different concentrations. Experiments were performed with 3 replicates.
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3.3 Mechanistic insights into EA’s mode
of action

In a first step, we used ChemGPs for a chemographic prediction of
EA’s mode of action. The Euclidean distance calculation over all eight
dimensions of the ChemGPS-NP chemical property space suggests that
EA’s most probablemode of action is either topoisomerase I inhibition or
disturbance of tubulin activity (Figure 3a). EA shares chemical properties
with topoisomerase I (TOP1) inhibitors. Few TOP-1 inhibitors are semi-
synthetic derivatives of the plant alkaloid camptothecin, stabilizingTOP1-
DNAcleavable complexes (Top1cc) (Thomas andPommier, 2019/06). In
a second step, we compared the predictionwith the RNAseq data analyses
of the experiments. Here, the level of TOP1 was insignificant (Figure 3c).
Thus, EA may interact with TOP1 either by blocking the DNA-helix or
by disrupting, e.g., electrostatic interactions on the surface of TOP1 by
binding to the active site.

Tubulin-active compounds bind to the tubulin microtubules,
affecting their dynamics (Janke and Magiera, 2020). Although we
did not examine the polymerization of microtubules and their
dynamics, we evaluated the transcription of tubulins. EA decreased
transcription of the β-tubulins TUBB6 and TUBB2B (Figure 3c). Since
microtubules consist of α-β tubulin heterodimers (Janke andMagiera,
2020), a downregulation of β-isotypes may change the microtubule
formations and prevent cell division. The Gene Ontology analysis of
genes regulated by EA demonstrated an involvement of mitotic cell
cycle phase transition, mitotic sister chromatid segregation, the
establishment of mitotic spindle localization, mitotic cytokinesis,
and mitotic chromosome condensation in such an activity
(Figure 3b). This supports the prediction for EA to be a tubulin-

active compound (see also Supplementary Material S5 for results of
the Expression of genes coding tubulin-related proteins and
SupplementaryMaterial S6 for results of the Gene Ontology analysis).

Western blot analyses revealed that EA, along with EprACN,
also modulates key signaling pathways. Figures 4a,b depict the
modulation of Erk1/2, c-Jun, and Akt by EprACN and EA over
6, 12, and 24 h. EprACN and EA initially stimulated ERK1/
2 formation at 6 h, followed by a downregulation after 12 h and
24 h compared to the control. Higher concentrations of EprACN
and EA decreased the ERK phosphorylation at all times. They also
downregulated c-Jun phosphorylation after 24 h, with a transient
increase observed at 6 h. EprACN downregulated Akt
phosphorylation after 6 h, whereas EA insignificantly upregulated
it. Significant downregulation was observed after 12 h with EprACN
(30 μg/mL), with no further change at 24 h, and with EA (13.29 μg/
mL = 40 µM) after 24 h. The RNAseq data of the MAPK and PI3K
pathways members’ expression, shown in Figure 4c, demonstrated
no significant effect on their transcription.

3.4 Multitarget mechanisms of
EA-TMZ synergy

Expanding the RNA Seq analyses, we compared significantly
regulated genes from the GE-analyses for all treatments using Venn
diagrams (Figure 5a) to identify unique genes for the combinations.
A network built using these genes revealed the canonical Wnt
pathway as a pathway regulated by these genes (Figure 5b). The
canonical Wnt signaling pathway significantly contributes to the

FIGURE 3
Investigation of the mechanism of action of Evernia prunastri ingredients. (a) Position in chemical property space of EA (cube), compared to
reference sets of compounds in ChemGPS. The axis markers: red–size-related properties, yellow–conjugation and aromaticity-related properties, and
green–lipophilicity and solubility-related properties. (b) Gene ontology enrichment analysis bar plot based on RNA deep sequencing data. Y-axis
indicates significantly enriched GO biological processes, X-axis shows -log10 (p-values). Upper panel -EA 30 µM (9.97 μg/mL), lower panel -EA
45 µM (14.95 μg/ml). For details see Supplementary Material S5. (c) Gene sequencing data for tubulin-encoding genes. ‡NA: the gene is “not available” or
the gene was excluded from analysis because it contained an extreme count outlier–large counts (during the gene expression analysis in Galaxy).
Experiments were performed with 3 replicates.
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development of resistance to chemo- and radiotherapy in GBM
(Zhong and Virshup, 2020). Figure 5c illustrates the expressed genes
involved in Wnt signaling upon treatment.

