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Peritoneal Dialysis (PD) requires a healthy and functional peritoneal membrane
for adequate ultrafiltration and fluid balance, making it a vital treatment for
patients with end-stage renal disease (ESRD). The spectrum of PD-associated
peritoneal fibrosis encompasses a diverse range of collective mechanisms:
peritoneal fibrogenesis, epithelial to mesenchymal transition (EMT), peritonitis,
angiogenesis, sub-mesothelial immune cells infiltration, and collagen deposition
in the sub-mesothelial compact zone of the membrane that accompany
deteriorating membrane function. In this narrative review, we summarize the
repertoire of current knowledge about the structure, function, and
pathophysiology of the peritoneal membrane, focusing on biomolecular
mechanisms and signalling pathways that potentiate the development and
progression of peritoneal fibrosis. The article suggests future directions that
could enhance our comprehension of the relationship between peritoneal
membrane dysfunction and its fibrosis to elucidate the promising targets for
therapeutic interventions. A thorough understanding of early events in
pathophysiology closely associated with the inflammatory events in peritoneal
fibrosis is the logical starting point for identifying new targets rather than
concentrating on more downstream effects. Biomarkers are essential for
monitoring the progression of peritoneal fibrosis and evaluating the
effectiveness of therapeutic interventions. Biomarkers are evolving in concert
with new targets and novel agents, and biomarker outcomes offer a means of
monitoring the peritoneal membrane’s health. Recent approaches to reducing
the etiologies of peritoneal membrane dysfunction, the impact of fibroblast
switch, and peritoneal membrane events perturbing fibroblast function are
explored and suggest using unique, effective therapeutic strategies to target
peritoneal fibrosis and associated complications.

KEYWORDS

peritoneal fibrogenesis, epithelial to mesenchymal transition, biomechanical injury in
peritoneal membrane, epigenetics and altered gut microbiome, peritoneal dialysis
solutions and inflammation, peritonitis and peritoneal angiogenesis, Smad/non-Smad
signaling, biomarkers

OPEN ACCESS

EDITED BY

Marco Allinovi,
Careggi University Hospital, Italy

REVIEWED BY

Manuel Lopez-Cabrera,
Spanish National Research Council (CSIC),
Spain
Luciano D’Apolito,
BioGeM Institute, Italy

*CORRESPONDENCE

Narayan Prasad,
narayan.nephro@gmail.com

Saurabh Chaturvedi,
saurabhchaturvedi267@gmail.com

Harshit Singh,
rajatharsh@gmail.com

†These authors have contributed equally to this
work and share first authorship

RECEIVED 26 May 2025
ACCEPTED 14 July 2025
PUBLISHED 22 August 2025

CITATION

Prasad N, Chaturvedi S, Singh H, Udumula MP,
Rawat A, Jeyakumar M, Jaiswal A, Kumar S and
Agarwal V (2025) Peritoneal Dialysis -Associated
Fibrosis: Emerging Mechanisms and
Therapeutic Opportunities.
Front. Pharmacol. 16:1635624.
doi: 10.3389/fphar.2025.1635624

COPYRIGHT

© 2025 Prasad, Chaturvedi, Singh, Udumula,
Rawat, Jeyakumar, Jaiswal, Kumar and Agarwal.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Pharmacology frontiersin.org01

TYPE Review
PUBLISHED 22 August 2025
DOI 10.3389/fphar.2025.1635624

https://www.frontiersin.org/articles/10.3389/fphar.2025.1635624/full
https://www.frontiersin.org/articles/10.3389/fphar.2025.1635624/full
https://www.frontiersin.org/articles/10.3389/fphar.2025.1635624/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2025.1635624&domain=pdf&date_stamp=2025-08-22
mailto:narayan.nephro@gmail.com
mailto:narayan.nephro@gmail.com
mailto:saurabhchaturvedi267@gmail.com
mailto:saurabhchaturvedi267@gmail.com
mailto:rajatharsh@gmail.com
mailto:rajatharsh@gmail.com
https://doi.org/10.3389/fphar.2025.1635624
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2025.1635624


Key points

• New data supporting the hypothesis that biomechanical
injuries, epigenetics, and gut microbiome leads to
peritoneal membrane dysfunction that potentiate systemic
peritoneal inflammation and fibrosis.

• Information highlighting the evolving paradigm and outlining
the novel modifications in Peritoneal Dialysis solutions
supporting dialysis modification by the putative treatment.

• Advances in knowledge about the potential pharmacological/
stem cell therapy interventions on canonical/non-canonical
pathways involved in peritoneal membrane fibrosis.

• Identifying novel targets and developing corresponding
therapeutics offer an essential means of advancing new
treatments for Peritoneal Fibrosis.

1 Peritoneal Fibrosis- an overview

Peritoneal dialysis (PD) is a well-known alternative to
haemodialysis (HD) and a cost-effective method of renal
replacement therapy in patients with end stage renal disease
(ESRD), which is a global health burden (Thurlow et al., 2021).
Approximately 11% of ESRD patients receive PD worldwide,
making PD an important intervention in the management of
ESRD (Thurlow et al., 2021; Balzer, 2020; Bello et al., 2022).
Long-term PD induces peritoneal fibrosis in approximately 40%
of the patients (Baroni et al., 2012). During PD, solute and water
transport occur across the peritoneal membrane, which includes
peritoneal mesothelial cells (PMCs), an interstitial matrix with
fibroblasts and collagen, lymphatics, and a dense microvascular
network (Morelle et al., 2023; Aroeira et al., 2007). Progressive
damage to the peritoneal membrane during long-term PD impairs
solute clearance, fluid balance, and membrane transport properties,
often leading to ultrafiltration (UF) failure and technique dropout.
Approximately 25% of PD patients experience severe fluid overload,
primarily due to membrane failure, mechanical complications, and
increased susceptibility to infections such as PD-related peritonitis
(Htay et al., 2018; Morelle et al., 2021; Van Biesen et al., 2011; Lan
et al., 2016). Long term exposure results in structural and functional
alterations, including loss of peritoneal mesothelial cells (PMCs),
submesothelial fibrosis, vasculopathy with luminal narrowing,
angiogenesis, and persistent inflammation, all contributing to
membrane dysfunction and PD failure (Williams et al., 2003).
Therefore, the longevity of PD is limited and most PD patients
eventually switch to Haemodialysis (HD) within a few years.

Acidic and hypertonic PD solutions trigger biochemical changes
in the extracellular matrix and alter PMC phenotypes, promoting
peritoneal fibrosis—the final stage of membrane remodeling (Terri
et al., 2021; Zhou et al., 2016). A key mechanism in this process is
epithelial-to-mesenchymal transition (EMT), where PMCs lose their
epithelial characteristics and acquire a mesenchymal, fibroblast-like
phenotype with increased motility and invasiveness (Wilson et al.,
2020). The transformation of PMCs, fibroblasts into myofibroblasts
is mediated by Transforming Growth Factor β1 (TGF-β1) (Wilson
et al., 2020). TGF-β1 induces EMT transition primarily through the
SMAD2/3 pathway, as well as non-canonical pathways including
RAS/RAF/MEK/ERK, PI3K/AKT/mTOR, and STAT3 signalling

(Wilson et al., 2020; Wilson, 2018). The above signalling
pathways triggers inflammatory cascade leading to the
production of numerous inflammatory cytokines, pro-fibrotic
molecules, Interleukin (IL)-1ß, IL-6, tumour necrosis factor α
(TNF-α) Monocyte Chemoattractant Protein-1 (MCP-1),
Connective Tissue Growth Factor (CTGF), Platelet-Derived
Growth Factor (PDGF) and Vascular Endothelial Growth Factor
(VEGF) in the membrane (Balzer, 2020; Terri et al., 2021; Strippoli
et al., 2016; Mutsaers et al., 2016), The above injurious agents lead to
a life-threatening complication of long-term PD, encapsulating
peritoneal sclerosis (EPS), occurring in 14%–15% of the patients
(Terri et al., 2021; Strippoli et al., 2016). This inflammatory response
cause degeneration of peritoneal membrane structure and function
(Zhou et al., 2016; Liu et al., 2022; Fung et al., 2020; Kim et al., 2019;
Budi et al., 2017). Figure 1 explains the induction of progressive
peritoneal fibrosis during long-term exposure to bio-incompatible
PD solutions.

The current comprehensive review provides information that
assists in elucidating the recent advances in the pathophysiology
involved in peritoneal fibrosis and explores the molecular
mechanisms and pathways in treating or preventing the same.
Therefore, in view of current medical requirements, herein we have
discussed effective therapeutic approaches and pharmacological
interventions selectively targeting the molecular activation of
fibroblasts during fibrosis which warrant further investigations.

2 Methods

We searched PUBMED for that reported peritoneal membrane
inflammation and fibrosis linked to long-term peritoneal dialysis,
containing in vitro and in vivo, as well as preclinical and clinical
studies. We limited the search to articles published in English and
also included previous relevant research (1998–2025).

3 Mechanisms involved
Peritoneal Fibrosis

Multiple lines of evidence point to the importance of mechanisms
involved in the peritoneal membrane alterations described as EMT of
PMCs and generation ofmyofibroblasts, which play a characteristic role
in the subsequent functional deterioration of the peritoneal membrane
(Terri et al., 2021; Strippoli et al., 2016). Peritonealmembrane injury can
result in EPS, a serious complication of peritoneal fibrosis with potential
fatalmanifestation characterized by ultrafiltration failure, inflammation,
severe peritoneal thickening, fibrin deposition, and calcification (Park
et al., 2008). Plasma exudation from peritoneal microvessels causes
fibrin deposition, which is the pathological feature of EPS (Kawaguchi
et al., 2000; Honda and Oda, 2005). PMCs loss, impaired fibrinolysis,
submesothelial myofibroblasts proliferation, collagen and AGE
accumulation in the submesothelial layer are the main features of
EMT in EPS (Wilson, 2018; Del Peso et al., 2008). At present, the
pathogenesis of peritoneal fibrosis has not been fully elucidated. Factors
such as activation of myo-fibroblasts, EMT of PMCS, biomechanical
injuries, epigenetics and gut microbiota, bioincompatible PD fluid-
induced sterile inflammation, peritonitis, peritoneal angiogenesis are all
involved in the occurrence of peritoneal fibrosis.
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3.1 Peritoneal Fibrosis: the fibroblasts switch
and epithelial to mesenchymal transition of
peritoneal mesothelial cells

Fibroblast activation is a normal component of wound healing;
however, in PD patients, it becomes persistent and leads to the
accumulation of activated myofibroblasts that alters the healthy
structure and function of the peritoneal membrane, thus hindering
the effective treatment (Strippoli et al., 2020; Pap et al., 2020). EMT,
a complex biological process in the peritoneal membrane, involves
the transformation of PMCs which lose epithelial phenotype (apical,
basal polarity) and detach from characteristic basement membrane/
ECM attachment, and acquire myofibroblast-like cells
characteristics such as invasive ability and mesenchymal
phenotype (Figure 2) (Wilson et al., 2020; Yáñez-Mó et al., 2003).

Cellular trans-differentiation is a complex phenomenon that
converts epithelial cells into mesenchymal cells. This biological
process, called EMT, depends on the extracellular environment
rather than the genome (Stone et al., 2016). EMT results in the
loss of cell polarity and junctions and the gain of fibroblastic shape
and invasiveness (Figure 3) (Stone et al., 2016). EMT occurs in both

physiological (e.g., organogenesis, development, wound healing, and
regeneration) and pathological (e.g., fibrosis, metastasis) conditions
(Leggett et al., 2021). PMCs migrate and proliferate on the serosal
lining (Tsai et al., 2018) and differentiate into myo-fibroblasts
(EMT), which may promote fibrotic conversion (Sandoval et al.,
2016) Changes in the gene expression and phenotype of PMCs,
making them deposit more collagens and fibronectin and increasing
their motility, which facilitate the development of peritoneal fibrosis
(Strippoli et al., 2016).

EMT may play a pivotal role in the early decline of UF capacity,
which constitutes the most critical functional impairment during the
initial years of PD. A significant correlation has been established
between UF efficiency and the dialysate-to-plasma (D/P) creatinine
ratio, indicating a shared pathophysiological mechanism (Krediet,
2024; Davies, 2004). However, in many cases, the degree of UF
impairment exceeds what would be anticipated based solely on D/P
creatinine values (Krediet, 2024). This paradox—characterized by
increased solute transport (elevated D/P creatinine) alongside
diminished UF—is a hallmark of UF failure secondary to
peritoneal fibrosis (Del Peso et al., 2008). The net consequence is
fluid overload in PD patients, despite apparent solute equilibration,

FIGURE 1
Mechanisms involved in peritoneal fibrosis. During long term PD peritoneal membrane is exposed to various insults that cause inflammation and injury such as,
PMCs, ECs,macrophages andneutrophils produce variousproinflammatory cytokines andgrowth factors. After activation, recognitionprocessof bacterial pathogens
occurs via TLRs, then after they undergo activation of the nuclear factor-kappa B (NF-kB) signalling pathway. This leads to the secretion of various inflammatory
cytokines, including IL-6, IL-1β, IL-8, TNF-α, MCP-1, andMIP 2. These factors induce EMT process of PMCs, which results in fibroblast-like cells transformation
that secreteECM.Theyalsoelicit chronic inflammationandangiogenesis in theperitoneal cavity. Theaboveprocesses contribute to theproliferationoffibroblasts and
collagendeposition,whichcause the thickening and stiffeningof theperitoneum leading to peritoneal fibrosis. Abbreviations: PD, PeritonealDialysis; PMCs, Peritoneal
Mesothelial Cells; ECs, Endothelial Cells; TLRs, Toll Like Receptors; IL, Interleukins; EMT, Epithelial to Mesenchymal Transition; ECM, Extracellular Matrix.
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underscoring the dissociation between solute and water transport in
the fibrotic peritoneal membrane.

