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Introduction: Lactylation, a post-translational modification characterized by the
attachment of lactate to protein lysine residues on proteins, plays a pivotal role in
cancer progression and immune evasion. However, its implications in immunity
regulation and prostate cancer prognosis remains poorly understood. This study
aims to systematically examine the impact of lactylation-related genes (LRGs) on
prostate cancer.

Methods: Single-cell and bulk RNA sequencing data from patients with prostate
cancer were analyzed. Data were sourced from TCGA-PRAD, GSE116918, and
GSE54460, with batch effects mitigated using the ComBat method. LRGs were
identified from exisiting literature, and unsupervised clustering was applied to
assess their prognostic siginificance. The tumor microenvironment and
functional enrichment of relevant pathways were also evaluated. A prognostic
model was developed using integrative machine learning techniques, with drug
sensitivy analysis included. The mRNA expression profiles of the top ten genes
were validated in clinical samples.

Results: Single-cell RNA sequencing revealed distinct lactylation signatures
across various cell types. Bulk RNA-seq analysis identified 56 prognostic LRGs,
classifying patients into two distinct clusters with divergent prognoses. The high-
risk cluster exhibited reduced immune cell infiltration and increased resistance to
specific targeted therapies. A machine learning-based prognostic signature was
developed, demonstrating robust predictive accuracy for treatment responses
and disease outcomes.

Conclusion: This study offers a comprehensive analysis of lactylation in prostate
cancer, identifying potential prognostic biomarkers. The proposed prognostic
signature provides a novel approach to personalized treatment strategies,
deepening our understanding of the molecular mechanisms driving prostate
cancer and offering a tool for predicting therapeutic responses and clinical
outcomes.
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Background

Prostate cancer (PCa) is a leading malignancy in men, is shaped
by a complex interplay of genetic, metabolic, and immunological
factors that drive its progression and therapeutic resistance (Chen
et al., 2021). The disease’s heterogeneity is reflected in its diverse
genetic landscape, with notable genomic alterations, including
TMPRSS2-ERG fusions and SPOP mutations, emerging in the
early stages (He et al., 2022). Next-generation sequencing has
revolutionized our understanding of PCa’s genomic landscape,
uncovering a range of genetic abnormalities that are linked to
disease progression and resistance to treatment (Fujita and
Nonomura, 2019; Guo et al., 2024). Recent studies highlight the
importance of metabolic shifts within the tumor microenvironment
(TME), particularly the roles of lactic acid and lactylation in
promoting cancer advancement and immune evasion (Zha
et al., 2024).

Lactylation, the covalent attachment of lactate to protein lysine
residues, is gaining recognition as a critical post-translational
modification (PTM) that bridges metabolism and epigenetics,
with profound implications for cancer biology (Brown and
Ganapathy, 2020; Lv et al., 2023). In PCa cells, metabolic
reprogramming in prostate cancer cells, characterized by the
Warburg effect, leads to a shift towards aerobic glycolysis,
resulting in lactate production even in the presence of oxygen
(Luo et al., 2022). While previously considered a metabolic
anomaly; lactate is now understood to function as a signaling
molecule and a regulator of gene expression through lactylation.
Once regarded solely as a byproduct of anaerobic metabolism,
lactate is now recognized for its roles in systemic metabolism,
cellular signaling, and as a substrate for oxidative metabolism in
other tissues (Li et al., 2022). In PCa, lactate metabolism and
lactylation contribute to immune evasion, angiogenesis, and the
modulation of tumor microenvironment (TME).

The TME in PCa is characterized by hypoxia and acidosis,
conditions that foster promote lactate accumulation (Liang et al.,
2024). Through its receptor GPR81, lactate exerts a significant
impact on cellular metabolism and tumor growth, independent of
monocarboxylate transporters, protons, and glucose metabolism (He
et al., 2024). Lactate also stabilizes hypoxia-inducible factor-1α (HIF-
1α), a key regulator of the hypoxic response, which in turn activates the
transcription of genes involved in tumorigenesis (Berglund et al., 2018).
Additionally, lactate influences the immunological landscape of PCa by
modulating immune cell function, facilitating immunosuppression and
immune evasion. Lactate accumulation in the TME acidifies the
environment, impairing T lymphocyte activity and inducing tumor-
associated macrophages (TAMs) to adopt a pro-tumorigenic
M2 phenotype (Luo et al., 2022).