Particularly, EA35TMZ320 significantly downregulated the
upstream member WNT5A, whereas other treatments did not
show a significant effect. Conversely, WNT3, a ligand of LRP5/6
(Low-density lipoprotein receptor-related protein 5/6), exhibited
significant undesirable upregulation by EA45, whereas DKK2 and
DKK4, which are inhibitors of LRP5/6, remained unaffected by
any treatment.

All combinations significantly downregulated FZD7
transcription, which encodes a transmembrane receptor crucial
for Wnt downstream. Activation of this receptor by Wnts
inhibits the β-catenin degradation complex. Additionally,
CTNNBIP1, an intracellular member known to prevent β-catenin
activity, showed significant upregulation of gene expression by
EA20TMZ380.

TCF7L1, an intranuclear member of the pathway involved in cell
cycle regulation and proliferation, was significantly downregulated
by TMZ600, EA45, EA35TMZ320, and EA20TMZ580.

Figure 5d summarizes the interaction of affected targets within
the Wnt pathway. The combinations regulated the transcription of
more targets compared to single metabolites.

After analyzing the GE of members of the Wnt-signaling
pathway under treatment, we wanted to know whether Wnt-
signaling is affected on the protein level. Therefore, we measured
the Wnt inhibitory factor 1 (WIF1). WIF1 binds to Wnt-proteins,
thereby inhibiting the activation of the Wnt-signaling (see also
Supplementary Material S7).

Figure 5e shows the release of WIF1 protein by U-87 cells
treated with TMZ and EA alone or in combination. Both single
metabolites and combinations significantly increased the
WIF1 release compared to the control. Combinations
demonstrated a dose-dependent increase in WIF1 release, with

FIGURE 4
Western blot for key proteins of theMAP Kinase andmTOR pathways expressed in U-87 cells treatedwith (a) EprACN (0, 20, 30, 40 μg/mL) and (b) EA
(0, 40, 50, 60 µM) over a time period of 6, 12, and 24 h. (c) Gene expression of MAPK and PI3K pathways at 24 h #p-value <0.05: time-dependent
comparison to control, *p-value <0.05: concentration-dependent protein expression over time. Experiments were performed with 3 replicates.
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the highest activity for EA35TMZ320. The effect of TMZ and EA
on the WIF1 release showed a concentration-dependent inverse
pattern: higher TMZ concentration increases the effect, while
higher EA concentration reduces it. Significant up-regulations
were observed by the following combinations: EA20TMZ500,
EA20TMZ580, EA25TMZ580, EA35TMZ320, EA35TMZ380,
and EA30TMZ500. However, EA35TMZ320 showed the highest
influence on the WIF1 release.

The Wnt pathway is a regulatory system interacting directly
or indirectly with other signaling pathways, including the NF-kB
pathway, as a central pathway in inflammation (Guo et al., 2024).

This pathway is essential for connecting inflammation and cancer,
as well as for tumor growth and resistance (Guo et al., 2024). For
BC, it was shown that NF-kB signaling boosts the growth
potential of BC cells and facilitates the spread of tumors (Guo
et al., 2024). Therefore, we were interested in the influence of our
metabolites and their combinations with TMZ on inflammation.
At the same time, we were interested in EA’s reported
neuroprotective and anti-inflammatory properties (Lee et al.,
2021). Figure 6 shows the influence of the single metabolites
and the combinations on the GE of GABRs, BDNF, and major
cytokines regulating inflammatory processes (IL6, IL10, and

FIGURE 5
Regulation ofWnt signaling during treatment of U-87 cells with TMZ, EA, and their combinations. (a) Venn-diagram (https://www.interactivenn.net/)
on significantly regulated genes obtained from the transcriptome analyses. (b) Network depicting a possible pathway uniquely regulated by the
combinations, obtained from GeneMania (https://genemania.org/). (c) Gene expression of Wnt signaling members. Data are presented as logFC. Cell
colors represent p-values. (d) Schematic representation of the proposed pathway regulated by combinations. (e) Level of WIF1 protein release into
the culture medium. *p < 0.05, **p < 0.01, ***: p < 0.001. The red line indicates the control. Experiments were performed with 3 replicates.
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TNFA) based on RNA deep sequencing (Figure 6a) and RT-
PCR (Figure 6b).