In addition, during EMT, changes in cell membrane receptors,
signaling molecules such as TGF-β1, Src, Hypoxia-inducible factor
(HIF-1α), and cell morphology and behavior occurs (Wilson et al.,
2020). EMT involves complex pathological cross-talk among PMCs,
endothelial cells, immune cells, and resident fibroblasts (Strippoli
et al., 2020). TGF-β1, is constitutively expressed by the PMCs and
plays a major role in the maintenance of a transformed,
inflammatory micro-environment in peritoneal membrane
(Wilson, 2018). It enhances HIF-1α expression, which drives cell
growth, extracellular matrix production and cell migration (Wilson,
2018). Importance of pro-fibrotic, TGF-β1 signalling during EMT of
PMCs has been demonstrated by using TGF-β receptor inhibitor
GW788388 on the EMT signalling pathway (Lho et al., 2021).
Therapeutic Interventions targeting EMT process are detailed
in Table 1.

3.2 Biomechanical Lesions

Mechanotransduction, the process of transforming mechanical
signals into biochemical events, along with extracellular biochemical
factors, regulates various cellular functions and is crucial during
development, physiological and pathological conditions (Terri et al.,
2021; Strippoli et al., 2020; Orr et al., 2006; Santos and Lagares,
2018). Biomechanical alterations of the ECM, including increased
ECM rigidity or forces of varying strengths and dynamic
characteristics, modulate form and the functions of cells with an

inevitable impact on the cellular behavior and therefore drive
distinct fibrotic signaling pathways (Orr et al., 2006; Santos and
Lagares, 2018; Chen, 2008). PD requires the infusion of large
amounts of PD solutions into the peritoneal cavity, which
exposes the peritoneal membrane to biomechanical forces. These
forces include mechanical stretch of PMCs and augment intra-
abdominal pressure. Additionally, reports state that abdominal
surgeries can drive fibrotic conversion pertaining to the vast
majority of adhesion myofibroblasts which arise from surface
mesothelium followed by EMT process which may induce
biomechanical injury to the peritoneal membrane leading to
peritoneal adhesions formation (Sandoval et al., 2016; Zindel
et al., 2021). Proliferation and migration of mesothelial cells is
promoted by receptor tyrosine kinases of the ERBB family,
Epidermal Growth Factor Receptor (EGFR), which is
documented to be involved in post-surgical peritoneal adhesions
(Zindel et al., 2021). Mechanical injury and hypoxia identified by
injured surface mesothelium expressing podoplanin (PDPN)/
mesothelin (MSLN) and upregulation of hypoxia-inducible factor
1 alpha (HIF1α) are involved in the fibrotic process and the
development of peritoneal adhesions suggested in an in vivo
study (Tsai et al., 2018).

3.3 Epigenetics and Gut Microbiome: the
dynamic duo behind peritoneal fibrosis

Peritoneal fibrosis, which is caused by inflammation, infection,
or long-lasting dialysis, leads many patients to discontinue PD,

FIGURE 2
Peritoneal fibroblast-myofibroblast trans differentiation and its implications for peritoneal fibrosis. Conversion is the key process involved in
peritoneal fibrosis in which expression of alpha smoothmuscle actin aswell as of focal adhesions is increased. After conversion, synthesis and secretion of
extracellular matrix proteins take place leading to decreased expression of MMPs and increased expression of TIMPs. Abbreviations: MMPs, Matrix
metalloproteinases; TIMPs, Tissue inhibitors of metalloproteinases.
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however, its mechanism is unclear. Epigenetic shifts are involved in
peritoneal fibrosis, and emerging evidence indicates that epigenetic
interventions could help ward off and treat peritoneal fibrosis in
practice (Tsai et al., 2018; Wang et al., 2021). Epigenetic regulation
in peritoneal fibrosis is complicated, mainly affecting the changes of
signalling molecules, transcriptional factors, and genes (Tsai et al.,
2018; Wang et al., 2021). The primary epigenetic transformations
include, changes in the expression and activity of genes (such as
DNA methylation, histone modifications), and different types of
non-coding RNA molecules (such as microRNAs (miRNAs), long
non-coding RNAs, and circular RNAs) can also play a role in the
development of peritoneal fibrosis (Tsai et al., 2018; Sandoval et al.,
2016; Wang et al., 2021; Guo et al., 2020). HDAC inhibitors are
discussed in Table 1 and 2. The development of peritoneal fibrosis
(PF) is significantly influenced by non-coding RNAs, particularly
microRNAs (miRNAs) and long non-coding RNAs (lncRNAs).
miRNAs are known to regulate key molecular pathways involved
in PF and are increasingly being recognized as potential diagnostic
biomarkers and therapeutic targets (Sandoval et al., 2016; Guo et al.,
2020; Huang et al., 2023). For instance, miR-15a-5p is found to be
downregulated in long-term PD patients, suggesting a role in fibrosis
progression. Beyond this, a range of other miRNAs—including miR-
199a-5p, miR-214-3p, miR-153-3p, miR-129-5p, miR-21, miR-30a,
miR-145, miR-30b, miR-200, miR-302c, miR-34a, and miR-

29b—have been reported to interact with hypoxia-inducible
factor-1α (HIF-1α), a key regulator in fibrotic signaling (Sandoval
et al., 2016; Guo et al., 2020). Concurrently, growing evidence
suggests that lncRNAs also contribute to the pathogenesis of
peritoneal fibrosis, although their precise mechanisms remain
under investigation. As research in this field advances, it is
crucial to identify practical approaches for targeting these non-
coding RNAs to improve peritoneal fibrosis diagnosis
and treatment.

Recent study gives a rational basis and underscores the likely
role of gut microbiota dysbiosis in peritoneal fibrosis (Lho et al.,
2021; Stepanova, 2023). Compared to healthy controls, PD patients
had less Actinobacteria and Firmicutes in their faecal microbiota,
with a notable decrease in Bifidobacterium and Lactobacillus, and
more Pseudomonas aeruginosa, according to a study by Wang et al.
(2012). By lowering the pH through the production of acetic acid
and lactic acid, Bifidobacterium and Lactobacillus influence the host
positively, either by preventing the growth of pathogenic bacteria or
by competing with them for nutrients and adhesion sites (Wang
et al., 2012). ESRD induced alterations in the gut microbiota
compromise the intestinal barrier and facilitate the translocation
of microbial components and endotoxins into the systemic
circulation and peritoneal cavity. Dorea, Clostridium, and SMB53
are related to chronic low-grade inflammation, oxidative stress, and

FIGURE 3
Transition of PMCs fromepithelial tomesenchymal state. The epithelial andmesenchymal cell markers arementioned in the above figure. Peritoneal
mesothelial cells of PM explicit epithelial markers such as cytokeratin, ICAM1, E-cadherin. Also, during EMT leadingmesenchymal cells are noted because
of epithelial markers downregulation and upregulation of mesenchymal markers like α-SMA, fibronectin, vimentin, FSP-1. The epithelial and
mesenchymal cell markers are mentioned in the above figure. Peritoneal mesothelial cells of PM explicit epithelial markers such as cytokeratin,
ICAM1, E-cadherin. During EMT, mesothelial cells experience a decrease in the expression of epithelial markers, including E-cadherin, enhancing the
expression of mesenchymal markers like α-SMA, fibronectin, vimentin, FSP-1. As a consequence, cells acquire invasive capacities and reach the sub-
mesothelial stroma, where they produce extracellular matrix—but also inflammatory and angiogenic—factors, promoting peritoneal oxidative stress,
inflammation and, finally, fibrosis, affecting peritoneal transport of water and solutes and resulting in ultrafiltration failure. Abbreviations: PD, Peritoneal
Dialysis; PMCs, Peritoneal Mesothelial Cells; ZO-1, Zona Occludens 1; ICAM1, Intercellular Adhesion Molecule 1; MUC1, transmembrane glycoprotein
mucin 1; α-SMA, Alpha Smooth Muscle Actin; FSP-1, Fibroblast Specific Protein -1.

Frontiers in Pharmacology frontiersin.org05

Prasad et al. 10.3389/fphar.2025.1635624

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1635624


TABLE 1 Pharmacological interventions in fibroblasts conversion/EMT/MMT.

Approaches Mechanism of
action(s)

Target(s) PD model(s) References

GW788388 (TGF-β1 Receptor
Inhibitor)

TGF-βI, ALK4, ALK7, TGF-βII
receptor inhibition, Inhibition of
conversion of mesothelial cells
phenotype to intermediatory cells
phenotype during MMT,
Improved peritoneal membrane
integrity and function, reduced
fibrosis and inflammation

TGF-βI, ALK4, ALK7, and TGF-
βII receptors

HPMCs from omentum of
biopsy proven patients with
stomach cancer, Mice model of
PF (0.1% CG and 15% ethanol
dissolved in PBS were injected
i.p. into mice every other day
and oral gavage using 30%
PEG400, 0.5% Tween 80, and
propylene glycol in water
(0.2 mL/body) was performed
daily)

Wilson et al. (2020), Lho et al.
(2021)

BMP-7 Blocks TGF-β1 driven MMT;
Inhibition of conversion of
mesothelial cells phenotype to
intermediatory cells phenotype
during EMT, reduced fibrosis and
inflammation

TGF-βI/Smad signalling,
Receptors of Glucose and
Degradation Products

Rats were daily instilled with
PD fluid for 5 weeks, HPMCs
from omentum undergoing
elective abdominal surgery,
Combo model of PF and CKD
with severe uremia in Wistar
rats. PF induced by
i.p. injections
of CG, CKD by an adenine-rich
diet

Loureiro et al. (2010), Yu et al.
(2009), Silva et al. (2019)

Tamoxifen Inhibits MMT, production of
matrix components, preservation
of fibrinolytic capacity of PMCs,
decreased invasion capacity of
PMS, suppression of EPS
associated with PD, reduced
peritoneal membrane thickness,
improved peritoneal function for
decreased solute transfer rate

Receptors of Glucose and GDPs,
TGF-βI receptor, Snail
signalling, MMT markers
(fibronectin, type I-collagen, α-
SMA, MMP-2), VEGF, Leptin,
ESR1, H19 promoter and p300,
VEGF-A

Combo model of PF and CKD
with severe uremia in Wistar
rats. PF induced by
i.p. injections of CG, CKD by
an adenine-rich diet, HPMCs
obtained from omentum
undergoing elective abdominal
surgery. C57BL/6 mice daily
instilled with 1.5 mL of
standard PD fluid (4.25%
glucose and buffered with
lactate), HPMCs were cultured
from PD effluent with dwell
times ranging from 7 to 10 h

Wilson et al. (2020), Silva et al.
(2019), Loureiro et al. (2010),
Loureiro et al. (2013), Zhao
et al. (2023)

Rapamycin (mTOR inhibitor) Inhibits Endo-MT, partial MMT,
reduced peritoneal membrane
thickness, angiogenesis,
improved peritoneal UF rate

VEGF-C, VEGF-D, TNF-α,
TGF-βI, CD31and FSP1 in the
submesothelial cell layer in the
compact zone, Tubulin

C57BL/6 mice daily instilled
with 2 mL of standard PD fluid
composed of 4.25% glucose
and buffered with lactate,
HPMCs obtained from
omentum undergoing elective
abdominal surgery

González-Mateo et al. (2015)

β-catenin inhibitor (ICG-001)
WNT antagonist (DKK-1)

Blocks MMT, Reduced
Angiogenesis, mitigation of
PMCs injury, better membrane
function

WNT1, WNT2, WNT4, VEGF,
E-Cadherin, β-catenin, GSK-3β,
c-MYC, MMP7, SFRP, DKK

WNT1 protein expression in
peritoneal effluents of PD
patients and WNT gene
expression in PMCs from PD
patients, C57BL/6 mice
i.p. injection of AdTGF- β
along with elements of the
WNT signalling pathway,
HPMCs cell line HMrSV5

Padwal et al. (2018)

Astragalus Inhibits EMT, inflammation,
fibrosis

Wnt/β-catenin signalling, MMT
Markers (E Cadherin, α-SMA,
Vimentin), GSK-3β, Smad7

HPMCs cell line HMrSV5, rat
model of PD i.p. injection of
standard PD fluid composed of
4.25% glucose and buffered
with lactate at 100 mg/kg/day
for 35 days

Yu et al. (2018)

Curcumin Suppresses EMT, inflammation,
fibrosis, reduced migration and
invasion of PMCs

MMT Markers (E Cadherin, α-
SMA), ECM proteins (Type
1 collagen and Fibronectin),
TGF-βI, phosphorylated-TAK1,
JNK and p38 pathway

HPMCs cell line HMrSV5 Zhao et al. (2019)

Metformin Block mtDNA release and
inhibits EMT, reduced

Primary HPMCs and animal
model of PD. Dialysis solution

Shin et al. (2017)

(Continued on following page)
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immune responses within and beyond the peritoneum, peritonitis in
ESRD patients on PD (Wang et al., 2012; Stadlbauer et al., 2017; Luo
et al., 2021).