This study provides a comprehensive analysis of lactylation-
associated data derived from single-cell and bulk RNA sequencing,
utilizing multiple databases to explore gene expression patterns. A
novel prognostic biomarker was developed based on lactylation-
related genes (LRGs). This biomarker evaluated the relationship
between the LRG signature and various clinical and pathological
features, as well as its correlation with PCa progression.
Additionally, this study investigated the signature’s association
with the TME, genetic mutations, and the effectiveness of
immuno- and chemotherapy with PCa. Lastly, the mRNA

expression profiles of top ten genes were valdated using ten
paired prostate cancer clinical samples.

Materials and methods

Data collection and processing

RNA-seq data and corresponding clinical information for TCGA-
PRAD were obtained from UCSC-XENA (https://xenabrowser.net/
datapages/). Gene microarray data and clinical details from
248 patients with PRAD in the GSE116918 cohort and 106 patients
in the GSE54460 cohort were retrieved from the Gene Expression
Omnibus (GEO) database. The ComBat method from the sva package
was applied to integrate and adjust for batch effects across the
GSE116918, GSE54460, and TCGA-PRAD datasets. Public cancer
databases, including GSCA (Liu et al., 2022), Tumor Immune
Dysfunction and Exclusion (TIDE) (Jiang et al., 2018), and TISCH2
(Han et al., 2022), were also utilized in the study. As the datasets were
publicly available, approval from an Ethical Review Committee and
informed consent were not necessary. Patients without prognostic
information or expression profiles were excluded from the analysis.
The single-cell sequencing dataset of GSE176031 was downloaded from
TISCH2, which included 19,969 genes and 15,339 cells. The filtered
dataset was further analyzed using the Seurat package, with PCA and
t-SNE applied for effective cell sample clustering. The COSG package
was utilized for detailed cell type annotation and key gene selection in
single-cell data (Dai et al., 2022). To identify genes linked to lactylation-
related genes (LRGs), 327 genes were compiled from previously
published studies (PMID37242427, PMID35761067.
Supplementary Table S1).

We also employed the Single-Cell Identification of Subpopulations
by Correlating with bulk Sample phenotypes (SCISSOR) method to
investigate, at single-cell resolution, how LRGS relates to prognostic
phenotypes, by jointly analyzing survival outcomes and transcriptomic
data from the combined cohort (Sun et al., 2022).

Unsupervised clustering of lactylation-
related genes

For unsupervised clustering of the LRGs, we utilized the
“ConsensusClusterPlus” R package (Wilkerson and Hayes, 2010).
Agglomerative clustering was conducted using a spearman
correlation distance metric was performed, with 80% of the
samples resampled for 10 repetitions. The optimal number of
clusters was determined using an empirical cumulative
distribution function plot. Kaplan-Meier analysis was performed
to assess the RFS (Recurrence Free Survival) of patients with PRAD
across different clusters.

Evaluation of the cell tumor
microenvironment and functional
enrichment of pathways

An immune landscape specific to patients with PRAD was
developed to explore the regulatory influence of the LRG score
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model on the TME. The immune gene signature encompasses the
expression of key immune checkpoints and the infiltration
characteristics of diverse immune cells. Gene signatures of
immune cells were sourced from seven different platforms using
the IOBR package: TIMER, CIBERSORT, CIBERSORT-ABS,
QUANTISEQ, MCPCOUNTER, XCELL, and EPIC (Zeng et al.,
2024). GO and KEGG pathway analyses were conducted using the
clusterProfiler package (v4.6.2) (Wu et al., 2021). Further, gene set
variation analysis (GSVA) and gene set enrichment analysis (GSEA)
were conducted using the GSVA package (v1.46.0) to assess the
various gene signatures (Hänzelmann et al., 2013).