The pro-inflammatory cytokine TNFA was neither detected by
RNA deep sequencing nor by qRT-PCR. The anti-inflammatory
IL10, detected by deep sequencing, was not significantly influenced.
The RNAseq data showed no regulation of IL6. However, qRT-PCR
data showed a significantly amplified expression of IL6 for the single
treatment with EprACN or with TMZ, whereas UA
downregulated the GE.

RNAseq analysis showed no significant differences in the
expression of GABA receptor subunits. However, GABRB1 was
downregulated by EA45 (p = 0.07), while GABARAPL1 was
desirably upregulated for all treatments, with the highest
expression seen with UA.

RNAseq analysis further revealed insignificant influences of all
treatments on BDNF transcription. However, in qRT-PCR
investigations, BDNF was upregulated by EA-TMZ and EprACN
and downregulated by UA.

IL10 gene expression was significantly downregulated by all
treatments except TMZ, while IL6 gene expression was significantly
increased by EprACN and decreased by UA.

4 Discussion

The effectiveness of standard chemotherapeutics such as
temozolomide (TMZ) in glioblastoma (GBM) and paclitaxel
(PTX) in breast cancer (BC) is often limited by developing
resistance and eventual treatment failure (Das et al., 2021; Lee,
2016). Therefore, we investigated the adjuvant potential of
characterized extracts of E. prunastri and C. arbuscula
and their metabolites evernic acid (EA) and usnic acid (UA)
alone or in combination with TMZ and PTX for their

immunomodulatory and chemosensitivity-increasing potential.
HSKF served to evaluate general cytotoxicity and selectivity, even
though these cells do not fully replicate the physiological
environment or cellular characteristics of normal brain or
mammary tissue. U-87 and MCF7 cells have their limitation,
too. U-87 cells differ genetically from primary GBM tumors and
do not fully recapitulate the intratumoral heterogeneity, stem cell
populations, or invasive behavior observed in patient-derived
GBM (Xie et al., 2015; Allen et al., 2016). Likewise, MCF7 cells,
while representative of HR+ BC, do not model the full spectrum
of BC subtypes, particularly TNBC or HER2+ disease, and lack
the tumor microenvironment components that influence drug
response in vivo (Neve et al., 2006; Holliday and Speirs, 2011).
Both models are grown in two-dimensional monolayers, which
do not capture the complexity of tumor-stroma interactions,
hypoxia, or immune modulation present in human tumors.
Despite these limitations, the use of U-87 and MCF7 in this
study provides a well-established platform for assessing the
antiproliferative and resistance-modulating effects of lichen-
derived metabolites with findings that can inform subsequent
validation in more complex models such as patient-derived cells,
organoids, or in vivo systems.

The initial experiments revealed a reduction in cellular
metabolic activity in U-87 and MCF7 cells after treated with the
lichen extracts and their metabolites. However, they were less
effective against MCF7 cells compared to PTX. Therefore,
experiments with MCF7 cells were discontinued, even though
UA had exhibited activity against MCF7 cells in earlier studies
(Bačkorová et al., 2011; Hawrył et al., 2020).