A study revealed, in PD patients, uremic toxins such as indoxyl
sulfate (IS) and p-cresol sulfate (PCS) accumulate due to increased
gut permeability and incomplete clearance and increase the host’s
susceptibility to pathogen invasion. This, along with catheter use
and dietary restrictions, disrupts the intestinal microenvironment,
promoting pathogenic bacteria and reducing beneficial short chain
fatty acids (SCFAs)-producing microbes. Consequently, PD patients
exhibit a higher relative abundance of Proteobacteria in their gut

microbiota (Simões-Silva et al., 2018). Proteobacteria, a potential
marker of gut dysbiosis, shows similar abundance in PD patients and
their healthy family members. This suggests that long-term
hospitalization, rather than dialysis alone, may contribute to gut
microbiome alterations in PD patients (Teixeira et al., 2023).

In PD patients, gut microbiota differs in both taxonomic
composition and metabolic function. Those with longer dialysis
duration, higher peritoneal glucose exposure, and reduced residual
renal function show distinct microbiome profiles and significantly
lower fecal levels of SCFAs, including isobutyric and isovaleric acids
(Jiang et al., 2021). Identifying these alterations can provide valuable

TABLE 1 (Continued) Pharmacological interventions in fibroblasts conversion/EMT/MMT.

Approaches Mechanism of
action(s)

Target(s) PD model(s) References

angiogenesis, inflammation, and
fibrosis, oxidative stress

Smad2/3 and MAPK, GSK-3β
phosphorylation, β-catenin and
Snail signalling

of 25 mL (4.25% Dianeal®,
pH 5.2) was infused twice daily,
7 days per week for 8 weeks

Asiaticoside Inhibits MMT, inflammation,
fibrosis and oxidative stress,
reduced migration and invasion
of PMCs, better membrane
function

TGF-βI/Smad signalling, Nrf2/
HO-1 signalling

HPMCs cell line (HMrSV5) Zhao et al. (2020)

Saikosaponin D Inhibits MMT, inflammation,
fibrosis

TGFβ1/BMP7/Gremlin1/Smad
1/5/8 signalling

Male SD rat 5/6 nephrectomy
model and received 15 mL of
4.25% dialysate was injected ip
every day, HPMCs cell line
HTX2481

Ruiqi et al. (2021)

Exosomal lnc-CDHR derived
from human umbilical cord
MSCs

Reduced EMT, inflammation,
fibrosis

MMT Markers (α-SMA,
Vimentin, E-cadherin), PTEN,
and AKT/FOXO3a

HPMCs cell line (HMrSV5) Jiao et al. (2023)

Sirtuin1 (SIRT1) Reduced EMT, inflammation,
fibrosis, protein matrix
deposition, peritoneal membrane
failure during
SIRT1 upregulation

TGF-β1/Smad3 signalling,
Col1a1, FN, a-SMA, Snail, IL-6,
IL-1β, MCP-1

C57BL/6 mice PD model of
peritoneal fibrosis was induced
by daily 3 mL i.p. injection of
4.25% PD fluid (Dianeal
containing 4.25% glucose) for
4 weeks

Guo et al. (2021)

Tubastatin A (HDAC6 inhibitor) Reduced EMT, inflammation,
fibrosis, protein matrix
deposition, inhibition of
M2 macrophages polarization

TGF-β1/Smad, IL4/STAT6,
STAT3 and PI3K/AKT
signalling, MMP-2, MMP-9

Mouse model of PF
i.p. injection of 0.1% CG
(10 mL/kg) dissolved in saline
every other day for 21 days

Shi et al. (2022a)

MS-275 (HDAC1-3 inhibitor) MMT reversal promotion,
inhibition of PMCs migration
and invasion

TGFβRI mRNA-targeting
miRNAs (miR-769-5p),
SMAD2/3 and PAI-1
expression, WT1

Effluent-derived MCs isolated
from PD patients, human
mesothelial cell line MeT-5 A

Rossi et al. (2018)

S3I-201 (STAT3 inhibitor) Reduced EMT, angiogenesis,
inflammation, fibrosis,
macrophage infiltration

STAT3/HIF-1α signalling, MMT
Markers (Collagen I
Fibronectin, α-SMA,
E-cadherin)

Human mesothelial cell line
MeT-5A, HPMCs obtained
from the effluent of PD patients

Yang et al. (2021)

Vitamin D receptor activation Reduced EMT, proliferation of
myofibroblasts, macrophage
infiltration, expression of TGF-β,
MCP-1, VEGF

MMP Proteins (type 1 collagen,
fibronectin), Th17 cells, COX-2/
PGE2 axis, STAT3/RORγt
expression

HPMCs, Rat model of PF
infused with a conventional
4.25% PD solution

Marchant et al. (2020), Kang
et al. (2014)

Abbreviations: ALK4/7, Activin Receptor like Kinase 4/7; HPMCs, Human PeriotnealMesothelial Cells; CG, chlorhexidine gluconate; MGO,methylglyoxal; PBS, phosphate buffered saline; i. p.,

intraperitoneal; ; PEG, polyethylene glycol; BMP-7, Bone Morphogenic Protein; FSP-1, Fibroblast Specific protein 1; (DKK)-1, Dickkopf-related protein; SFRP, Secreted frizzled-related

proteins; GSK-3β, Glycogen Synthetase Kinase; AdTGF, β; Adenovirus expressing TGF-β; Nrf-2, Nuclear factor erythroid 2-related factor 2; PI3K, Phosphatidylinositol 3-kinase; NF-κB,
Nuclear Factor-κB; PAI-1, Plasminogen Activator Inhibitor-1; RORγt, Retinoid related orphan receptor γt; TAK1, TGF-β; activated kinase 1; MSCs, Mesenchymal Stem Cells; WT1, Wilms’

tumor 1 transcription factor; GSK-3β, Glycogen Synthetase Kinase; Nrf-2, Nuclear factor erythroid 2-related factor 2; NF-κB, Nuclear Factor-κB; MCP-1, Monocyte Chemoattractant Protein-1;

PGC1α, PPARγ; coactivator-1α; HIF-1α, Hypoxia-inducible factor-1α; ACE, angiotensin converting enzyme; MR, mineralocorticoid receptor; 11b-HSD2, 11b-hydroxysteroid dehydrogenase

type 2; CYP11B2, Aldosterone synthase; BRG-1-Brahma related gene-1; ZO-1, Zonula Occludens-1; SAHA, suberoylanilide hydroxamic acid; 3-DZNeP, 3-deazaneplanocin A; EZH2, Histone

methyltransferase enhancer of zeste homolog 2; AP-1-Activator Protein-1; PDTC, pyrrolidine dithiocarbamate; SGLT, Sodium-Dependent Glucose Transporters; MTAC, mass transfer area

coefficients; 8-OHdG, 8-Hydroxydeoxyguanosine; MDA, malondialdehyde; BET, bromodomain and extra terminal domain; Cat, Catalase; Hmox1, Heme Oxygenase 1; Sod1-Superoxide

Dismutase 1; MSCs, Mesenchymal Stem Cells; HSCs, Haematopoietic Stem Cells; BM, bone marrow; GFP, green fluorescent protein.
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TABLE 2 Pharmacological interventions in inflammation/membrane thickness/oxidative stress/angiogenesis/fibrosis.

Approaches Mechanism of action(s) Target(s) PD model(s) References

RhoA/Rho-kinase inhibitors (Fasudil
and Y-27632)
AP-1 inhibitor (Curcumin)

Normalized histopathological
features, prevent ultrafiltration failure
and preserved peritoneal membrane
function, decrease in membrane
thickness as well as motility and
invasion capacity in AGEs treated
HPMCs

RhoA/Rho-kinase signalling and
activating protein-1 (AP- 1), TGF-
βI receptor, MMT markers
(fibronectin, type I-collagen, α-
SMA, Vimentin, N-cadherin,
E-cadherin), Receptors of Glucose
and Degradation Products

HPMCs cell line (HMrSV5),
rat PF model generated by
daily i.p. injection of
DIANEAL (4.25% dextrose-
monohydrate PD fluid) at
100 mL/kg for 4 weeks

Wang et al. (2018)

Sildenafil and SB204741 (5HT2B

receptor) combination
Restoring of MMP2/TIMP1 ratio and
increased IL-10 levels. Decreased
collagen production, α-SMA, and
other pro-inflammatory cytokines.
Decreased inflammation and fibrosis

Pro and anti-fibrotic genes
(COL1A1, COL1A2, ACTA2,
CTGF, FN1, TGFB1, MMP2/
TIMP1). Pro and Anti-
inflammatory cytokines ((IFN-γ,
IL-4, IL-17, IL-1β, IL-6, TNF-α,
TGF-β1, IL-10)

HPFBs isolated from parietal
peritoneum biopsy and
incubated in DMEM/10% FBS/
1% penicillin/streptomycin/
amphotericin-B at 37°

C

Chaturvedi et al.
(2024)

Arctigenin Reduced inflammation, decreased
ROS levels and fibrosis

TGF-βI receptor, MMT markers
(α-SMA, vimentin, fibronectin,
E-cadherin), PAI-1, AMPK, IkBa,
NF-kB

HPMCs cell line Jin et al. (2019)

Niao Du Kang Mixture Maintain the morphological structure
of PMCs, decreased peritoneal
membrane thickness and preserve its
function, mitigation of PMCs injury,
reduced inflammation and fibrosis

Wnt/β-catenin signalling, MMT
markers (E-cadherin, α-SMA,
Wnt-1, collagen I, β-catenin, and
LEF-1)

Rat PF Model. One week after
modelling, 4.25% glucose
peritoneal dialysate (30 mL/kg)
was injected i.p. once daily for
28 consecutive days

Huang et al. (2022)

C75 (CPT1A activator) Reduced mtROS generation,
increased mtDNA number, reduced
inflammation, fibrosis and oxidative
stress

FAO, CPT1A, SNAIL1, SNAIL2,
ZEB2, FN1, COL1A1, UPK3B
(marker of mesothelial cells),
Smad3, PGC1α

HPMCs from PD patients’
effluent
C57BL/6 PD model of
peritoneal fibrosis was induced
by daily i.p. injection of 4.25%
PD
fluid (DIANEAL containing
4.25% glucose) at 100 mL/kg
body weight for 6 weeks

Su et al. (2023)

Salvianolic acid A Improved the elicited peritoneal
fibrosis response, reduced thickening
of the sub-mesothelial compact zone,
inflammation, fibrosis and oxidative
stress

GSK3β/NFκB phosphorylation
and Nrf2, MMT Markers
(Vimentin and PAI-1), TNF-α, IL-
1β, and MCP-1

C57BL/6 PD model of
peritoneal fibrosis was induced
by daily 3 mL i.p. injection of
4.25% PD fluid (Dianeal
containing 4.25% glucose).