Development of a prognostic model using
integrated machine learning techniques

To ensure a reliable identification of LRGs, 10 machine-learning
algorithms were integrated to enhance accuracy and stability. These
algorithms included various techniques such as random survival
forest (RSF), elastic network (Enet), Lasso, Ridge, stepwise Cox,
CoxBoost, partial least squares regression for Cox (plsRcox),
supervised principal components (SuperPC), generalized boosted
regression modeling (GBM), and survival support vector machine
(survival-SVM). The signature generation process involved: (a)
applying these algorithm combinations to the 56 identified
prognostic LRGs to build predictive models in the combined
cohort, and (b) cross-validating all models using separate datasets
(GSE116918, GSE54460, and TCGA-PRAD). The Harrell’s
concordance index (C-index) was computed for each model
across all validation datasets, and the model with the highest
average C-index was deemed as optimal.

Potential drug sensitivity analysis

The oncoPredict R package (Maeser et al., 2021) was used to
predict the chemosensitivity of patients with PRAD based on their
LRG Risk Score (LRGRS). This approach correlates patients’ tissue
gene expression profiles with those of cancer cell lines to estimate the
half-maximal inhibitory concentration (IC50). The Wilcoxon test
was employed to compare differences in drug IC50 value between
high- and low-risk groups, with statistical significance set at p < 0.05.

Collection of patient samples, RNA
extraction, and quantitative real-time PCR

The study was approved by the Ethics Committee of Sir Run
Shaw Hospital, Zhejiang University, with all patients providing
written informed consent. All procedures were performed in
accordance with the Declaration of Helsinki. Expression of LRGs
was assessed in 20 tissue samples collected from randomly selected
patients. The specimen collection process involved the following
steps: patient selection and consent, tissue collection, fixation,
embedding, sectioning, histopathological analysis, sample storage,
and RNA extraction. Tissue RNA was extracted using TRIzol
reagent (Invitrogen, CA, United States). First-strand cDNA
synthesis was performed using the HiFiScript cDNA Synthesis

Kit (CWBio), and real-time quantitative PCR (RT-qPCR) was
conducted using the SYBR Green method on a Roche
LightCycler® 480 System. Primer sequences used in this study are
listed in Table 1.

Statistical analysis

All statistical analyses were conducted using R software (version
4.4.1). A chi-squared test was used to compare clinical characteristics
between the training and internal validation sets. The Wilcoxon test, a
non-parametric method, was used to assess differences between
variables that did not follow a normal distribution. Differentially
expressed genes (DEGs) were evaluated for statistical significance
using FDR-corrected p-values. Biochemical recurrence-free survival
(BCR) among subgroups was compared using Kaplan-Meier survival
analysis and the log-rank test with the “survival” package in R.
Independent prognostic factors were analyzed using univariate and
multivariate Cox regression models. Model performance was evaluated
using ROC curve analysis and AUC calculation with the “timeROC”
package in R. Spearman’s correlation analysis was conducted to assess
the relationship between risk scores and immune cell infiltration. A
Student’s t-test was used to analyze qRT-PCR results. Statistical
significance was defined as p < 0.05, unless otherwise stated.

Results

Lactylation characteristic in single-cell
transcriptome

Single-cell RNA sequencing data from 34,155 PCa cellsusing were
anlyzed using the TISCH2 dataset. Dimensionality reduction was
performed on the top 2,000 variant genes via principal component
analysis (PCA) and t-distributed stochastic neighbor embedding
(t-SNE). Cells were clustered into 40 groups with a resolution of 0.8.
Ten primary cell clusters were identified based onmarker genes specific
to various cell types: CD8T, epithelial, fibroblasts, malignant, mast,
mono. macro, plasma, progenitor, and Treg cells (Figure 1A).
Differential gene expression is illustrated in the volcano plot
(Figure 1B), while the heatmap highlights the top five marker genes
for each cell population (Figure 1C). Functional enrichment analysis of
these cell types were analyzed based onHallmark, KEGG and Reactome
pathways (Figures 1D–F).