For extracts of E. prunastri, IC50 values of 90.1 μg/mL and
81.8 μg/mL were reported (Bézivin et al., 2004), which is in the range
of our results. Effects of EA against MCF7 and U-87 have not been
reported earlier. However, previous reports suggest its activity

FIGURE 6
Expression of genes encoding brain-related proteins and cytokines. (a) Clustered HeatMap of RNAseq data showing the expression levels of various
genes. None of the genes were found to be significantly regulated (p > 0.05). Genes include GABRB1: gamma-aminobutyric acid receptor (GABR) subunit
beta 1; GABRE: GABR subunit epsilon; GABRG3: GABR subunit gamma 3; BDNF: brain-derived neurotrophic factor; IL10: interleukin 10; IL6R: interleukin
6 receptor; TNFa: tumor necrosis factor a; IL23R: interleukin 23 receptor; IL31: interleukin 31; IL17RC: interleukin 17 receptor. (b) Histograms
showing mRNA levels based on qRT-PCR data. Concentrations: EA – 45 μM, TMZ – 600 μM, EA-TMZ – 35–320 μM, UA – 200 μM, and EprACN – 30 μg/
mL. GABARAPL1: GABAA receptor-associated protein-like 1. *p < 0.05 comparing to TMZ, #p < 0.05 comparing to untreated control. Experiments were
performed with 3 replicates.
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against A-172 and T98G glioblastoma cell lines (Studzińska-Sroka
et al., 2021), supporting our findings.

The extracts of C. arbuscula were not further investigated due to
their non-selective effect. Further experiments focused on the TMZ-
resistant U-87 cells (IC50 > 500 µM) (Lee, 2016) and the
combination of TMZ and EA, since this combination yielded the
most promising reduction in cellular metabolic activity, while
showing minimal effect on HSKF.

To substantiate the antiproliferative effects, we performed
Western blot (WB) analyses of members of the central MAPK
families. They play a central role by regulating the cell cycle
engine and other proliferation-related proteins (Bézivin et al.,
2004; Studzińska-Sroka et al., 2021; Zhang and Liu, 2002). In
addition, we measured AKT. In the context of cancer, Akt
signaling promotes tumor cell survival, proliferation, growth, and
metabolism by activating its downstream effectors. Both the PI3K/
Akt and theMEK/ERK pathways cooperate in tumor growth and are
involved in the development of therapeutic resistance in GBM cells
(Singh et al., 2023).

WB analyses revealed that EprACN and EA reduced the
expression and phosphorylation of ERK1/2 over time, explaining
the observed decrease in the metabolic activity in U-87 cells and
revealing an antiproliferative activity, as in most cells, sustained ERK
activation is required to induce cell cycle entry. In Glioma, an
aberrant activity of the RAS/MAPK/ERK pathway appears to
play a crucial role in the development of gliomas (Stachyra and
Grzybowska-Szatkowska, 2025). Even a large proportion of
resistance mechanisms are associated with reactivation of the
RTK/Raf/Ras/MEK/ERK pathway. Co-treatment with inhibitors
targeting these pathways is meanwhile regarded as a compelling
strategy to overcome resistance mechanisms in GBM (Yakubov
et al., 2025).

Another member of the MAPK-pathway, the so-called proto-
oncogene c-Jun, is also central to cancer-altered signalling: an
upregulated c-Jun was described for variable tumor cells,
specifically in brain tumors, contributing to its malignancy (Blau
et al., 2012). Blau et al. demonstrated that the accumulation of c-Jun
in tumors is regulated more translationally than transcriptionally
(Blau et al., 2012) corresponding to our data with the regulation of
c-Jun at the protein but not at the mRNA level.

EprACN and EA downregulated pAkt in a time- and dose-
dependent manner corresponding to the reduction in metabolic
activity in U-87 cells. This is particularly relevant, given that
overexpression and high phosphorylation of Akt correlate with
a poor prognosis in glioblastoma patients (Shahcheraghi et al.,
2020). Increased pAkt activates transcription factors by
phosphorylating GSK3β, leading to its inactivation and
subsequent translocation of β-catenin into the nucleus. Both
pathways, when activated independently, may contribute to
resistance (Manoranjan et al., 2020). Conversely, β-catenin also
induces the expression of Akt1 and Akt2 and the phosphorylation
of Akt (Zhong and Virshup, 2020). Transcription of WNT3 was
contradictorily upregulated by EA, indicating a limitation as a
single treatment at higher concentrations. Nevertheless, the
downregulation of Akt by EprACN and EA may contribute to
the enhanced sensitivity of U-87 cells to TMZ.