Zhou et al. (2022)

Tetramethylpyrazine Reduced angiogenesis, migration,
inflammation, fibrosis and peritoneal
membrane injury

VEGF/Hippo/YAP signalling,
p-ERK, p-P38, and p-Akt

HPMCs cell line (HMrSV5),
HPVECs, C57BL/6 mice PD
model of peritoneal fibrosis
was induced by daily
i.p. injection of 4.25% PD fluid
(Dianeal containing 4.25%
glucose) at 10 mL/kg/day for
30 days

Zhu et al. (2021)

Baicalein (5,6,7-trihydroxyflavone) Reduced inflammation, fibrosis and
peritoneal membrane thickness

AGE-RAGE signalling, MMP2,
BAX, ADORA3, HIF1A, PIM1,
CA12, and ALOX5, MMTmarkers
(fibronectin, type I-collagen,
a-SMA)

Mice PD model of peritoneal
fibrosis was induced by daily
i.p. injection of 4.25% PD fluid
(Dianeal containing 4.25%
glucose)

Lu et al. (2023)

Spironolactone (Aldosterone receptor
antagonist)

Reduced inflammation, fibrosis,
peritoneal macrophages secretion,
protection of peritoneal membrane
function

MR, 11b-HSD2, CYP11B2, MCP-
1, FN, TGF-β1, JNK pathway, CD-
4 and ED-1-positive cells

Rat PD model of peritoneal
fibrosis was induced by daily
i.p. injection of 4.25% PD fluid
(Dianeal containing 4.25%
glucose) in a 4-day interval for
a period of 7 days

Zhang et al. (2014)

Captopril, Quinapril (ACE inhibitors) Reduction in parietal and visceral
peritoneum thickness, EPS and
amelioration of fibrotic change in
parietal peritoneum

Parietal and visceral peritoneum
cells, subserosal fibrotic matrix,
subserosal large collagen fibers,
and subserosal fibroblast
proliferation

Non-uremic Wistar rats
received a peritoneal infusion
of 10 mL/100g of PD solution
glucose 4.25% on a daily basis,
C57BL/6 mice model of
peritoneal fibrosis was induced
by daily i.p. injection of 0.3 mL

Schu et al. (2013),
Sawada et al. (2002)

(Continued on following page)
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TABLE 2 (Continued) Pharmacological interventions in inflammation/membrane thickness/oxidative stress/angiogenesis/fibrosis.

Approaches Mechanism of action(s) Target(s) PD model(s) References

of SH solution which consists
of 0.1% chlorhexidine
gluconate

Micheliolide Reduced inflammation, fibrosis and
oxidative stress

BRG-1- H3K14ac complex, TGF-
β1/Smad signalling, MMT
markers (Fibronectin and type
1 collagen)

C57BL/6 mice PD model of
peritoneal fibrosis was induced
by daily 3 mL i.p. injection of
4.25% PD fluid (Dianeal
containing 4.25% glucose) for
4 weeks, HPMCs cell line
HMrSV5

Li et al. (2023)

SAHA (Nonspecific HDAC inhibitor) Reduced submesothelial thickness,
type III collagen accumulation,
increased histone acetylation,
suppressed inflammation and
angiogenesis

FSP1, α-SMA, Smad 2/3, Col1a1,
FN1, CTGF, H3K9, BMP-7

Mouse model of PF induced by
i.p. 0.1% CG

Yu et al. (2018),
Io et al. (2015)

BIX01294 (H3K9 histone
methyltransferase G9a inhibitor)

Decreased submesothelial zone
thickness, fibrosis, infiltration of
monocytes, peritoneal membrane
function, ECM proteins

α-SMA, CD68, TGF-β1, and
H3K9me1, ZO-1, G9a, type I and
III collagen

Mouse model of PF induced by
MGO, HPMCs

Zhao et al. (2019),
Maeda et al. (2017)

Sinefungin (H3K4 methyltransferase
SET7/9 inhibitor)

Decreased submesothelial zone
thickness and PMCs accumulation,
fibrosis, infiltration of monocytes,
peritoneal membrane function, ECM
proteins

SET7/9, α-SMA, fibronectin, ZO-
1, α-tubulin, H3K4me1, H3,
ACTA2, Col1A2, CTGF, PAI-1

C57/BL6 mouse model of PF
induced by MGO, HPMCs

Shin et al. (2017),
Tamura et al. (2018)

3-DZNeP (EZH2 inhibitor) Attenuates fibrosis, EMT, improves
membrane dysfunction. Reduces
inflammation, lymphocyte and
macrophage infiltration,
angiogenesis, apoptosis, PMCs
migration

EZH2, H3K27me3, p-EGFR,
p-Src/Src, p-ERK1/2/ERK1/2,
p-STAT3/STAT3, p- Smad3/
Smad3. Notch1, MMP2/9, Histone
H3, Cleaved caspase 3, α-SMA,
type I collagen, fibronectin,
E-Cadherin, p-NF-κB, TGF-βRI,
Smad7, CD68, CD31, VEGF,
EGFR

HPMCs, EZH2-KO C-57/
BL6 mice model of PF induced
by CG or PD fluid

Shi et al. (2022b)

Soluble TLR2 (sTLR2)
(TLR inhibitor)

Reduced inflammation, fibrosis
development, suppressing pro-
fibrotic gene expression, pro-
inflammatory cytokine production,
reduced leukocyte/neutrophil
recruitment, recovery of Treg cell
levels and increased Treg:Th17 ratio

TLR2/4, Hsp70, hyaluronan, IL-α,
IL-β, CXCL8/IL-8, CXCL10/IL-10,
ERK1/2 phosphorylation, IκB-α

Peritoneal leukocytes and
mesothelial cells, C57BL/
6 mice were instilled twice
daily for 40 days with 2 mL
standard 4.25% glucose
solution

Raby et al. (2018)

Peroxisome Proliferator-Activated
Receptor-γ (PPAR-γ) agonist
PTDC (NF-κB inhibitor)
SP600125 (AP-1 inhibitor)

Reduced angiogenesis, inflammation,
fibrosis, TGF-β, ECM protein
deposition; regulates T-cell-mediated
peritoneal membrane protection;
inhibits NF-κB, AP-1

Receptors of Glucose and
Degradation Products, MMP
Proteins (type 1 collagen,
fibronectin), NF-κB and AP-1
signalling pathway, Th17/Treg
cells, STAT3/RORγt expression

PMCs from surgically resected
omentum of rat

Zhou et al. (2013)

Chemokine (C-C motif) ligand
8 receptor inhibitor
(R243)

Reduced EMT, peritoneal
inflammation, fibrosis, apoptosis

CCL8 and FN mRNA expression,
TNFr1, IL-1b, IL-6, ICAM-1, p65,
pp65, α-SMA, periostin, p53, β-
galactosidase, and CCR2 protein
expression

HPMCs, Mice model of PF
injected with CG (0.2 mL i.p.)
for 4 weeks

Lee et al. (2023)

Cationized gelatin microspheres
(CGMs) containing Hepatocyte
Growth Factor (HGF) expressing
plasmids

Suppression of thickening of
submesothelial compact zone,
reduction in myofibroblasts
proliferation, mitigate peritoneal
hyperpermeability

HGF levels, type III collagen, TGF-
β, α-SMA expression, dilute/serum
ratio of creatinine (D/S Cr) ratio
was observed

C57BL6/6J mice model of PF
injected with CG (0.05%)
dissolved in 0.2 mL of saline
3 times a week for 3 weeks

Obata et al. (2023)

LY294002 (PI3K) inhibitor
Rapamycin (mTOR) inhibitor

Alleviate PF, Inhibition of ROS, 8-
OHdG levels, MDA, Reduced
membrane thickening,
alleviated EMT

ROS, 8-OHdG levels, MDA,
Glutathione Peroxidase
Glutathione, ZO-1, FSP1, α-SMA,
autophagy-related proteins LC3-
II/I, p62, and beclin-1, PI3K/AKT/
mTOR signalling pathway

PMCs culture from high-
glucose (HG)-induced PF rat
model

Jia et al. (2022)

(Continued on following page)
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insights for clinicians, enabling early and targeted interventions to
reduce complications and mortality risk in patients with ESRD. A
study documented, patients on PD had more pathogenic and less
beneficial species in their faecal microbiome, which altered the
predicted metagenome functions, compared to controls
(Stadlbauer et al., 2017).

In recent years, Probiotics, prebiotics, and synbiotics have been
reported to reduce uremic toxins such as endotoxins and p-cresol in
PD patients. These interventions may also lower mortality rates
associated with long-term PD. Additionally, they have been shown
to improve gastrointestinal symptoms and enhance the quality of life
in PD patients (Li et al., 2025).

Probiotic capsules containing Bifidobacterium longum,
Lactobacillus bulgaricus, and Streptococcus thermophilus have
been shown to enhance gastrointestinal absorption and digestion
(Li et al., 2025). They also help reduce inflammatory markers, such
as C-reactive protein (CRP) and Interleukin-6 (IL-6) (Pan et al.,
2021). Elevated IL-6 levels in PD patients are associated with
malnutrition and altered peritoneal small solute transport rates,
which can increase mortality. A randomized controlled trial (RCT)
noted that PD patients improved serum indoxyl sulfate (IS) levels by

consuming 21 g/day of unripe banana flour. Insulin-type fructan
decreases Bacteroides thetaiotaomicron, the IS-producing bacterium,
by inhibiting its tryptophanase activity. This leads to reduced IS
production in the gut of these patients (de Andrade et al., 2021). In
severe cases of uremic toxicity related to p-cresol or para-cresol
sulfates, synbiotics can promote the growth of Bifidobacterium
bifidum strains and increase Lactobacillus abundance in the gut.
This intervention effectively reduces intestinal p-cresol levels
(Stuivenberg et al., 2022). Although clinical research on gut
microbiomes in PD patients remains limited in scale, further
studies may validate the use of probiotics, prebiotics, and
synbiotics. These interventions have the potential to improve the
gut microbiome and reduce complication rates in PD.

4 Pathophysiology behind Peritoneal
Membrane deterioration

PD uses the peritoneal membrane as an organ to filter the blood.
Chronic exposure of PD solutions induces low-grade inflammation
in the peritoneal cavity, which can impair the peritoneal membrane

TABLE 2 (Continued) Pharmacological interventions in inflammation/membrane thickness/oxidative stress/angiogenesis/fibrosis.

Approaches Mechanism of action(s) Target(s) PD model(s) References

SGLT2 inhibitor (Dapagliflozin) Abrogation of PD fluid-induced
SGLT2 transcriptional upregulation
by i.p. dapagliflozin, Reduced
Peritoneal Fibrosis and Ultrafiltration
Failure, Reduced Submesothelial
Microvessel Density, Abrogates
Proinflammatory Signaling

SGLT1 and SGLT2, PET, D/D0

glucose ratio, dialysate-to-plasma
ratios (D/P), MTAC for creatinine
and urea, CD31, MCP-1, TNF-α,
IL-6

Human peritoneal biopsies,
C57BL6/6J mice model of PF
exposed with 2.0 mL of
standard PD fluid composed of
4.25% glucose and buffered
with lactate, HPMCs,
immortalized MPMCs, murine
peritoneal macrophage cell line
RAW264.7

Balzer et al. (2020)

EGFR inhibitor (Gefitinib) Attenuation of Development of
Peritoneal Fibrosis, Deposition of
ECM, Activation of Fibroblasts,
Suppression of Production of
Inflammatory
Cytokines and Infiltration of
Macrophages, Attenuation of
Angiogenesis

EGFR, Smad3, STAT3, NF-kB,
TGF-β, TNF- α
IL- β1, IL-6, MCP-1, collagen, α-
SMA expression

Rat model of PF injected with
0.1% CG i.p., HPMCs

Wang et al. (2016)

BET Inhibitor (JQ1) Reduced membrane thickness,
inflammatory cells infiltration,
peritoneal fibrosis, inflammation,
oxidative stress, decreased gene
overexpression of proinflammatory/
profibrotic markers

NF-κB, IκBα, Fibronectin, Smad2/
3, IL-1β, TNF-α, Cat, Hmox1,
Sod1, CCL2, CCL5, CXCL10, IL-6,
NRF2, NADPH Oxidase
(NOX1/4)

C57BL/6 mice model of PF
induced by 0.1% CG
i.p., human mesothelial cell
lineMeT-5A, Human-effluent-
derived primary MCs

Marchant et al.
(2023)

BM-MSCs and HSCs/AD-MSCs Settlement and Differentiation of
BM-MSCs and HSCs regenerate to
MCs for remodelling of peritoneal
membrane/AD-MSCs attenuate PF
and maintain integrity by
immunoregulation, modulating
macrophage polarization via IL-6

Sca-1 or -c-Kit and GFP
antibodies/M1 and
M2 Macrophages, IL-6, Arg-1
expression

BM cells from GFP transgenic
mice transplanted into naïve
C57 B l/6 mice (PF model
injected with CG)/Commercial
human ADSCs, Rat Model of
PF induced by Methylglyoxal

Sekiguchi et al.
(2012)

Abbreviations: ALK4/7, Activin Receptor like Kinase 4/7; HPMCs, Human PeriotnealMesothelial Cells; CG, chlorhexidine gluconate; MGO,methylglyoxal; PBS, phosphate buffered saline; i. p.,

intraperitoneal; PEG, polyethylene glycol; BMP-7, BoneMorphogenic Protein; FSP-1, Fibroblast Specific protein 1; (DKK)-1, Dickkopf-related protein; SFRP, Secreted frizzled-related proteins;

GSK-3β, Glycogen Synthetase Kinase; AdTGF, β; Adenovirus expressing TGF-β; Nrf-2, Nuclear factor erythroid 2-related factor 2; PI3K, Phosphatidylinositol 3-kinase; NF-κB, Nuclear Factor-
κB; PAI-1, Plasminogen Activator Inhibitor-1; RORγt, Retinoid related orphan receptor γt; TAK1, TGF-β; activated kinase 1; MSCs, Mesenchymal Stem Cells; WT1, Wilms’ tumor

1 transcription factor; GSK-3β, Glycogen Synthetase Kinase; Nrf-2, Nuclear factor erythroid 2-related factor 2; NF-κB, Nuclear Factor-κB; MCP-1, Monocyte Chemoattractant Protein-1;

PGC1α, PPARγ; coactivator-1α; HIF-1α, Hypoxia-inducible factor-1α; ACE, angiotensin converting enzyme; MR, mineralocorticoid receptor; 11b-HSD2, 11b-hydroxysteroid dehydrogenase

type 2; CYP11B2, Aldosterone synthase; BRG-1-Brahma related gene-1; ZO-1, Zonula Occludens-1; SAHA, suberoylanilide hydroxamic acid; 3-DZNeP, 3-deazaneplanocin A; EZH2, Histone

methyltransferase enhancer of zeste homolog 2; AP-1-Activator Protein-1; PDTC, pyrrolidine dithiocarbamate; SGLT, Sodium-Dependent Glucose Transporters; MTAC, mass transfer area

coefficients; 8-OHdG, 8-Hydroxydeoxyguanosine; MDA, malondialdehyde; BET, bromodomain and extra terminal domain; Cat, Catalase; Hmox1, Heme Oxygenase 1; Sod1-Superoxide

Dismutase 1; MSCs, Mesenchymal Stem Cells; HSCs, Haematopoietic Stem Cells; BM, bone marrow; GFP, green fluorescent protein.
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and compromise its function as a dialyzer. However, inflammation
can damage the peritoneal membrane over time, causing it to lose its
function. Inflammation also triggers peritoneal remodelling and
angiogenesis, which are major events that alter the structure and
blood vessels of the peritoneal membrane (Catar et al., 2022).