Lactylation activity was assessed using the “AddModuleScore”
function from the Seurat package to evaluate the expression levels of
a 257-gene set across various cell types (Figure 2A). Cells were
categorized into high- and low-lactylation groups based on their
lactylation activity (Figure 2B). Among the 9 cell types, CD8T and
malignant cells exhibited significantly higher lactylation activity
(Figures 2C–F).

Identification of lactylation patterns in bulk
RNA-seq

To enhance statistical power and diversity, the GSE116918,
GSE54460 and TCGA-PRAD datasets were integrated using the

Frontiers in Pharmacology frontiersin.org03

Zhou et al. 10.3389/fphar.2025.1634985

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1634985


ComBat method. Resulting in a merged cohort consisting of
15,245 genes and 822 patients. Univariate Cox regression
analysis was conducted to investigate the prognostic

significance of 327 LRGs. Fifty-six genes were found to be
significantly associated with RFS (P value <0.01, Figure 3A).
Unsupervised cluster analysis based on the 56 prognostic genes

TABLE 1 Primers of top ten LRGs.

Gene symbol Primer F Primer R

RBM17 AGTGGAGACCAGTGACTCAAA CTGGGGCGAGGACTGTACT

MTA1 ACGCAACCCTGTCAGTCTG GGGCAGGTCCACCATTTCC

PRAM1 GCAGCCTGAGTTGAGTACCTT GGCACGGACTTCTTAGGGAG

RACGAP1 ATGATGCTGAATGTGCGGAAT CGCCAACTGGATAAATTGGACTT

VIM GACGCCATCAACACCGAGTT CTTTGTCGTTGGTTAGCTGGT

MKI67 ACGCCTGGTTACTATCAAAAGG CAGACCCATTTACTTGTGTTGGA

MNDA AACTGACATCGGAAGCAAGAG CCTGATTCGGAGTAAACGAAGTG

CCNA2 CGCTGGCGGTACTGAAGTC GAGGAACGGTGACATGCTCAT

RBM10 ATGGAGTATGAAAGACGTGGTGG TCCCGGTAGTCGTGGTCTC

KIF2C CTGTTTCCCGGTCTCGCTATC AGAAGCTGTAAGAGTTCTGGGT

FIGURE 1
Single-cell RNA sequencing data analysis in PRAD cohort. (A) The results of the dimension reduction cluster analysis are shown in the t-SNE diagram.
(B) Violin plots showing the distribution of average log2 fold change in gene expression for significant genes across different cell types. (C) Heatmap
representation of gene expression profiles across various cell types. (D) Hallmark pathways, (E) KEGG pathways and (F) Reactome enrichment analysis
among different cell types.
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categorized samples from the combined cohort into two distinct
groups, Cluster A and Cluster B (Figure 3B). Survival analysis
revealed that Cluster B was associated with a worse prognosis
that Cluster A (P < 0.05, Figure 3C). Figure 3D presents a
boxplot illustrating the variations in prognostic genes
between Cluster A and Cluster B. The heatmap demonstrated
the association of prognostic genes expressions among age,
survival status and T stage in different clusters (Figure 3E),
suggesting a worse clinical outcome.

Differences in biological characteristics
between lactylation subtypes

Enrichment analysis for Cluster A and Cluster B was conducted
using the GSVA method, with five types of analyses performed.
Pathway enrichment analysis revealed that Cluster B was
significantly enriched in cancer-related pathways, including base
excision repair, DNA replication, DNA mismatch repair, cell cycle,
and integrated cancer pathways (Figure 4A). These results were

FIGURE 2
Lactylation characteristic in the single-cell transcriptome. (A) The activity score of lactylation in each cell types with t-SNE plot. (B) The high- and
low-lactylation score group with t-SNE plot. (C) The distribution of the lactylation score in different cell types. (D) The dotplot and (E) barplot of different
cell type percentage between high- and low-lactylation score. (F) The barplot of cell type percentage among different patients.
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consistent with the findings from Reactome and Biocart enrichment
analyses (Figures 4B–E). In contrast, Cluster A exhibited significant
enrichment in hallmark pathways such as estrogen response early,
apical surface, myogenesis, and androgen response (Figure 4D).
KEGG pathway analysis also indicated that Cluster A was enriched
in several metabolic pathways, including beta-alanine metabolism,
fatty acid metabolism, propanoate metabolism, tryptophan
metabolism, and drug metabolism via cytochrome P450 (Figure 4E).