In our combinatory study, GE-profiling of U-87 cells revealed
the modulation of multiple components within the Wnt/β-catenin

pathway. Combination EA35TMZ320 reduced the transcription of
WNT5A, an upstream intracellular member (Yu et al., 2007; Chen
et al., 2021) known to play a pro-tumor role in glioma (Zuccarini
et al., 2018; Chen et al., 2021) to induce the migration of GBM cells
(Lee, 2016) to increase cell proliferation (Yu et al., 2007; Chen et al.,
2021) and to correlate with higher WHO histological glioma
classification grades (Alkailani et al., 2022). A Wnt5a knockdown
inhibited the activity of the GSK3β/β-catenin pathway related to
glioma-derived endothelial cell angiogenesis (Chen et al., 2021).

Frizzleds (FZDs) are transmembrane receptors (Alkailani et al.,
2022) inhibiting the β-catenin degradation complex (Shahcheraghi
et al., 2020). In glioma, FZD7 is upregulated, correlating with poor
patient outcomes (Zuccarini et al., 2018). The significant
downregulation of FZD7 GE by all combinations is promising.
Alike EA20TMZ380 significantly upregulated the GE of
CTNNBIP1, which prevents the interaction of β-catenin and TCF
(transcription factors) family members. Negative regulation of
CTNNBIP1 correlates with higher grades of glioma (Tong
et al., 2015).

To support the transcriptional findings, we measured the release
of Wnt inhibitory factor (WIF1) protein via ELISA. WIF1 binds to
Wnt-proteins, thereby inhibiting Wnt pathway signalling. Both
single metabolites and combinations increased the release of
WIF1 protein. In contrast, the combination of high
concentrations of EA (40 µM) and TMZ (≥380 µM) reduced
WIF1 releases, supporting the dose-dependent effects observed in
the GE analyses, where higher concentrations induced an
upregulation of WNT3. This inverse dose-dependent
WIF1 regulation underscores the importance of optimized dosing
to balance pathway modulation.

Cross-talks between signaling pathways are known to play a role
in resistance development f. e. Wnt/ß-catenin signaling activates
NF-kB in the cytoplasm, whereas Dvl inhibits NF-kB signaling in the
nucleus (Guo et al., 2024). Even more in breast cancer, NF-kB has
been confirmed to be a crucial link between resistance signaling
pathways (Zhao et al., 2021). Activated NF-kB promotes the
production of Wnt, ß-catenin, and ß-TrCP, which can lead to
cytokine storms up to death (Guo et al., 2024; Jang et al., 2021).
We did not measure NF-kB, but the gene expression of IL6, a
product of NF-kB, which can activate, via STAT3, cell survival,
proliferation, and inflammation (Guo et al., 2024). The resolution of
inflammation is regarded as a novel host-focused option to
complement existing therapies for glioma (Bazan et al., 2021).
IL6 is frequently upregulated in GBM, where it activates JAK/
STAT3 signaling to promote tumor cell survival, proliferation,
and therapy resistance, and contributes to an immunosuppressive
milieu (West et al., 2018). IL10 primarily exerts immunosuppressive
effects in the GBM microenvironment by inhibiting effective anti-
tumor immune responses and, in some contexts, directly enhancing
glioma proliferation via JAK–STAT3 activation (Widodo et al.,
2021). EprACN and TMZ increased the transcription of IL6 (RT-
PCR), and IL10 transcripts were detectable. However, we previously
observed that plant ingredients and acetylsalicylic acid stimulated
the GE of IL6 and IL10 under non-stress conditions, which turned
into an anti-inflammatory response under inflammatory conditions.
Such cytokine regulations may keep the immune-regulatory system
active and influence the cytokine release dynamics (Ulrich-
Merzenich et al., 2017). This hypothesis aligns with Ahmad
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et al.‘s proposition that the simultaneous expression of IL6 and
IL10 in tumor tissues improves the survival of breast cancer patients,
although underlying mechanisms remain unclear (Ahmad
et al., 2018).