4.1 PD solutions and Chronic Peritoneal
Inflammation

Chronic Peritoneal inflammation is considered as an important
event during the pathogenesis of PF (Zhang et al., 2017). Peritoneal
injury leads to the activation of signal transducer and activator of
transcription 3 (STAT3) and nuclear factor kappa-B (NF-κB), which
also promotes the release of multiple proinflammatory cytokines/
chemokines (Shi et al., 2021). Peritoneal mesothelium-derived CXC
chemokine ligand 1 (CXCL1), a chemokine, associates with
peritoneal micro vessel density in uremic patients undergoing
PD. Thus, CXCL1 and its receptors may be novel targets for
therapeutic intervention to prolong PD therapy (Catar et al.,
2022). Other pharmacological interventions targeting receptors
involved in inflammation in the peritoneal membrane
dysfunction culminating to fibrosis are detailed in Table 2.

Amajor factor limiting the chronic use of PD remains peritoneal
membrane failure due to prolonged exposure to bioincompatible PD
solutions leading to the fibrosis of the membrane (Cho et al., 2014).
Recent evidences have tried to explain the mechanisms linking
inflammation–either infection-induced (peritonitis) or sterile
(bioincompatible PD solutions) – involved with the cellular stress
and membrane injury in the pathogenesis and regulation of PD
related peritoneal fibrosis (Zhou et al., 2016; Honda and Oda, 2005;
Fielding et al., 2014; Raby et al., 2017).

The peritoneal cavity has a normal environment that can be
disturbed by bio incompatible PD solutions, which can also harm
the peritoneal membrane. Traditional (Bio-incompatible) PD
solutions have non-physiological features such as low
pH (acidic), high lactate and glucose concentrations
(hyperglycaemic) (1.5%–4.5%) (Mortier et al., 2002), and
hyperosmotic dextrose solutions to achieve a sufficient UF
gradient across the peritoneal membrane, and toxin elimination
by maintaining electrolyte homoeostasis (Szeto and Johnson, 2017;
McIntyre, 2007). However, they also trigger fibrosis, oxidative stress
and microinflammation in the peritoneum, leading to changes in its
structure and function which involves PMCs depletion and
basement membrane breakdown leading to ultrafiltration failure,
discontinuation of PD, and an increased risk of developing EPS
(Terri et al., 2021; Jagirdar et al., 2019; Kang, 2020). Furthermore,
heat sterilisation of PD solutions results in glucose instability
generating toxic glucose degradation products (GDPs), glyoxal,
3,4-dideoxyglucosone-3-ene, methylglyoxal (MGO), and others
(Jörres, 2012; Catalan et al., 2005). MGO is an extremely toxic
GDPs that causes oxidative stress and peritoneal injury as well as
reported to enhance the production of vascular endothelial growth
factor (VEGF), which may lead to vascular permeability (Hishida
et al., 2019). Furthermore, many GDPs such as 3,4-
dideoxyglucosone-3-ene (3,4-DGE) are reactive carbonyl
compounds which along with glucose form advanced glycation
end-products (AGEs), binds to free amino groups on membrane

proteins or lipids contributing to pathophysiological alterations in
the peritoneal membrane (Linden et al., 2002; Mortier et al., 2004).
Bio-incompatible PD solutions recruit immune cells such as Th17,
gdT cells, and neutrophils to the sub-mesothelial zone, where they
produce inflammatory cytokine, IL-17A.

Most important, the role of IL-17A in peritoneal membrane
injury and other PD-related complications has been recently
explored (Marchant et al., 2020). This cytokine activates the NF-
κB pathway in PMCs, which drives the expression of factors such as
IL-6 which then activates the JAK/STAT pathway promoting EMT
in PMCs (Marchant et al., 2020).

During peritoneal membrane injury in PD, IL-17A production
in the local site stimulates the release of more pro-inflammatory
mediators, such as cytokines and chemokines, from infiltrating cells
and resident peritoneal cells. This amplifies the inflammatory
response promoting fibrosis and angiogenesis in the peritoneal
membrane (Marchant et al., 2020).

Oxidative and cellular stress plays a key role in the peritoneal
membrane damage. Free radicals in the PD effluent indicate a higher
risk of technique failure in stable patients (Morinaga et al., 2012; Xu
et al., 2015). Hypertonic PD solutions with high glucose and/or low
pH induces oxidative stress and cause apoptosis and autophagy
PMCs (Simon et al., 2017; Hara et al., 2017; Wu et al., 2018).
Peritoneal membrane damage further involves mitochondrial
mechanisms (Ramil-Gómez et al., 2021) pertaining to the
Reactive Oxygen Species (ROS) production (López-Armada et al.,
2013). In a study the authors measured mitochondrial reactive
oxygen species (mtROS) and membrane potential in PMCs with
different phenotypes. They found that fibroblast-like PMCs had
more mtROS and less membrane potential than epithelial-like
PMCs. They also demonstrated that mtROS induced EMT in
omental MCs, which was prevented by mitoTEMPO. Moreover,
they showed that mitochondrial DNA (mtDNA) levels in PMCs
correlated positively with dialysate/plasma creatinine ratio (D/P
Creat) and negatively with UF (Ramil-Gómez et al., 2021; López-
Armada et al., 2013).

These results suggest that mitochondrial dysfunction drives
EMT in PMCs leading to peritoneal membrane damage.
Furthermore, pertaining to cellular stress and membrane damage,
mitochondria release damage-associated molecular patterns
(DAMPs-mtROS or mtDNA), recognized by the innate immune
system, and thus triggering pro-inflammatory and pro-fibrotic
responses by activating Toll-like receptors (TLRs), and purinergic
receptors (Raby et al., 2018; Mills et al., 2017; Anders and Schaefer,
2014). Raby et al. conducted a study to evaluate the involvement of
TLRs and DAMPs in PD solutions-induced membrane fibrosis.
They exposed human uremic peritoneal leukocytes, PMCs and
mouse peritoneal leukocytes to different PD solutions (bio-
incompatible or more bio-compatible) for a prolonged period
and measured the pro-inflammatory DAMPs, measured fibrotic
responses at the mRNA/protein levels and assessed the role of TLR2/
4 in the sterile peritoneal inflammation and fibrosis (Raby et al.,
2018). A study has shown that Nucleotide-binding oligomerization
domain-like receptor (NLR) family pyrin domain containing 3
(NLRP3) inflammasome, a member of the NLR family of
intracellular sensors, also mediates sterile inflammation by
regulating the release of the pro-inflammatory cytokine IL-1β
which promotes peritoneal membrane damage and fibrosis
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(Hishida et al., 2019). Pharmacological Interventions targeting
oxidative stress and their products are detailed in Table 2.

New PD solutions that are more bio-compatible have beenmade
tomitigate the problem. Newer PD solutions, such as icodextrin, and
taurin solutions, have been designed to reduce the deleterious effects
of bio incompatible PD solutions exposure on the peritoneal
membrane (del et al., 2016; Santamaría et al., 2015), and they
help to sustain the physiological equilibrium of the peritoneal
cavity. Icodextrin, is gradually absorbed from the peritoneal
cavity which facilitates a sustained colloid osmotic gradient,
resulting in enhanced UF compared to conventional PD

solutions. Owing to its superior fluid removal capacity and
reduced systemic glucose exposure, icodextrin is particularly
advantageous for long-dwell PD exchanges in patients with high
peritoneal solute transport rates, where it aids in optimizing volume
status while minimizing the metabolic burden associated with
glucose absorption (Dousdampanis et al., 2018; Ng et al., 2022).
Biocompatible PD solutions, expose the patients to less Glucose
Degradation Products (GDPs) than conventional solutions, and
better preserve the residual renal function and diuresis with a
decrease in peritonitis frequency, are created by using the
following approaches: pH adjustment to neutral and GDP

TABLE 3 Therapeutic Interventions in PD solutions.

Approaches Mechanism of action(s) Target(s) PD model(s) References

New PD solutions (neutral or
physiological-pH and low-GDP
contents, lactate or bicarbonate as
buffer)

More bio-compatibility, reduced
systemic GDPs and AGEs, reduction
of angiogenesis, inflammation, and
fibrosis

Receptors of Glucose and
Degradation Products

— Szeto and Johnson
(2017), Bartosova and
Schmitt (2019), Blake
(2018)

Icodextrin containing PD
solution

Improved peritoneal membrane
ultrafiltration failure and fewer
episodes of fluid overload

Receptors of Glucose and
Degradation Products

— Goossen et al. (2020),
George Kunthara, 2024

Amino Acids supplemented PD
solutions (pH- 6.7 and GDPs
free)

Increase in skeletal muscle Amino
Acid uptake during PD

Protein metabolism — Kunthara and Wu
(2024), Asola et al. (2008)

PD solutions containing
L-Carnitine, xylitol, and low
glucose

Preservation of the integrity of
PMCs in peritoneal membrane,
reduced fibrosis, oxidative stress,
inflammation, Mitigation of
metabolic disorders

Peritoneal membrane adhesion
cell receptors and Endothelial
cell receptors

Primary HUVECs obtained from
the umbilical cords of healthy and
gestational diabetic mothers,
Primary human PMCs culture
inserts and exposed to the PD
solution only at the apical side,
mimicking the condition of a PD
dwell

Bonomini et al. (2016),
Piccapane et al. (2020)

Novel PD solutions (Glucose load
partly replaced with L-Carnitine
and xylitol)

Clinical parameters of PD patients
including creatinine clearance urea
Kt/V, fluid status, diuresis, and total
peritoneal ultrafiltration proved to
be stable

Peritoneal membrane adhesion
cell receptors and Endothelial
cell receptors

Ten CAPD patients treated for
4 weeks with new PD solutions
(phase II, prospective, open,
multicenter study-
(NCT04001036)

Rago et al. (2021)

Alanyl-Glutamine (Ala-Gln)
supplemented glucose PD
solutions pharmacological doses

Improved peritoneal membrane
integrity, reduced inflammation and
fibrosis, Restoration of Disturbed
Cytoprotective Mechanisms to
Alleviate Endothelial Cell Damage

Endothelial cell receptors Primary HUVEC, arterioles of PD
patients following PD fluids
exposure, Peritoneal dialysis
effluent samples from 20 stable PD
patients (prospective randomized,
open-label, two-period, cross-over
phase I/II study)

Herzog et al. (2020),
Wiesenhofer et al. (2019)

Trans-peritoneal administration
of Hydrogen (H2) enriched
dialysate

Improved peritoneal membrane
integrity, reduced inflammation,
fibrosis, and oxidative stress

Receptors of Glucose and
Degradation Products

6 PD patients receiving neutral
low-GDP dextrose solution

Ichihara et al. (2015),
Terawaki et al. (2013)

Supplementation of LiCl LiCl counteract PD solutions-
induced mesothelial cell death,
peritoneal membrane fibrosis, and
angiogenesis. LiCl improves
mesothelial cell survival in a dose-
dependent manner

αB-crystallin as the mesothelial
cell protein most consistently
counter-regulated by LiCl. LiCl
reduced VEGF release and
counteracted fibrosis- and
angiogenesis-associated
processes

PD Patients derived PMCs, Mouse
model of Chronic PD.