Based on the principal component analysis (PCA) of
prognostic genes, the samples in merged cohort could be
divided into two cluster A and B (Figure 5A), aligning with the

results from Figure 3B. Immune cell analysis revealed that Cluster
B exhibited higher levels of activated B cells, activated CD4+ T cells,
activated CD8+ T cells, MDSCs, natural killer T cells, natural killer
cells, T follicular helper cells, Type 1 helper cells, and Type 2 helper
cells (Figure 5B), consistent with immune infiltration results from
eight different methods (Figure 5C). These biological
characteristics of function enrichment indcated that Cluster B
was activated in cancer related pathways, while Cluster A was
characterized by distinct metabolic states. Despite the activated
immune cells in Cluster B, the presence of immunosuppressive
cells was also notable.

FIGURE 3
Identification of lactylation related molecular subtypes and comprehensive pathway enrichment analysis in combined cohorts. (A) Forest plot
displaying the results of cox analysis shows 56 genes with prognostic value (Pvalue <0.01). (B) Consensus clustering matrixes was generated for values as
k = 2. (C) Kaplan-Meier survival curves for these two distinct clusters (p < 0.001). (D)Gene set enrichment analysis (GSEA) plot showing the enrichment of
gene sets in two clusters. (E) Heatmap of gene expression levels among different clinical characteristics (age, t stage, survival status).
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Construction of a prognosis signature based
on integrative machine learning

To develop a consensus LRG signature (LRGS), ten machine-
learning algorithms were employed to analyze 56 prognostic genes
identified via univariate Cox regression. A total of 101 prediction
models were applied to the merged dataset using tenfold cross-
validation, and C-index values were calculated for all training and
validation sets (Figure 6A). After extensive screening, the RSF model
was identified as the most accurate and clinically relevant predictive
model (Figure 6B). In the combined cohort, patients classified as
high-risk had significantly poorer RFS compared to those in the low-
risk category (p < 0.001, log-rank test). The GSE116918, GSE54460,
and TCGA-PRAD datasets further confirmed that RFS was
significantly improved in the low-risk group (p < 0.001, log-rank
test; Figure 6C). ROC curve analysis showed that the LRGS achieved
AUC values of 0.876, 0.853, and 0.793 for 1-, 3-, and 5-year intervals,
respectively (Figure 6D). The correlation between the prognostic
signature’s risk score and clinical characteristics revealed that higher
death rates and higher T stages were associated with higher risk
scores (Figures 7A,B). Univariate and multivariate Cox regression
analyses on the prognostic risk scores (PRS) within the combined
cohort identified LRGS as an independent prognostic factor for

patients with PRAD, with a hazard ratio of 1.108 (95% CI:
1.095–1.120, p < 0.001) (Figures 7C,D).

Molecular mechanisms underlying LRGS in
bulk transcriptomics

To further elucidate the molecular mechanisms linking the
LRGS with prognosis in PRAD, genes positively and negatively
correlated with risk scores were identified. Several genes, such as
TACC3, CDC20, TROAP, UBE2C, MYBL2 are positive associated
with risk score (Figure 7E), while genes such as RDH11, ACPP,
CTBS, RNF185, CPE are negative with risk score (Figure 7F).
Functional enrichment analysis was performed using the GSEA
method, revealing that the GO gene set was enriched in pathways
related to chromosome segregation regulation, mitotic spindle
checkpoint signaling, and spindle assembly checkpoint signaling
(Figure 7G). KEGG pathway analysis indicated gene enrichment in
pathways associated with the cell cycle (including cell cycle and
DNA replication) and immune processes (such as neutrophil
extracellular trap formation, NK cell-mediated cytotoxicity, and
Th17, Th1, and Th2 cell differentiation) (Figure 7H). Reactome
pathway enrichment analysis (Figure 7I) further confirmed these

FIGURE 4
The functional enrichment analysis results of GSVA methods between different clusters. The (A) wikipathway, (B) Reactome, (C) Biocarta, (D)
HALLMARK, and (E) KEGG pathways enrichment of cluster A and B groups.
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results, showing strong association with cancer-related biological
processes and immune-related pathways.