We did not observe changes in the GE of IL4 and IL8. However,
both exert their most critical actions via crosstalk with immune and
endothelial cells. In a tumor-cell-only model, the roles of IL4 and
IL8 would likely appear less central compared to their significance in
the complex in vivoGBMmicroenvironment (Brat et al., 2005; Losur
et al., 2024).

Furthermore, the IL-17B/ IL-17RB pathway has been implicated
in tumorigenesis and resistance to anticancer therapies
(Briukhovetska et al., 2021). The IL-17A/F, binding to the
IL17RC receptor, demonstrated pro-tumoral effects
(Briukhovetska et al., 2021). Although its precise role in tumor
resistance remains unclear. Our RNAseq data revealed exclusive
expression of RNA encoding IL17RC in resistant U-87 cells treated
with high TMZ concentrations, suggesting that the IL-17 pathway
may contribute to the development of resistance in U-87 cells, a
finding warranting further study.

Brain-derived neurotrophic factor (BDNF), an endogenous
signaling molecule, is involved in the carcinogenesis of glioma
(Zheng and Chen, 2020), especially in tumor growth and
metastasis in neuroblastoma (Chen et al., 2016), whereas a
precursor of BDNF (proBDNF) plays a role in the modulation of
cell apoptosis (Xiong et al., 2013). In our study, EA35TMZ320 and
EprACN30 induced significant over-expression of BDNF without
activating GE of the PI3K and MAPK pathway members. We
hypothesize that such an effect does not induce cell growth or
counteract the reduction in metabolic activity seen in U-87 cells
upon different treatments.

GABAA forms a heterotetrameric complex (Huang et al.,
2022). The expression of subunits α, β, and γ-subfamilies
correlates with the malignancy grade of gliomas (Smits et al.,
2012). Patients with high GABAA receptor-associated protein
(GABARAPL1) expression levels were reported to have a lower
risk for metastasis (Le Grand et al., 2011). In MCF7 cells,
GABARAPL was demonstrated to inhibit Dvl2 (disheveled
segment polarity protein 2), an inhibitor of the β-catenin
degradation complex (Boyer-Guittaut et al., 2014). While TMZ,
EA, and TMZ-EA did not affect the GE of Dvl2, TMZ and EA
upregulated the GE of GABARAPL1. Thus, we suggest that the
downregulation of the Wnt signaling cascade observed in our
study is likely a direct effect onWnt signaling members rather than
through GABARAPL1.

5 Summary and conclusion

This study demonstrates the potential of lichen-derived
metabolites, particularly evernic acid (EA), to modulate key
pathways associated with TMZ resistance in U-87 cells,
suggesting a promising multitarget mechanism for future
investigation. EA reduced the metabolic activity of TMZ-resistant
U-87 cells, synergizing with TMZ to reduce viability by 75% at
optimized ratios. The prediction of ChemGPS that EA acts on
tubulin activity was supported by deep sequencing.
Mechanistically, EA suppressed GE of oncogenic Wnt/β-catenin

signaling while upregulating the protein expression of WIF1 as a
central inhibitor of Wnt-signaling. Combinatorial EA-TMZ
treatment further modulated MAPK/PI3K pathways, inhibiting
ERK1/2, c-Jun, and Akt phosphorylation, which are critical for
glioblastoma survival and resistance.

The discovery of IL17RC overexpression in resistant cells
underscores a novel pathway implicated in TMZ resistance,
warranting further exploration.

Even though present studies lack an in vivo validation, findings
form a base for subsequent validation in more complex models.
Future studies should clarify EA’s direct role in tubulin dynamics, its
influence on the IL-17 pathway, on established mechanisms of drug
resistance, such as MGMT promoter methylation status, DNA
repair pathways, or efflux transporter activity in primary patient-
derived cells, as well as in vivo, for example, in genetically engineered
glioma models (GEGMs) or orthotopic animal models including
pharmacodynamic and pharmacokinetic evaluations to explore
clinical translation of EA-TMZ combinations. Integrating
computational tools like ChemGPS-NP with multi-omics
approaches will accelerate the development of natural product-
based therapies to address refractory cancers. This work advances
the paradigm of combinatorial, mechanism-driven strategies to
disrupt resistance-associated pathways and enhance
chemosensitivity in oncology.
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