Herzog et al. (2021)

Abbreviations: ALK4/7, Activin Receptor like Kinase 4/7; HPMCs, Human PeriotnealMesothelial Cells; CG, chlorhexidine gluconate; MGO,methylglyoxal; PBS, phosphate buffered saline; i. p.,

intraperitoneal; PEG, polyethylene glycol; BMP-7, BoneMorphogenic Protein; FSP-1, Fibroblast Specific protein 1; (DKK)-1, Dickkopf-related protein; SFRP, Secreted frizzled-related proteins;

GSK-3β, Glycogen Synthetase Kinase; AdTGF, β; Adenovirus expressing TGF-β; Nrf-2, Nuclear factor erythroid 2-related factor 2; PI3K, Phosphatidylinositol 3-kinase; NF-κB, Nuclear Factor-
κB; PAI-1, Plasminogen Activator Inhibitor-1; RORγt, Retinoid related orphan receptor γt; TAK1, TGF-β; activated kinase 1; MSCs, Mesenchymal Stem Cells; WT1, Wilms’ tumor

1 transcription factor; GSK-3β, Glycogen Synthetase Kinase; Nrf-2, Nuclear factor erythroid 2-related factor 2; NF-κB, Nuclear Factor-κB; MCP-1, Monocyte Chemoattractant Protein-1;

PGC1α, PPARγ; coactivator-1α; HIF-1α, Hypoxia-inducible factor-1α; ACE, angiotensin converting enzyme; MR, mineralocorticoid receptor; 11b-HSD2, 11b-hydroxysteroid dehydrogenase

type 2; CYP11B2, Aldosterone synthase; BRG-1-Brahma related gene-1; ZO-1, Zonula Occludens-1; SAHA, suberoylanilide hydroxamic acid; 3-DZNeP, 3-deazaneplanocin A; EZH2, Histone

methyltransferase enhancer of zeste homolog 2; AP-1-Activator Protein-1; PDTC, pyrrolidine dithiocarbamate; SGLT, Sodium-Dependent Glucose Transporters; MTAC, mass transfer area

coefficients; 8-OHdG, 8-Hydroxydeoxyguanosine; MDA, malondialdehyde; BET, bromodomain and extra terminal domain; Cat, Catalase; Hmox1, Heme Oxygenase 1; Sod1-Superoxide

Dismutase 1; MSCs, Mesenchymal Stem Cells; HSCs, Haematopoietic Stem Cells; BM, bone marrow; GFP, green fluorescent protein; LiCl, Lithoum Chloride.
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minimisation; bicarbonate (±lactate) buffering; glucose polymer
substitution for dextrose (which also reduces pH along with
GDP); and amino acids as osmotic agents (Htay et al., 2018;
Zhou et al., 2016; Yohanna et al., 2015) (Table 3). Recent
evidence suggests, sodium-glucose cotransporters (SGLTs) and
glucose transporters (GLUTs) in the peritoneal membrane
mediate glucose handling and absorption during glucose-based
PD (Balzer et al., 2020).

PD solutions act as double edge sword for peritoneal membrane.
Biocompatible solutions for PD have some advantages over
conventional bio-incompatible solutions, but they also have some
drawbacks (Table 4). One of the main challenges is their higher cost
in some countries, which may limit their accessibility and
affordability. Another issue is the lack of clear evidence on how
they affect patient-level clinical outcomes, such as survival and
quality of life. Therefore, their role in clinical practice needs to
be further defined and evaluated.

4.2 Peritonitis

Peritonitis, a significant side effect, leads to PMCs damage,
fibrosis, morbidity, and technical failure (Chou et al., 2022; Perl
et al., 2020). Pro-fibrotic growth factors such as TGF-β1 and
Fibroblast Growth Factor-2 (FGF-2) and inflammatory cytokines
like IL-1β, IL-6, and others are upregulated during peritonitis
(Kawaguchi et al., 2000; Virzì et al., 2022). IL-1β expression
possibly relates inflammation and peritonitis intimately to the
beginning and maintenance phase of the peritoneal fibrosis

(Honda and Oda, 2005; Helmke et al., 2019). Likewise, IL-6 has
been well connected to inflammation for functioning as solute
transport increase across the PM (Wilson, 2018; Yang et al.,
2020). Macrophages are reported to be the most abundant cells
in PD effluent, which defines a central role in chronic inflammation
(Helmke et al., 2019; Yang et al., 2020).

CX3CR1, receptor of CX3CL1 (detected on the peritoneal
mesothelium), is expressed on macrophages in the peritoneal
membrane (Helmke et al., 2019). A report demonstrated,
dialysate exposure induces peritoneal fibrosis through CX3CR1-
CX3CL1-mediated macrophage-mesothelial communication, which
could be a novel therapeutic strategy for peritoneal fibrosis (Helmke
et al., 2019). Based on the current data, peritonitis-induced
membrane injury is associated with reduced membrane Cregs
and altered complement activation products, such as C and C5b-
9. The study also compared peritoneal injuries caused by fungal and
P. aeruginosa peritonitis with those caused by Gram-positive
bacterial peritonitis. Severe peritoneal membrane injuries due to
fungal and P. aeruginosa peritonitis could result in the loss of
expression of CRegs in the peritoneum, which increases
deposition of complement activation products, suggesting
deleterious effects in the membrane and further impaired Creg
expression (Fukui et al., 2023). Zindel et al. documented,
bacterial contamination activates mesothelial EGFR signalling in
postsurgical PF, leading to MC-derived myofibroblasts and
peritoneal adhesion (Zindel et al., 2021). Moreover, the authors
in a 20-year PD cohort examined the peritoneal membrane
characteristics and found that the high peritoneal transport group
had a higher risk of peritonitis than the low or intermediate

TABLE 4 Bio-incompatibility and biocompatibility of PD solutions: effects on peritoneal membrane pathophysiology.

PD solutions Bio-incompatible PD solutions Bio-compatible PD solutions

Osmotic agents Glucose Glucose, Icodextrin and Amino acids

pH ~5.5 5.5–7.3

Degraded products/
Inflammatory factors

AGEs, GDPs, Reactive Oxygen Species, lactate buffer, acidic pH Less number of degraded products (AGEs, GDPs, Reactive Oxygen
Species)

Mechanisms of inflammation/
fibrosis

5-HT and TGF- β1, upregulation of TIMP release, production of
inflammatory cytokines (IL-4, IL-17)

Decreased osmolality, reduction if ultrafiltration (in neutral
pH solution), amino acid accumulation, acidosis, uremia (in amino
acid based solution)

Pathophysiological Features

Peritoneum Cytoplasmic inclusions in mesothelial cells membrane Thin layer of mesothelial cells with no cytoplasmic inclusions

Abnormal surface protuberances Intact tight junctions

Ruptured mesothelial cells membrane, defoliation from basement
membrane

Thin basement membrane supports a layer of mesothelial cells

Sub-mesothelial compact zone thickening, especially associated with
inflammation (infiltration of myofibroblasts)

Sub-mesothelial zone is characterized by a low density of
mesenchymal cells (dispersed fibroblasts, uncommon mast cells)

Sub-mesothelial compact zone exhibits elevated blood vessel density,
adventitial proliferation vasculopathy, and vessel calcification

Sub-mesothelial zone is characterized by low number of small
arteries, arterioles, venules and capillaries

References Chaturvedi et al. (2024), Bartosova and Schmitt (2019), Blake (2018),
Goossen et al. (2020)

Santamaría et al. (2015), Dousdampanis et al. (2018); Ng et al. (2022),
Yohanna et al. (2015), Szeto and Johnson (2017), Bartosova and
Schmitt (2019), Blake (2018), Goossen et al. (2020), Kunthara and
Wu (2024), Kunthara and Wu (2024), Asola et al. (2008), Bonomini
et al. (2016), Piccapane et al. (2020), Rago et al. (2021), Herzog et al.
(2020), Wiesenhofer et al. (2019), Terawaki et al. (2013), Del Peso
et al. (2008)
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transport groups, even after adjusting for demographics,
comorbidities, and biochemical parameters (Chou et al., 2022).

4.3 Peritoneal Angiogenesis

Peritoneal membrane solute transport and angiogenesis are
regulated by matrix metalloproteinase 9 (MMP9) via β-catenin
signaling. These factors impair ultrafiltration, cause chronic
hypervolemia, and increase the risk of technique failure and
mortality in PD patients (Padwal et al., 2017). Authors report
that MMP9 mRNA expression in PMCs from peritoneal effluent
of PD patients correlates with membrane solute transport properties
and suggeste suggestes a role for MMP9 in peritoneal membrane
injury. They proposed that MMP9 induced peritoneal angiogenesis
by cleaving E-cadherin and activating b-catenin signaling, which
increased VEGF expression (Padwal et al., 2017). New blood vessels
form through angiogenesis, a highly complex process that depends
on the balance between growth factors that stimulate or inhibit it
(Zhu et al., 2021). Peritoneal angiogenesis plays a key role in
developing peritoneal fibrosis (Zhu et al., 2021). Studies showed
that TGF-β1 and VEGF-A mediate fibrosis in PD patients (Kinashi
et al., 2018; Kariya et al., 2018). TGF-β1 stimulates VEGF-A
expression, which in turn promotes angiogenesis (Kinashi et al.,
2018; Kariya et al., 2018), indicating that the TGF-β1-VEGF-A
pathway plays a key role in fibrosis-associated peritoneal
angiogenesis (Kariya et al., 2018).

Twist, a basic helix-loop-helix DNA-binding protein, regulates
E-cadherin expression and induces EMT and MMP9 expression in
PMCs. The study revealed that peritoneal membrane injury
increased Twist expression in the peritoneum (Margetts, 2012).

In a uremic rodent model, angiogenesis and fibrosis have been
demonstrated during PD, accompanied by increased expression of
angiopoietin (Ang)-2 and reduced expression of Ang receptor Tie2
(Stone et al., 2016; Yuan et al., 2009). With bio-incompatible PD
solutions, AGEs and IL-6 can promote the production of VEGF,
which has been detected in the effluent of long-term PD patients and
involved in inflammation (Stone et al., 2016; Yuan et al., 2009).
Therapeutic interventions targeting angiogenesis in the peritoneum
are detailed in (Table 2).

5 Molecular Mechanisms and
Therapeutic targets of signalling
pathways involved in Peritoneal Fibrosis

For targeting treatments that prevent the fibrosis, it is imperative
to know the molecular basis of the signalling mechanisms, which
contribute to the balance between cell regeneration and activation,
and maintenance of activity of myofibroblasts. Several intracellular
signal transduction pathways during the process of peritoneal
inflammation and angiogenesis associated with the
pathophysiology behind fibrosis are depicted in Figure 4.

TGF-β1 is central in the progression of EMT concluding to
peritoneal fibrosis (Gangji et al., 2009; Yao et al., 2008). TGF-β1 is a
member of the growth factor family that comprises TGF-βs, activins,
and (BMPs) (Xu et al., 2009). PMCs plasticity depends on TGF-β1
and BMP-7, which can induce the epithelial or mesenchymal

phenotype of PMCs, respectively (Loureiro et al., 2010).
Peritoneal membrane deterioration in PD patients correlates with
TGF-β1 levels in PD fluids, is reported in a study (Gangji et al.,
2009). Blocking peptides of TGF-β1 protect the peritoneal
membrane from PD fluid-induced damage in mice (Loureiro
et al., 2011). TGF-β1 signalling employs both Smad-mediated
and Smad-independent mechanisms (Suryantoro et al.,
2023) (Figure 4).

5.1 Smad TGF-β1 Signalling

The main signaling pathways responsible for the EMT process in
PMCs are induced by TGF-β1 (Davies, 2004). Heterodimeric serine/
threonine kinase transmembrane receptor complexes mediate the
signaling of TGF-β1 factors. The ligand binds to its primary receptor
(receptor type II), which recruits, trans-phosphorylates, and activates
the signaling receptor (receptor type I). The receptor type I of TGF-
β1, also known as activin receptor-like kinase 5 (ALK5),
phosphorylates Smad2 and 3 with its serine-threonine kinase
activity. BMP-7 (ALK3) receptor type I phosphorylates Smads (1,
5, and 8). The phosphorylated Smads form heterodimers with
Smad4, a common mediator of all Smad pathways (Gangji et al.,
2009; Xu et al., 2009; Loureiro et al., 2011). These Smad
heterocomplexes move to the nucleus, binding directly to DNA
and activating specific target genes. Inhibitory Smad seven limits the
Smad signaling triggered by TGF-β1. They prevent the
phosphorylation and/or nuclear translocation of Smad2/3 or
Smad1/5/8complexes and induce their degradation by recruiting
ubiquitin ligases (Gangji et al., 2009; Suryantoro et al., 2023) MMT
process arises from the integration of diverse signals triggered by
multiple factors, making it difficult to establish a clear hierarchy or
prioritize specific pathways (López-Cabrera, 2014).