The correlation of immune
microenvironment and immune
characteristics with the LRGS

A series of algorithms were used to investigate the TME across
different risk score groups. The high-risk group exhibited reduced levels
of T cells, CD8T cells, cytotoxic lymphocytes, NK cells, monocytes, and
other immune cell types compared to the low-risk group (Figure 8A).
Additionally, expression levels of chemokines (such as CCL5, CCL8,
CCL16-18, CCL20-22), interleukins (such as IL10, IL11, IL12A-B, IL17,
IL23A, IL24, IL27, IL31), interferons (such as IFNA1, IFNB1), and
receptors were significantly different between the high- and low-risk
groups (Figure 8B). TIDE and dysfunction scores were calculated using
the TIDE dataset, indicating that the high-risk group exhibited elevated
dysfunction and TIDE scores, suggesting immune effector cell
exhaustion in high-risk samples (Figure 8C).

To address the malignant potential of PCa, this study explored
various drug databases to identify therapeutic agents tailored to
specific subtypes, focusing on the different risk score groups. The
high-risk group demontrated resistance to targeted therapies such as
erlotinib and gefitinib, but exhibited increased sensitivity to axitinib

(Figure 8D). This highlights potential therapeutic strategies for PCa
based on varying lactylation risk scores.

The correlation of the top ten hub genes
with single-cell characteristics

Given their cirtical roles in PCa, then we selected the top ten
genes, RBM17, MTA1, PRAM1, RACGAP1, MKI67, MNDA,
CCNA2,VIM,MNDA and RBM10 for further analysis. In
TISCH2 datasets, MNDA information is not found. Then we
only included other nine genes. The results showed that RMB17,
RBM10, MTA1, VIM and RACGAP1 were enriched in endothelial,
fibroblasts, epithelial and malignant (Figures 9A,B,D,E,I). As for
CCNA2, KIF2C, MKI67 and PRAM1 were enriched in monocytes,
macrophage and progenitor cells (Figures 9C,F–H). These findings
aligned with immune cell infiltration patterns identified through
various TME methodologies (Figure 8A).

To assess the prognostic relevance of LRGS, we performed Scissor
analysis, an integrative method that links single-cell transcriptomic data
with bulk-level phenotypes. By incorporating bulk RNA-seq expression
profiles and corresponding survival information from the merged
cohort, the Scissor algorithm classified single cells into three distinct
groups: Scissor + cells, associated with poorer prognosis; Scissor− cells,
linked to better survival outcomes; and background cells with no

FIGURE 5
The immune analysis results between different cluster. (A) The PCA plot of cluster A and B. (B) The immune cells distribution based on ssGSEA
algorithm. (C)Heatmap of tumor-related infiltrating immune cells based on TIMER, CIBERSORT, CIBERSORT-ABS, QUANTISEQ, MCPCOUNTER, XCELL,
and EPIC methods.
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significant phenotype association (Supplementary Figure S1). Notably,
macrophage/monocyte and fibroblast populations exhibited consistent
associations across different Scissor analysis iterations, underscoring
their potential roles in modulating prognostic phenotypes.