The contribution of TGF-β1-BMP7-Gremlin-1-Smad pathway
cross-talk has recently been reported to be involved in peritoneal
fibrosis (Ruiqi et al., 2021). The authors report a possible
mechanism, Gremlin-1 enhances the TGF-β1 signalling and
suppresses the expression of BMP7 and Smad1/5/8, leading to
EMT and peritoneal fibrosis (Ruiqi et al., 2021). In other study,
BMP-7 inhibitory effect on EMT is dependent on the activation of
Smad1/5/8 proteins that counteract TGF-β1 activated Smad2/
3 activity (Raby et al., 2018). Smad3 signalling is essential for
TGF-β1 induced EMT and fibrosis, as evidenced by
Smad3 knockout mice. These mice display less peritoneal fibrosis,
collagen accumulation, and EMT (Patel et al., 2010). EMT and
peritoneal membrane fibrotic injury are reduced by inhibitory
Smad7, which blocks Smad signaling (Patel et al., 2010).

5.1.1 Transcriptional Regulators
TGF-β1 activates Smad complexes that regulate the expression

and activity of EMT transcription factors. Smad3 mediates the
transcriptional induction of SNAIL-1 by TGF-β1 (Hoot et al.,
2008). Smad3/4 also collaborates with SNAIL1 to repress the
genes encoding E-cadherin and occludin in response to TGF-β1
(Vincent et al., 2009). Moreover, TGF-β1 induces ZEB1 expression,
which is also modulated by non-Smad pathway (MAPK signalling),
and Smad3/4 complexes interact with ZEB1 and ZEB2 to mediate
TGFβ-regulated gene expression (Postigo, 2003).
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Complete blocking of the Smad pathway does not entirely
abolish the fibrosis, proposing that additional pathways are also
convoluted in the fibrosis mechanisms (Kinashi et al., 2018).

5.2 Non-Smad TGF-β1 Signalling

Documentation of TGF-β1/Smads signaling help in understanding
the fibrosis mechanism partially, but still, the entire phenomenon is
incompletely understood. Complementing, the Smad proteins crosstalk
with various non-canonical pathways to communicate downstream
responses. Non-canonical pathways such as Mitogen activated protein
kinases (MAPKs), Extracellular regulated Kinases (ERK1/2), and p-38,
along with Jun N-terminal kinases (JNK), Src, phosphatidyl inositol
3 kinase (PI3Kinase)/AKT, Wnt/β-catenin/Ror2 signalling pathways,
andNLRP3 inflammasome transduce the pro-fibrotic effects of TGF-β1
concluding to EMT and fibrosis as discussed below.

Map kinase (MEK)-ERK1/2 is a key pathway that mediates the
effects of TGF-β1 on EMT and fibrosis (Gui et al., 2012). However, ERK-

nuclear factor κ-light chain-enhancer of activated B cells (NF-kB)-Snail-
1 pathway inhibition prevents this EMT induction. Moreover, the
pathway inhibition also triggers mesenchymal to epithelial transition
(MET), reverse process of EMT, in PMCs of patients on long term PD
(Strippoli et al., 2008). The AMPK-NF-kB pathway mediates the anti-
fibrotic molecule mechanism, which suppresses suppressing PAI-1
expression in PMCs and prevents TGF-β1 induced EMT in
peritoneal fibrosis. (Strippoli et al., 2008).

In continuation of non-Smad pathways, TGF-β1 is reported to
activate TAK-1 (TGF-β activated kinase 1), which mediates the
phosphorylation and activation of p38 and JNK MAPKs pathway
(Shim et al., 2005). The p38-mediated pathway controls the EMT
process of PMCs through a feedback mechanism that reduces ERK1/2,
TAK-1-NF-κB activities. JNK inhibition is stated to preserve E-cadherin
expression and prevents EMT conversion (Strippoli et al., 2010). JLP, a
(JNK interacting protein) family scaffold protein for MAPK pathway
(Dhanasekaran et al., 2007), negatively regulates peritoneal fibrosis by
modulating TGF-β1/Smad signalling pathway, EMT, autophagy, and
apoptosis (Tian et al., 2022).

FIGURE 4
Signalling pathways in peritoneal fibrosis. TGF-βRI phosphorylates Smad2 and Smad3 and liberates them from Smad2/Smad3 receptor complex.
Then after they form a Smad2/Smad3/Smad4 complex and relocate to the nuclear segment to regulate the expression of target genes with the help of
various transcription factors/co-factors, CBP, p300 and others. Smad7 interferes with phosphorylation of Smad2/Smad3 by restricting their binding with
TGF-β1 receptors or their movement to the nucleus. TGF-βRII and TLR ligands induce parallel pathways that culminate in the activation of various
non-Smad signalling pathways, JNK, ERK1/2, PI3K, and PKC pathways which are important factors in the emergence of peritoneal fibrosis. Activation of
At1R is involved in pro-fibrotic actions via classical RAAS pathway whereas At2R activation through alternative RAAS pathway induces anti-fibrotic actions.
Binding of Ang II to At1R receptor activates various MAPKs, with complex of Smad2/3 and Smad4 leading to transcription of pro-fibrotic genes, i.e.CCN2,
COl1A1, PAI1, TGF-β and PDGF. Ald activation of MnR receptor induces MAPKs and turns on the expression of pro-fibrotic proteins. Blocking At1R and
MnR suppresses receptor activation and stop pro-fibrotic signaling. Activation of At2R/MasR, inhibits TGF-β fibrotic signaling. Pirfenidone might inhibit
AT1R and activate MasR. Abbreviations: TGF-β1, Transforming Growth Factor Beta 1; TGF-βRI, Type I TGF-βI receptor; TGF-βRII, Type II TGF-βI receptor;
CBP, Creb binding protein; TLRs, Toll like receptors; JNK, C-Jun N-terminal kinase; ERK1/2, Extracellular Signal-Regulated Kinase ½; PI3K,
Phosphatidylinositol-3-kinase; PKC, Protein Kinase C; NF-kB, Nuclear Factor-kB; MCP-1, Monocyte Chemoattractant Protein-1; EMT, Epithelial to
Mesenchymal transition; Ang II, Angiotensin II; Ald, Aldosterone; At1R, Angiotensin 1 receptor; At2R, Angiotensin 2 receptor; MnR, Mineralocorticoid
receptor; MasR, Mas receptor; RAAS, Renin-Angiotensin- Aldosterone system;MAPKs, Mitogen activated protein kinases;CCN2, Cellular communication
network factor 2; COL1A1, Alpha-1 type 1 collagen; PAI1, Plasminogen activator inhibitor 1; (A) Ang-(1–7); (B) Ang II; (C) Pirfenidone or Angiotensin
convertase enzyme inhibitors (ACEIs) or Angiotensin receptor blocker (ARB); (D) Spironolactone.
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PI3K/AKT pathway is another non-Smad mechanism that has been
widely investigated in EMT process, contributes pathologically to fibrosis
(Lamouille et al., 2014). A report indicated that blocking the PI3K/AKT/
mTOR pathway enhanced autophagy and reduced PF during PD (Jia
et al., 2022). By reducing intracellular ROS levels, this inhibition enhances
the expression of ZO-1 and E-cadherin, and suppresses the expression of
p-PI3K/PI3K, p-mTOR/mTOR, fibroblast-specific proteins ferroptosis
suppressor protein 1 (FSP1), and α-SMA, which are associated with
fibroblast differentiation, thus alleviating fibrosis (Suryantoro et al., 2023).
The PI3K/AKT pathway also plays a role in EMT.Wang et al. found that
AKT is overactivated during MMT (Jia et al., 2022), and the expression
levels of p-AKT and α-SMA in PMCs are significantly inhibited after
intervention with the PI3K/AKT pathway blocker wortmannin (Jia et al.,
2022). A recent study showed that rat PMCS incorporated adipose-
derived mesenchymal stem cell-derived extracellular vesicles (ADSC-
EVs) and exhibited increased proliferation and migration via the
activation of MAPK-ERK1/2 and PI3K-Akt pathways, which
prevented postoperative peritoneal adhesions (Shi M. et al., 2022).

Src activation contributes to peritoneal fibrosis by stimulating
the TGF-β1 pathway in a chlorhexidine-stimulated model of
peritoneal membrane injury (Wang et al., 2017). Src is required
for the phosphorylation of TGF-β receptor (R)-II, which activates
TGF-β1. TGF-β1 plays a critical role in EMT programming via
Smad and non-Smad RAS/RAF/MEK/ERK pathways; the PI3K/
AKT/mTOR pathway; and the STAT3 pathway, which regulate the
expression of SNAIL, c-Myc and Cyclin D1 (Wilson et al., 2020).

5.2.1 Transcriptional Regulators
Snail, the master factor of EMT, inhibits E-cadherin expression

directly. Both Smad and non-Smad pathways converge on the
activation of Snaill (Cano et al., 2000). MEK-ERK1/2-Snail-
1 pathway modulates E-cadherin and ZO-1 expression, which are
essential for peritoneal membrane integrity. Blocking this pathway
restored E-cadherin and ZO-1 levels, decreased peritoneal fibrosis,
and enhanced membrane function (Strippoli et al., 2015). SNAIL
expression in PMCs is negatively regulated by Smad3, MEK-ERK1/
2, and NF-κB signaling pathways (Patel et al., 2010; Strippoli et al.,
2008). SNAIL and TWIST, transcription factors that mediate EMT,
are under the control of NF-κB, which works together with Snail to
turn on the transcription of fibronectin (FN1) (Stanisavljevic et al.,
2011; Šošić et al., 2003). Inhibition of AKT decreases the level of
SNAIL-1 expression (Lamouille et al., 2012). SNAIL and
p38 inhibition have similar effects on PMCs, while TWIST
expression increases (Strippoli et al., 2010).

Evidence suggests that Heat Shock Proteins (HSPs) and Notch
are involved in EMT other than kinase families. Notch signaling gets
activated in the peritoneal membrane of animal fibrotic models
through increased HES1/Jagged1 expression (Zehender et al., 2018).
In one report involving rat peritoneal membrane (Zehender et al.,
2018), HSP70 secured the PMCs from EMT via the involvement of
Smad/Non-Smad pathways (Zehender et al., 2018).

5.3 Toll-like Receptor (TLR) ligand-mediated
signalling pathways

When peritoneal injury and oxidative stress occurs in PMCs,
nuclear high mobility group box 1 (HMGB1) protein, a DAMP,

leaks out of the cells. This activates NF-κB, a transcription factor that
regulates inflammatory responses. The recognition of HMGB1 by
pattern recognition receptors (PRRs) such as Toll-like receptors
(TLRs), nucleotide-binding oligomerization domain (NOD)-like
receptors (NLRs), and receptors for advanced glycation end-
products (RAGE), receptors for both DAMPs and pathogen-
associated molecular patterns (PAMPs), mediates this activation
(Wilson et al., 2020; Liu et al., 2017). DAMPS or PAMPS activate
PRRs (Raby and Labéta, 2018), which trigger inflammatory and
proliferative events through NF-κB, cytokine and TGF-β1 release
and IRAK signaling (IRAK) (Balzer, 2020; Raby and Labéta, 2018).
These events activate EMT transcription factors SNAIL, TWIST,
and ZEB, repress E-cadherin expression, and induce EMT (Wilson
et al., 2020).

PMCs express TLRs such as TLR1, 2 and 5 excluding TLR4,
which play an important role in the membrane inflammation
process (Colmont et al., 2011). Various cell types, including
peritoneal leukocytes and PMCs, express TLRs-2 and 4 in
particular, which are major receptors for DAMPs (Raby et al.,
2017; Anders and Schaefer, 2014; Colmont et al., 2011). TLRs
recognise and respond to a wide range of DAMPs, such as
HMGB-1 and HSPs (Anders and Schaefer, 2014; Chen and
Nuñez, 2010). TLRs trigger MyD88 dependent signalling pathway
upon ligand binding, leading to the activation of ERK1/2, JNK,
p38MAPKs, and NF-kB, as well as the secretion of proinflammatory
cytokines, such as IL-6, IL-1β and TNF-α (Colmont et al., 2011). IL-
1β induces NF-κB response more strongly than TGF-β1 in PMCs,
and their co-stimulation results in an additive effect. NF-κB
inhibition prevents EMT induction by TGF-β1/IL-1β
costimulation and partially reverses EMT in PMCs obtained from
PD patients (Strippoli et al., 2008).

5.4 Vascular Endothelial Growth Factor
(VEGF) Signalling

Vascular endothelial growth factor (VEGF) is a specific mitogen of
vascular endothelial cells (Lamouille et al., 2014). VEGF belongs to a
gene family that includes VEGFA, placental growth factor, VEGFB, C,
and D. IL-6, IL-1β, IL-8, MCP-1, TNF-α, and Prostaglandin E2, all
involved in angiogenesis, endothelial cells survival, proliferation and
capillary tube formation (Colmont et al., 2011). Inhibiting VEGF
expression could reduce pathological angiogenesis in the membrane
of the long-term PDpatients, a report documents (Colmont et al., 2011)
Another study documents, inhibiting VEGF attenuates fibrosis, by
regulating TGF-β1 expression through the phosphoinositide 3-kinase
(PI3K)/Akt pathway (Lee et al., 2008). Peritoneal tissues of PD patients
with PF express VEGF significantly more than those of PD patients
without PF (Abrahams et al., 2014). Peritoneal fibrosis, involves
angiogenesis of human peritoneal vascular endothelial cells
(HPVECs) mediated by VEGF/VEGF receptor 2 (VEGFR2)
signalling. This signalling pathway also interacts with Hippo/YAP
signalling, which regulates cell proliferation and differentiation.
Pharmacological inhibition of VEGF/Hippo/YAP signaling reduced
peritoneal angiogenesis and prevented further damage to the peritoneal
membrane (Zhu et al., 2021). High glucose activates estrogen receptor 1
(ESR1) in PMCs, which induces EMT and peritoneal fibrosis in long
termPD. ESR1 transcriptionally regulatesH19, a long non-coding RNA
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that interacts with the transcriptional coactivator p300 to enhance the
expression of VEGFA. Targeting the ESR1/H19/VEGFA pathway
pharmacologically can attenuate high glucose-induced peritoneal
fibrosis (Zhao et al., 2023).

5.5 NOD-like receptor protein 3 (NLRP3)/IL-
1β signalling

PM inflammation and fibrosis are associated with the activation
of NLRP3 inflammasome, an intracellular complex of the innate
immune system. It activates caspase-1 and controls the secretion of
cytokines IL-18 and IL-1β in response to PD solutions with high
glucose content (Hishida et al., 2019).

5.6 Wnt/β-catenin/Ror2 Signalling

The wingless-type mouse mammary tumor virus integration site
family (WNT) signalling pathway has two branches: the canonical
branch, which depends on β-catenin, and the non-canonical branch,
which does not. The canonical WNT signalling pathway interacts with
the TGF-β1 pathway and enhances fibrosis in various organs (He et al.,
2009; Guo et al., 2012). Wnt/β-catenin signaling pathway is involved in
the EMT of PMCs (Fan et al., 2021). WNT5A is a typical example of a
non-canonical WNT protein (Mikels et al., 2009).

5.6.1 Wnt/β-catenin Signalling
The role of WNT signalling in peritoneal membrane injury has

been recently explored. WNT signaling and WNT1 expression in MCs
are activated by peritoneal fibrosis and correlate with solute transport in
PD patients. TGF-β1 enhances WNT2 and WNT4 expression and
induces peritoneal fibrosis in mice. Adenovirus expressing TGF-β1
(AdTGF-β) infection increases β-catenin and other WNT signaling
components in the peritoneum, indicating TGF-β1/β-catenin crosstalk
in peritoneal membrane injury (Padwal et al., 2018). Wnt/β-catenin
signaling pathway is upregulated in peritoneal dialysate-induced
peritoneal fibrosis; the EMT process is blocked by the use of
recombinant human Dickkopf-related protein 1 (Wnt/β-catenin
inhibitor) (Guo et al., 2017) and herbal mixture which mitigates
peritoneal membrane thickness and fibrosis (Huang et al., 2022).

5.6.2 Wnt/Ror2 Signalling
The non-canonical WNT pathway is poorly understood in the

context of peritoneal membrane damage. WNT5A binds to
Ror2 and blocks WNT/β-catenin signalling, reducing β-catenin
and pGSK3β levels. WNT5A also decreases peritoneal fibrosis
and angiogenesis in mice. Ror2 regulates WNT5A-induced
fibronectin and VEGF expression in human mesothelial cells.
WNT5A prevents peritoneal injury via Ror2 and WNT/β-catenin
pathways (Padwal et al., 2020).

6 Strategies to preserve the peritoneal
membrane from fibrosis

PD solutions have a vital role in the pathophysiology of
peritoneal fibrosis, as mentioned above. However, the

interpretation of the above information should be carefully
evaluated considering the “caveat” of a possible lack of specificity,
the “pharmacological approach” is especially relevant from a
translational point of view, since it is possible to hypothesize the
design of pharmacological treatments designed to specifically
preserve or recuperate the peritoneal membrane homeostasis in
PD patients. We have detailed the importance of improving
biocompatibility and efficacy of PD solutions, and
pharmacological interventions/stem cell treatment strategies in
the mechanisms involved during peritoneal membrane fibrosis
in Table 3.

6.1 Effluent Biomarkers to assess peritoneal
dialysis performance and peritoneal fibrosis

A fibrosis marker that can be accessed in the dialysate would
help us identify PD patients with peritoneal membrane deterioration
and high risk of complications (Li YC. et al., 2021).

IL-6, a chronic peritoneal inflammation marker, is the main
biomarker used in PD and measured in dialysis fluid (Suryantoro
et al., 2023; Li YC. et al., 2021). Bacterial clearance and infection
(acute or subclinical) in PD patients can be assessed by IL-6 levels in
PD effluent. Certain biomarkers present in dialysis fluid, such as IL-
6, IL-8, and cancer antigen-125 (CA-125), are employed to estimate
the quantity of peritoneal macrophages (PMCs) and assess the
overall health of the peritoneal membrane (Masola et al., 2022).
Some are emerging, like inflammatory markers (Th17 secreted IL-
17, T reg cells, and M1/M2 macrophages), some are excreted by
PMCs such as miRNAs, aquaporin-1 (AQP-1) (Lopes Barreto and
Krediet, 2013) and also markers of cell stress/ageing/senescence,
advanced oxidized protein products (AOPPs) (Corciulo et al., 2019).
The European Training and Research in PD Network (EuTRiPD)
network covers them all (Aufricht et al., 2017). Furthermore, one
study provides evidence for the role of AQP-1 as the ultrafiltration
mediator in the human peritoneal membrane (Corciulo et al., 2019).
Tweaking of Th17 response and boosting the Treg response, might
save the peritoneal membrane from damage as explicated in the
study (Corciulo et al., 2019). Exposure to hyperglycemic dialysate
induces oxidative stress-mediated cellular senescence. Therefore,
dialysate advanced oxidized protein products levels may reflect
PMC senescence and injury. Moreover, dialysate toxicity and
inflammation followed by MMT process modulate the expression
of Hsp27 and Hsp72. Dialysate levels of VEGF, MMP-2, and
Plasminogen activator inhibitor-1 (PAI-1), associated with PD
duration, may serve as indicators of PD-linked peritoneal fibrosis,
according to prospective cohort studies (Corciulo et al., 2019).
Proteomics and metabolomics could find new biomarkers in PD
effluent that could signal PM problems. The metabolic state in PD
effluent could tell how healthy the membrane is and how long it will
survive. Metabolic profiling of serum and PD effluent may facilitate
the evaluation of PM permeability and the early detection of PM
dysfunction. Furthermore, metabolite-enriched PD solutions may
prevent membrane inflammation and fibrosis, thereby preserving
the peritoneal membrane’s permeability (Devuyst et al., 1998). One
study suggested that effluent decoy receptor-2 (eDcR2) levels may
reflect peritoneal fibrosis in PD patients (Kondou et al., 2022).
Moreover, serum α-Klotho and galectin-3 levels were associated
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with peritoneal membrane thickness and PD duration (Yang et al.,
2022). A study has shown that increased dialysate-to-plasma (D/P)
creatinine ratio is associated with increased risk of mortality in PD
patients (Padwal et al., 2018). The same study has demonstrated that
the WNT1 gene and protein expression are correlated with
peritoneal solute transport rate (PSTR) measured by D/P
creatinine. Therefore, WNT1 may be a biomarker for clinical
outcomes in PD patients (Padwal et al., 2018). Osteopontin, a
phosphorylated glycoprotein involved in inflammation, EMT, and
fibrosis may also be a useful indicator of peritoneal deterioration in
long term PD patients (Li J. et al., 2021). Regression analysis of
109 PD patients showed Osteopontin levels in peritoneal effluents
were an independent predictive factor for the increased PSTR (Li
J. et al., 2021; Kothari et al., 2016) Effluent dialysate mtDNA levels
could serve as a prognostic biomarker of peritoneal membrane
damage induced by PD (Ramil-Gómez et al., 2021; Xie et al.,
2019). High CCL8 levels in PD effluents may be associated with
an increased risk of PD failure, and the CCL8 pathway is associated
with PF (Lee et al., 2023). A study, using Fourier transform infrared
(FTIR) spectroscopy, characterized the molecular profiles of PD
effluents and clinical data, and used machine learning to assess the
potential of this proof-of-principle study for low-cost, high-speed
diagnosis in PD (Grunert et al., 2020). A recent study, highlighting
that MMT associated biomarkers and clinical data under Machine
Learning models (MAUXI software) can predict endurance and
different PD technique failures, opening new avenues to individual
treatments (Arriero-País et al., 2025). List of Markers are detailed
in Table 5.

7 Conclusion

Long-term PD leads to peritoneal membrane thickening and,
ultimately, fibrosis. The peritoneal membrane suffers less harm from
PD nowadays, as catheter complications have decreased and PD
solutions have become more compatible with the body. It is
important to note that the development of pharmacological
interventions targeting peritoneal fibrosis in PD patients is still
an active area of research, and much work remains to fully
understand the molecular mechanisms in peritoneal fibrosis and
membrane survival. Effective therapies to prevent this process
remain to be developed. Other non-pharmacological strategies,
such as optimizing dialysis prescription, use of biocompatible PD
solutions, and individualized patient care, also play crucial roles in
managing peritoneal fibrosis and improving patient outcomes. The
success and safety of the newer interventions mentioned in this
narrative review need to be further evaluated through clinical trials
before they can be implemented in routine clinical practice.

8 Future Directions

Notably, future directions can be aimed at gathering information on
single-cell transcriptomic studies and knockout models to enhance the
peritoneal membrane viability and developing new ways to predict,
detect or monitor how the peritoneal membrane works or gets injured.
This could include: 1) More sophisticated mathematical models to
support the peritoneal membrane function testing, such as detailed

TABLE 5 List of validated and Pre-clinical targets for peritoneal fibrosis during peritoneal dialysis.

S.No. Validated markers Preclinical markers

1

2 IL-6 Th17 secreted IL-17

3 IL-8 T reg cells

4 Cancer antigen-125 (CA-125) M1/M2 macrophages

5 Dialysate Total Protein Aquaporin-1 (AQP-1

6 Dialysate Albumin Hsp27

7 C-Reactive Protein (CRP) Hsp72

8 VEGF

9 TNF-α

10 MMP-2

11 Plasminogen activator inhibitor-1 (PAI-1)

12 effluent decoy receptor-2 (eDcR2)

13 Serum α-Klotho

14 Galectin-3

15 WNT1

16 Osteopontin

17 CCL8

18 Effluent dialysate mtDNA
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descriptions of icodextrin, macromolecular or trans-capillary aspects of
peritoneal membrane function, 2) Peritoneal Equilibration Test (PET),
which measures the solute and water transfer across the PM to semi-
quantitatively, a non-invasive method, assess PD performance, that
should be established in the clinics, 3) Better biomarkers need to be
validated and used to create reliable models of prognosis, 4) Omics-
based biomarkers in PD effluent of long term PD patients have the
potential to predict or diagnose peritoneal membrane dysfunction,
enabling the establishment of reliable early prognostic tools and,
possibly, the discovery of novel therapeutic targets, 5) Peritoneal
microbiota needs to be investigated in fibrogenesis, to elucidate the
molecular mechanisms developmental pathways of peritoneal fibrosis,
Testing treatments that protect the peritoneal membrane could include:
1) New therapies use antibodies or proteins to change the expression of
thesemolecules that cause inflammation, which can help stop the PMCs
from transforming into fibrous tissue. For example: Based on the
current knowledge and recent data, pharmacological modulation of
GLUTs may antagonize glucose absorption and improve peritoneal
ultrafiltration which represents a major goal for future research in PD.,
2) Oral or dialysate additives that prevent inflammation or scarring of
peritoneal membrane, and 3) New dialysis solutions with adjusted pH.
Other targets aimed at sustaining PMCs viability and regulating
intricate interplay between the peritoneal membrane immune system
and PMCs may help in delaying peritoneal fibrosis. By elucidating the
cellular and molecular mechanisms of peritoneal membrane fibrosis,
both the fundamental and translational research can be advanced, as it
may enable the development of therapeutic interventions to prevent the
damage and restore the homeostasis of the peritoneal membrane.
Collectively, the above documented information may open the
avenue for developing a novel therapy in regulating peritoneal
fibrosis in PD.

The review has some limitations, such as possible publication
bias that favours positive results and distorts the evaluation of
therapeutic approaches. More extensive studies are needed to
identify effective targets for PD patients, especially to protect
the peritoneal membrane integrity and prevent EMT.
Overcoming these limitations is essential for developing safe
and efficacious therapies in diverse clinical scenarios of
peritoneal fibrosis.
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