Analysis of the multi-omics characteristics
of the hub genes and validation of gene
expression in PRAD

Using the GSCA dataset, gene expressions levels of hub top
genes and associated with SNV percentage, CNV percentage,

methylation. The results demonstrated that MKI67 and KIF2C
had 5%, 2% SNV percentage. PRAM1, MNDA and RBM10 had
higher methylation levels (Figure 10A). The homozygous CNV
showed that MNDA, MKI67, RBM17, MTA1, VIM, RBM10 and
RACGAP1 had high homozygous amplication, CCNA2, MNDA,
MKI67, RBM17, MTA1, VIM and KIF2C had high homozygous
deletion. As for heterozygous CNV, these ten hub genes had high
heterozygous CNV (Figure 10B). Subsequcently, the correlation
between mRNA expression of ten hub genes and methylation,
CNV levels were explored. These ten hub genes, expect MKI67,
had significant difference with methylation (Figure 10C). As for the
correlation with CNV levels, only RBM17, KIF2C and RBM10 had

FIGURE 6
A consensus LRGRS was developed and validated via the machine learning-based combined procedure. (A) A total of 10 kinds of machine learning
via a tenfold cross-validation framework and further calculated the C-index of each model across all validation datasets. (B) The barplot of hub genes
based on forest trees methods. (C) Kaplan–Meier curves of OS according to the LRGRS in the GSE54460, GSE116918, TCGA-PRAD and combined
cohorts, based on the log-rank test. (D) The ROC curves in combined cohorts.
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significant difference (Figure 10D). The analysis revealed that the
majority of hub genes exhibited a positive correlation with
macrophages, Th1, Tr1, CD4 T cells, iTreg, DC, Tfh cells, as well
as CD4 naïve, Th17, and neutrophil cells (Figure 10E).

RT-qPCR was performed to assess the mRNA expression levels
of the ten hub genes in clinical samples using RT-qPCR.The results
indicated that the majority of signature genes (RBM17, MTA1,
RACGAP1, MKI67, CCNA2, RBM10 and KIF2C) were expressed at

FIGURE 7
The association of LRGRS and clinical features, functional enrichments between different risk groups. (A) The boxplot of overall status and riskScore.
(B) The boxplot of T stage and riskScore. The results of (C) univariate and (D)multivariate cox regression analysis. ThemRNA expression profiles of positive
genes (E) and negative genes (F) correlation with risk score. The GSEA results of GO (G), KEGG (H) and Reactome (I) signal pathways.
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FIGURE 8
Investigations of immune profiling, immune score and drug sensitivity. (A) Heatmap of tumor-related infiltrating immune cells based on TIMER,
CIBERSORT, CIBERSORT-ABS, QUANTISEQ, MCPCOUNTER, XCELL, and EPIC algorithms. (B) Heatmap of immune-related genes. (C) The immune
function scores based on TIDE dataset. (D) Estimated IC50 of the indicatedmolecular-targeted drugs. ns > 0.05, p < 0.05, **p < 0.01, ***p < 0.001, ****p <
0.0001. ns, no significance.
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higher levels in PCa tissues compared to adjacent normal
samples (Figure 10F).

Discussion

Recent estimates fromGLOBOCAN2024 indicate that PCa remains
a leading cause of cancer incidence and mortality, with significant
variations across different continents and among various ethnic
groups (Bray et al., 2024; Gizzi et al., 2024). This disparity highlights
the urgent need for a personalized approach to understanding,

diagnosing, and treating PCa. A thorough understanding of its
complexity is vital for developing individualized treatment strategies.
This study advances the understanding of lactylation, a crucial PTM that
influences gene expression and cellular metabolism in cancer cells (Li
et al., 2024; Zhang Q. et al., 2024; Zhou et al., 2023).

Our single-cell RNA sequencing analysis reveals significant cellular
heterogeneity within PCa, identifying distinct cell types exhibiting diverse
lactylation profiles. This cellular diversity mirrors the broader genetic and
metabolic heterogeneity of PCa, which is characterized by numerous
genomic alterations and extensive metabolic reprogramming (Baca et al.,
2013; Barbieri et al., 2012). The identification of LRGs as potential

FIGURE 9
The mRNA expression profiles top ten genes in single cell sequencing levels based on TISCH2 dataset. The mRNA expression profiles of (A) RBM17,
(B) RBM10, (C) CCNA2, (D) VIM, (E) MTA1, (F) KIF2C, (G) MKI67, (H) PRAM1 and (I) RACGAP1 in different PRAD datasets.
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prognostic biomarkers marks a key step toward personalized medicine,
enabling the stratification of patients based on LRG expression profiles.

Metabolic reprogramming, particularly the shift toward aerobic
glycolysis, is a hallmark of PCa cells. This shift, characteristic of the

Warburg effect, results in lactate accumulation, which, through
lactylation, can modulate gene expression and promote tumor
growt (Zhang X. et al., 2024; Pan et al., 2024). These insights
into the immunomodulatory effects of lactate provide a rationale

FIGURE 10
The association of genemutations, CNV,methylation, immune infiltration andmRNA expression profiles in TCGA-PRAD, and validation in ten paired
clinical samples. (A) The summary of SNV percentage, CNV percentage and methylation difference. (B) The homozygous and heterozygous CNV of
TCGA-PRAD. The correlations between of top ten genes mRNA expression with methylation (C), CNV (D) and immune infiltration (E). (F) qRT-PCR
analysis of hub genes expression in prostate cancer and paired adjacent normal tissues based on patient samples from Sir Run Run Shaw Hospital.
ns > 0.05, p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. ns, no significance.
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for targeting lactylation as part of immunotherapeutic
strategies for PCa.

The TME plays a pivotal role in cancer progression, and our study
demonstrates that lactate can profoundly influence the immune
landscape within this environment. Lactate-induced acidification of
the TME impairs T lymphocyte function and promotes the polarization
of TAMs toward the protumorigenic M2 phenotype (Loeb et al., 2014).

These insights into the immunomodulatory effects of lactate
provide a rationale for targeting lactylation as part of
immunotherapeutic strategies for PCa.

The prognostic biomarker developed in this study, based on LRGs,
offers a novel method for predicting treatment response and disease-free
survival in patients with PCa. The use of machine learning algorithms to
identify this biomarker emphasizes the potential of integrating
computational methods with biological data to propel personalized
medicine (Zeng et al., 2024). The identification of key genes such as
TACC3, CDC20, and UBE2C, which are positively correlated with risk
scores, lays the groundwork for further investigation into the molecular
mechanisms underlying lactylation’s role in PCa.

The correlation between lactylation status and the immune
microenvironment indicates that high-risk groups may exhibit a
reduced presence of immune cells, potentially contributing to
treatment resistance. This observation, coupled with the finding that
high-risk groups may be more resistant to certain targeted therapies but
show sensitivity to others, such as axitinib, underscores the critical need for
personalized treatment strategies (Barbieri et al., 2012; Bray et al., 2018).

In summary, this study provides an in-depth analysis of lactylation
in PCa, emphasizing its roles in tumor biology, immune evasion, and
prognosis. The identification of LRGs as a prognostic biomarker, along
with insights into their molecular mechanisms, forms the basis for the
development of novel therapeutic strategies (Pan et al., 2024). Future
research should aim to validate these findings in larger patient cohorts
and explore lactylation as a potential therapeutic target. Personalized
treatment strategies based on lactylation profiles have the potential to
revolutionize PCamanagement, ultimately improving patient outcomes.

Conclusion

This study comprehensively analyzed LRGs in PCa through single-
cell and bulk RNA sequencing data. This multifaceted approach enabled
the identification and characterization of LRG expression patterns across
various cell types within the TME. The prognostic significance of these
genes was confirmed by classifying clinical samples into two distinct
subtypes, each associated with different tumor-related pathways,
metabolic processes, and immune profiles. A machine learning-based
prognostic signaturemodel was developed, demonstrating high accuracy
and offering new insights into personalized treatment strategies for PCa.
This innovative model enhances our understanding of the molecular
mechanisms driving PCa and provides a valuable tool for predicting
treatment response and disease outcomes, ultimately facilitating more
effective clinical management.
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Balloonplot shows the proportation of cells based on cox methods. (C)
tSNE plot shows the LRGS high and low phenotypes. (D) Balloonplot shows

the proportation of cells based on logistic methods. (E) The proportation of
cells among survival and LRGS phenotypes.
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